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ABSTRACT
This paper deals with the problem of incentivized informa-
tion fusion, where a controller seeks to infer an unknown
parameter by incentivizing a network of social sensors to re-
veal the information. The social sensors gather information
on the parameter after interacting with other social sensors,
to optimize a local utility function.

We are interested in finding incentive rules that are easy
to compute and implement. In particular, we give sufficient
conditions on the model parameters under which the optimal
rule for the controller is provably a threshold decision rule,
i.e, don’t incentivize when the estimate (of the parameter)
is below a certain level and incentivize otherwise.

We will further provide a complete sample path character-
ization of the optimal incentive rule, i.e, the nature (average
trend) of the optimal incentive sequence resulting from the
controller employing the optimal threshold rule. We show
that the optimal incentive sequence is a sub-martingale, i.e,
the optimal incentives increase on average over time.

1. INTRODUCTION
Autonomous decision making involves information acqui-

sition and identifying a course of action that optimizes an
objective function. To gather the required information, an
autonomous system (controller) can avail the services of an
information network or a multi-agent sensor network. For
example, e-commerce companies like Amazon gather ratings
and reviews from users (sensors) regarding the services and
products listed on their websites; where the social network
serves as the information network. The sensors that are a
part of the information network exhaust their own resources
in acquiring the information, for example, the customers
who share the experiences on Amazon are those who have
purchased the product. Thus, there is a need to design au-
tonomous systems that suitably compensate the sensors for
information, to motivate their participation by considering
that the sensors in the information network may learn and
influence each other. We term this problem as incentivized
information fusion, where a controller seeks to infer an un-
known parameter by incentivizing a network of social sensors
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to reveal the information they gather about the underlying
parameter.

Sensors having the following attributes will be called So-
cial Sensors:

i.) They affect the behaviour of other sensors.
ii.) They share quantized information (decisions/actions)

and have their own dynamics.
iii.) They have limited processing capabilities - bounded-

ness.
iv.) They are rational - they fuse all available information

using Bayes’ rule to take an action that maximizes the
reward.

A social sensor (human) provides information about its state
(sentiment, social situation, quality of product, label) to a
social network after performing social learning. Social learn-
ing is the process by which the sensors learn and influence
each other. The availability of review platforms like Yelp,
Expedia, Amazon etc, facilitates social learning; see [8] for
an empirical study of peer effects on consumption, and [10]
for a more formal treatment.

In this paper, we present a model of Bayesian social learn-
ing with focus on the interaction between the controller and
the multi-agent network of social sensors.
The contribution of this paper is two fold:

1.) Threshold Incentive Rule: We study the interac-
tion of a controller and a network of social sensors,
where the controller can modify the utility function of
the sensors which in turn affects their decisions. We
give sufficient conditions on the model parameters -
that are intuitive - under which the optimal rule for
the controller is provably a threshold decision rule, i.e,
don’t incentivize when the estimate (of the parameter)
is below a certain level and incentivize otherwise.

2.) Sub-martingale Property: We provide a complete
sample path characterization of the optimal incentive
rule, i.e, the nature (trend) of the optimal incentive se-
quence over time. We show that the optimal incentive
sequence for the controller is a sub-martingale, i.e, the
optimal incentives increase on average over time.

Related Literature
[5] considers the interaction of a global controller and a

network of social sensors, where the sensors perform social
learning to estimate an underlying parameter and to opti-
mize a local utility function. The objective of the controller
is to detect a change in the parameter as soon as possible by
observing the actions of the sensors. In this paper, unlike [5],



the controller can influence the behaviour of the sensors by
modifying their utility function.

Crowdsourcing large scale problems like image classifica-
tion [11], annotation [9], recommendation, peer prediction
for eliciting truthful and informative feedback; where the
sensors (Turkers) are allowed to interact and influence each
other, are some of the applications that can be analyzed us-
ing framework in this paper. [4] considers a general model
of crowdsourcing and the problem of minimizing the total
incentive that must be paid to achieve a target overall reli-
ability. The problem considered in this paper can be seen
as an extension of [4], in that we also allow the possibility
of social learning between the workers (Turkers). Our work
is similar in flavor to Peer Prediction [7, 12], where reward
based scoring schemes are devised to elicit informative feed-
back; but a key difference is that there is Bayesian social
learning.

Organization
Sec. 2 details the Bayesian social learning model for the
process of information fusion by the social sensors and the
incentivization protocol employed by the controller. Sec. 3
formulates the stochastic control problem faced by the con-
troller as a POMDP and is solved using dynamic program-
ming. The structure of the value function and optimal de-
cision rule is completely characterized for the controller ob-
jectives.
Sec. 4 describes the nature of the incentive sequence that
is input to the multi-agent network. It is shown that the
controller offers smaller incentives initially and subsequently
increases it to learn the true parameter.

2. SOCIAL LEARNING MODEL AND CON-
TROLLER OBJECTIVE

2.1 Social Learning Model and Incentive Pro-
tocol

The following illustrates an example application of the
problem considered in this paper. Travel website companies
like TripAdvisor and e-commerce companies like Amazon,
offer monetary compensation for people (social sensors) to
reveal truthful or honest information (in the form of reviews)
regarding the services and products listed on their websites.
The social sensors want to maximize their utility - a func-
tion of the compensation, experience with the product or
services, and the experience of other sensors. The controller
(TripAdvisor or Amazon) wants to minimize the expected
payout for gathering truthful information from the social
sensors.

Let k = 1, 2, · · · denote the discrete time instant when
sensor k acts. Let x ∈ X = {1, 2} denote the underlying
parameter, which is assumed to be a random variable1. The
network of social sensors and the controller, seek to estimate
the realization of the random variable. Let

πk−1(i) = P(x = i|a1, . . . , ak−1)

denote the estimate of the parameter (termed as public be-
lief) at time k−1, and let the initial estimate be denoted as
π0 = (π0(i), i ∈ X ), where π0(i) = P(x0 = i). Let the belief

1For example x could denote {Bad quality, Good quality}
for a product or service, {Object absent, Object Present} in
case of a simple annotation problem, etc.

space, i.e, the set of distributions π over the parameter be
denoted as

Π(2)
∆
={π ∈ R2 : π(1)+π(2) = 1, 0 ≤ π(i) ≤ 1 for i ∈ {1, 2}}.

2.2 Controlled Information Fusion Objective
The controller wants to estimate the underlying parameter

x by providing incentives to the social sensors in exchange
for information. The controller considers the following ob-
jective function:

Jµ(π) = Eµ{
∞∑
k=1

ρkc(pk)|π0 = π}. (1)

Here pk denotes the incentive, ρ ∈ [0, 1) denotes the eco-
nomic discount factor indicating the degree of impatience
of the controller, π denotes the estimate of the parameter
conditioned on the decisions of the social sensors - termed
as public belief, c(pk) denotes the cost of information fusion
incurred by the controller, and µ denotes the decision rule
for the controller that maps π to an incentive p ∈ [0, 1].
The controller seeks to find the optimal incentive rule µ∗

such that

Jµ∗(π0) = infµ∈µJµ(π0). (2)

2.3 Social Learning Model and Incentive Pro-
tocol

We will model the dynamics of the social sensors (observa-
tion model and decision rule optimization), the information
fusion cost that models the cost of information acquisition
for the controller, the dynamics of the parameter estimate
computed from the decisions of the social sensors (public be-
lief), and incentive rules that associate parameter estimates
with incentives to be provided.
We consider the classical sequential social learning frame-
work [2, 5]. The decision of social sensor ak ∈ A = {1, 2}
depends on the decisions of the first k − 1 sensors and its
own estimate of the parameter (termed private belief) af-
ter receiving noisy private valuations, yk ∈ Y = {1, 2}, of
the parameter x. The controller estimates the parameter by
providing incentives pk ∈ [0, 1] at each time k (or at each
sensor k). It is assumed that each sensor decides once2 in a
predetermined sequential order indexed by k.

Social Sensor Dynamics
1. Social Sensor’s Private Observation: Sensor k’s

private observation denoted by yk ∈ Y = {1, 2} is a
noisy measurement of the true parameter. It is ob-
tained from the observation likelihood distribution as,

Bij = P(yk = j|x = i). (3)

The discreteness of the observation distribution cap-
tures the boundedness or the limited processing capa-
bilities of the sensor.

2The model and the results presented in the paper can eas-
ily be interpreted in the case where more than one sensor
acts every period. Consider the situation where multiple ho-
mogenous sensors act at time k. A naive approach to map
to the model considered in this paper is to use Majority
voting and label the majority vote as a. Majority voting
simply chooses what the majority of sensors agree on. At
time k+1, a group of sensors decide by considering the Ma-
jority decisions at times k < k + 1. The controller updates
the knowledge about the underlying parameter based on the
Majority decisions.



2. Social Learning and Private Belief update: In-
formation on the parameter conditioned on the private
valuation is the private belief (ηy), and is computed us-
ing Bayes’ rule. Sensor k updates its private belief by
fusion of the observation yk and the prior public belief
πk−1 as the following Bayesian update

ηyk =
Bykπk−1

1′Bykπk−1
(4)

where Byk denotes the diagonal matrix[
P(yk|x = 1) 0

0 P(yk|x = 2))

]
and 1 denotes the 2-dimensional vector of ones.

3. Social Sensor’s Action: Sensor k executes an action
ak ∈ A = {1, 2} myopically to maximize the reward.
Let r(x, y, ak) denote the reward accrued if the sensor
takes action ak when the underlying parameter is x
and the observation is y.
In this paper, we assume for simplicity that all social
sensors have the same reward function r(x, y, a) and
we choose this as

r(x, y, a) = δap− αaI(a 6= x)− βaI(a 6= y)− γa (5)

where δa, αa, βa, γa ∈ [0, 1]. The form is inspired by
the quasi-linear utility in [1]. Here, δa is interpreted as
the fraction of the monetary compensation p received,
αa and βa are the losses incurred for not taking appro-
priate actions, and γa is the cost incurred in obtaining
observation.
The sensor chooses an action ak to maximize the re-
ward as

ak = arg max
a∈A

r′aη
yk (6)

where

ra = [r(1, a) r(2, a)] and r(x, a) =

2∑
j=1

r(x, y = j, a)Bxj .

(7)
Remark. For example, consider the situation where
an e-commerce website like Amazon is soliciting hon-
est customer reviews from those who have purchased
a particular product.
Here ak ∈ A = {1(Bad Review), 2(Good Review)},
δap could indicate the compensation in exchange for
the review, αa denotes the cost incurred for making
a decision not appropriate for the product quality, βa
denotes the cost incurred for making a decision not ap-
propriate for the information gathered on the product
quality, and γa denotes the cost of acquiring informa-
tion regarding the product quality before the purchase.
Remark. It is assumed that δ2 > δ1, α1 > α2, β1 > β2,
γ2 > γ1. These assumptions are intuitive, for exam-
ple if Amazon is soliciting honest reviews, δ2 > δ1
models higher compensation offered to the sensor to
write a high quality review; γ2 > γ1 models higher
cost invested by the sensor in information acquisition
to write a high quality review; α1 > α2 and β1 > β2

model higher cost for writing a bad review when the
quality/ information indicates otherwise.

Information Fusion cost
The controller wants to maximize the number of sensors that
act according to their evaluations/observations3 while min-
imizing the following cost:
Expenditure: The controller offers a compensation to re-
ceive truthful accounts of the information gathered by the
social sensors, i.e,

c(pk) = pk − φrI(ak = yk|πk−1) (8)

where I denotes the indicator function, φr ∈ (0, 1) denotes
the benefit from truthful information gathering and p de-
notes the expenditure.

Public Belief Dynamics
Information on the parameter conditioned on the new action
is the public belief (π), and is computed using Bayes’ rule.
Sensor k’s action is shared by the controller with the multi-
agent network and the public belief on the quality is updated
according to the social learning Bayesian filter (see [5]) as
follows

πk = Tπ(πk−1, ak) =
R
πk−1
ak πk−1

1′R
πk−1
ak πk−1

. (9)

Here, R
πk−1
ak = diag(P(ak|x = i, πk−1), i ∈ X ) is the deci-

sion or action likelihood matrix, where P(ak|x = i, πk−1) =∑
y∈Y

P(ak|y, πk−1)P(y|x = i) and

P(ak|y, πk−1) =

{
1 if ak = arg max

a∈A
r′aη

yk ;

0 otherwise.

Note that πk belongs to the unit simplex Π(2)
∆
={π ∈ R2 :

π(1) + π(2) = 1, 0 ≤ π(i) ≤ 1 for i ∈ {1, 2}}.

Information Fusion Incentive
The controller fuses (aggregates) the information by provid-
ing incentives to the social sensors. The history of past in-
centives and decisions Hk = {π0, p1, · · · , pk, ak} is recorded
by the controller and the multi-agent network. The con-
troller chooses

pk+1 = µk+1(Hk) ∈ [0, 1] (10)

for the sensor k+ 1. Here µk+1 denotes the decision rule at
time k + 1 that associates the history Hk with an incentive
pk+1. Since Hk is increasing with time k, to implement a
controller, it is useful to obtain a sufficient statistic that does
not grow in dimension. The public belief πk computed via
the social learning filter (9) forms a sufficient statistic for
Hk and the incentive in (10) is given as

pk+1 = µk+1(πk). (11)

3. STRUCTURE OF OPTIMAL INCENTIVE
RULE

The stochastic control problem faced by the controller
is equivalent to a partially observed Markov decision pro-
cess (POMDP) with dynamics (9) and objective (2), and is

3This is consistent with the objective of truthful information
reporting in Peer Prediction literature; see [7]. Acting ac-
cording to self-valuations or observations also improves the
quality of social learning as the decisions are informative (in
the Blackwell sense, see [6]); see also Footnote 4.



solved using dynamic programming. In this section, we give
sufficient conditions under which the optimal incentive rule
for the controller is provably a threshold rule.

Assumptions
(A1) The observation distribution Bxy = P(y|x) is TP2, i.e,

the determinant of the matrix B is non-negative.
(A2) The reward vector ra is supermodular, i.e, r(1, 1) >

r(2, 1) and r(2, 2) > r(1, 2) for every p ∈ [0, 1].

Discussion of the Assumptions
1. Assumption (A1) is on the underlying stochastic model,

and enables the posteriors to be compared. The obser-
vation distribution being TP2 (total positive of order
2) implies that for higher parameter values, the prob-
ability of receiving higher valuations is higher than for
lower values.

2. (A2) is required for the problem to be non-trivial. If
it doesn’t hold and r(i, 1) > r(i, 2) for i = 1, 2, then
a = 1 always dominates a = 2; the sensors provide no
useful information.

The optimal incentive rule µ∗ and the optimal cost (value
function) V (π) for the POMDP satisfy the Bellman’s dy-
namic programming equation

Q(π, p) = c(p) + ρ
∑
a∈A

V (Tπ(π, a))σ(π, a), (12)

µ∗(π) = argmin
p∈[0,1]

Q(π, p),

V (π) = min
p∈[0,1]

Q(π, p), Jµ∗(π0) = V (π0).

Main Result: 1 (Threshold Incentive Rule)
The theorem shows that the optimal incentive rule is thresh-
old; i.e, belief space Π(2) is divided to two connected regions.
In one of the regions, it is optimal to not provide any incen-
tives; and in the other, it is optimal to incentivize using
a well defined deterministic function of the parameter esti-
mate. Define the following function:

∆(ηy) = [l1 − l2]
Byπ

1′Byπ
+ l3 (13)

where ηy is the private belief update (4), π =

[
1− π(2)
π(2)

]
,

l1 =
α2 + β2B11 − β1B12

δ2 − δ1
, l2 =

α1 − β2B21 + β1B22

δ2 − δ1
,

l3 = γ2−γ1
δ2−δ1

, and α, β, δ, γ are as in (7). The function ∆(ηy)
will henceforth be referred to as the incentive function.

Theorem 1. Let φr ∈ (0, 1). Under (A1) and (A2), the op-
timal incentive rule for the controller µ∗(π) = argminpQ(π, p)
is

µ∗(π) =

{
0 if π(2) ∈ [0, π∗r (2));
∆(ηy=2) if π(2) ∈ [π∗r (2), 1].

(14)

where π∗r (2) ∈ (0, 1).

Discussion of Main Result
The optimal incentive rule p = µ∗(π) seeks to maximize the
number of sensors that act according to their observations -
to improve the quality of social learning4 - while minimizing
4Acting according to self valuations or private observations
is equivalent to truthful information reporting, and is in-

the payout. According to Theorem 1, the regions in the
belief space Π(2) where it is optimal choose p = ∆(ηy=2)
and p = 0 are connected and convex. Therefore, computing
the optimal decision rule amounts to finding the belief π∗,
below5 which it is optimal not to provide any compensation
p = 0; and above which it is optimal to compensate ∆(ηy=2)
at every belief, to minimize the cost.

The practical usefulness of the threshold incentive rule in
the theorem stems from the following: (i) the search space of
incentive rules µ reduces from an infinite class of functions
(over Π(2)) to those that have a simple threshold structure
as in Fig.1; (ii) to compute the optimal incentive rule µ∗, one
can compute the belief π∗ offline. This is advantageous as
the control problem (POMDP) has a continuous state space
Π(2), and computing optimal policies involves a PSPACE
hard dynamic programming recursion offline; (iii) at each
instant (or belief) the controller only needs to decide be-
tween ∆(ηy=2) and p = 0 depending on the threshold rule
(14); (iv) having connected regions reflects the confidence of
the controller in implementing the incentive schemes– if its
is optimal to not incentivize at a particular belief, it is opti-
mal to discontinue incentivization when the belief is lower.
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Figure 1: Expenditure Minimization: Optimal fusion rule for the
controller. When π < π∗ , it is optimal not to incentivize µ∗(π) =
0, and when π > π∗, the controller incentivizes using the incentive
function µ∗(π) = ∆(ηy). The following parameters were chosen:
φr = 0.3 and discount factor ρ = 0.7. Let e1 and e2 denote
indicator vectors. For δ1 = 0.3, δ2 = 0.95, and B=

(
0.8 0.2
0.4 0.6

)
, the

following parameters were obtained as a solution of ∆(e1) = 1 and
∆(e2) = 0 for the reward vector: α1 = 0.288, α2 = 0.278, β1 =
0.11, β2 = 0.1, γ1 = 0.1, γ2 = 0.414.

4. STOCHASTIC PROPERTIES OF THE OP-
TIMAL INCENTIVE SEQUENCE

In this section, we will describe the relation between the
optimal decision rule in Theorem 1, and the incentive se-
quence pk = µ∗(πk−1), for k = 1, 2, . . . In particular, we
provide a complete sample path characterization of the in-
centive sequence (over) that results from the controller ap-
plying the optimal incentive rule.

Main Result: 2 (Sub-martingale Property)
The theorem gives a complete sample path characterization

formative. Since the sensors take into account the actions
or decisions of the preceding sensors, fusion of informative
decisions lead to improved estimate of the parameter and
hence improves social learning.
5π2 ≥ π1 if the determinant∣∣∣∣π1(1) π1(2)

π2(1) π2(2)

∣∣∣∣ ≥ 0



of optimal decision rule implemented by the controller. It
is shown that when the controller wants to minimize the
expected payout for gathering truthful information, the in-
centive sequence is a sub-martingale6; i.e, it increases on
average7 over time.

Theorem 2. Let π0 denote the initial belief. Under (A1),
the optimal incentive sequence pk = µ∗(πk−1) for the infor-
mation fusion problem is a sub-martingale.

Discussion of Main Result
According to Theorem 2, the optimal decision rule of the

controller is such that the sample path of the incentive se-
quence displays an increasing trend, i.e, the incentives in-
crease on average over time.
The usefulness of the theorem stems from the following: (i)
it gives a complete sample path characterization of the op-
timal incentive rule implemented by the controller; (ii) the
sub-martingale property assures that that larger beliefs and
higher compensations are concomitants of high parameter
values.

The controller starts compensating with a low incentive
initially to learn about the quality of the product or ser-
vice. If the quality looks promising, it gradually increases
the compensation to encourage the sensors to act according
to their assessments. For example, when Amazon is solic-
iting honest reviews, gradual increase in the compensation
when the quality looks promising will lead to good quality
reviews and this in turn will increase the sales of the product
or services in the future.

5. CONCLUSION
This paper considered the problem of incentivized infor-

mation fusion, where a controller compensates a network of
social sensors in exchange for information on an underlying
parameter. It was shown that the optimal fusion/decision
rule for the controller is a threshold rule; and a sample path
characterization of the optimal incentive rule employed by
the controller was also provided. In particular, it was shown
the when the controller wants to maximize the number of
social sensors that report truthfully, the sequence of incen-
tives should display an increasing trend on average; i.e, it’s
a sub-martingale.

Crowdsourcing large scale problems like image annota-
tion, data labeling, recommendation, peer prediction for
eliciting truthful and informative feedback; where the sen-
sors (Turkers) are allowed to interact and influence each
other, are some of the applications that can be analyzed
using framework in this paper.

APPENDIX
Preliminaries and Definitions:
Definition 1 (Submodular function [6]). ν : Π(2)×A→ R
is submodular in (π, a) if

ν(π, a)− ν(π, ā) ≥ ν(π̄, a)− ν(π̄, ā) (15)

for a > ā and8 π̄ ≥ π.
6See Appendix for definition.
7Here average is over different iterations of the estimation
process. For example, each round of labelling/classification
in Crowdsourcing can be seen as one iteration.
8See Footnote 5

Define

Fk : σ − algebra generated by (π0, p1, a1, . . . , pk, ak).

Definition 2 (Martingale). ( [3]) Let Fk denote the sigma
algebra. A sequence Xk such that E[|Xk|] <∞ is a martin-
gale (with respect to Fk) if

E[Xk+1|Fk] = Xk, for all k.

If E[Xk+1|Fk] ≥ Xk, for all k., the sequence Xk is a sub-
martingale.

Definition 3. ( [3]) A sequence Hk is said to be a pre-
dictable sequence if Hk ∈ Fk−1.

Theorem 3 ( [6]). Let the parameter be a random variable
and (A1) and (A3) hold. For p ∈ [0, 1], the belief space Π(2)
can be partitioned into at most 3 non-empty regions such
that, the sensor decision likelihood matrix Rπ in (9) is a
constant with respect to the belief parameter π and is given
as [

0 1
0 1

]
,

[
B11 B12

B21 B22

]
, and

[
1 0
1 0

]
.

Theorem 4 ( [6], Chapter 8). Consider a POMDP with pos-
sibly continuous-valued observations. Assume that for each
action p, the instantaneous costs c(π, p) are decreasing with
respect to π ∈ Π(2). Under (A1), the value function V (π)
is decreasing in π.

Theorem 5 ( [6], Chapter 12). Consider a POMDP with
possibly continuous-valued observations. Assume that for
each action p, the instantaneous costs c(π, p) are decreasing
with respect to π ∈ Π(2), and c(π, p) is submodular. Under
(A1), there is a unique threshold π∗ such that

µ∗(π) =

{
p1 if π ≤ π∗;
p2 otherwise.

where p1 and p2 are two possible actions.

Theorem 6 ( [3]). Let Wk be a sub-martingale. If Hk ≥ 0
is predictable and each Hk is bounded, then (H.W )k is a
sub-martingale.

Theorem 6 corresponds to Theorem 5.2.5 in [3].

From Theorem 3, we have the following results. The
proofs are omitted due to lack of space.

Theorem 7. Let ∆(ηy=1) and ∆(ηy=2) be two possible in-
centives at belief π. Under (A1) and (A2), the Q function
in (12) can be simplified as:

Q(π, p) =

 p+ ρV (π) if p ∈ [0,∆(ηy=2));
p− φr + ρEV (π) if p ∈ [∆(ηy=2),∆(ηy=1));
p+ ρV (π) if p ∈ [∆(ηy=1), 1].

(16)
and V (π) = minQ(π, p). Here,

EV (π) = 1′Bπy=1π × V (ηy=1) + 1′Bπy=2π × V (ηy=2).

Theorem 7 represents the Q function (12) over the range
[0, 1] into three regions. The following corollary highlights
why such a partition is useful.

Corollary 8. At every public belief π ∈ Π(2), it is sufficient
to choose one of the three incentives {0,∆(ηy=2),∆(ηy=1)}.



Discussion: A consequence of Corollary 8 is that the value
function (12) computation reduces to:

V (π) = min{ρV (π),∆(ηy=2)− φr + ρEV (π),

∆(ηy=1) + ρV (π)}.
⇒ V (π) = min{0,∆(ηy=2)− φr + ρEV (π)}. (17)

In words, it is sufficient for the controller to choose either
p = ∆(ηy=2) or p = 0 at every belief π, as opposed to
p ∈ [0, 1] at every belief.

Lemma 9. Under (A1), ∆(ηy=1) is concave in π, and
∆(ηy=2) is convex in π.

Proofs:
Proof of Theorem 1:
By definition, we know that ∆(ηy) ∈ [0, 1], ∆(e1) = 1 and
∆(e2) = 0. It can be seen by substitution that EV (π) =

V (π) when π =

{[
1
0

]
,

[
0
1

]}
, and let V (0) and V (1) denote

the corresponding values. So the incentive function ∆(ηy=2)
is decreasing with π. The value function computation is
given by (17). Let

ν(π, p1) = 0

ν(π, p2) = ∆(ηy=2)− φr

where p1 = 0 and p2 = ∆(ηy=2) > 0. The function ν(π, p)
is submodular with p1 = 0 and p2 = ∆(ηy=2) > 0. From
Theorem 4 and Theorem 5, it is easily seen that there exists
a unique π∗r such that

minQ(π, p) =

{
0 if π ≤ π∗r ;
∆(ηy=2)− φr + ρEV (π) otherwise.

where π∗r (2) is given by

π∗r (2) = {π(2)|0 = ∆(ηy=2)− φr + ρEV (π)}.

Therefore the optimal incentive rule is given as:

µ∗(π) =

{
0 if π ≤ π∗r ;
∆(ηy=2) otherwise.

Proof of Theorem 2:
Consider the sub-optimal policy µ̂(π) given as

µ̂(π) =

{
∆(ηy=2)− ε if π(2) ∈ [0, π∗(2));
∆(ηy=2) if π(2) ∈ [π∗(2), 1].

Here ε > 0 and π∗(2) ∈ [0, 1]. Let Wk = µ̂(πk−1).
From Lemma 9, ∆(ηy=2) is convex in π. Let uS(πk+1) =
∆(ηy=2

k+1) denote the incentive at time k + 1. So uS(π) is
convex in π.
We know that the public belief πk is a martingale [2], i.e,
E[πk+1|Gk] = πk. For ε→ 0,

E[Wk+1|Gk] = E[uS(πk+1)|Gk] ≥ uS(E[πk+1|Gk]) ≥ uS(πk) ≥Wk

by Jensen’s inequality and martingale property of the public
belief. Therefore Wk(= µ̂(πk)) is a sub-martingale.
Consider a function µ̄(π) given by

µ̄(π) =

{
0 if π(2) ∈ [0, π∗(2));
1 if π(2) ∈ [π∗(2), 1].

Let Hk = µ̄(πk−1). From Theorem 6, (H.W )k is a sub-
martingale. But (H.W )k = pk. Therefore, the optimal in-
centive sequence pk = µ∗(πk−1) is a sub-martingale,

E[pk+1|Fk] ≥ pk

i.e, it increases on average over time.
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