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Abstract—We present a physics-based model for
ferroelectric/negative  capacitance transistors (FEFETs/
NCFETs) without an inter-layer metal between ferroelectric
and dielectric in the gate stack. The model self-consistently
solves 2D Poisson’s equation, non-equilibrium Green’s
function (NEGF) based charge and transport equations, and
multi-domain Landau Khalatnikov (LK) equations with the
domain interaction term. The proposed simulation framework
captures the variation of ferroelectric (FE) polarization (P)
along the gate length due to non-uniform electric field (E)
along the channel. To calibrate the LK equations, we fabricate
and characterize 10nm HZO films. Based on the calibrated
model, we analyze the gate/drain voltage dependence of P
distribution in the FE and its effect on the channel potential and
current-voltage characteristics. Our results highlight the
importance of larger domain interaction to boost the benefits
of FEFETs with subthreshold swing (SS) as small as
~50mV/decade achieved at room temperature. As domain
interaction increases, the characteristics of FEFETs without
inter-layer metal (SS, negative drain induced barrier lowering
(DIBL), negative output conductance) approach those of
FEFETs with inter-layer metal.

| INTRODUCTION

FEFETs have garnered an immense interest in the recent
past due to the possibilities of achieving sub-60mV/decade sub-
threshold swing at room temperature [1]. Negative capacitance
of'the FE integrated in the gate stack of an FEFET interacts with
the capacitance of the underlying transistor to yield steep
switching. However, if the FE is fabricated directly on a
dielectric layer (i.e. without an inter-layer metal [2]), the non-
uniform electric field (E) in the channel makes the polarization
(P) in FE variable along the gate length. Many models of
FEFETs [3-5] assume uniform P and therefore, are mostly valid
for FEFETs with an inter-layer metal which screens the effect
of non-uniform channel potential from FE. However, for
FEFETs without the metal, it is essential to capture the
interactions of the multi-domain FE with the non-uniform £ in
the underlying channel. To that effect, we present a model based
on 2D Poisson’s, NEGF and multi-domain LK equations, all of
which are solved self-consistently with each other. We describe
important effects of P variation in FE along the gate length on
the characteristics of FEFETS.

II. FEFET MODEL

The proposed model numerically and self-consistently
solves 2D Poisson’s equation with multi-domain LK equation
in the FE layers and 2D NEGF equations in silicon following
the mode space approach [6]. The simulation flow and the
double gate FEFET device structure used for the simulation are
shown in Fig. 1. We have considered the ferroelectric thickness
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(Tgg) of 1 nm (unless otherwise stated) on top of 0.5nm SiO».
Following the discussion in [7], the LK equation is solved
along Trk (y-direction) i.e. the y-component of P (P,) is related
to E, through the LK equation; whereas in the x-direction, P,
component is dependent on E, through P, = €,y E, (where
Xx=21). In our further discussion, the use of ‘polarization’ term
represents the y-component of P. We have made a reasonable
assumption that P, in FE does not vary significantly along its
thickness (y direction) as Trg is small. However, along the gate
length (x direction), proper multi-domain behavior is captured
through the domain interaction term in the LK equation (see
Fig. 1). Itis important to note that, same Landau coefficients
(a, B, y) are used for each grid point of FE layer. Therefore,
variation in P, along the gate length is due to the electric field
distribution along the channel coupled with the polarization
interactions between different grid points in FE captured by
setting domain interaction coefficient (Kp) > 0. The multi-
domain LK equation is solved iteratively with the 2D Poisson’s
equation to capture the non-linear dependence of P, in the FE
region on £, as well as variation of polarization along the gate
length (Py(x)) self-consistently with the potential profile (¢) of
the entire device. At the same time, self-consistent solution
between Poisson’s equation and NEGF equation ensures the
consistency between charge distribution (p) and potential
profile (¢). After achieving three-fold self-consistency for p,
¢ and P, ballistic NEGF transport equations are used to obtain
the current. It is important to note that the assumption of
ballistic transport does not significantly change the interaction
of the multi-domain FE with the underlying channel.
Therefore, the trends presented subsequently are not limited to
ballistic NEGF model, but are generally valid.

III. EXPERIMENTAL CHARACTERIZATION OF HZO AND
MODEL CALIBRATION

To extract the Landau coefficient («, f and y) of HZO we
fabricate metal-ferroelectric-insulator  (Si0,)-Si  (MFIS)
capacitor, where Si is highly doped. The MFIS capacitors are
fabricated on highly doped p-type Si substrate (~10%° cm™).
First, a 10 nm Hfy 5Zr 50, (HZO) film is grown by atomic layer
deposition (ALD). A capping layer of 5 nm TiN is subsequently
deposited by ALD. Next, the crystallization of HZO film is
performed with rapid thermal process (RTP) in N, ambient at
500 °C for 30 s. Finally, the top electrode is patterned using
lithography and subsequent etch. The TEM image of MFIS
capacitor is shown in Fig.2 and the measured P-E curve and
corresponding Landau coefficients are shown in Fig. 3.

IV. DEVICE ANALYSIS
A. FE Polarization Variation along the Gate Length

To analyze the effect of multi-domain FE behavior on
FEFET characteristics, we show the variation of P, along the
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gate length for different gate/drain biases (Vssand Vps - Fig. 5)
At Vgs=0, all FE domains exhibit negative P, due to the
negative £ emanating from the source/drain (S/D) depletion
regions. At Vps=0.6V, P, is more negative at the drain-end due
to larger drain E-fields. As Vs is increased, FE domains start
to flip (negative-P to positive-P) from source-end of FE and
create a domain wall. With further increase in Vs, the domain
wall shifts towards drain (Fig. 5(a)). If Vps is decreased (Fig.
5(b)), the drain E-fields decrease and P, on the drain end
becomes less negative. At low Vps (0-0.25V) and Vgs = 0.6V,
all domains flip to positive P,. In Fig. 6, we show the variation
in P,-E, of FE with respect to the S-shaped L-K path (Kp=0).
Increase in Vs tends to pull the FE polarization towards more
positive values. On the other hand, an increase in Vpg tends to
increase the variability of P, and E) along the gate length. It is
important to note that the difference between simulated P-£ and
the LK path is due to the domain interaction term
(0.5%Kpxd?P,/dx?). It is also interesting to observe that at Vs =
0.6V and Vps= 0.1V, the distribution of P, significantly reduces
(under the influence of high gate E-field). This reduces the
contribution of 0.5xKpxd’P,/dx’ and the simulated P-E points
lie on the L-K path.

Next, we analyze the conduction band (CB) along the S/D
(Fig. 7(a)). As discuss previously, at low Vs, P, is negative
(Fig. 5(a)), which pulls up the CB compared to the standard
FET. At high Vps, P, is larger than at low Vps. Thus, CB is
pulled further up as Vps increases, leading to negative DIBL
(Fig. 7(a)). At high Vgs, and low Vps (=0.1V), all the FE
domains have P, >0 (Fig. 5(b)). This leads to negative E, in the
FE layer, which lowers the CB compared to standard. With
small increase in Vps (<0.2V), P, still remains positive, and the
top of the source barrier is lowered as in a standard FET.
However, further increase in Vps (>0.2V), P, at the drain end
becomes negative. Due to domain interaction, P, on the source
end becomes less positive, which pulls up the CB (Fig. 7(b)).
This non-monotonic behavior of CB with respect to Vps leads
to interesting FEFET characteristics, as discussed subsequently.

The gate to gate potential profile of the FEFET and baseline
FET are shown in Fig.8. At Vgs=0V, the voltage drop across
FE is positive due to negative P,, which lowers the channel
potential compared to the baseline. On the other hand at
Ves=0.6V, the voltage drop across FE is negative (due to
positive P,), which increases the channel potential, showing
voltage step-up due to the negative capacitance (NC) effect.

These effects are manifested in the transfer and output
characteristics of FEFET (Fig.9). Decrease in OFF current
({orr) due to lowering of channel potential at Vs = 0 can be
observed. Lower SS (due to NC effect) as well negative DIBL
(due to the impact of drain E-fields on P,) can also be seen. The
non-monotonic behavior of CB with respect to Vps (Fig. 7(b))
yields non-monotonic trends of /ps with respect to Vps (Fig. 10),
which results in negative output conductance (NOC). To
complete the analysis, we show the effect of Tr#r on Ips-Ves
characteristics in Fig. 11. Increasing 7 leads to lower SS and
Iorr due to increase in the NC effect.

B. Effect of Kp on FEFET characteristics

Next, we analyze the effect of domain interaction on
FEFET characteristics. Decreasing Kp lowers the interactions
between FE domains, allowing more variation along the gate
length (Fig. 12(a)). As a result, the effect of drain-side P, on
the source-side P, decreases. Thus, the increase in the source
barrier caused by drain E-fields (see Fig.7(a)) is lower for
lower Kp. This translates to increase in /orr as Kp is decreased
(Fig. 13). For the same reason, negative output conductance
effect also decreases for low Kp (Fig. 14). To explain the
increase in SS with decrease in Kp, let us consider Fig. 12(b),
which shows lower |E| in the FE as Kp is lowered. This can be
easily understood from the LK equation (Fig. 1), which shows
that the domain interaction term adds an additional component
to E, since d’P,/dx? <0 (Fig. 5). Thus, as Kp decreases, E in FE
also decreases leading to lower NC effect. To further analyze
the effect of P, variation along x, we simulate an FEFET with
a metal layer between FE and SiO,. This inter-layer metal
maximizes the effect of drain E-fields by distributing the
potential uniformly along the gate. Further, the NC effect
uniformly affects the potential along the channel. Thus,
reduction in SS is larger for FEFET with inter-layer metal
compared to FEFET without the metal (Fig. 15). Fig. 16
compares SS, ON-OFF current ratio, DIBL and output
conductance of FEFETs with and without metal. It can be
observed that as Kp increases, the behavior of FEFET without
metal approaches the one with the inter-layer metal.

V. CONCLUSIONS

In this paper we presented a numerical model of FEFETs
which solves Poisson’s equation, multi-domain LK equation
and NEGF equations self-consistently. Using our model, we
discussed the effect of polarization variation in FE along the
gate length and showed that with increase in the domain
interaction, the signatures of NC effect (negative DIBL,
negative output conductance and lower SS) become more
prominent.
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Fig.1: Simulation flow: 2D Poisson’s equation, Non-equilibrium Green’s function (NEGF) equations and Landau-Khalatnikov (L-K)
equation with domain interaction term have been solved self-consistently. The device schematic used for simulation shown on bottom
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Fig.2: TEM image of fabricated 10nm HZO +
0.8nm SiO,. Process flow is shown alongside.
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Fig.3: Measured polarization (P) — electric
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to extract a, 3, y for model calibration.
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Fig. 8: Potential (¢) along the gate-to-gate
direction at (a) Vg =0V and (b) Vg =
0.6V showing opposite electric fields in FE and
SiO2 due to negative dP/dV of FE.
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for different Kp showing that increase in Kp
boosts the negative output conductance

different Kp showing that increase in Kp
reduces subthreshold-swing (SS) and increases

the ratio of ON and OFF current. (NOC).
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