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ABSTRACT:

PURPOSE: Physical activity unquestionably maintains and improves health; however, physical
activity levels globally are low and not rising despite all the resources devoted to this goal.
Attention in both the research literature and the public policy domain has focused on social-
behavioral factors; however, a growing body of literature suggests that biological determinants
play a significant role in regulating physical activity levels. For instance, physical activity level,
measured in various manners, has a genetic component in both humans and non-human animal
models. This consensus paper, developed as a result of an ACSM-sponsored round table,
provides a brief review of the theoretical concepts and existing literature that supports a
significant role of genetic and other biological factors in the regulation of physical activity.
CONCLUSION: Future research on physical activity regulation should incorporate genetics and
other biological determinants of physical activity instead of a sole reliance on social and other

environmental determinants.
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Introduction:

Physical activity promotes health and quality of life, and prevents premature death, with
supporting literature reviewed in a number of different places (1, 2). Conversely, physical
inactivity is a root cause of several chronic health conditions, is a major risk factor for obesity
and diabetes, and has been reported to be the second leading actual cause of death in the U.S. (3).
Physical activity is considered an effective means of maintaining body weight, a necessary part
of any effort to increase or decrease an individual’s weight in a stable manner (4—6), a significant
environmental modifier of weight (7), and an effective treatment option for some aspects of
mental health, such as depression (8, 9). In spite of the strong evidence favoring physical
activity as an effective and cost-effective component of both preventive medicine and therapy,
general activity levels in the United States are low, with studies using direct activity
measurements suggesting that less than 5% of adults over 20 years of age engage in at least 30
minutes of moderate intensity physical activity daily (10). This trend is not limited to the United
States, but also has been reported as a worldwide health issue with the World Health
Organization naming physical inactivity as the fourth leading risk factor for global mortality
(11). Moreover, community-based attempts to promote physical activity have had mixed success

(e.g. 12, 13).

Beyond the direct health effects and the reduction in quality of life suffered by those that are not
active, physical inactivity imposes significant costs on health care systems. Using admittedly
conservative estimates, with consideration of only the impact on the top five non-communicable
diseases globally and ignoring mental health, Ding et al. (14) estimated that physical inactivity

costs $67.5 billion yearly in health care expenditures and productivity losses. Other estimates
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have generated an even higher financial burden based on different models. For example,
Chenoweth and Leutzinger reported that the estimated nationwide costs of risk factors due to
physical inactivity were approximately $507 billion per year in the United States alone (15). No
matter what model is used, the effect of physical inactivity on just health economics is profound.
In fact, given the overall economic impact in conjunction with the impact on health, public
health authorities worldwide have launched interventions aimed at increasing physical activity
during work/school time, during transportation to work and school, and in leisure time (1, 11, 16,

17).

In spite of this wide and deep literature showing the health and economic benefits of physical
activity, the widely disseminated Physical Activity Guidelines (1), and the large amount of
information and programs available to the public, in general, overall activity statistics have not
improved significantly over the past 50 years. As noted earlier, the most recent large-scale
accelerometer database available suggests that only a small minority of U.S. citizens meet
physical activity guidelines, with less than 5% of adults, less than 8% of adolescents, and less
than 58% of children being classified as "active" (10). These national accelerometer-based
numbers are markedly lower than more subjective historic data (Fig. 1) of the estimated activity
levels from the Behavioral Risk Factor Surveillance System (BRFSS, 18). The volatility of the
more subjective estimates is illustrated by the fluctuations in percentage of adults reportedly
engaging in activity from the 2000 to the 2001 BRFSS survey, particularly by the striking rise in
physical activity engagement that was largely attributable to a change in the survey questions
that were asked regarding physical activity. However, regardless of the metric used, be it the

objective measures or the more subjective estimates, it is clear that a significant portion of the
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global population does not accumulate enough physical activity on a weekly basis to avoid

elevated risk, let alone confer health benefits (11).

Why is it that, in spite of the recognition of the critical role of physical activity in health over the
past 50 years, the number of physically active individuals has not significantly increased? Some
have cited technological encroachment or other lifestyle changes as primary factors for the
persistently depressed activity levels. The worldwide decrease in the number of occupations
requiring physical labor is also part of the explanation (19, 20). Further, a large literature
indicates potential social and environmental factors that inhibit physical activity level, but this

has been — at best — ambiguous and non-consistent as to which factors are important (19).

Given that all human behavioral traits are usually determined by both environmental/social and
biological factors, it is alarming that the vast majority of the literature on physical activity (e.g.
19, 21) has excluded biological factors as potential determinants of physical activity levels in
humans. However, even a brief and targeted literature review as included in this paper shows
conclusively that physical activity level is strongly influenced by biological mechanisms. The
hypothesis that biological mechanisms regulated physical activity level was supported by an
early review in this journal (22) and with the advances in genomics and genetics since that time,
the foundational science supporting the contention that biological determinants regulate physical
activity level has only grown stronger. Thus, the purpose of this consensus paper is to provide a
brief review of the literature that supports the concept that biological, including genetic and
genomic, factors are important determinants and regulators of physical activity level. This brief

review is offered to motivate further research aimed at understanding rates of physical activity
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participation by incorporating biology and genetics in research paradigms.

Evidence of Biological Regulation of Physical Activity:

In this review, we take the broadest view of ‘physical activity’ — namely, we define physical
activity as any locomotion or movement that is the result of skeletal muscle contraction (23). A
broad definition of physical activity is important in the present context as it needs to be
applicable to both human and animal models, and should allow for the incorporation of
spontaneous physical activity (e.g. "fidgeting"), non-exercise activity thermogenesis, as well as
both leisure-time recreational activity and occupational activity. Further, and probably most
importantly, we treat physical activity as the dependent variable, where the measured amount of
physical activity or the energy expenditure caused by physical activity is being investigated, as
opposed to the common consideration of physical activity as an independent variable or
mediator of change, where activity is manipulated to determine its impact on health or other
traits. This implies that the focus is on genes, pathways, systems, tissues, organs, and organ

systems influencing physical activity levels.

Some of the earliest suggestions that physical activity levels could be influenced by biological
factors were in multiple studies in the 1920s and early 1930s, primarily from Richter and his
colleagues (e.g. 24, 25), which showed that an unknown internal biological substance associated
with reproduction altered running-wheel activity of rats. The ‘substance’ suggested was later
identified as the sex hormones, testosterone and estrogen, and a rich body of work shows clearly
that sex hormones can influence activity (e.g. 26). Further, even before DNA was identified,

Rundquist (27) in 1933 made the earliest suggestion that heritability influenced physical activity
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level. Rundquist (27), after selectively breeding rats for 12 generations on the basis of daily
activity in rotating-drum cages, noted “It is, then, quite safe to ascribe the major role in the
production of the individual differences in this activity to inheritance.” Confirmatory data for
this conclusion has become overwhelming in the past 80 years, with at least 45 studies in adult
human and mature rodent models showing that individual variation in physical activity is, to an

important extent, influenced by genetic variation (28—72).

The relative contribution of the genetic variance to the total variance for a trait in a given
population at a certain time is called the "heritability" of the trait and is typically expressed as a
percentage. In all models considered, the estimated heritability of physical activity in adults
ranges from approximately 20% (67) to 90% (60). These estimates vary based on the activity
criterion used, the study design and type of heritability statistics used, the species studied, the
gene pool of the study population, age and sex of the organism, and the environmental
conditions. Additionally, in the human studies that have been able to parse out the differing
sources of variability (e.g. 58, 60—62, 67—69), the role of environmental influences that are
experienced similarly by family members (collectively known as ‘common’ environmental
factors) has generally been zero, with only one study (67) indicating a small common
environmental influence on activity level (=12%). Thus, the available literature clearly shows
that the primary determinants of physical activity are genetic factors and environmental factors
that are unique to an individual (i.e. independent of other family members’ characteristics),
which can consist of the individual’s socio-demographic characteristics, personal life history,
and social settings, but could also subsume the effects of chance, normal day-to-day variability,

and measurement error, depending on the study. For the interested reader, a thorough discussion
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of the phenotypic variance and its genetic and environmental components and subcomponents

can be found in standard genetics textbooks.

Figure 2 provides a conceptual model of the biological determinants of physical activity, divided
into three main components (brain, cardiorespiratory system, muscle), all of which can interact.
All three components can have a substantial genetic basis, but are also influenced by various
factors in the external environment. Importantly, this model of multi-faceted regulation includes
both central (brain) and peripheral (cardiorespiratory, muscle) control components. A pre-set,
brain-located “activity-stat” was earlier hypothesized (22) and it was proposed that it would not
only serve as a pre-programmed activity-level controller, but also receive signals from various
other factors that may themselves be partly genetically regulated, such as sex hormone levels,
dietary habits, and exposure to toxicants. The activity-stat was seen as part of a much larger
motivational regulatory system that integrates reward and punishment cues related to ongoing or
recently completed physical activity, arising from afferent somato-visceral feedback in
cardiorespiratory and muscle (fatigue) sources. In humans, motivational states are further
modulated by trait-dependent individual differences in the drive to be active related to
personality, social support or the many social-environmental opposing or enabling factors for
physical activity. The science has evolved since an activity-stat was part of the discussion on the
regulation of physical activity level, and the concept is hard to justify today (e.g. 73). It is now
better appreciated that the regulation of behavioral traits is influenced by complex multifactorial
and redundant genetic, epigenetic, and other biological systems, with each component

characterized by small effect sizes.
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This conceptual holistic model of the control of physical activity in which genetic and other
biological factors play a key role is supported by a variety of literature. The use of the conceptual
model in Figure 2 is critical in further studying, understanding, and altering physical activity, as
well as driving future research directions (Fig. 3). The existing literature, while having several
gaps, is robust enough to conclude that investigators studying physical activity - as well as policy
makers pondering relevant policies - must consider all factors in their deliberations and not just

focus on social-environmental aspects.

Biology of Regulation of Physical Activity Level and Future Research Directions:

Even though a significant amount of evidence in both humans and rodents shows that daily
physical activity level is genetically controlled to a significant extent, the specific mechanisms
involved are still incompletely delineated. Efforts to identify from where in the genome this
regulation arises have used genome-wide association studies (GWAS), positional cloning
approaches, and other —omics technologies in both humans and rodents. These efforts, including
the use of large-scale twin studies (68, 69, 74) and both inbred (e.g. 64, 66) and selectively-bred
animal models (e.g. 23, 70, 75-77), have been fruitful in identifying promising quantitative trait
loci (i.e. chromosomal locations) associated with physical activity level. Further, it has been
suggested using cross-sectional designs in humans (e.g. 69) and longitudinal designs in rodents
(71) that the genetic influence on activity level varies by age, increasing toward the end of
puberty and waning as the individual reaches later ages. Additionally, a few rodent studies have
documented genetic dominance (e.g. 78) and epistasis (79, 80), as well as pleiotropic interactions
(81) in regards to physical activity level. There have been successes in determining the genetic

underpinnings of some muscle traits in mice selectively bred for high activity (e.g. the mini-
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muscle phenotype, 82, 83) as well as providing expression quantitative trait loci (QTL) results
from these mice (76, 84). These studies have resulted in initial summary genomic maps of
quantitative trait loci associated with activity, as well as suggested candidate genes involved in
regulating physical activity (85), with limited data from congenic animals supporting some of
these genetic associations (e.g. 86, 87). However, as noted (85) most potential candidate genes
still lack rigorous validation, which is a widespread issue when working to move candidate genes
from the ‘associative’ to ‘causative’ category in regards to any phenotype (88). Further,
although some authors have discussed translation of rodent results into humans (85), the only
study that has attempted to translate between mouse and human data in the same study (89)
suffered from critical design issues (e.g. incorrect translation of low-active mouse QTL onto
high-active humans; rejecting objective measures of human activity in favor of subjective
measures) that limited interpretation of the results. Given the amount of both human and rodent

data available, more translational efforts need to be conducted.

Besides using traditional genetic approaches to illuminate the genetic component of activity
level, some investigators have taken a hypothesis-driven approach targeting specific factors that
may influence daily activity in one or more of the areas shown in Figures 2 and 3. Given the
ability to interrogate a wide-variety of tissues, the large majority of this work has been in animal
models, the human translatability of which has been discussed in several venues (e.g. 23, 90).
For example, research in the biological regulation of physical activity level has focused on
several specific areas depicted in the conceptual model as defined in Figure 2:

* The central reward center of the brain (primarily structures in the striatum) as a major

site of physical activity regulation;
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* The peripheral cardiovascular and musculoskeletal capabilities associated with high and
low-activity profiles in animal models;

» Genomic and other biological factors, such as sex and other hormones, and illness and
disease, which may cause changes in inflammatory signals and metabolite levels that
participate in the regulation of daily physical activity level;

* Environmental factors such as diet and the presence of environmental toxicants that
may augment/inhibit physical activity level regulatory mechanisms; and

* Social-environmental factors that may influence activity.

Research focused on central mechanisms regulating physical activity level has provided evidence
of altered dopaminergic (91, 92) as well as differential endocannabinoid activity (93-95) in the
brains of highly active animals. Garland’s group in particular has worked to elucidate the neural
control of high levels of voluntary exercise in selectively bred lines of mice (e.g. 23, 76, 84, 92).
More recently Booth’s group has employed a selectively bred rat model to investigate the neural
control of low vs. high voluntary exercise on wheels (e.g. 96). Additionally, early efforts have
been presented at describing the central transcriptomic (97, 98) and proteomic signatures of high-
and/or low-active animals (99), along with efforts to produce transient gene silencing to

investigate neural candidate genes in whole animals (100).

Common sense and various lines of research indicate that even if an animal has a high neural
drive to be physically active (e.g. arising from the nucleus accumbens), without the physiological
capability for extended activity, it will not be able to be highly active (e.g. 23, 84). Assuch, a

variety of studies have suggested the importance of heritable peripheral components — primarily
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in the skeletal muscle — in the determination of activity level. Tsao and coworkers’ intriguing
data showed that mice with overexpressed glucose transporter 4 (Glut4/Slc2a4) also exhibited a
four-fold increase in voluntary wheel running (101). The authors suggested that augmented
substrate availability caused this increase in activity, implying that daily activity could be
regulated by substrate-delivery mechanisms in the muscle. Presuming the genetic manipulation
primarily affected ability for endurance exercise, this finding implies that the wild-type mice had
an excess central "drive" to be physically active, or that this drive was increased by the genetic
manipulation. Additionally, Meek et al. (102) showed that mice bred for high voluntary exercise
on wheels and that had reached a plateau in their breeding-induced activity levels, increased
wheel-running activity when fed a high-fat, high-sucrose diet. Again, however, it is possible that
this diet affected motivation for, or reward received from, wheel running, rather than just
exercise ability (102). Further, Pistilli, et al. (103) showed that knocking out IL-15Ra, which
influences substrate usage particularly in fast-twitch fibers, increased daily wheel running, while
O’Neitll, et al. (104) noted that knocking out AMPK B1B2 decreased wheel running. As noted
earlier, work from Garland’s group with the mini-muscle phenotype in their selectively-bred
high active animals (78, 82, 83) has revealed a recessive allele that results in a 50% reduction in
the mass of the triceps surae muscle complex and of total hindlimb muscle mass with a doubling
of the mass-specific aerobic capacity and an altered fiber type composition and contractile
performance, along with an increase in size of the animal’s heart ventricles, liver, and spleen. As
with central mechanisms, initial work has been published regarding differing skeletal muscle
proteomes of high- and low-active animals (105), with preliminary work considering the effect

of transient gene silencing on some of the proteins overexpressed in highly active animals (100).
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The idea that both peripheral and central mechanisms contribute to the regulation of physical
activity level (Fig. 2) has been reinforced by literature on the determinants of voluntary exercise
behavior in humans (106). Instrumental conditioning — which has been defined as operant
conditioning that pairs a response with a reinforcement (107) - plays a key role in many
voluntary behaviors, and exercise seems no exception. When people engage in regular exercise
activities, they are exposed to a combination of acute (during the exercise bout and shortly after)
affective effects, which are in part experienced as pleasant and in part as unpleasant (108). The
net balance of these effects determines whether the activity will be experienced as punishing or
rewarding, respectively, and this balance will strongly contribute to the adoption and
maintenance of regular exercise behavior, or the failure to do so. Previous studies showed a
robust association between a more favorable affective response (i.e. relating to moods, feelings,
and attitudes) during exercise and the intention to engage in voluntary exercise (109, 110) as well

as greater actual participation in (voluntary) moderate to vigorous exercise (111-115).

Various potential modulators of the affective response have been shown to influence regular
exercise behavior in humans, including personality and self-regulation. Regular exercisers score
lower on neuroticism and higher on extraversion, conscientiousness, and sensation seeking (116—
119), ‘brain’ traits known to be under substantial genetic control (120). Neuroticism may
increase the fear of embarrassment or injury, which are often cited as perceived barriers to
exercise. Introverts, with a high intrinsic arousal level, might be easily over-stimulated and less
attracted to exercise activities, particularly in socially rich contexts. Self-regulation, or the
related concepts of self-motivation and conscientiousness are well-known correlates of regular

exercise behavior program (121-123). This is not surprising, as the ability to endure the
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temporary discomforts of exercise in view of a future reward (e.g. physical fitness, losing weight,
winning the game) or a long-term goal (health, ability to attract romantic partners) is a core
characteristic of self-regulation. Perhaps less well known is that self-regulation is itself a
heritable trait (124) as are motives for activity (125). Self-regulation should therefore be

considered as part of the biological network that regulates the level of physical activity.

Exercise ability can also modulate the affective response to exercise in humans. Being good at
exercise and performing better than others will lead to feelings of competence, whereas lower
levels of performance might lead to disappointment or shame. Perceptions of differences in
exercise ability may strongly contribute to the affective response to exercise. These perceptions
will largely but not perfectly, reflect actual exercise ability. The latter may be influenced by
skills specific to a sport, but a number of general fitness characteristics, including strength and
endurance, are strong predictors of performance across a variety of sports and exercise activities
(126). These general fitness characteristics are known to be highly heritable, and this applies to
individual differences encountered in cross-sectional samples (127, 128) as well as in the
response to a fixed training regime (129). In the latter case, being a good responder to regular
exercise for a relevant biological trait (e.g. exercise capacity) is likely to augment rather than
diminish the interest in remaining physically active. One could hypothesize that the opposite

would be true for a poor responder to the same exercise regimen.

The heritable influence on exercise ability might be especially relevant for self-chosen levels of
exercise behavior during late adolescence, when the influence of role models in health behaviors

is large (130). Likewise, the association of extraversion and sensation seeking with exercise
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behavior might be particularly prominent in adolescence, when many exercise activities are
performed in teams with friends and peers. This may explain the relatively high levels of

heritability that are noted for exercise behavior in mid- and late-adolescence (131).

In addition to work on both central- and peripheral-genetically influenced physical activity
regulatory mechanisms, a large and deep, though somewhat dated, pool of literature addresses
the effects of sex hormones on physical activity. This body of literature, as noted earlier, reaches
back to the mid-1920s, but showed resurgence in the early 2000s. Seminal work by Roy and
Wade (132) suggested that estrogen was the primary driver of physical activity, primarily
through aromatase mechanisms. However, more recent direct testing of that hypothesis with
both reversible and non-reversible aromatase inhibitors, as well as modern methods of
exogenous hormone supplementation, have suggested that testosterone may actually be primary
in the sex hormone effects on physical activity (133, 134). Although sex hormones have a
significant effect on physical activity, it remains an open question whether their regulation of
physical activity arises from genetic mechanisms (e.g. some variation in the androgen receptor
gene) or whether the sex hormone effect is a modifier of other, more basic genetically controlled
regulatory pathways (e.g. effect on dopaminergic signaling pathways). Also unclear is the extent
to which sex differences in physical activity in rodents and humans are caused by physiological
differences invoked by differences in hormone production (e.g. more testosterone, more muscle
mass, different activity choice) or by direct regulation of activity due to the differences in their

hormonal milieu (e.g. 134).

Lastly, modification of genetic regulation of activity by unique-to-the-individual environmental
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factors — either through epigenetic mechanisms or direct inhibition/augmentation of the genetic
mechanisms of control — is still a relatively unexplored area. Results from the late 1800s
suggested that diet could affect physical activity level (135) and it is well known and accepted
that certain experimental paradigms that moderately reduce caloric intake will reliably increase
physical activity in rodents and non-human primates (136—138) and probably humans (139, 140).
Interestingly, altering dietary composition in selectively bred, highly active mice markedly
increases activity (102, 141), while feeding a high fat, high sugar diet in inbred mice resulted in
large reductions in daily activity in both sexes (142). It is currently unclear if these diet-induced
alterations in activity are moderated through hormonal alterations (e.g. ghrelin/leptin or sex
hormone changes, 143—145), through a direct effect on central neurotransmitters (e.g. serotonin
pathways, 146), or simply due to alterations in substrate availability for activity (102).
Additionally, early-life exposure to unique environmental toxicants, such as a common
plasticizer (BBP), may inhibit lifelong activity in offspring through alterations in sex hormone
levels or other biological mechanisms when their mothers are exposed to physiologically
relevant doses during pregnancy (147). Also, it has been suggested that maternal diet (148) or

exercise in and of itself may affect the activity level of the offspring (149, 150).

In summary, a large and growing body of literature examines the various areas of potential
biological control of physical activity level in both humans and other animals. This literature
provides the foundation for the recommended research flow as outlined in Figure 3; this research
flow is predicated on the results from previous studies of both human and rodent models, as well
as on existing results based on genetic methods and environmental inputs. Current consensus

recommends that future research in the biological control of physical activity concentrate on
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three areas: central neural mechanisms providing the ‘drive to be active’ (motivation); peripheral
mechanisms that provide the ‘capability to be active’ (capability); and integrative and mediating
biological mechanisms and factors that inhibit or augment the central and peripheral mechanisms
(e.g. aspects of endocrine function, 151). This level of research will provide a further foundation
for future basic investigations that can be translated into both human and animal studies, with the
ultimate goal of developing physical activity-based trials aimed at investigating specific activity

regulators.

In conclusion, it is well established that physical activity is healthy behavior, but worldwide
levels of physical activity remain low in spite of the increased emphasis and knowledge available
to the general population. The preponderance of literature in sports medicine and exercise
science has treated physical activity regulation as a largely non-biological construct and this
perspective is reflected in the main intervention approaches to increase daily physical activity.
Such interventions focus on goal setting, social support, and behavioral reinforcement through
self-reward, structured problem solving, and relapse prevention. Although these social-
behavioral approaches make good sense, an undisputed body of empirical data also reveals that
biological determinants play an important role in the regulation of daily physical activity in both
humans and other animals. They do so by influencing brain circuitry related to some of the core
elements in the social-behavioral models, including personality, affect regulation and reward
processing, or by influencing cardiorespiratory and muscle capacity to regularly engage in
physical activity, which we expect to be closely tied to physical self-efficacy, another core
element in social-behavioral models of physical activity. The existence of individual differences

in physical activity behavior is undeniable, as is the fact that biological/genetic mechanisms are
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largely responsible for those differences. Choosing not to investigate these mechanisms would
be irresponsible and would hinder the science or understanding the causes of this critical health
issue. Thus, future research needs to focus on investigating and identifying these biological
pathways participating in the regulation of physical activity level, how they are affected by
genetic variants, early-life experiences, epigenetic events, biological intermediates and
environmental factors, such as diet and toxicant exposures, and how they impact our attempts to
intervene on physical activity level. In keeping with the acknowledged importance of the
interplay of nature and nurture in many other behavioral traits, it is the consensus of this
authorship group that future research on physical activity regulation should prominently include
the identification of the biological determinants of physical activity instead of a sole reliance on

the social/environmental determinants.
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Figure Legends:

Figure 1 — Percentage of surveyed BRFSS adults with 30+ minutes of physical activity five or
more days/week (1996-2000) OR percentage with 30+ minutes of physical activity or 20+

minutes of vigorous activity five or more days/week.

Figure 2 - Conceptual model for the main physiological systems involved in physical activity and
its regulation. 1) The brain is the behavioral control center integrating pre-set information from
the activity-stat (see text) with ongoing motivational state. 2) Duration and intensity of physical
activity will depend on cardiorespiratory fitness, partly by viscerosomatic signals (e.g. becoming
out of breath) that affect motivational state. 3) Muscle is the mechanism of action (effector) and
performance capability of this unit, as well as the cardiorespiratory system, is necessary but not
sufficient for physical activity. Effects of biological, including genetic/genomic and
environmental factors, with many interactive effects, will determine individual differences in the

functioning of these physiological systems and hence the level of physical of physical activity.

Figure 3 - Research directions to further unravel the biological regulation of physical activity
level. The three major sources of individual differences in physical activity level are genetic
variants, environmental influences, and their interplay. Strategies to understand the biology of
physical activity regulation and the contribution of genetic and environmental factors are
numbered 1 to 9. Studies of humans and of animal models play complementary roles. The
ultimate goal is to identify safe and effective environmental and/or pharmacological

interventions that can increase the level of physical activity.



Figure 1 Click here to download Figure Fig1.tif =

Fig. 1 - Percentage Adults with 30+ mins of PA
100+

[] Yes
80- B o
=
& 60-
-
i
S 40-
o
20+
0-

- S SR R A
G P

BRFSS Year


http://www.editorialmanager.com/msse/download.aspx?id=980270&guid=07e3e2da-59de-46ac-8d6a-7cc279dae42e&scheme=1
http://www.editorialmanager.com/msse/download.aspx?id=980270&guid=07e3e2da-59de-46ac-8d6a-7cc279dae42e&scheme=1

Figure 2 Click here to download Figure Fig2.tif =

Figure 2 —Conceptual Holistic Model of Physical Activity
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Figure 3 — Framework for Future Research Approaches
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