
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1

A fast exact functional test for directional
association and cancer biology applications

Hua Zhong and Mingzhou Song

Abstract—Directional association measured by functional dependency can answer important questions on relationships between
variables, for example, in discovery of molecular interactions in biological systems. However, when one has no prior information about
the functional form of a directional association, there is not a widely established statistical procedure to detect such an association. To
address this issue, here we introduce an exact functional test for directional association by examining the strength of functional
dependency. It is effective in promoting functional patterns by reducing statistical power on non-functional patterns. We designed an
algorithm to carry out the test using a fast branch-and-bound strategy, which achieved a substantial speedup over brute-force
enumeration. On data from an epidemiological study of liver cancer, the test identified the hepatitis status of a subject as the most
influential risk factor among others for the cancer phenotype. On human lung cancer transcriptome data, the test selected 1068
transcription start sites of putative noncoding RNAs directionally associated with lung cancers, stronger than 95% TSSs of 694 curated
cancer genes. These predictions include non-monotonic interaction patterns, to which other routine tests were insensitive.
Complementing symmetric (non-directional) association methods such as Fisher’s exact test, the exact functional test is a unique exact
statistical test for evaluating evidence for causal relationships.

Index Terms—Exact functional test, directional association, functional dependency, branch-and-bound, liver cancer, lung cancer,
noncoding RNA, biomarker
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1 INTRODUCTION

UNCOVERING causal mechanisms to explain an ob-
served phenomenon is central to scientific endeavors.

In cancer research, one is often charged with identifying risk
factors or genes that are responsible for tumor development
based on data generated from observational studies. Com-
plex non-monotonic functional relationships (Fig. 1) from
gene to cancer have been increasingly observed. Abate-
Shen and colleagues suggested a model of prostate can-
cer progression as a non-monotonic function of p27 gene
dosage [1]; indeed, genes in many cancer pathways showed
a low-high-low expression pattern in response to an increas-
ing p27 dosage in mouse papillomas [2]. In breast cancer, the
SKI gene can be either pro- or anti-oncogenic [3], depending
on the status of the TGFβ signaling pathway. Many studies
also implicated the TLR4 gene to have both pro and anti-
cancer effects [4]. Detecting such non-monotonic functional
patterns requires statistical methods sensitive to directional
association. Here, we characterize directional association via
the functional dependency of a dependent variable (child)
on independent variables (parents). We categorize a parent-
child pattern into three types: (1) functional, (2) dependent
non-functional, and (3) independent. In a functional pattern,
the child is strictly a non-constant function of the parents.
In a dependent non-functional pattern, the child can not
be a function of the parents but they must be statistically
dependent on each other. In an independent pattern, the
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Fig. 1. A discrete non-monotonic functional pattern represented as
a contingency table. A non-monotonic function exists from X to Y ,
whose inverse is not a mathematical function. The number in each cell
is the frequency that a specific combination of X and Y is observed.

child and the parents are statistically independent. Para-
metric regression [5] reveals functional dependency among
random variables but requires prior knowledge about the
functional forms—often unavailable in not well-understood
biological systems. Nonparametric regression [6] such as
smoothing splines [7] relies on the given parametric form
of splines. To be free from parametric assumptions, one can
discretize continuous random variables, form contingency
tables, and test associations using the classical Pearson’s chi-
square [8] or Fisher’s exact test [9], [10] (Supplementary
Note 1, 2). These tests, however, are insensitive to the
direction of association. Sharply differing from previous
methods, a recently developed asymptotic functional chi-
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square test (FunChisq) [11] uncovers directional functional
dependency among discrete random variables. The test
statistic follows an asymptotic null chi-square distribution
and has a unique property of asymmetric functional opti-
mality (Theorem 8 [11]) that benefits causal inference. These
theoretical properties of the asymptotic FunChisq may ex-
plain its outstanding performance at HPN-DREAM Breast
Cancer Network Inference Challenges [12].

However, the inexact chi-square null distribution may
prevent FunChisq from achieving a high statistical power
when the sample size is modest. This motivated us to design
a new exact functional test using the multivariate hyperge-
ometric distribution for the null hypothesis to complement
the FunChisq test. This distribution allows the calculation
of the exact significance (p-value) of functional dependency,
by summing up the probabilities of those contingency tables
from the null population that are no less extreme than the
observed table. Next, we developed a practically efficient
branch-and-bound algorithm to compute the exact p-value,
attaining a substantial speedup over brute-force enumer-
ation. The run time is reduced by taking advantage of
the lower and upper bounds that we established for the
test statistic. Our simulation study shows that the exact
functional test promotes functional patterns over depen-
dent non-functional patterns, by suppressing the statistical
power on the latter. This is in contrast to Fisher’s exact
test which performs similarly to the exact functional test in
absolute statistical power for functional patterns, but has a
higher statistical power for non-functional patterns than the
exact functional test. This distinction enables the exact func-
tional test to favor functional over non-functional patterns
more than Fisher’s exact test. In addition, on independent
patterns, the exact functional test maintains a similar level
of type I error to Fisher’s exact test.

Then we applied the exact functional test to reveal com-
plex patterns in cancer biology. On data from a previous
epidemiological study [13] on four environmental or genetic
risk factors to liver cancer, the test revealed hepatitis as the
most significant risk factor to the CpG island methylator
phenotype of several tumor suppressor genes—an indicator
of liver cancer; while such directional associations were
not available in the original report [13] that used Fisher’s
exact test and Pearson’s chi-square test. We further demon-
strate the utility of the exact functional test by identifying
1068 potential noncoding RNA genes that are directionally
associated with lung cancer phenotypes from FANTOM5
data [14]. The statistical significance of these candidate
genes is higher than 95% TSSs of 694 curated cancer genes
from COSMIC Cancer Gene Census [15]. Several cases of
gene-lung cancer association show non-monotonic patterns,
suggesting a possible context-dependent role of these genes
ranging from oncogenic to tumor suppressing in lung can-
cer; meanwhile, routine tests including t-test or logistic
regression cannot detect such non-monotonic patterns.

With both the theoretical arguments and experimental
evidence, the exact functional test is uniquely advantageous
in evaluating asymmetric functional dependency. Given
the importance of functional dependency as evidence for
causality [16], when asymptotic tests become inadequate,
the exact functional test can serve as a useful instrument for
exposing directional associations in many scientific applica-

tions beyond cancer biology.

2 METHODS

2.1 Problem statement and notation

The problem is to test whether there is a functional relation-
ship Y = f(X) from discrete random variable X to Y . The
input data is a contingency table with observed counts of
variable X and Y . The outcome of the test is the statistical
significance of the functional relationship Y = f(X). Here
X can be a compound variable composed of multiple vari-
ables and is called the parent variable, and Y is the child
variable.

A contingency table is an r × c matrix O, where the r
rows represent the levels of parent variable X and the c
columns are levels of child variable Y . Let Oi,j at row i
and column j of matrix O represent the sample count when
X = i and Y = j. Let n be the sample size or the total
number of observations in table O. Let Oi· be the sum of
row i and O·j be the sum of column j in O, respectively
defined as Oi· =

∑c
j=1Oi,j and O·j =

∑r
i=1Oi,j .

The asymptotic functional chi-square test (FunChisq)
determines directionality of interactions and represents a
paradigm shift from Pearson’s chi-square test [8]. FunChisq
differentiates the parent-to-child from child-to-parent func-
tional dependency. The functional chi-square statistic of
observed table O is defined by [11]

χ2
f (O) =

 r∑
i=1

c∑
j=1

(Oi,j −Oi·/c)
2

Oi·/c

− c∑
j=1

(O·j − n/c)2

n/c

(1)

which asymptotically follows a chi-square distribution [11]
with (r − 1) × (c − 1) degrees of freedom under the null
hypothesis of X and Y being statistically independent and
the assumption that Y is uniformly distributed. The statis-
tical significance can thus be computed by the upper-tail
probability of the chi-square distribution. The optimality of
χ2
f (O) for functional dependency has also been established

[11].
However, the chi-square distribution approximates the

p-value well only when the sample size is sufficiently large,
and is inexact when the sample size is small. This is a major
motivation to develop an exact functional test.

2.2 The exact functional test

We describe a novel exact test for functional dependency
using an exact null distribution of the test statistic also
applied in the FunChisq test. We assume that the row and
column sums of the contingency tables in the population
are fixed to those of the observed contingency table O. The
null hypothesis is that the parent and child variables are
statistically independent. Thus, the probability of observing
a table under the null hypothesis follows a multivariate
hypergeometric distribution.

Let A be the set of all null contingency tables with the
same row and column sums of O:

A = {A
∣∣ Ai· = Oi·, i ∈ [1, r] and A·j = O·j , j ∈ [1, c]} (2)
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where the row and column sums of A are defined as
Ai· =

∑c
j=1Ai,j and A·j =

∑r
i=1Ai,j . The probability of

observing A ∈ A can be exactly described by a multivariate
hypergeometric distribution for sampling without replace-
ment [10]:

Pr(A) =

∏r
i=1Ai·! ·

∏c
j=1A·j !

n! ·
∏r

i=1

∏c
j=1Ai,j !

(3)

which is true under the null hypothesis of the exact func-
tional test. Table A is no less extreme than O if A has a
functional chi-square statistic no less than O. Let Ae(O)
denote the set of all such extreme tables:

Ae(O) =
{
A
∣∣∣ χ2

f (A) ≥ χ2
f (O) and A ∈ A

}
(4)

The statistical significance of O is defined exactly by the
one-sided p-value

p-value =
∑

A∈Ae(O)

Pr(A) (5)

The only non-constant functional pattern of a 2×2 table
O is linear functions. As the inverse of a linear function
is another linear function, it implies that the transposed
table O> has the same strength of functional dependency
with O. Indeed, we proved in Theorem 1 (Supplementary
Note 3) that the exact functional test on any 2×2 table
always returns a significance equal to its transpose.

2.3 A fast and exact algorithm by branch and bound

To compute the exact p-value by definition, one must enu-
merate all tables in the null population A. To reduce the
burden of brute-force enumeration, we present a branch-
and-bound algorithm (Supplementary Note 4) to speed up
the calculation by skipping or including an entire branch
of tables. The fast algorithm took advantage of both math-
ematical upper and lower bounds for the functional chi-
square statistic when a table is only partially enumerated.
The two bounds were established based on Theorem 2
(Supplementary Note 5) and Theorem 3 (Supplementary
Note 6) on quadratic programming, respectively.

The strategy is illustrated by Fig. 2. A table A with
given row and column sums is enumerated element-wise
and row by row. The descendants of Ai,j are the values of
unenumerated elements after cell (i, j) in A. Let χ2

f (A) be
the functional chi-square statistic on table A. Considering
elements in A to be enumerated, we determine both an
upper bound UB(χ2

f (A)) and a lower bound LB(χ2
f (A))

of χ2
f (A). Let O be the observed contingency table. We

skip the entire branch to be enumerated if the upper bound
is less than χ2

f (O); and accumulate the probability of the
entire branch if the lower bound is greater than or equal
to χ2

f (O). When an instance of A is fully enumerated,
we will accumulate the probability Pr(A) if and only if
χ2
f (A) ≥ χ2

f (O).
The run time of the branch-and-bound algorithm de-

pends on sample size n, table size r × c, and also the given
marginal sums {Ai·} and {A·j}. Let T (n, r, c, {Ai·}, {A·j})
be the total number of tables the algorithm has to examine.
It is bounded above by the total number of unique tables
with the given marginal sums. This total number, however,

 Before enumerating Ai,j  

A j=1 j=2 j=3 j=4

 i=1   3  2  0  5 A1.=10 

 i=2   2  7  3  1 A2.=13 

 i=3   4  6 Ai,j=?  ? A3.=12 

 i=4   ?  ?  ?  ?  A4.=11 

A.1=12 A.2=18 A.3=7 A.4=9 n=46 

Upper bound:
UB(χ2

f(A)) < χ2
f(O)?

Abandon
Ai,j  and descendants

Yes

Check for new
row j=1?

No

Lower bound:
 LB (χ2

f(A)) ≥ χ2
f(O)?

Yes

Enumerate Ai,j

No

No

Accumulate probability Pr(A) with all
possible Ai,j  and descendants

Yes

Fig. 2. The branch-and-bound algorithm for the exact functional
test. The contingency table A is enumerated element wise and row-
by-row, such that it has the same row and column sums of the observed
table O. If upper bound UB(χ2

f (A)) < χ2
f (O), Ai,j will not lead to

any A with χ2
f (A) ≥ χ2

f (O) and this branch is abandoned. Otherwise,
it is promising to enumerate Ai,j . If this branch has a lower bound
LB(χ2

f (A)) ≥ χ2
f (O), all instances of Ai,j and its descendants (other

unenumerated cells) will guarantee χ2
f (A) ≥ χ

2
f (O). The total probabil-

ity contributed by all tables under this branch will be calculated by evalu-
ating a single formula, and then the enumeration of the entire branch is
completed. Otherwise, Ai,j will be enumerated and the probabilities of
those instances of A with χ2

f (A) ≥ χ2
f (O) are summed table-by-table

to compute the exact p-value.

does not have a closed form and must be computed itera-
tively [17]. A less tight upper bound is the total number of
unique ways of drawing n samples to generate tables with
fixed marginal sums, as given below:

T (n, r, c, {Ai·}, {A·j}) ≤
n!∏r

i=1Ai·!
· n!∏c

j=1A·j !
(6)

This upper bound is also no greater than (r × c)n, the total
number of unique ways of drawing n points into the r × c
table without marginal sum constraints. This upper bound
is exponential in n and polynomial in r and c.

2.4 Simulating noisy discrete patterns
We used a simulator implemented in the function
simulate_tables [18] from R package FunChisq [19]
to produce noisy random contingency tables with func-
tional, dependent non-functional, or independent patterns.
The first two pattern types have a uniform row marginal
distribution for the parents. In independent tables both row
and column sums are uniformly distributed. The simulator
generates noise-free patterns first and then applies noise on
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the tables using the discrete house noise model [20], defined
in Supplementary Note 7 and visualized in Supplementary
Figure 1. To evaluate the performance of the exact functional
test, we generated 8,100 contingency tables of three sizes
(2×3, 3×3, and 4×4) and three sample sizes (30, 40, and 50)
at three noise levels (0, 0.1, 0.5), covering three pattern types
(functional, dependent non-functional, and independent),
with 100 table instances for each unique setup.

3 RESULTS

3.1 Performance evaluation

Exact functional test favored functional patterns by demoting
non-functional patterns

We first applied the exact functional test on noise-free 3×3
tables of sample size 50 to illustrate the statistical power
for functional, dependent non-functional patterns and the
null distribution for independent patterns. Distributions of
p-values calculated for the three pattern types are shown
in Figure 3. They suggest that the exact functional test is
most powerful on functional patterns, much less powerful
on non-functional patterns, and most insensitive to indepen-
dent patterns.

Next, we compared the exact functional test and Fisher’s
exact test [9] [10]. We applied both tests on each of the
8,100 tables to calculate two p-values (one for the exact
functional test and one for Fisher’s exact test). Figure 4
shows histograms of p-value ratios of the exact functional
test over Fisher’s exact test on 3×3 tables of sample size
50, for functional, dependent non-functional and null inde-
pendent patterns. Fig. 4a suggests both tests promote func-
tional patterns with a comparable level of statistical power.
However, the positive skewness of the ratio distributions in
Fig. 4b suggests that the exact functional test more heavily
demotes dependent non-functional patterns, implying that
exact functional test is more specific to differ functional and
dependent non-functional patterns than Fisher’s exact test.
In Fig. 4c, both tests have similar p-value distributions with
ratios close to 1 for independent patterns representing the
null hypothesis, suggesting comparable type I error rates.
At the noise level of 0.5, both tests performed comparably
in all three types as the noise has destroyed the patterns.

Supplementary Files 2, 3, and 4 show p-value distri-
butions on all three table sizes and all three sample sizes.
The behaviors of the two tests are consistent with Fig. 4
for 3×3 tables at a sample size of 50. Moreover, the p-value
ratio on non-functional patterns shifted to greater values
with increased sample sizes on tables of the same sizes.
This suggests that the exact functional test demotes non-
functional patterns more heavily when the sample size is
large. No such strong effects are observed for functional or
independent patterns.

Therefore, although both tests are similar in absolute
statistical power for functional patterns, the exact functional
test suppressed the statistical power for non-functional pat-
terns more than Fisher’s exact test. This gives the exact
functional test a distinct advantage in promoting functional
patterns.

Branch-and-bound reduced empirical run time
We evaluated the computational efficiency of the branch-
and-bound algorithm over a brute-force implementation.
We ran both implementations on 840 random contingency
tables with increasing table and sample sizes. Fig. 5 shows
the average run time as a function of sample size for the two
implementations on 3×3, 4×4 and 5×5 contingency tables.
As the sample size increases, the run time of the brute-force
implementation becomes practically intractable. However,
the fast branch-and-bound implementation remarkably re-
duced the run time for all table sizes and is practical on large
tables. This indicates that a large number of branches could
be cut or included during table enumeration in calculating
the exact p-value.

The more extreme an observed table is, the more the run
time will decrease, as more branches can be avoided. The
worst-case run time of branch-and-bound is exponential,
with very few branches to be cut, and comparable to brute-
force enumeration. The best case for branch-and-bound
occurs when the p-value approaches either 0 or 1, with the
run time enormously reduced due to the extremity of the
test statistic.

3.2 Evaluating liver cancer risk factors

To illustrate how directional functional dependency can
extend an association study further, we examined an epi-
demiology study [13] that investigated four risk factors for
hepatocellular carcinoma, a type of liver cancer. The risk
factors of a person include (1) p53 mutation, (2) cirrhosis,
(3) hepatitis, and (4) country risk, called country of origin by
Shen et al [13]. The variable of country risk takes a value of
low if a patient was from a country or region of a low liver-
cancer risk, including the United Kingdom, Europe, and the
United States; otherwise, the value is high if a patient was
from China, Egypt, or East Asia countries of a high liver-
cancer risk. These four factors were studied for their effects
on the CpG island methylator phenotype (CIMP). CpG
islands are genomic regions enriched of CG nucleotide pairs
on one DNA strand. The CIMP status is a global measure
of CpG island hypermethylation in promoter regions of
multiple tumor suppressor genes [13]. The level of CIMP
was used as a direct measure of liver cancer risk, where
an elevated CIMP level is associated with carcinogenesis.
CIMP is negative (no methylated tumor suppressor genes),
intermediate (1 or 2 methylated genes), or positive (>2
methylated genes). Table 1 gives the original data set as
contingency tables formed between all risk factor-CIMP
pairs. Using Pearson’s chi-square or Fisher’s exact test, the
original study reported statistically significant associations
between CIMP and all risk factors (Table 2).

However, the statistical methods used in the original
study [13] are not designed to provide evidence for direc-
tional associations. We therefore performed the exact func-
tional test on the tables separately in each direction from
risk factors to CIMP (Table 3) and from CIMP to risk factors
(Table 4). The results are consistent with the association
tests (Table 2) in that at least one direction of each pair
is statistically significant. All significant (p-value ≤ 0.05)
directional interactions obtained by the exact functional test
constitute a dependency network shown in Fig. 6.
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Fig. 3. The exact functional test can effectively separate functional, non-functional, and independent patterns. The p-value distributions
of the exact functional test on three types of pattern are shown. On the left, the p-value distribution suggests the test has the highest power on
functional patterns. In the middle, the test is less powerful on dependent non-functional patterns than functional patterns. On the right, the test is
least sensitive to independent patterns, with p-values approaching 1 as expected. Exactly 100 noise-free tables of size 3×3 and sample size 50
were simulated to generate each distribution.

TABLE 1
Clinicopathology correlates of CpG island methylator phenotype

(CIMP) status. This table is adapted from Shen et al [13].

CpG Island Methylator
Phenotype (CIMP)

Negative Intermediate Positive

Hepatitis
Negative 12 12 8
Positive 5 22 22

p53 mutation
No 12 26 18
Yes 0 8 12

Country risk
Low 14 17 14
High 3 19 18

Cirrhosis
Negative 12 16 10
Positive 5 18 21

TABLE 2
Statistical significance (p-value) of the non-directional association

between the CIMP status and liver cancer risk factors [13].

Non-directional Association p-value

Hepatitis↔ CIMP 0.010* (Pearson’s chi-square test)
p53 mutation↔ CIMP 0.017* (Fisher’s exact test)
Country risk↔ CIMP 0.021* (Fisher’s exact test)
Cirrhosis↔ CIMP 0.038* (Pearson’s chi-square test)

The p-values highlighted in bold with * are no more than 0.05. The last
column is p-values from either Pearson’s chi-square or Fisher’s exact
test. If the expected counts in all cells are greater than or equal to 5,
Pearson’s chi-square test was applied; otherwise, Fisher’s exact test
was used.

In the direction of primary interest (risk factor to CIMP),
directional associations from both hepatitis and p53 muta-
tion to CIMP are statistically significant, consistent with the
logistic regression analysis result [13]. The exact functional
test is more general as it does not assume a parametric
form, while the logistic regression assumed the log odd as a
linear function of the risk factors. With the lowest p-value,
hepatitis is the most significant risk factor for liver cancer

TABLE 3
Directional association: statistical significance (p-value) of the CIMP

status as a function of liver cancer risk factors.

Directional Association Exact functional test

Hepatitis→ CIMP 0.0301*
p53 mutation→ CIMP 0.0426*
Country risk→ CIMP 0.0716
Cirrhosis→ CIMP 0.0706

TABLE 4
Directional association: statistical significance (p-value) of liver cancer

risk factors as a function of the CIMP status.

Directional Association Exact functional test

CIMP→ Hepatitis 0.0108*
CIMP→ p53 mutation 0.0273*
CIMP→ Country risk 0.0243*
CIMP→ Cirrhosis 0.0424*

among the four. p53 mutation is the only other risk factor
that is also significant. Meanwhile, country risk with the
highest p-value is an insignificant risk factor. Although the
original study [13] concluded that geographic factors, i.e.
“country of origin”, may have influenced the methylation
of tumor suppressor genes, our analysis suggests that the
microenvironment created by hepatitis or p53 mutation may
have a much stronger impact on CIMP than country risk.

In the direction of secondary interest from CIMP to risk
factors, all risk factors are strongly functionally dependent
on CIMP, with CIMP to hepatitis the most significant. A
possible causal explanation for the directional association
from CIMP to country risk would be that an elevated
CIMP of citizens in a country may cause the country to be
classified as of high liver-cancer risk.

3.3 Novel noncoding transcripts directionally associ-
ated with lung cancer
We sought to identify unannotated transcripts as potential
novel noncoding RNAs on which cancer phenotypes func-
tionally depend. FANTOM5 [14] offers an atlas of whole-
body human gene expression at the promoter resolution and
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Fig. 4. The effectiveness of exact functional test is in reduced statistical power on dependent non-functional patterns over Fisher’s exact
test. The histograms show distributions of p-value ratios of the exact functional test over Fisher’s exact test on three types of pattern. Exactly 100
tables of size 3×3 and sample size 50 were simulated to generate each distribution. Each type of table was subjected to house noise at three levels
of 0, 0.1 and 0.5. (a) On functional patterns, the ratio distributions are tightly centered around 1, suggesting similar p-values of both tests with a
comparable statistical power. (b) On dependent non-functional patterns, the right-skewed ratios for most tables are higher than 1 and some can be
as high as 100, indicating that the exact functional test is less sensitive to non-functions with a lower statistical power than Fisher’s exact test. (c)
On independent patterns from the null hypothesis, both tests have a similar p-value distribution, indicating a comparable type-I error rate.

includes a large number of normal and pathological human
cells and tissues. Using a published tissue catalog [21] on
FANTOM5 samples, we selected a total of 32 samples clas-
sified as lung: 17 lung cancer samples were from cell lines
covering 11 lung cancer subtypes; 15 normal lung samples
included 12 samples of four types of primary lung cell
and also three normal lung tissues. FANTOM5 used CAGE
technology to capture a short sequence expressed from each
transcription start site (TSS) [14].

We first applied the exact functional test on two genes
known to be associated with lung cancer: ARID4A and
CENPC1. ARID4A, a chromatin remodeling gene [22], may
be either an oncogene or a tumor suppressor depending on
the context [23]. ARID4A has been identified as a suppres-
sor gene in mice leukemia [22] and an associated antigen
in human breast cancer [24], [25]. However, Wu et al [26]
showed that ARID4A mutation may also promote cancer
development by cooperating with the PI3K/Akt pathway.
Disruption of CENPC1 (CENP-C ) function was suggested
as a cause of some human cancers [27]. CENPC1 is associ-
ated with MAD2 expression; MAD2 is a tumor suppressor
in human somatic cells [28] and can also promote tumori-
genesis in mice [29]. We examined the abundance of two
TSSs p1@ARID4A and p1@CENPC1, where p1 specifies the
most transcribed promoter of a gene. Figure 7 shows the

expression of both TSSs in normal and cancer lung sam-
ples. The TSSs in normal samples, similarly distinguishable
from those in the cancer samples, show non-monotonicity,
suggesting diverse gene expression programs among lung
cancer subtypes represented by the different lung cancer cell
lines. Figure 7 also indicates how well the expression of both
TSSs can predict lung cancer using three methods including
the exact functional test, logistic regression, and t-test. The
latter two were chosen because both are widely used to
identify interesting gene candidates. Logistic regression was
applied to the original continuous values of gene expression
and unpaired t-test with unequal variance on the normal-
ized continuous data. In both cases, the exact functional test
reported significant p-values (<0.05), but logistic regression
and t-test missed both. This outcome is expected because
neither logistic regression nor t-test was designed to detect
non-monotonic patterns.

Next, we used the exact functional test to screen poten-
tial noncoding RNAs involved in lung cancer from 91,213
unannotated but robustly expressed TSSs in FANTOM5.
We found 1068 unannotated TSSs on which lung cancer
phenotypes exhibited stronger dependency than 95% TSSs
of 694 curated cancer genes from COSMIC Cancer Gene
Census [15]. Supplementary File 7 lists all detected 1068
unannotated TSSs with coordinates based on the human
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Fi g. 5. E m piri c al r u n ti m e of t h e e x a ct f u n cti o n al t e st b y br ut e f or c e a n d br a n c h- a n d- b o u n d. W e r e c or d e d t h e a v er a g e e m piri c al r u n ti m e f or
t h e t w o i m pl e m e nt ati o n s o n 8 4 0 r a n d o m c o nti n g e n c y t a bl e s wit h i n cr e a si n g t a bl e a n d s a m pl e si z e s. T h e fl u ct u ati o n s i n r u n ti m e w er e d u e t o t h e
r a n d o m n e s s of t a bl e m ar gi n al s. T h e e m piri c al r u n ti m e a s a f u n cti o n of s a m pl e si z e i s s h o w n f or ( a) 3 × 3, ( b) 4 × 4, a n d ( c) 5 ×

Cirr h osisH e p atitis

CI M P

C o u ntr y ris kp 5 3 m ut ati o n

5 c o nti n g e n c y t a bl e s.

Fi g. 6. CI M P-ri s k f a ct or f u n cti o n al d e p e n d e n c y n et w or k f or li v er
c a n c er. T h e CI M P st at u s ( di a m o n d n o d e) i s a n e pi g e n eti c f e at ur e
s u m m ari zi n g t h e n u m b er of t u m or s u p pr e s s or g e n e s m et h yl at e d i n t h eir
pr o m ot er r e gi o n s l e a di n g t o f u n cti o n i m p air m e nt. T h e o v al n o d e s ar e
ri s k f a ct or s of li v er c a n c er. T h e e d g e s p oi nti n g t o CI M P r e pr e s e nt t h e
i n fl u e n c e of ri s k f a ct or s o n t h e CI M P st at u s —t h e pri m ar y o bj e cti v e
of t h e ori gi n al st u d y. T h e e d g e s ori gi n ati n g fr o m CI M P r e pr e s e nt it s
pr e di cti v e p o w er o n t h e ri s k f a ct or s. T h e n et w or k w a s o bt ai n e d b y t h e
e x a ct f u n cti o n al t e st a n d i n cl u d e s o nl y i nt er a cti o n s wit h p - v al u e ≤ 0 .0 5 .
M or e si g ni fi c a nt i nt er a cti o n s ar e i n di c at e d b y wi d er dir e ct e d e d g e s.

r ef e r e n c e g e n o m e v e r si o n h g 1 9; t h e s e T S S s c o n stit ut e o u r
h y p ot h e s e s of n o v el n o n c o di n g R N A s a s s o ci at e d wit h l u n g
c a n c e r. T h e m ai n st e p s of t hi s s c r e e ni n g a r e d e s c ri b e d i n
S u p pl e m e nt ar y N ot e 8 .

Fi g u r e 8 hi g hli g ht s t h e e x p r e s si o n p att e r n of t w o of
t h e 1 0 6 8 T S S s i n l u n g c a n c e r c ell-li n e s v e r s u s n o r m al l u n g
ti s s u e s. T h e fi r st T S S ( p @ c h r 1: 2 1 5 9 4 6 3.. 2 1 5 9 4 8 3, +) i n Fi g. 8 a
i s l o c at e d i n a D N a s e h y p e r s e n siti v e g e n o mi c r e gi o n o n
a C p G i sl a n d al o n g t h e f o r w a r d st r a n d of c h r o m o s o m e
1. O n h u m a n r ef e r e n c e g e n o m e a s s e m bl y h g 1 9 i n U C S C
G e n o m e B r o w s e r [ 3 0] wit h r e g ul at o r y el e m e nt s f r o m E N-
C O D E [ 3 1], t w e nt y t r a n s c ri pti o n f a ct o r s bi n d t o t hi s sit e,
wit h P O L R 2 A a n d T A F 1 h a vi n g t h e st r o n g e st bi n di n g si g-
n al s. P O L R 2 A h a s b e e n i d e nti fi e d t o b e a n i n di s p e n s a bl e
g e n e i n t h e p r o xi mit y of c a n c e r g e n e T P 5 3 [ 3 2]. T A F 1
m ut ati o n h a s b e e n r e p o rt e d t o b e a s s o ci at e d wit h m ulti-
pl e c a n c e r t y p e s i n cl u di n g l u n g c a n c e r [ 3 3]. F u rt h e r m o r e,
hi st o n e m a r k H 3 K 2 7 a c i s o b s e r v e d at a n d a r o u n d t hi s T S S
sit e, s u g g e sti n g a cti v e e n h a n c e r s a m o n g t h o s e m a r k e d b y
H 3 K 4 m e 1 o nl y [ 3 4]. I n a d diti o n, t h e g e n e S KI , n ot e d f o r
it s r ol e i n b r e a st c a n c e r [ 3], i s 6 5 1 b p d o w n st r e a m of t hi s
T S S. It s p r o xi mit y t o a c a n c e r g e n e a d d s a d diti o n al e vi d e n c e
t o it s t u m o r i n v ol v e m e nt. Fi g u r e 8 b p r e s e nt s a n ot h e r T S S
( p @ c h r 2: 2 3 2 3 2 5 4 1 6.. 2 3 2 3 2 5 4 8 5, +) t h at i s a nti s e n s e e x o ni c t o
g e n e N C L o n c h r o m o s o m e 2. A nti s e n s e l o n g n o n- c o di n g
R N A s (l n c R N A s) c a n pl a y a r ol e i n r e g ul ati n g t h ei r n ei g h-
b o ri n g g e n e s [ 3 5]. M o r e o v e r, N C L w a s o b s e r v e d t o b e

hi g hl y e x p r e s s e d o n t h e s u rf a c e of l u n g c a n c e r c ell s, a n d
it s N C L -t a r g eti n g a pt a m e r (a pt N C L ) w a s c o n si d e r e d t o b e
a p r o mi si n g t u m o r c ell- s p e ci fi c t a r g eti n g c a r ri e r t o r e c o g ni z e
t h e N C L - e x p r e s si n g c ell s [ 3 6]. Gi v e n t h e st r o n g l u n g- c a n c e r
s p e ci fi c e x p r e s si o n p att e r n s a n d s u p p o rti n g e vi d e n c e f r o m
t h e lit e r at u r e, w e h y p ot h e si z e b ot h u n a n n ot at e d T S S s m a y
b e p ut ati v e l u n g c a n c e r- a s s o ci at e d n o n- c o di n g t r a n s c ri pt s
a n d m e rit f u rt h e r bi ol o gi c al i n v e sti g ati o n.

4 D I S C U S SI O N

We h a v e p r e s e nt e d a n o v el e x a ct f u n cti o n al t e st t o d et e ct
f u n cti o n al d e p e n d e n c y i n c o nti n g e n c y t a bl e s b a s e d o n t h e
e x a ct n ull m ulti v a ri at e h y p e r g e o m et ri c di st ri b uti o n. It i s
t h e o nl y e x a ct st ati sti c al i nf e r e n c e i n st r u m e nt f o r di r e cti o n al
a s s o ci ati o n a s f a r a s w e a r e a w a r e. O u r si m ul ati o n st u di e s
h a v e al s o s h o w n t h at t h e e x a ct f u n cti o n al t e st o ut p e rf o r m e d
Fi s h e r’ s e x a ct t e st i n r e d u ci n g st ati sti c al p o w e r o n n o n-
f u n cti o n al p att e r n s t o f a v o r f u n cti o n al p att e r n s.

A s Fi s h e r’ s e x a ct t e st d et e ct s s y m m et ri c —i n st e a d of
di r e cti o n al — a s s o ci ati o n a m o n g di s c r et e r a n d o m v a ri a bl e s,
it i s s e n siti v e t o b ot h d e p e n d e nt n o n-f u n cti o n al a n d f u n c-
ti o n al p att e r n s, li miti n g it s eff e cti v e n e s s o n r e c o g ni zi n g
f u n cti o n al r el ati o n s hi p s.

T h e f a st b r a n c h- a n d- b o u n d al g o rit h m f o r t h e e x a ct f u n c-
ti o n al t e st i s p r a cti c all y ef fi ci e nt t o u s e —t h e m o r e e xt r e m e
t h e t r u e p - v al u e i s, t h e m o r e r e m a r k a bl e t h e r u n ti m e r e-
d u cti o n. T h e t a bl e e n u m e r ati o n p r o bl e m i s c o n si d e r e d t o b e
c h all e n gi n g, w h e r e a s p e ci fi c e x a ct t e st i n v ol vi n g P e a r s o n’ s
c hi- s q u a r e w a s p r o v e d t o b e N P - h a r d [ 3 7]. We t h u s p o st u-
l at e t h at t h e e x a ct f u n cti o n al t e st m a y al s o b e N P - h a r d.

T h e t w o c a n c e r bi ol o g y a p pli c ati o n s n ot o nl y r e v e al e d
k e y li v e r c a n c e r ri s k f a ct o r s a n d n e w p ot e nti al bi o m a r k e r s
f o r l u n g c a n c e r s, b ut al s o ill u st r at e d h o w t h e e x a ct f u n c-
ti o n al t e st a d d r e s s e d c o m pl e x p att e r n r e c o g niti o n q u e sti o n s
n ot e a sil y a n s w e r e d b y e xi sti n g st ati sti c al a s s o ci ati o n t e st s.
We a nti ci p at e t h e e x a ct f u n cti o n al t e st t o b e c o m e a n i m p o r-
t a nt m et h o d ol o g y, t o b e u s e d i n c o nj u n cti o n wit h o r i n pl a c e
of Fi s h e r’ s e x a ct t e st, f o r s ci e nti fi c di s c o v e r y vi a di r e cti o n al
a s s o ci ati o n s.

S O F T W A R E A V AI L A BI LI T Y

T h e e x a ct f u n cti o n al t e st i s i m pl e m e nt e d a s t h e
f u n . c h i s q . t e s t ( . . . , m e t h o d = " e x a c t " , . . . ) f u n c-



●
● ●

● ●

E x a ct f u n cti o n al t e st p − v al u e: 0. 0 0 0 2 5

L o gi sti c r e gr e s si o n p − v al u e: 0. 7 0 7

t −t e st p − v al u e: 0. 0 6 3 ( df: 1 7. 8)

N
or

m
al

 
C
a
nc

er

0 1 1 2 2 3 3

a. p 1 @ A RI D 4 A

●
●

●

●●

E x a ct f u n cti o n al t e st p − v al u e: 0. 0 0 1 4 1

L o gi sti c r e gr e s si o n p − v al u e: 0. 9 5 4

t −t e st p − v al u e: 0. 0 7 ( df: 1 7. 5)

N
or

m
al

 
C
a
nc

er

0 2 2 4 4

b. p 1 @ C E N P C 1

L u n g c ell / ti s s u e t y p e s

●

●
●

A d e n o c ar ci n o m a Gi a nt c ell c ar ci n o m a  S q u a m o u s c ell c ar ci n o m a

L ar g e c ell c ar ci n o m a S m all c ell c ar ci n o m a  Al v e ol ar c ell c ar ci n o m a

Br o n c hi o al v e ol ar c ar ci n o m a Br o n c h o g e ni c c ar ci n o m a  Fi br o u s hi sti o c yt o m a

Br o n c hi al s q u a m o u s c ell c ar ci n o m a  N o n − s m all c ell c a n c er  S m all air w a y e pit h eli al c ell

Al v e ol ar e pit h eli al c ell Br o n c hi al e pit h eli al c ell  S m o ot h m u s cl e c ell

L u n g a d ult c ell L u n g f et al c ell L u n g ri g ht l o w er l o b e a d ult c ell

8 I E E E/ A C M T R A N S A C TI O N S O N C O M P U T A TI O N A L BI O L O G Y A N D BI OI N F O R M A TI C S

Fi g. 7. N o n- m o n ot o ni c f u n cti o n al d e p e n d e n c y of l u n g c a n c er p h e n ot y p e o n t h e e x pr e s si o n l e v el of t w o k n o w n c a n c er g e n e s. T h e h ori z o nt al
a xi s i s t h e a b u n d a n c e of T S S i n a s a m pl e i n t a g s p er milli o n. W e c o m p ar e d t h e e x a ct f u n cti o n al t e st wit h u n p air e d t-t e st ( u n e q u al v ari a n c e) a n d
l o gi sti c r e gr e s si o n i n fi n di n g c a n c er a s s o ci ati o n s wit h t h e s e g e n e s. ( a) N o n- m o n ot o ni c f u n cti o n al d e p e n d e n c y of l u n g c a n c er o n g e n e p 1 @ A RI D 4 A .
( b) N o n- m o n ot o ni c f u n cti o n al d e p e n d e n c y of l u n g c a n c er o n g e n e p 1 @ C E N P C 1
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Fi g. 8. T w o p ut ati v e n o n c o di n g R N A s wit h u n a n n ot at e d tr a n s cri pt st art sit e s t h at ar e dir e cti o n all y a s s o ci at e d wit h l u n g c a n c er p h e n ot y p e.
T h e l e g e n d i s t h e s a m e wit h Fi g. 7. ( a) A n i nt er g e ni c T S S r e pr e s s e d i n c a n c er i s l o c at e d o n t h e f or w ar d str a n d of c hr o m o s o m e 1. ( b) A n a nti s e n s e
e x o ni c T S S, i n d u c e d i n c a n c er, i s l o c at e d wit hi n k n o w n c a n c er g e n e N C L o n t h e f or w ar d str a n d of c hr o m o s o m e 2.

ti o n wit hi n t h e R p a c k a g e F u n C h i s q (≥ 2. 4. 3) i n C o m p r e-
h e n si v e R A r c hi v e N et w o r k. T h e b r a n c h- a n d- b o u n d al g o-
rit h m i s i nt e r n all y c o d e d i n C + +. T h e p a c k a g e i s f r e el y
d o w nl o a d a bl e f r o m htt p s: / / C R A N. R- p r oj e ct. o r g / p a c k a g e =
F u n C hi s q

A C K N O W L E D G M E N T S

T h e a ut h o r s t h a n k t h e c o n st r u cti v e f e e d b a c k f r o m t h e
a n o n y m o u s r e vi e w e r s of t hi s m a n u s c ri pt. T h e r e p o rt e d
w o r k w a s p a rti all y s u p p o rt e d b y U. S. N ati o n al I n stit ut e s of
H e alt h [ g r a nt n u m b e r s 2 P 2 0 G M 1 0 3 4 5 1- 1 4, 1 U 5 4 G M 1 0 4 9 4 4-
2] a n d U. S. N ati o n al S ci e n c e F o u n d ati o n [ g r a nt n u m b e r s
C N S- 1 3 3 7 8 8 4, D BI- 1 6 6 1 3 3 1].

O N LI N E S U P P L E M E N T A R Y I N F O R M A TI O N

S u p pl e m e nt ar y Fil e 1 — " S 1 - E F T - s u p . p d f "

S u p pl e m e nt ar y N ot e 1: P e a r s o n’ s c hi- s q u a r e t e st of a s s o ci ati o n.
S u p pl e m e nt ar y N ot e 2: Fi s h e r’ s e x a ct t e st.
S u p pl e m e nt ar y N ot e 3: S y m m et r y of t h e e x a ct f u n cti o n al t e st
o n 2- b y- 2 c o nti n g e n c y t a bl e s.
S u p pl e m e nt ar y N ot e 4: A f a st a n d e x a ct al g o rit h m b y b r a n c h
a n d b o u n d.
S u p pl e m e nt ar y N ot e 5: U p p e r b o u n d of s u m of s q u a r e s wit h
li n e a r i n e q u alit y c o n st r ai nt s.
S u p pl e m e nt ar y N ot e 6: L o w e r b o u n d of s u m of s q u a r e s wit h
li n e a r i n e q u alit y c o n st r ai nt s.
S u p pl e m e nt ar y N ot e 7: T h e h o u s e n oi s e m o d el.
S u p pl e m e nt ar y N ot e 8: S c r e e ni n g p ut ati v e n o n c o di n g R N A s
o n w hi c h l u n g c a n c e r p h e n ot y p e s f u n cti o n all y d e p e n d s.

https://CRAN.R-project.org/package=FunChisq
https://CRAN.R-project.org/package=FunChisq
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Supplementary Figure 1: An example of the house noise
model.

Supplementary File 2—"S2_functional.pdf"
On noisy functional patterns, the exact functional test

and Fisher’s exact test have a similar statistical power. The p-
value ratio distributions of the two tests are shown. Exactly
100 tables for each of size 2×3 to 4×4 and sample size 30 to
50 were simulated to generate each distribution. Each type
of table was subjected to house noise at three levels of 0, 0.1
and 0.5.
Supplementary File 3—
"S3_dependent_non_functional.pdf"

On noisy dependent non-functional patterns, the exact
functional test has a lower statistical power than Fisher’s
exact test. The p-value ratio distributions of the two tests
are shown. Exactly 100 tables for each of size 2×3 to 4×4
and sample size 30 to 50 were simulated to generate each
distribution. Each type of table was subjected to house noise
at three levels of 0, 0.1 and 0.5.
Supplementary File 4—"S4_independent.pdf"

On noisy independent patterns, the exact functional test
and Fisher’s exact test show similar significance distribu-
tions. The p-value ratio distributions of the two tests are
shown. Exactly 100 tables for each of size 2×3 to 4×4
and sample size 30 to 50 were simulated to generate each
distribution. Each type of table was subjected to house noise
at three levels of 0, 0.1 and 0.5.
Supplementary File 5—
"EFT_lung_cancer_genes.R"

This R source code file contains a script to apply three
methods, including the functional exact test, t-test, and
logistic regression on two known cancer-associated genes
(ARIDA4A, CENPC1) in Fig. 7 and two unannotated genes
in Fig. 8.
Supplementary File 6—"Gene_expression.txt"

This is the input data file for the R script file given as
Supplementary File 5. This file contains the abundance of
transcription start sites for ARID4A and CENPC1 in Fig. 7
and the two unannotated genes in Fig. 8 extracted from
FANTOM5.
Supplementary File 7—
"Novel_unannotated_cancer_TSSs.tsv"

A list of 1068 unannotated transcription start sites direc-
tionally associated with lung cancer, at a significance higher
than 95% TSSs of 694 curated cancer genes. Coordinates
are within human reference genome hg19 or GRCh37. Most
of these are likely to be novel putative noncoding RNAs
directionally associated with lung cancer.
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