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Abstract

This  paper  studies  vector quantile  regression (VQR),  which models  the dependence of  a  random vector  with  
respect to a vector of explanatory variables with enough flexibility to capture the whole conditional distribution,  
and  not  only  the  conditional  mean.  The  problem of  vector  quantile  regression  is  formulated  as  an  optimal  
transport problem subject to an additional mean-independence condition. This paper provides results on VQR 
beyond the specified case which had been the focus of previous work. We show that even beyond the specified 
case, the VQR problem still has a solution which provides a general representation of the conditional dependence 
between random vectors.

Keywords: Duality, optimal transport, vector quantile regression.

1. Introduction

Vector quantile regression was recently introduced in [4]  in order to generalize the technique of quantile 
regression when the dependent random variable is multivariate1. Quantile regression, pioneered by Koenker and 
Bassett [12], provides a powerful way to study dependence between random variables assuming a linear form for  
the quantile  of the endogenous variable  Y  given the explanatory variables  X.  It  has therefore become a very 
popular tool in many areas of economics, program evaluation, biometrics, etc. However, a well-known limitation  
of the approach is that Y should be scalar so that its quantile map is defined. When Y is multivariate, there is no 
canonical notion of quantile, and the picture is less clear than in the univariate case. There is actually an important  
literature that  aims at  generalizing the notion of  quantile  to a multidimensional  setting and various different  
approaches have been proposed; see in particular [1, 10, 15] and the references therein.

The approach proposed in [4] is  based on optimal transport ideas and can be described as follows. For a 
random vector Y taking values in Rd, we look for a random vector U uniformly distributed on the unit cube [0,1]d  

and which is maximally correlated to Y; finding such a U is an optimal transport problem. A celebrated result called 
Brenier’s theorem [2, 3, 17] implies that such an optimal U is characterized by the existence of a convex function ϕ 
such that Y = ϕ(∇ U). When d = 1, of course, the optimal transport map of Brenier ϕ = ∇ Q is the quantile map of Y. 
In higher dimensions it still retains one of the main properties of univariate quantiles, namely monotonicity. Thus  
Brenier’s map ϕ is a natural candidate to be considered as the vector quantile of ∇ Y, and one advantage of such 
an approach is the point-wise relation Y = ϕ(∇ U), where U is a uniformly distributed random vector which best 
approximates Y in L2.
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If, in addition, we are given another random vector X capturing a set of observable explanatory variables, we 
may wish to have a tractable method to estimate the conditional quantile of Y given X = x, i.e., the map u  [0,1]∈ d  

7→ Q(x,u)  R∈ d. In the univariate case d = 1, and if the conditional quantile is affine in x, i.e., Q(x,u) = α(u)+β(u)x, 
the quantile regression method of Koenker and Bassett gives a constructive and powerful linear programming  
approach to compute the coefficients α(t) and β(t) for any fixed t  [0,1]. When quantile regression is specified,∈  
i.e., when the true conditional quantile is affine in x, this variational approach estimates the true coefficients α(t) 
and β(t). In [4], we have shown that in the multivariate case as well, when the true vector quantile is affine in x, 
one may estimate it by a variational problem which consists in finding the uniformly distributed random variable U 
such that E(X | U) = E(X) (mean independence) and maximally correlated with Y.

The purpose of the present paper is to convey what these variational approaches tell about the dependence  
between Y and X in the general case, i.e., without assuming any particular form for the conditional quantile. We  
will characterize the solution of the optimal transport problem with a mean-independence constraint from [4] and 
relate it to a relaxed form of specified quantile regression. To be more precise, our Theorem 3 below will provide  
the following general representation of the distribution of (X,Y):

Y  ∂Φ∈ ∗∗
X (U) with X →7 ΦX(U) affine, ) almost surely, U  U[0,1]∼ d, E(X | U) = E(X),

where Φ∗∗
x denotes the convex envelope of u 7→ Φx (u) for a fixed x, and ∂ denotes the subdifferential. The main 

ingredients are convex duality and an existence theorem for optimal dual variables. The latter is a non-trivial  
extension  of  Kantorovich  duality:  indeed,  the  existence  of  a  Lagrange  multiplier  associated  to  the  mean-
independence constraint is not straightforward and we shall prove it thanks to Komlos’ theorem (Theorem 2).  
Vector quantile regression is specified if u 7→ Φx (u) is convex and differentiable for every x, in which case one can 
write

Y = Φ∇ X(U) with ΦX(·) convex, X 7→ ΦX(U) affine, U  U[0,1]∼ d, E(X | U) = E(X).

While our previous paper [4] focused on the specified case, the results we obtain in the present paper are general.
In the paper, we will use the following notations. For two vectors x and y of Rd, the scalar product of x and y is 

denoted x>y. Given a function f : Rd → R, f  ∗shall denote the Legendre–Fenchel transform, defined as

f  ∗(y) = max{x>y − f (x)}. x R∈ d

The subdifferential of a convex function f, denoted ∂f (x) is defined as argmax  Rd x y − f (y) .  Given 
a subset Ω

of Rd, Ω denotes the closure of Ω, and |Ω| denotes the Lebesgue measure of Ω. Given a random variable X, Law(X) 
denotes the probability distribution of X. Given a measure ν, spt(ν) denotes the support of ν. Given a smooth map 
Z : Rn  → Rm,  DZ denotes the Jacobian of  Z, which is the m × n matrix with entries ∂Zi  (x)/∂xj, we also denote its 
transpose by DZ>.

The rest of the paper is organized as follows. Section 2 gives reminders on optimal transport in relation to  
multivariate quantiles. Section 3 provides the main results on vector quantile regression beyond the specified  
case. Section 4 discusses two possible applications of the method, one for biometric purposes, and the other for  
economic purposes.

2. Vector quantiles and optimal transport

Let (Ω, F ,P) be some nonatomic probability space, and let (X,Y) be a random vector, where the vector of 

explanatory variables X is valued in RN and the vector of dependent variables Y is valued in Rd.
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The notion of vector quantile was recently introduced by Ekeland et al. [7] and Galichon and Henry [9]. It was  
used in the framework of quantile regression in our companion paper [4]. The starting point for this approach is  
the correlation maximization problem max{E(VY), Law(V) = µ} (1)

V

where µ = U[0,1]d is the uniform measure on the unit d-dimensional cube [0,1]d. This problem is equivalent to the 
optimal transport problem which consists in minimizing E(|Y − V|2) among uniformly distributed random vectors 
V. This quadratic optimal transport problem has received a lot of attention since the 1980s; see [6, 11, 20]. An  
important result in this field is Brenier’s polar factorization theorem [2, 3, 17] ensuring that (1) has a solution U 
which is characterized by the condition

Y = ϕ(∇ U)

for some (essentially uniquely defined) convex function ϕ obtained by solving a dual formulation of (1). Arguing  
that gradients of convex functions are the natural multivariate extension of monotone nondecreasing functions,  
the authors of [7] and [9] considered the function Q = ϕ as the vector quantile of ∇ Y. We therefore shall define 
the quantile of Y as the optimal transport map (for the quadratic cost) Q = ϕ between the uniform measure on∇  
[0,1]d and Law(Y). We refer to the textbooks [18, 19, 21] for a presentation of optimal transport theory, and to [8]  
for a survey of applications to economics.

Let us now assume that in addition, there is an N-dimensional random vector X of regressors, ν = Law(X,Y), m = 
Law(X), ν = νx  ⊗m, where m is the law of X and νx is the law of Y given X = x. One can consider Q(x,u) = ϕ(∇ x,u) as 
the optimal transport between µ and νx, viz.

Y = Q(X,U) = ∇uϕ(X,U), U  U[0,1]∼ d.

By definition, Q(X, ·) is the conditional vector quantile of Y given X. Note that in the specified case, i.e., when the 
conditional quantile function is affine in  X and Y = Q(X,U) = α(U) + β(U)X, where  U is uniform and independent 
from X, the function u 7→ α(u) + β(u)x should be the gradient of some function of u which requires

α = ϕ,∇ β = Db>

for some potential ϕ and some vector-valued function b, in which case Q(x, ·) is the gradient of u 7→ ϕ(u) + b(u)x. 
Moreover, since quantiles are gradients of convex potentials, one should also have that u  [0,1]∈ d 7→ ϕ(u) + b(u)x 
is convex.

3. Vector quantile regression

3.1. Correlation maximization

Without loss of generality we normalize X so that it is centered, i.e., E(X) = 0. Our approach to vector quantile 
regression  is  based  on  the  following  correlation  maximization  problem,  subject  to  a  mean-independence 
constraint:

max{E(V · Y), Law(V) = µ, E(X | V) = 0}, (2)
V

where µ = U[0,1]d  is the uniform measure on the unit  d-dimensional cube; the existence of a solution to (2) is 
standard: in terms of the joint law of (X,Y,V) it is a linear maximization on a weakly-? compact set. We now make 
the following assumption on the dependence structure of (U, X,Y).

Assumption 1. Assume that (U, X,Y) is a random vector such that:
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(i) U is a random vector of Rd with distribution µ; (ii) (X,Y) is  

a random vector of RN × Rd with distribution ν;

(iii) X is mean-independent from U, i.e., E(X | U) = 0.

The connection with the specification of vector quantile regression is then given by the following result from [4].

Proposition 1.  Let  (U,  X,Y)  satisfy Assumption 1. Suppose that there exists a smooth function  ϕ : Rd  → R  and a 

smooth function b : Rd → RN  such that u 7→ ϕ(u) + b(u)>x is convex for m-almost every value of x, so that (U, X,Y) 

satisfy Y = ϕ(∇ U) + Db(U)>X. Then U solves (2).

3.2. Duality

We now aim at emphasizing the kind of information provided by relation (2) regarding the dependence of X 
and Y. A good starting point is convex duality. As explained in [4], the dual of (2) takes the form

ty, (3)

where Law(U) = µ = U[0,1]d and the infimum is taken over continuous functions ψ  C(spt(ν),R), ϕ  C([0,1]∈ ∈ d,R) and 

b  C([0,1]∈ d,RN) satisfying the pointwise constraint

∀(x,y,t) spt(∈ ν)×[0,1]d ψ(x,y) + ϕ(t) + b(t)x ≥ ty.
Since for fixed (ϕ,b), the smallest ψ that satisfies the pointwise constraint in (3) is given by the convex function

ψ(x,y) = max {ty − ϕ(t) − b(t)x},
t [0,1]∈ d

one may equivalently rewrite (3) as the minimization over continuous functions ϕ and b of

Z Z
max {ty − ϕ(t) − b(t)x}ν(dx,dy) + ϕ(t)µ(dt). (4)

t [0,1]∈ d [0,1]d

By standard approximation techniques, one can show that the infimum in (4) over continuous functions (ϕ, b) 
coincides with the infimum over smooth or simply integrable functions. Let us make the following assumption.

Assumption 2. Assume that ν is an absolutely continuous probability measure over RN ×Rd with density g  
such that:

(i) the support of ν is Ω, where Ω is an open bounded convex subset of RN × Rd;

(ii) g is bounded on Ω, and bounded away from zero on compact subsets of Ω.

The existence of optimal (L1) functions ψ,ϕ and b is our first main result.

Theorem 2. Let ν satisfy Assumption 2. Then, the dual problem (3) admits at least one solution.

Proof. Let us denote by (0,y) the mean of ν, viz.

Z Z
x ν(dx,dy) = 0, y ν(dx,dy) = y,

Ω Ω
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and  observe  that  (0,y)   Ω;  otherwise,  by  convexity,  ν  would  be  supported  on  ∂Ω  which  would∈  
contradict our

assumption that ν  ∈L∞(Ω).
We wish to prove the existence of optimal potentials for the problem

Z Z
inf ψ(x,y)dν(x,y) + ϕ(u)dµ(u)
ψ,ϕ,b Ω [0,1]d

subject to the pointwise constraint that

(5)

ψ(x,y) + ϕ(u) ≥ uy − b(u)x, (x,y)  Ω,∈ u  [0,1]∈ d.

Of course, we can take ψ that satisfies

ψ(x,y) = sup {uy − b(u)x − ϕ(u)}
u [0,1]∈ d

so that ψ can be chosen convex and 1-Lipschitz with respect to y, hence

(6)

ψ(x,y) − |y − y| ≤ ψ(x,y) ≤ ψ(x,y) + |y − y|. (7)
The problem being invariant by the transform (ψ,ϕ) 7→ (ψ +C,ψ − C) — C being an arbitrary constant — we can 
add as a normalization the condition that ψ(0,y) = 0. This normalization and the constraint (6) imply that

ϕ(t) ≥ ty − ψ(0,y) ≥ −|y|.

We note that there is one extra invariance of the problem: if one adds an affine term qx to ψ, this does not change 
the cost and neither does it affect the constraint, provided one modifies b accordingly by subtracting the constant 
vector q from it. Take then q in the subdifferential of x 7→ ψ(x,y) at 0 and change ψ into ψ − qx, we obtain a new 
potential with the same properties as above and with the additional property that ψ(·, y) is minimal at x = 0, and 
thus ψ(x,y) ≥ 0, together with (7) this gives the lower bound

ψ(x,y) ≥ −|y − y| ≥ −C,

where the bound comes from the boundedness of Ω. From now on, C will denote a generic constant which may 
change from one line to the next.

Now take a minimizing sequence (ψn,ϕn,bn)  C(Ω,R) × C([0,1]∈ d,R) × C([0,1]d,RN), where for each n, ψn has been 
chosen with the same properties as above. Since ϕn  and ψn  are bounded from below (ϕn  ≥ −|y| and ψn  ≥ C) and 
since the sequence is minimizing, we deduce immediately that ψn and ϕn are bounded sequences in L1. Let z = (x,y) 

 Ω and ∈ r > 0 be such that the distance between z and the complement of Ω is at least 2r — so that Br(z) is in the 
set of points that are at least at distance r from ∂Ω — by assumption there is an α > 0 such that g ≥ α on Br(z).
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We then deduce from the convexity of ψn 

that
1 Z

C ≤ ψn(z) ≤ 

|Br(z)|
Br(z)

1 Z
ψn ≤ 

|Br(z)|α

1
|ψn|g  ≤   

kψnkL1(ν) Br(z) |Br(z)|α

so that ψn is actually locally bounded and by convexity, we also have

2
k ψ∇ nkL∞(Br(z)) ≤  kψnkL∞(BR(z))

R − r

whenever R > r and BR(z)  Ω; see, e.g., the proof of Lemma 5.1 in [5] for the derivation of such a bound. We can⊂  
thus conclude that ψn  is also locally uniformly Lipschitz. Therefore, thanks to Ascoli’s theorem, we can assume, 
taking a subsequence if necessary, that ψn converges locally uniformly to some potential ψ.

Let us now prove that bn is bounded in L1. To this end, take r > 0 such that B2r(0,y) is included in Ω. For every x ∈ 
Br(0), any t  [0,1]∈ d and any n, we then have

−bn(t)x ≤ ϕn(t) − ty + kψnkL∞(Br(0,y)) ≤ C + ϕn(t),

and maximizing in x  ∈Br(0) immediately gives |bn(t)|r ≤ C + ϕn(t), from which we deduce that bn is bounded in L1 

since ϕn is. From Komlos’ theorem [14], we may find a subsequence such that the Cesaro` means
n

1 X
ϕk,

n
k=1

n

1 X
bk

n
k=1

converge a.e. to some ϕ and  b, respectively. Clearly ψ, ϕ and  b  satisfy the linear constraint (6), and since the 

sequence of Cesaro` means (ψ0
n,φ0

n,b0
n) = 

Pn
k=1(

ψ
k
,φ

k,bk)/n is also minimizing, we deduce from Fatou’s Lemma that

Z Z Z Z ψ(x,y)dν(x,y) +
{Eq. (5)}.

Ω [0,1]dd

This concludes the proof of Theorem 2.

3.3. Vector quantile regression as optimality conditions

Let U solve (2) and (ψ,ϕ,b) solve its dual (3). Recall that, without loss of generality, we can take ψ convex and  
given by

ψ(x,y) = sup {ty − ϕ(t) − b(t)x}.
t [0,1]∈ d

The constraint of the dual is

(8)

∀(x,y,t) Ω×[0∈ ,1]d ψ(x,y) + ϕ(t) + b(t)x ≥ ty

and the primal-dual relations give that, almost surely

(9)

ψ(X,Y) + ϕ(U) + b(U)X = UY, (10)
which, since ψ given by (8) is convex, yields

(−b(U),U)  ∂ψ(∈ X,Y), or, equivalently (X,Y)  ∂ψ∈ ∗(−b(U),U).
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Problems (2) and (3) have thus enabled us to find:
X U uniformly distributed with X mean-independent from U,

X φ : [0,1]d → R, b : [0,1]d → RN and ψ : Ω → R convex,

such that (X,Y)  ∂ψ∈ ∗(−b(U),U). Specification of vector quantile regression rather asks whether one can write Y = 
ϕ(∇ U) + Db(U)>X = Φ∇ X(U) with u 7→ Φx(u) = ϕ(u) + b(u)x convex in u for fixed x. The smoothness of ϕ and b is 

actually related to this specification issue. Indeed, if ϕ and b were smooth, then (by the envelope theorem) we 
would have

Y = ϕ(∇ U) + Db(U)>X = Φ∇ X(U).

But the smoothness of ϕ and b is not enough to guarantee that the conditional quantile is affine in x, which would 
also require u 7→ Φx(u) to be convex. Note also that if ψ was smooth, we would then have

U = ∇yψ(X,Y), −b(U) = ∇xψ(X,Y).

In general (without assuming any smoothness), define ψx(y) = ψ(x,y). We then have, thanks to (9)–(10),  U ∈ 
∂ψX(Y), i.e.,  Y  ∂ψ∈ ∗

X(U). The constraint of (3) also gives ψx(y) +Φx(t) ≥ ty since the Legendre Transform is order-
reversing; this implies

ψx ≥ Φ∗
x (11)

x, where Φ∗∗
x  denotes the convex envelope of Φx. Duality between (2) and (3) thus yields 

the following result.

Theorem 3. Let U be a random variable over Rd  solution to (2), and let ψ : RN  ×Rd  → R, ϕ : Rd  → R, b : Rd  → RN  be 
functions such that (ψ,ϕ,b) solve the corresponding dual problem (3). For every (t, x)  [0,1]∈ d × spt(m), define Φx(t) 
= ϕ(t) + b(t)x. Then

 and U  ∂Φ∈ ∗
X(Y), i.e., Y  ∂Φ∈ ∗∗

X (U) a.s. (12)

Proof. From the duality relation (10) and (11), we have ), so that UY =
) and then Φ∗∗

X (U) ≥ ). Hence, ΦX(U) =Φ∗∗
X (U) and ), i.e.,

U  ∂Φ∈ ∗
X(Y) almost surely, and the latter is equivalent to the requirement that Y  ∂Φ∈ ∗∗

X (U).

The previous theorem thus gives the following interpretation of the correlation maximization with a mean  
independence constraint (2) and its dual (3).  These two variational  problems in duality lead to the pointwise  
relations (12) which can be seen as best approximations of a specification assumption:

Y = Φ∇ X(U), (X,U) 7→ ΦX(U) affine in X, convex in U.

Indeed in (12), ΦX is replaced by its convex envelope, the uniform random variable U solving (2) is shown to lie a.s.
in the contact set ΦX =Φ∗∗

X and differentiability is replaced by a subdifferential condition.

4. Discussion

To conclude the paper, let us make some remarks on computations and highlight two possible uses of VQR,  
one pertaining to biometrics, and one to economics.

4.1. Computation
In this paper we have not discussed the implementation issues (discretization and computation), which are 

discussed in section 4 of [4]. Let us simply mention that when µ and ν are discrete probability measures with 
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respective supports {(ui) : 1 ≤ i ≤ I} and {(xj,yj) : 1 ≤ j ≤ J} with associated weights µi > 0 and νj > 0, so that µ = 
P

i
I
=1 µiδui  

, problem (3) becomes a finite-dimensional linear programming problem

J J N d

minnXνiϕi +Xµjψj, subject to ψj + ϕi +Xbnixnj ≥ Xuik ykj (13) ψj,ϕi,b

i j=1 j=1 n=1 k=1

where xi
n  is the nth dimension of xi   R∈ N,  bn

i  stands for the nth dimension of b(xi)  R∈ N, and uk
i  and yk

j  are the kth 
dimension of respectively  ui  and  yj, which are two vectors of Rd. Problem (13) can be computed using standard 
large-scale linear programming solvers. When µ and ν are continuous probability measures, they will be replaced  
by a sampled version; the study of the stability of the VQR parameters is left for future work, but it is possible to 
investigate version of (13) with entropic regularization: letting T > 0 be a temperature parameter, consider

XJ XJ Pd 1 uki ykj − ψj − ϕi − PnN=1 bni xnj 
X  k=



ψminj,ϕi,bin νiϕi + µjψj + T exp T ,
 j=1

i=1 1≤i≤I
1≤j≤J

which  can  be  efficiently  computed  via  coordinate  descent,  in  the  spirit  of  the  Iterative  Proportional  Fitting  
Procedure (IPFP) also known as the Sinkhorn algorithm; see [16]. The detailed study of this numerical procedure is  
again left for future work.

4.2. Measurements of newborn babies

One first possible application of VQR will help understand how the height and weight of newborn babies is 
affected by the characteristics of their mother, such as education. This relates to pioneering work done by Koenker  
and Hallock [13], using scalar quantile regression. Assume Y is a vector of biometric measures of a newborn baby, 
where Y1 is the height and Y2 is the weight; and assume that X measures the mother’s education, one would like to 
understand the effect of education (X) on the joint distribution of height (Y1) and weight (Y2). Note that scalar 
quantile  regression does not  allow to study the impact  on the joint  distribution,  but only  the impact  on the  
marginal distributions.  Nevertheless, it  is of interest to understand whether conditional on  X,  the rank of the 
weight in the conditional distribution is or not correlated with the rank of the height.

Letting ΦX (U) = ϕ(U) + b(U)> X, one has Y  ∂Φ∈ ∗∗
X (U), i.e., 

gives the “multivariate rank” (u1,u2)  [0,1]∈ 2  associated to observation (x,y). Similarly, this construction allows to 
define the “multivariate median” of  Y conditional on  X = x as the barycenter of ∂Φ∗∗

x  (1/2,1/2). The plot of the 
multivariate median of Y conditional on X is informative as it represents the status of a “typical” individual in the 
population. Similarly, we may define four “extremal” individuals associated with respectively  uTH  = (0.9,0.9) (tall 
and heavy), uTL = (0.9,0.1) (tall and light), uS H = (0.1,0.9) (small and heavy), and uS L = (0.1,0.1) (small and light). For u 

 {∈ uTH,uTL,uS  H,uS  L},  one  may be  interested  in  plotting  ∂Φ∗∗
x  (u)  as  the  evolution  of  these  various  profiles  of 

individuals when the level of prematurity increases.

4.3. Willingness to pay for real estate amenities

We now consider an economic application of VQR to the real estate market. Assume y  R∈ d is a vector of house 
characteristics (price, square footage, and amenities), and x  R∈ N  is a vector of observable characteristics of the 
buyer (income, size of the household, age). On top of the observable characteristics  x, it  is assumed that the 
consumer is represented by a vector of unobservable characteristics u, so that the valuation of good y by buyer x is
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u>y + V (x,y),

where it is assumed that u  R∈ d is uniformly distributed and independent from x and V is concave with respect to y. 
The goal of this exercise is to identify V (x,y), which is the systematic part of the valuation of y by consumers of 
observable characteristics x, based on the observation of sales data, which specify the characteristics of the good 
sold y, jointly with the characteristics of the characteristics x of the corresponding buyers.

A consumer of type (x,u) chooses quality y in order to maximize utility, i.e., the consumer solves

{ > }.
(14)

Letting ψ(x,y) = −V (x,y), it follows that Φx (·) and ψ(x, ·) form a pair of convex conjugate functions. VQR assumes a 
parameterization of Φx (u) of the form Φx (u) = ϕ(u) + b(u)> x, and therefore, it follows from the envelope theorem 
in (14) that Y  Φ∈ ∗∗

X (U).

Assume now a number of real estate transactions are observed. For each transaction, one observes a vector Y 
of  characteristics  of  the  house  sold,  and  a  vector  X  of  characteristics  of  the  buyer.  It  follows  from  the 
considerations above that ψ is identified by ψ(x,y) =Φ∗

x (y),

where Φx (u) = ϕ(u) + b(u)> x has been obtained by Vector Quantile Regression of Y on X.
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