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ABSTRACT

We present a method to measure the molecular orientation and rotational mobility of single-molecule emitters by designing
and implementing a Tri-spot point spread function. It can measure all degrees of freedom related to molecular orientation
and rotational mobility. Its design is optimized by maximizing the theoretical limit of its measurement precision. We
evaluate the precision and accuracy of the Tri-spot PSF by measuring the orientation and effective rotational mobility of
single fluorescent molecules embedded in a polymer matrix.
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1. INTRODUCTION

Single-molecule imaging techniques have become invaluable for probing the heterogeneity of both biological and
abiological systems with nanoscale resolution. The unique versatility of these nanometer-sized probes stems from their
ability to encode interactions with their local environment into the fluorescence that they emit, as evidenced by
heterogeneous absorption spectra of single molecules first observed decades ago'. Recently, these techniques have gained
popularity for their capability to produce images of structures within living cells with resolution beyond the Abbé
diffraction limit (~250 nm for visible light). Super-resolution optical techiques®>* that repeatedly record the position of
individual molecules over time to construct super-resolved images are known collectively as single-molecule localization
microscopes (SMLM).

Beyond tracking the position and spectra of individual molecules, probing their orientation has provided valuable insight
into a number of biological systems®, including molecular motors®®. Molecular orientation can be inferred by measuring
a molecule’s fluorescence intensity in response to varying polarizations of excitation light'®, measuring its fluorescence
intensity in one or more polarized detection channels!!, measuring the angular spectrum of its fluorescence emission'?!3,
or some combination of the aforementioned techniques.

Recently, point spread function (PSF) engineering, or direct design of an optical instrument’s impulse response, has been
used to great advantage to augment super-resolution microscopes with 3D imaging'#'® and even multicolor!® capabilities.
Other techniques, such as the bisected®® and quadrated?' pupils and the double-helix?? PSF, have been designed to measure
the orientation of individual fluorescent molecules.

Here, we describe an intensity-based image-formation model for our microscope in response to a dipole-like emitter. By
examining this model, we design the Tri-spot PSF, which contains the same number of spots as the number of orientational
degrees of freedom within the model. The Tri-spot PSF enables the simultaneous measurement of molecular orientation
and rotational mobility with high signal-to-background ratio. We evaluate the precision and accuracy of orientation
measurements with the Tri-spot PSF via imaging simulations and experimental measurements of fluorescent molecules.

2. TRI-SPOT PSF DESIGN

2.1 Forward imaging model

We model a single fluorescent molecule as an oscillating electric dipole with an orientation parametrized by a unit vector
p given by
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where {iy, iy, and 11, denote the projection of ¢ onto each Cartesian axis. We can also use the polar angle 6 and azimuthal
angle ¢ in spherical coordinates to represent this vector. After modeling the propagation of light through the objective lens
and tube lens, the intensity distribution of the electric field in the image plane is given by'3
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where I gives the total number of photons captured in the image and B,(y) = [BXX,x(y)' e BYZ‘x(y)] are the basis images

of the system in response to a dipole emitter whose orientational second moments are given by M = [u,zc, e uy,uZ]T. The
subscripts x(y) refer to x-polarized and y-polarized images, respectively, if a polarizing beamsplitter is used to create two
imaging channels??. Note that the basis images are independent of emitter orientation. Therefore, we wish to design the
basis images B,y to maximize the precision of measuring the orientational second-moments M of a dipole-like emitter.

If the emitter is rotating over time, then the orientational second-moment trajectories can be integrated over the camera’s
exposure time T to model the resulting image:
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where (-) denotes a temporal average. If a nanoscale emitter is composed of several or many independent dipole-like
emitters, then the integrals over time in Eq. (3) can be replaced by discrete sums over the ensemble of emitters. For
example, an isotropic emitter has second moments M = [1/3,1/3,1/3,0,0,0]”, while a molecule fixed in orientation u has

T
second moments M = [u3, 43, 12, txlly, ftly, thylt;] -
2.2 Designing the Tri-spot PSF

As inspiration, we examine the orientation-sensing strategy of the bisected?® and quadrated?' phase masks and note that
these phase masks split the standard PSF into 2 or 4 spots, respectively, in order to measure molecular orientation. To
maximize signal-to-noise ratio under shot noise-limited conditions, which scales as VN, where N is the number of photons
detected, we wish to minimize the number of spots within our PSF while maintaining sufficient degrees of freedom to
measure all second moments of M. Due to the definition of u (Eqn. (1)), we note that {1, (£)?) + (uy, (£)?) + (u,(t)*) =
1. Therefore, we desire a PSF that can measure 5 orientational and 1 brightness degree of freedom — thus, a 6-spot PSF. If
we utilize an imaging system with two polarization channels, then a PSF containing 3 spots, or the Tri-spot PSF, will
suffice.

Utilizing an existing vectorial diffraction model'?, we tested various phase mask designs that split the back focal plane, or
pupil plane, of the microscope into three partitions. We placed a linear phase ramp within each partition to create three
off-center, focused spots in the imaging plane. The arrangement of spots was designed to be a triangle to avoid assignment
ambiguity resulting from the absence of one spot. The partition shapes within the Tri-spot phase mask were designed to
avoid orientation measurement degeneracies like the one shown in Figure 1.
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