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ABSTRACT

Several available formulations, parametric models and sparsity settings for multivariate long-range dependence
(MLRD) are discussed. Furthermore, a new parametric identifiable model for a general formulation of MLRD is
introduced in any dimension, and another sparsity setting is identified of potential interest in MLRD modeling.
Estimation approaches for MLRD are also reviewed, including some recent progress and open questions about
estimation in higher dimensions and sparse settings.
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1. INTRODUCTION

The focus of this work is on multivariate stationary time series exhibiting long-range dependence (LRD, for
short). Univariate LRD modeling is well understood and applied widely.1–5 It relates naturally to scaling,
self-similarity, wavelets, fractional Brownian motion and other well-studied phenomena and objects. Though
extensions of LRD to multivariate (vector) time series have been considered previously, multivariate long-range
dependence (MLRD, for short) still presents a number of only partially resolved or completely unresolved issues.
The goal of this work is to draw a broad picture of current MLRD modeling, provide a few new results and raise
several open problems.

Definitions and models of MLRD are discussed in Section 2, including several situations where postulating
a sparse model is of interest. Several approaches to estimation of model parameters are presented in Section 3,
and some open questions are raised. Conclusions can be found in Section 4.

2. MODELS FOR MULTIVARIATE LONG-RANGE DEPENDENCE

We thus focus on (second-order) stationary multivariate series {Xn}n∈Z = {(X1,n, . . . , X`,n)
′}n∈Z consisting

of ` univariate component series {Xj,n}n∈Z, j = 1, . . . , `. Stationarity means that the mean vector µX =
(µX,j)j=1,...,` = EXn of the series does not depend on n, and that its autocovariance function (ACVF)

γX(h) :=
(
γX,jk(h)

)
j,k=1,...,`

:= EXn+hX
′
n − µXµ′

X =
(
EXj,n+hXk,n − µX,jµX,k

)
j,k=1,...,`

(1)

depends only on a time lag h ∈ Z (and not on n). Note that the ACVF is matrix-valued. The spectral density,
if it exists, is a complex-valued matrix function fX(λ) = (fX,jk(λ))j,k=1,...,`, λ ∈ (−π, π), satisfying

γX(h) =

∫ π

−π

eihλfX(λ)dλ. (2)
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For each λ, the matrix fX(λ) is Hermitian symmetric and non-negative definite, and the function fX(λ), λ ∈
(−π, π), is Hermitian (that is, fX(−λ) = fX(λ)). In contrast to the univariate case, we also note that it is
not true in general that γX(h) = γX(−h), which is equivalent to γX(h) = γX(h)′. In fact, it is the relation
γX(−h) = γX(h)′ that holds in general. Finally, we also caution the reader to be aware of what convention is
used in the definition of the ACVF and the spectral density (for example, a common alternative definition is to
set γX(h) = EXnX

′
n+h − µXµ′

X), which has been the source of some confusion in the literature and certainly
considerable nuisance in our work.

In Section 2.1, we define multivariate long-range dependence (MLRD), focusing on a semiparametric for-
mulation in the spectral domain. Some families of parametric models for MLRD are discussed in Section 2.2,
including a new identifiable family for a general dimension `. Section 2.3 concerns some situations where it is
natural to consider sparse MLRD models.

2.1 Semiparametric formulation

The most general available formulation of MLRD is given in the following definition.6,7 Some comments and
insight can be found following the definition.

Definition 2.1. A stationary multivariate series {Xn}n∈Z is long-range dependent (LRD) if its spectral density
satisfies:

fX(λ) ∼ λ−DGλ−D, as λ → 0+, (3)

where D = diag(d1, . . . , d`) with dj ∈ (0, 1/2), λ−D = diag(λ−d1 , . . . , λ−d`) and G ∈ C
`×` is a non-negative

definite, Hermitian symmetric matrix. Entrywise, the relation (3) reads: for j, k = 1, . . . , `,

fX,jk(λ) ∼ gjkλ
−(dj+dk) =: αj,ke

iφjkλ−(dj+dk), as λ → 0+, (4)

where gjk ∈ C, αjk ∈ R and φjk ∈ (−π/2, π/2).

The parameter dj ∈ (0, 1.2) is the usual long-range dependence (LRD) parameter. The case dj ≤ 0 is
associated with short-range dependence (SRD), and dj < 0 with the so-called anti-persistence. The representation
gjk = αj,ke

iφjk is just a polar coordinate representation, but with an important convention that φjk is restricted
to (−π/2, π/2) and hence αjk ∈ R. The other possibility is to assume that φjk ∈ (−π, π) and αjk ≥ 0 but
this imposes further restrictions on the real-valued matrix (αjk). The parameter φjk is referred to as the phase
parameter of the component series {Xj,n} and {Xk,n}, and αjk is their amplitude parameter. Note that φjj = 0
and φjk = −φkj , j 6= k, since G is non-negative definite, Hermitian symmetric.

Under mild assumptions, the condition (4) can be shown4 to be equivalent to: for j, k = 1, . . . , `,

γX,jk(h) ∼ rjkh
(dj+dk)−1, as h → ∞. (5)

The case rjk = rkj corresponds to φjk = 0; otherwise, φjk controls the asymmetry of the tails of the ACVF
components at large lags.

Remark 2.2. The case D = dI` with d ∈ (0, 1/2) (and the identity matrix I`) and singular matrix G is special
and is referred to as fractional cointegration. This case will be excluded from the discussion of this paper. For
more information, for example, consult a review in Ref. 8.

Finally, for later reference, we also note the following time-domain interpretation of the matrix G = (gjk) in
(3). Note that

Var
( N∑

k=1

Xk

)
=

N−1∑

h=−(N−1)

(N − |h|)γX(h) = N

N−1∑

h=−(N−1)

γX(h)−
N−1∑

h=−(N−1)

|h|γX(h). (6)

By using (2) and (3), we have

N−D
( N−1∑

h=−(N−1)

γX(h)
)
N−D =

∫ π

−π

( N−1∑

h=−(N−1)

eihλ
)
N−DfX(λ)N−Ddλ



= 2

∫ π

0

( N−1∑

h=−(N−1)

eihλ
)
N−D(fX(λ) + fX(λ)∗)N−Ddλ

= 2

∫ πN

0

( N−1∑

h=−(N−1)

ei
h
N

w 1

N

)
N−D(fX(

w

N
) + fX(

w

N
)∗)N−Ddw

∼ 2

∫ ∞

0

(∫ 1

−1

eiuwdu
)
w−D(G+G∗)w−Ddw = 4

∫ ∞

0

sinw

w
w−D(G+G∗)w−Ddw

=
(
<(gjk)8

∫ ∞

0

sinw

w
w−(dj+dk)dw

)
=:

(
<(gjk)A(dj + dk)

)
,

as N → ∞, where we leave justification of the asymptotic equivalence above to the reader. Similarly, one expects
that N−1N−D(

∑N−1
h=−(N−1) |h|γX(h))N−D ∼ (<(gjk)B(dj + dk)) and hence, in view of (6), that

N−(D+1/2)Var
( N∑

k=1

Xk

)
N−(D+1/2) ∼

(
<(gjk)C(dj + dk)

)
, (7)

as N → ∞, where B(·) and C(·) are some functions. That is, the real part of G can be thought as the covariance
matrix of the series aggregated at large time scales. To make an imaginary part emerge in the time domain,
one would have to consider a quantity that is not invariant to the reversion of the series in time, for example,
Cov(

∑N
k=1 Xk,

∑2N
k=N+1 Xk).

2.2 Parametric models

A common parametric model for MLRD is to take

Xn = (I −B)−Dηn =




(I −B)−d1η1,n
...

(I −B)−d`η`,n


 , (8)

where {ηn} is a `–variate white noise series satisfying Eηn = 0 and Eηnη
′
n = Σ = (σjk)j,k=1,...,`, and (I − B)−d

is the usual fractional integration operator defined as

(I −B)−d =

∞∑

m=0

bmBm, (9)

where B is the backwardshift operator (i.e. BkXn = Xn−k, k ∈ Z, and B0 = I) and bm’s are the coefficients
in the Taylor expansion (1 − z)−d =

∑∞
m=0 bmzm, known to satisfy bm = Γ(m+ d)/(Γ(d)Γ(m+ 1)). In other

words, according to (8), each component series {Xj,n} of {Xn} is obtained by fractionally integrating a univariate
white noise series {ηj,n}; the dependence between the component series arises through the dependence of the
component white noise series, when the covariance matrix Σ is not diagonal.

The model (8) is known as VARFIMA(0, D, 0) series (also as a FIVARMA(0, D, 0) series). It extends to a
VARFIMA(p,D, q) series {Xn} satisfying

(I −B)DΦ(B)Xn = Θ(B)ηn, (10)

where Φ(z) = I` − Φ1z − . . . − Φpz
p and Θ(z) = I` − Θ1z − . . . − Θqz

q are matrix polynomials of integer
orders p, q ≥ 0, modeling short-range dependence effects. (A FIVARMA(p,D, q) series is defined similarly but
interchanging the order of (I−B)D and Φ(B), with the two definitions not being equivalent since matrices do not
commute in general.) Further restrictions are imposed on matrix polynomials Φ(z) and Θ(z) to ensure existence
of a stationary and causal solution to (10).



A VARFIMA(0, D, 0) series is LRD in the sense of Definition 2.1. Indeed, by using Theorem 11.8.3 in Ref.
9, a VARFIMA (0, D, 0) series has the spectral density given by

fX(λ) =
1

2π
(1− e−iλ)−DΣ(1− eiλ)−D. (11)

Since 1− e−iλ ∼ iλ = λeiπ/2, as λ → 0+, it follows that the spectral density (11) satisfies (3) with

G =
1

2π
e−iπ

2
DΣei

π
2
D. (12)

In particular, the amplitude and phase parameters for a VARFIMA(0, D, 0) series are given by

αjk = σjk, φjk =
π

2
(dk − dj). (13)

The same conclusion can be reached for VARFIMA(p,D, q) series.

Note from (13) that VARFIMA(0, D, 0) series have very special phase parameters, which depend directly on
the values of LRD parameters. One parametric class of models allowing for general phases consists of two-sided
VARFIMA(0, D, 0) series defined by

Xn =
(
(I −B)−DQ+ + (I −B−1)−DQ−

)
εn, (14)

where {εn} is a `–variate white noise series satisfying Eεn = 0 and Eεnε
′
n = I`, and Q+, Q− ∈ R

`×` are matrices.
It is called two-sided because of the presence of forward shift operator B−1 in (14). When Q− = 0, a two-sided
VARFIMA(0, D, 0) series becomes a one-sided VARFIMA(0, D, 0) series with Σ = Q+Q

′
+. An appealing feature

of the model (14), for example, in simulation or inference, is that its ACVF can be computed explicitly.6

The fact that two-sided VARFIMA(0, D, 0) series allow for general phases will become apparent from the
result given below. In fact, a real issue with two-sided VARFIMA(0, D, 0) series is not in proving that they
yield general phases but that a fixed semiparametric specification (3) can be achieved by multiple choices of the
parameters D, Q+Q

′
+ and Q−Q

′
− (e.g. in the bivariate case ` = 2, note that (3) has 6 parameters while D,

Q+Q
′
+ and Q−Q

′
− consist of 8 parameters). The next proposition specifies an identifiable parametrization of

two-sided VARFIMA(0, D, 0) series.

Proposition 2.3. There is a one-to-one correspondance between the parameters D and G in the semiparametric
specification (3) and the parameters D and lower-triangular matrices

Q+ =




q11 0 . . . 0
q+.21 q22 . . . 0
...

...
. . .

...
q+,`1 q+,`2 . . . q``


 , Q− =




0 0 . . . 0
q−.21 0 . . . 0
...

...
. . .

...
q−,`1 q−,`2 . . . 0


 (15)

in the specification (14) of two-sided VARFIMA(0, D, 0) series, with qjj > 0.

The one-to-one correspondence stated in the proposition is detailed in the proof below.

Proof. Since G in (3) is Hermitian positive definite, it has a unique Cholesky decomposition

G = ZZ∗ = (Ze−iπ
2
D)(Ze−iπ

2
D)∗, (16)

where a lower-triangular matrix

Z =




z11 0 . . . 0
z21 z22 . . . 0
...

...
. . .

...
z`1 z`2 . . . z``


 ∈ C

`×` (17)



has real-valued and positive diagonal entries zjj > 0. On the other hand, by arguing as for (11)–(12), the spectral
density of a two-sided VARFIMA(0, D, 0) series satisfies

fX(λ) ∼ λ−DWW ∗λ−D, as λ → 0+, (18)

where

W =
1√
2π

(e−iπ
2
DQ+ + ei

π
2
DQ−). (19)

To relate (3) with G in (16)–(17) and (18) with Q+, Q− in (15), one can then set

1√
2π

(e−iπ
2
DQ+ + ei

π
2
DQ−) = Ze−iπ

2
D. (20)

Entrywise, this is equivalent to
1√
2π

qjj = zjj (21)

(when considering the diagonal elements of (20)), and

1√
2π

(e−iπ
2
djq+,jk + ei

π
2
djq−,jk) = zjke

−iπ
2
dk (22)

(when considering the off-diagonal elements of (20)). Note that (21)–(22) has a unique solution for qjj , q+,jk

and q−,jk, since e−iπdj/2 and eiπdj/2 are linearly independent. That is, as stated in the proposition, there is a
one-to-one correspondence between D,G and D,Q+, Q−.

In the bivariate case ` = 2, another identifiable specification (14) was proposed in Ref. 10, where no restrictions
were placed on Q+ but Q− was taken as

Q− =

(
c 0
0 −c

)
Q+ (23)

with c ∈ (−1, 1). In this case, there is a one-to-one correspondence between the parameter c ∈ (−1, 1) and the
phase parameter φ12 (the only uniquely defined phase parameter in the bivariate case). The specification (23)
has a number of appealing features over (15), especially in terms of interpretation and symmetry, but such a
construction does not extend to general dimension ` ≥ 2.

In order to capture SRD effects, similarly to (10), one can introduce two-sided VARFIMA(p,D, q) series {Xn}
satisfying

Φ(B)Xn = ∆D,Q(B)−1Θ(B)εn, (24)

where Φ(B) and Θ(B) are matrix polynomials of respective orders p and q as in (10), and

∆D,Q(B)−1 =
(
(I −B)−DQ+ + (I −B−1)−DQ−

)
. (25)

For identifiability purposes, one could assume that Φ(B) is diagonal – see a discussion in Ref. 10, Section 3.2.
Moroever, the case of non-diagonal Φ(B) is associated with fractional cointegration, which is not the focus here
(see Remark 2.2).

Finally, we also note that constructing practical one-sided models with general phase has proved challenging,
and remains an open problem. Several attempts and discussion on this issue can be found in Ref. 6.



2.3 Sparsity

There are a number of situations where one might be interested in a sparse∗ semiparametric or parametric model
for MLRD, especially as the dimension ` increases. One natural direction is to consider sparse matrix polynomials
Φ(z) and Θ(z) in the parametric specifications (10) and (24), which has certainly been a central assumption in
the case of SRD time series modeling in higher dimension. Our goal here is to consider instead two contexts of
sparsity specific to MLRD, namely, related to fractal connectivity and LRD precision matrices. Both contexts
concern the matrix G = (gjk) in the specification (3) of MLRD.

Fractal connectivity matrix: When
gjk = 0, (26)

the pair of the component series {Xj,n} and {Xk,n}, j 6= k, is called fractally non-connected; and fractally
connected if gjk 6= 0. Moreover, in the fractally non-connected case, a further modeling assumption is often made
as

fX,jk(λ) ∼ cjkλ
−djk , as λ → 0+, (27)

with cjk 6= 0 and
djk < dj + dk. (28)

Likewise, the case djk = dj + dk is associated with fractal connectivity.11–13 The matrix G is referred to as the
fractal connectivity matrix.

One can think of fractal non-connectivity as asymptotic decorrelation between two component series at large
time scales (see (7) and the surrounding discussion). For example, a fractally non-connected model can be
constructed as

Xn = Yn + Zn, (29)

where {Yn} and {Zn} are uncorrelated, {Yn} is a one-sided VARFIMA(0, D, 0) series (8) with the innovation
covariance matrix Σ being sparse, and {Zn} is a one-sided VARFIMA(0, D1, 0) series with d1,j < dj , j = 1, . . . , k,
and the innovation covariance matrix Σ1 having non-zero entries. Those components Xj,n and Xk,n of Xn for
which Σjk = 0 are fractally non-connected and satisfy (27) with djk = d1,j + d1,k < dj + dk. It should also be
mentioned though that the model (29) may not be most representative of fractally connected pairs since their
cross spectral densities are mixtures of two scaling laws.

Despite some effort, it is fair to say that a number of questions on fractal connectivity remain (at least
partially) unresolved, for example, related to testing in the spectral domain, constructing practical families of
parametric models, or relevance in applications.

LRD precision matrices: As pointed out above, zero elements of the matrix G are associated with component
pairs of the series {Xn} that can be thought as uncorrelated at large time lags. As with all correlation matrices,14

their inverses, known as precision matrices, are associated with partial correlations between component pairs,
while zero entries of precision matrices with partially uncorrelated pairs.

Several matrices P could be called LRD precision matrices in the case of MLRD series, in the sense that they
would carry information about partial correlations (or the lack thereof) of component series at large time scales.
The most natural candidate is perhaps the inverse of the matrix G itself, that is,

P = G−1. (30)

The motivation for this choice stems from the way partial (also known as conditional) correlations are commonly
considered in the multivariate time series context. That is, first, residual series are defined for components j and
k as

εj,n = Xj,n −∑∞
m=−∞ Dj,mX−jk,n−m,

εk,n = Xk,n −∑∞
m=−∞ Dk,mX−jk,n−m,

(31)

where {X−jk,n} is the (`− 2)–vector series obtained from {Xn} by removing the jth and kth components, and
{Dj,m} ({Dk,m}, resp.) are the weights in the regression (prediction) of Xj,n (Xj,k, resp.) on {X−jk,n−m}. The

∗As usual, model sparsity refers to a number of model coefficients being zero.



partial correlation between the component series {Xj,n} and {Xk,n} is characterized by the correlations between
the residual series {εj,n} and {εk,n}. These correlations are also reflected in the cross spectral density fε,jk(λ),
λ ∈ (−π, π), and the so-called partial spectral coherence

PSCjk(λ) =
fε,jk(λ)√

fε,jj(λ)fε,kk(λ)
, (32)

which can be shown to be equal to15,16

PSCjk(λ) = − gjk(λ)√
gjj(λ)gkk(λ)

, (33)

where g(λ) = fX(λ)−1. The component pair {Xj,n} and {Xk,n} is said to be partially uncorrelated if PSCjk(λ) =
0 for all λ ∈ (−π, π). It is then natural to call this pair partially uncorrelated at large time scales (low frequencies)
if

PSCjk(0
+) = 0. (34)

In view of (33) and (3), this is equivalent to
(G−1)jk = 0. (35)

That is, the matrix G−1 can indeed be viewed as a LRD precision matrix as stated around (30). We also note
that similarly to (27) in the case of fractal non-connectivity, a further modeling assumption could be made under

(35), namely, f−1
X,jk(λ) ∼ bjkλ

d̃jk , where d̃jk < dj + dk.

An example of MLRD model with some partially uncorrelated component pairs can be constructed through
the one-sided VARFIMA(0, D, 0) model in (8) by taking a sparse Σ−1, since in this case G is given by (12) and
thus G−1 is (up to constant entrywise) Σ−1.

Other LRD precision matrix could be introduced as well. For example, in view of the discussion around (7),
it might also be of interest to define a LRD precision matrix as P = (<(gjk)C(dj + dk))

−1.

3. ESTIMATION APPROACHES

We discuss here the estimation approaches commonly used in the settings of Sections 2.1 and 2.2, with those for
sparsity (Section 2.3) appearing here for first time. Some simulations and data illustrations are also included.

3.1 Semiparametric formulation

A common way to estimate the parameters D and G in the semiparametric formulation (3) is through the
so-called local Whittle approach, namely,

(D̂, Ĝ) = argmin
(D,G)

Q(D,G) with (36)

Q(D,G) =
1

m

m∑

s=1

(
log det(λ−D

s Gλ−D
s ) + tr(λD

s IX(λs)λ
D
s G−1)

)
,

where λs = (2πs)/N are the Fourier frequencies for sample sizeN , IX(λ) = N−1(
∑N

n=1 Xne
inλ)(

∑N
n=1 Xne

−inλ)′

is the periodogram matrix and m is the number of Fourier frequencies used in estimation. The optimization
problem (36) can be reduced to that over D only as

D̂ = argmin
D

R(D) with (37)

R(D) = log det(Ĝ(D))− 2tr(D)
1

m

m∑

s=1

log λs,



where

Ĝ(D) =
1

m

m∑

s=1

λD
s IX(λs)λ

D
s . (38)

A theoretical study of the local Whittle estimators in the bivariate case ` = 2 was undertaken by Robinson,7

who established the asymptotic normality result for the estimates of d1, d2 and the phase parameter φ12. Baek
et al.17 raised and clarified a number of other issues for the local Whittle estimation, still in the bivariate case
` = 2. We are not aware of theoretical developments for arbitrary dimension ` and general semiparametric
formulation (3), except work in some special cases of G.18 Future work in arbitrary dimension should take into
account the issues raised in Ref. 17.

Wavelet estimation in the semiparametric setting was considered by Achard and Gannaz.19

3.2 Parametric models

A parametric model such as the two-sided VARFIMA(p,D, q) model in (24)–(25) can be fit to data through a
Gaussian maximum likelihood (ML), as long as its ACVF can be computed efficiently for different parameter
values. ACVF is known explicitly for VARFIMA(p,D, q) series when p = 0, but not when p ≥ 1.6,20 For this
reason, it is convenient to use a conditional ML estimation, namely,

argmax
Φ(B),Θ(B),D,Σ

L(Θ(B), D,Σ; {Φ(B)Xn}), (39)

where L := L(Θ(B), D,Σ; {Yn}) is the Gaussian log-likelihood for the VARFIMA(0, D, q) series Yn = Φ(B)Xn,
that is,

L = −N

2
log(2π)− 1

2
log |ΩN | − 1

2
Y ′Ω−1

N Y, (40)

where Y = (Y1,1, . . . , Y1,N , . . . , Y`,1, . . . , Y`,N )′ is the vector of each component series stacked one under the
other, ΩN = EY Y ′ is the covariance matrix of the vector Y and |ΩN | is the determinant of ΩN . Note that ΩN

is comprised of `2 Toeplitz blocks of size N ×N .

Computing the log-likelihood function L directly is stable and efficient for small and moderate dimensions
(`N ≤ 40, 000), despite the high order of complexity O(`3N3) associated with evaluating the log-determinant
log |ΩN | and the product Ω−1

N Y . For longer series, on the other hand, a more efficient and robust strategy is to
express the log-likelihood function as

L = −N

2
log(2π)− 1

2

N−1∑

n=0

log |Vn| −
1

2

N−1∑

n=0

(Yn+1 − Ŷn+1)
′V −1

n (Yn+1 − Ŷn+1), (41)

where Ŷn+1 = E(Yn+1|Y1, . . . , Yn) and Vn, n = 0, . . . , N − 1, are the one-step-ahead finite sample predictors and
their corresponding error covariance matrices. These quantities can be obtained via the multivariate Durbin
Levinson (DL) algorithm, a recursive algorithm with order of complexity O(`3N2). In the bivariate case ` = 2,
the DL method was used in Ref. 10 for inference under the two-sided VARFIMA(p,D, q) series.

Further improvements in numerical efficiency of evaluating L can be attained by using the preconditioned
conjugate gradient (PCG) method, a popular iterative algorithm that can be used to solve the system ΩNx = Y
up to a desired accuracy (equivalent to computing Ω−1

N Y ).20 The number of iterations of the PCG method,
however, increases with the condition number κ(ΩN ) of ΩN which is known to be large, for example, for d’s

close to 0.5. To reduce the number of iterations, each Toeplitz block of ΩN is embedded into a Ñ × Ñ circulant
matrix, leading to a system Cx̃ = Ỹ , where C is a matrix with `2 circulant blocks and Ỹ is the vector resulting
from padding the individual components of Y with Ñ −N zeros. Circulant block matrices have two important
properties that allow Cx̃ = Ỹ to be solved at O(`2N logN) cost. First, they have known preconditioning

matrices,21 that is, nonsingular matrices M such that κ(M−1C) << κ(C) (hence Cx̃ = Ỹ can be replaced by
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Figure 1. Log-likelihood evaluation times of bivariate VARFIMA(0, D, 0) series with D = diag(0.2, 0.4), Σ11 = Σ22 =
1,Σ12 = 0.5.

M−1Cx̃ = M−1Ỹ ). Second, the major computational tasks of PCG, which are matrix-vector products of the
form Cz and M−1z, can be carried out very efficiently using the fast Fourier transform.

Ref. 20 also uses the PCG method to approximate log |ΩN | (at a satisfying accuracy) using the following
interpolation scheme. First, compute a small number of |Vr|, r = 1, . . . , s, say s = 50 via the multivariate DL
algorithm. Then, use the PCG method ` times to compute VN−1 from Sowell’s equations.22 The intermediate
determinants can then be approximated by fitting the relationship r

√
|Vr| = α+ βr for r = 1, . . . , s,N − 1 and

taking the fitted values for r = s+ 1, . . . , N − 2.

Figure 1 shows the time required for one likelihood evaluation of white noise series of several sample sizes
using the three approaches discussed above under a VARFIMA(0, D, 0) covariance structure. The software used
is Matlab R2017a on a 2.8 GHz processor with 16GB of RAM. The brute force evaluation outperformed the PCG
method (with s = 50) for N ≤ 1100 and the multivariate DL approach for N ≤ 20, 000. Moreover, we did not
encounter any instability issues even for parameters schemes with larger d’s. Finally, to verify the computational
costs of the DL and brute force approaches, we fitted power-law equations of the form t(N) = aN b to the
corresponding evaluation times and obtained tDL(N) = 3.14−6N2.01 and tBF (N) = 2.6−11N3.15, which agree
with the computational orders listed above.

Performance of the various approaches as ` increases remains to be explored.

3.3 Sparsity

Several situations were discussed in Section 2.3 where sparse modeling in MLRD series might be of interest. We
focus here on estimation of a sparse fractal connectivity matrix G and a sparse LRD precision matrix P = G−1

through regularization, and present some preliminary discussion, simulation results and an application. Some
work on sparse estimation in parametric MLRD models can be found in Ref. 23, though more systematic studies
of related issues are certainly called for.

Matrices G−1 and G (denoted Gk with k = −1 and 1 below) can be estimated sparsely through a penalized
version of the “local” negative log-likelihood in (36), that is,

(D̂, Ĝ) = argmin
(D,G)

Qp,k(D,G) with k = −1, 1, (42)

Qp,k(D,G) = −2tr(D)
1

m

m∑

s=1

log λs − log det(G−1) + tr
(( 1

m

m∑

s=1

λD
s IX(λs)λ

D
s

)
G−1

)
+ ρ‖Gk‖1,

where we slightly rewrote the first term of Q(D,G) in (36), ρ > 0 is a penalization parameter and ‖Gk‖1 is
the l1–norm of Gk (the sum of the absolute values of the elements of Gk). For fixed D and real-valued G,
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Figure 2. Regularized estimation based on the graphical lasso for Σ−1. True values (left), mean estimated values (middle)
and the proportions of non-zero coefficients out of 500 replications (right) are shown.

the objective function Qp,k(D,G) is that used in the so-called graphical lasso24 when k = −1, and in sparse
estimation of covariance matrices25 when k = 1.

We shall examine (42) in the case of the one-sided VARFIMA(0, D, 0) model in (8), for which G is given by
(12) with real-valued Σ. In this case, the objective function Qp(D,G) in (42) can be replaced by

Qp,k(D,Σ) = −2tr(D)
1

m

m∑

s=1

log λs − log det(Σ−1) + tr
(
<
( 1

m

m∑

s=1

λD
s eiπD/2IX(λs)e

−iπD/2λD
s

)
Σ−1

)
+ ρ‖Σk‖1.

(43)
Again, for fixed D and up to an additive constant, this is exactly the objective function used in the graphical
lasso when k = −1, and in sparse estimation of covariance matrix when k = 1. To assess the performance of
estimation of Σ through (43), we shall minimize Qp,k(D,Σ) over Σk through the methods in Refs. 24,25 by using
D estimated through local Whittle. In simulations (not reported here), we found this approach to be comparable
to the ideal situation where true D was considered.

Simulation results are reported in Figure 2 concerning LRD precision matrix and Figure 3 concerning fractal
connectivity matrix. The true sparse matrix Σ−1 is depicted in the left plot of Figure 2. The sample size of the
one-sided VARFIMA(0, D, 0) series is taken as N = 250, and the true diagonal matrix D has diagonal entries
.36, .39, .39, .36, .42, .32, .34, .38, .45, .35 (the estimated values for LRD parameters in the real data considered
below). The number of frequencies m was taken as N2/3, and the penalization parameter is chosen by cross
validation. The middle plot of Figure 2 depicts the average estimates of Σ−1 over 500 realizations. The right
plot shows the proportions of realizations that the (j, k)th element of Σ−1 is estimated as non-zero. Observe
that the average value is slightly biased but this is due to biasedness of the regularization method. Note also
that larger coefficients tend not to be estimated as zero most of the time as expected, and zero coefficients are
estimated as zero around 60 to 70 percent. These proportions improve as the sample size increases (not reported
here for brevity).

A fractally non-connected model (29) is considered for Figure 3. We used the same D as above and D1

given by D1 = diag(.11, .10, .08, .14, .09, .09, .10, 0.10, .06, .08). The true sparse Σ and non-sparse Σ1 used in the
simulation are depicted in the left and middle plots of the figure. The sample size N = 1000 is considered and
tuning parameters are chosen by cross validation. Out of 500 replications, it is observed from the right plot of
Figure 3 that sparse covariance estimation finds the true sparsity pattern reasonably well. Some of the difficulties
(e.g. the (4,7)th element of Σ is detected as zero) might be related to the issue with the chosen model discussed
following (29).
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Figure 3. Regularized estimation based on sparse covariance estimation for Σ. True values (left and middle) and the
proportions of non-zero coefficients out of 500 replications (right) are shown.

We also applied sparse estimation to the real fMRI data supplied in the R package “multiwave”,† which
implements multivariate wavelet Whittle estimation. For illustration purposes, we consider here only the first 10
ROIs, and first look into estimating sparse Σ−1. In contrast to the simulations above, we examine how parameter
estimates change depending on the number of frequencies m used in estimation. (The tuning parameter ρ is
selected by cross validation as above.) This is depicted in Figure 4 through heatmap plots for vectorized matrix
Σ−1 elements (vertical axis) according to the number of frequencies m (horizontal axis). The left plot represents
the estimated values, coded blue for positive values, red for negative values and white for values close to zero.
The right plot indicates whether the estimated values are zero (white) or non-zero (black). Observe that the
estimated coefficients are stable over a wide range of frequenciesm considered. The stability can also be expressed
by counting the number of non-zero elements in the estimated Σ as in Figure 5, the left plot. The total number
of non-zero elements is stable over a wide range of frequencies considered, and the choice of m = N2/3 seems
quite reasonable. The estimate of Σ−1 for this choice of m is given in the right plot of Figure 5. The local
Whittle estimates of the LRD parameters are .36, .39, .39, .36, .42, .32, .34, .38, .45, .35.

The analogous plots for regularized estimation of sparse Σ are presented in Figures 6 and 7. For this particular
data, less sparsity is attained by regularizing Σ, rather than the inverse Σ−1.

4. CONCLUSIONS

In this work, we described the various modeling approaches for multivariate long-range dependence (MLRD),
focusing on semiparametric, parametric and sparse model formulations. A new parametric identifiable model for
MLRD was introduced. Several sparsity contexts were identified (one of them appearing here for the first time)
and examined through popular regularized estimation approaches. A number of open questions were also raised,
setting the stage for future work.
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Figure 4. Heatmap plot of parameter estimates (y-axis) of Σ−1 as the number of frequencies used in estimation increases
(x-axis). Left panel shows estimated coefficients in color raging from red to blue indicating negative to positive values.
The right panel shows either non-zero (black) or zero (white).
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Figure 5. Plot for total number of non-zero elements in Σ−1 as m increases, and the estimated Σ−1 from real fMRI data.
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Figure 6. Heatmap plot of parameter estimates (y-axis) for Σ as the number of frequencies used in estimation increases
(x-axis). Left panel shows estimated coefficients and right panel indicates whether it is non-zero (black) or zero (white).
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