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ABSTRACT  

We present a method to measure the molecular orientation and rotational mobility of single-molecule emitters by designing 
and implementing a Tri-spot point spread function. It can measure all degrees of freedom related to molecular orientation 
and rotational mobility. Its design is optimized by maximizing the theoretical limit of its measurement precision. We 
evaluate the precision and accuracy of the Tri-spot PSF by measuring the orientation and effective rotational mobility of 
single fluorescent molecules embedded in a polymer matrix.  
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1. INTRODUCTION  
Single-molecule imaging techniques have become invaluable for probing the heterogeneity of both biological and 
abiological systems with nanoscale resolution. The unique versatility of these nanometer-sized probes stems from their 
ability to encode interactions with their local environment into the fluorescence that they emit, as evidenced by 
heterogeneous absorption spectra of single molecules first observed decades ago1. Recently, these techniques have gained 
popularity for their capability to produce images of structures within living cells with resolution beyond the Abbé 
diffraction limit (~250 nm for visible light). Super-resolution optical techiques2–4 that repeatedly record the position of 
individual molecules over time to construct super-resolved images are known collectively as single-molecule localization 
microscopes (SMLM). 

Beyond tracking the position and spectra of individual molecules, probing their orientation has provided valuable insight 
into a number of biological systems5, including molecular motors6–9. Molecular orientation can be inferred by measuring 
a molecule’s fluorescence intensity in response to varying polarizations of excitation light10, measuring its fluorescence 
intensity in one or more polarized detection channels11, measuring the angular spectrum of its fluorescence emission12,13, 
or some combination of the aforementioned techniques. 

Recently, point spread function (PSF) engineering, or direct design of an optical instrument’s impulse response, has been 
used to great advantage to augment super-resolution microscopes with 3D imaging14–18 and even multicolor19 capabilities. 
Other techniques, such as the bisected20 and quadrated21 pupils and the double-helix22 PSF, have been designed to measure 
the orientation of individual fluorescent molecules. 

Here, we describe an intensity-based image-formation model for our microscope in response to a dipole-like emitter. By 
examining this model, we design the Tri-spot PSF, which contains the same number of spots as the number of orientational 
degrees of freedom within the model. The Tri-spot PSF enables the simultaneous measurement of molecular orientation 
and rotational mobility with high signal-to-background ratio. We evaluate the precision and accuracy of orientation 
measurements with the Tri-spot PSF via imaging simulations and experimental measurements of fluorescent molecules. 

2. TRI-SPOT PSF DESIGN 
2.1 Forward imaging model 

We model a single fluorescent molecule as an oscillating electric dipole with an orientation parametrized by a unit vector 
𝝁 given by 
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where 𝜇𝑥, 𝜇𝑦, and 𝜇𝑧 denote the projection of 𝝁 onto each Cartesian axis. We can also use the polar angle 𝜃 and azimuthal 
angle 𝜙 in spherical coordinates to represent this vector. After modeling the propagation of light through the objective lens 
and tube lens, the intensity distribution of the electric field in the image plane is given by13 

 𝐼𝑥(𝑦) = 𝐼0

[
 
 
 
 
 
 
𝐵XX,𝑥(𝑦)

𝐵YY,𝑥(𝑦)

𝐵ZZ,𝑥(𝑦)

𝐵XY,𝑥(𝑦)

𝐵XZ,𝑥(𝑦)

𝐵YZ,𝑥(𝑦)]
 
 
 
 
 
 
𝑇

[
 
 
 
 
 
 

𝜇𝑥
2

𝜇𝑦
2

𝜇𝑧
2

𝜇𝑥𝜇𝑦

𝜇𝑥𝜇𝑧
𝜇𝑦𝜇𝑧]

 
 
 
 
 
 

= 𝐼0𝑩𝑥(𝑦)𝑴 (2) 

where 𝐼0 gives the total number of photons captured in the image and 𝑩𝑥(𝑦) = [𝐵XX,𝑥(𝑦), … , 𝐵YZ,𝑥(𝑦)] are the basis images 
of the system in response to a dipole emitter whose orientational second moments are given by 𝑴 = [𝜇𝑥

2, … , 𝜇𝑦𝜇𝑧]
𝑇
. The 

subscripts 𝑥(𝑦) refer to x-polarized and y-polarized images, respectively, if a polarizing beamsplitter is used to create two 
imaging channels22. Note that the basis images are independent of emitter orientation. Therefore, we wish to design the 
basis images 𝑩𝑥(𝑦) to maximize the precision of measuring the orientational second-moments 𝑴 of a dipole-like emitter. 

If the emitter is rotating over time, then the orientational second-moment trajectories can be integrated over the camera’s 
exposure time 𝑇 to model the resulting image: 
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where 〈∙〉 denotes a temporal average. If a nanoscale emitter is composed of several or many independent dipole-like 
emitters, then the integrals over time in Eq. (3) can be replaced by discrete sums over the ensemble of emitters. For 
example, an isotropic emitter has second moments 𝑴 = [1/3,1/3,1/3,0,0,0]𝑇, while a molecule fixed in orientation 𝝁 has 
second moments 𝑴 = [𝜇𝑥

2, 𝜇𝑦
2 , 𝜇𝑧

2, 𝜇𝑥𝜇𝑦, 𝜇𝑥𝜇𝑧, 𝜇𝑦𝜇𝑧]
𝑇
. 

2.2 Designing the Tri-spot PSF 

As inspiration, we examine the orientation-sensing strategy of the bisected20 and quadrated21 phase masks and note that 
these phase masks split the standard PSF into 2 or 4 spots, respectively, in order to measure molecular orientation. To 
maximize signal-to-noise ratio under shot noise-limited conditions, which scales as √𝑁, where 𝑁 is the number of photons 
detected, we wish to minimize the number of spots within our PSF while maintaining sufficient degrees of freedom to 
measure all second moments of 𝑴. Due to the definition of 𝝁 (Eqn. (1)), we note that 〈𝜇𝑥(𝑡)

2〉 + 〈𝜇𝑦(𝑡)2〉 + 〈𝜇𝑧(𝑡)
2〉 =

1. Therefore, we desire a PSF that can measure 5 orientational and 1 brightness degree of freedom – thus, a 6-spot PSF. If 
we utilize an imaging system with two polarization channels, then a PSF containing 3 spots, or the Tri-spot PSF, will 
suffice. 

Utilizing an existing vectorial diffraction model13, we tested various phase mask designs that split the back focal plane, or 
pupil plane, of the microscope into three partitions. We placed a linear phase ramp within each partition to create three 
off-center, focused spots in the imaging plane. The arrangement of spots was designed to be a triangle to avoid assignment 
ambiguity resulting from the absence of one spot. The partition shapes within the Tri-spot phase mask were designed to 
avoid orientation measurement degeneracies like the one shown in Figure 1. 
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Figure 1 . Tri - spot mask and PSF before and after enhancing  orientational sensitivity. Before enhancing  the 𝜇 𝑥 𝜇 𝑦  sensitivity  
of ( a ) the  Tri - spot  phase mask  (color bar in units of ra dians) , the image of an emitter with  (b)  molecular  orientation  [ 𝜇 𝑥 =
0 . 866 , 𝜇 𝑦 = 0 . 5 ]  is very similar  to that for (c) orientation [ 𝜇 𝑥 = 0 . 866 , 𝜇 𝑦 = − 0 . 5 ] .  After reshaping the partitions of ( d ) the 
Tri - spot phase mask ,  (e) the  orientation  [ 𝜇 𝑥 = 0 . 866 , 𝜇 𝑦 = 0 . 5 ]  is easily distinguishable from (f) orientation [ 𝜇 𝑥 =

0 . 866 , 𝜇 𝑦 = − 0 . 5 ]  in the image plane .  For all images of the Tri - spot PSF in this work , the top half corresponds to the x -
polarized PSF ( 𝐼 𝑥 ), and the bottom half corresponds to the y - polarized PSF ( 𝐼 𝑦 ).  Scale bar: 1 µm .  

The basis images  𝑩 𝑥 ( 𝑦 )  of the Tri - spot PSF are shown in Figure 2. W e model the total number of photons contained within 
each spot using a vector 𝑰 spot = [ 𝐼 x1 , 𝐼 x2 , 𝐼 x3 , 𝐼 y1 , 𝐼 y2 , 𝐼 y3 ]

𝑇
.  Therefore, a simplified forward imaging model for the Tri - spot 

PSF is given by  

 𝑰 spot = 𝐼 0

[
 
 
 
 
 
 

𝐵 XX , x1 𝐵 YY , x1 𝐵 ZZ , x1 𝐵 XY , x1 𝐵 XZ , x1 𝐵 YZ , x1

𝐵 XX , x2 𝐵 YY , x2 𝐵 ZZ , x2 𝐵 XY , x2 𝐵 XZ , x2 𝐵 YZ , x2

𝐵 XX , x3 𝐵 YY , x3 𝐵 ZZ , x3 𝐵 XY , x3 𝐵 XZ , x3 𝐵 YZ , x3

𝐵 XX , y1 𝐵 YY , y1 𝐵 ZZ , y1 𝐵 XY , y1 𝐵 XZ , y1 𝐵 YZ , y1

𝐵 XX , y2 𝐵 YY , y2 𝐵 ZZ , y2 𝐵 XY , y2 𝐵 XZ , y2 𝐵 YZ , y2

𝐵 XX , y3 𝐵 YY , y3 𝐵 ZZ , y3 𝐵 XY , y3 𝐵 XZ , y3 𝐵 YZ , y3 ]
 
 
 
 
 
 

𝑴 = 𝐼 0 𝑩 spot 𝑴  ( 4 )  

where 𝑩 spot  is a basis matrix that represents the brightness of each spot of the Tri - spot PSF in response to each component 
of the orientational second - moment  vector  𝑴 .  Note that  for the Tri - spot PSF,  each column of 𝑩 spot  is linearly indep endent, 
which indicates that there is a one - to - one correspondence of the spot brightness vector 𝑰 spot  with the orientation second 
moments 𝑴 . Thus , the Tri - spot PSF can measure  all degrees of freedom relat ed to the second moment of molecular 
orientation.  
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Figure 2 . Basis images of the Tri - spot PSF : (a) 𝐵 XX , 𝑥 ( 𝑦 ) , (b) 𝐵 YY , 𝑥 ( 𝑦 ) , (c) 𝐵 ZZ , 𝑥 ( 𝑦 ) , (d) 𝐵 XY , 𝑥 ( 𝑦 ) , (e) 𝐵 XZ , 𝑥 ( 𝑦 ) , and (f) 𝐵 YZ , 𝑥 ( 𝑦 ) .  
The im ages are normalized by the total intensity of the brightest basis images, 𝐵 𝑋𝑋 , 𝑥  and 𝐵 𝑌𝑌 , 𝑦 .  Labels 𝑥 1 , … 𝑦 3  assign each 
spot within each basis image  𝐵  to the 𝑩 spot  matrix  in the simplified forward imaging model.  Scale bar: 1 µm.  

3.  ORIENTATI ON PRECISION AND ACCURA CY  
3.1  Measuring molecular orientation using a maximum likelihood estimator  

We tested the performance of the Tri - spot PSF for measuring molecular orientation in silico  using a maximum likelihood 
estimator  (MLE) . Here, we utilize the resu lt that the time - average of any temporal trajectory of molecular orientation 
𝝁 ( 𝑡 ) = [ 𝜇 𝑥 ( 𝑡 ) , 𝜇 𝑦 ( 𝑡 ) , 𝜇 𝑧 ( 𝑡 ) ]

𝑇
 can be written as an equivalent second moment vector 𝑴  given by 10  

 〈 𝜇 𝑥 ( 𝑡 ) 2 〉 = 𝛾 𝜇 𝑥
′ 2

+ ( 1 − 𝛾 ) / 3  ( 5 )  

 〈 𝜇 𝑦 ( 𝑡 ) 2 〉 = 𝛾 𝜇 𝑦
′ 2

+ ( 1 − 𝛾 ) / 3  ( 6 )  

 〈 𝜇 𝑧 ( 𝑡 ) 2 〉 = 𝛾 𝜇 𝑧
′ 2

+ ( 1 − 𝛾 ) / 3  ( 7 )  

 〈 𝜇 𝑥 ( 𝑡 ) 𝜇 𝑦 ( 𝑡 ) 〉 = 𝛾 𝜇 𝑥
′ 𝜇 𝑦

′  ( 8 )  

 〈 𝜇 𝑥 ( 𝑡 ) 𝜇 𝑧 ( 𝑡 ) 〉 = 𝛾 𝜇 𝑥
′ 𝜇 𝑧

′  ( 9 )  

 〈 𝜇 𝑦 ( 𝑡 ) 𝜇 𝑧 ( 𝑡 ) 〉 = 𝛾 𝜇 𝑦
′ 𝜇 𝑧

′  ( 10 )  

That is, any rotationally - fixed, freely - rotating, or partially - rotating molecule’s second - moment orientation vector 𝑴  is 
equivalent to the linear su perposition of a rotationally - fixed dipole of orientation 𝑴 ′ = [ 𝜇 𝑥

′ , 𝜇 𝑦
′ , 𝜇 𝑧

′ , 𝜇 𝑥
′ 𝜇 𝑦

′ , 𝜇 𝑥
′ 𝜇 𝑧

′ , 𝜇 𝑦
′ 𝜇 𝑧

′ ]
𝑇

 of 
strength 𝛾  and an  isotropic emitter  of strength ( 1 − 𝛾 ) .  The parameter 𝛾  can be physically in terpreted as the rotational 
constraint of the molecule ; 𝛾 = 0  corresponds to a completely rotationally mobile molecule.  

We developed a maximum likelihood estimator to measure the brightness 𝐼 0 , orientation ( 𝜇 𝑥 , 𝜇 𝑦 ) , and rotational constraint 
𝛾  of a molecule from a vector of measured spot brightnesses 𝑰 spot  of the Tri - spot PSF.  The MATLAB function fmincon  
was used to maximize the log - likelihood function  Λ ( 𝐼 0 , 𝜇 𝑥 , 𝜇 𝑦 , 𝛾 )  given by  

 Λ ( 𝐼 0 , 𝜇 𝑥 , 𝜇 𝑦 , 𝛾 ) ∝ ∑ ( 𝒔 𝑖 + 𝑏 𝑗 ) ln ( 𝑰 spot , 𝑖 ( 𝐼 0 , 𝜇 𝑥 , 𝜇 𝑦 , 𝛾 ) + 𝑏 𝑗 ) − ( 𝑰 spot , 𝑖 ( 𝐼 0 , 𝜇 𝑥 , 𝜇 𝑦 , 𝛾 ) + 𝑏 𝑗 )6
𝑖 = 1  ( 11 )  

where 𝒔 𝑖 = [ 𝑠 x1 , 𝑠 x2 , 𝑠 x3 , 𝑠 y1 , 𝑠 y2 , 𝑠 y3 ]
𝑇

 is the measured spot brightnesses of the Tri - spot PSF across the x -  and y - polarized 
channels of the microscope , 𝑏 𝑗  is the background measured in the x or y channel of the microscope , and 𝑰 spot ( 𝐼 0 , 𝜇 𝑥 , 𝜇 𝑦 , 𝛾 )  
are  the spot brightnesses predicted by our forward model using E quations (4) - (10) .  
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We evaluated estimator performance by simulating 100 images at each point in orientation space ( 𝜇 𝑥 , 𝜇 𝑦 , 𝛾 )  of the Tri -
spot PSF with 20,000 signal photons and 20 background photons/pixel . An example measurement is shown in Figure  3, 
where the noisy image input to the estimator agrees well with the recovered image generated from MLE .  

 
Figure 3 . Orientation measurement using MLE .  (a) Ground - truth image  𝐼 𝑥 ( 𝑦 )  without noise  corresponding to orienta tion 
( 𝜇 𝑥 = 0 . 48 , 𝜇 𝑦 = 0 . 64 )  and rotational constraint 𝛾 = 0 . 75 . (b)  Simulated image with Poisson noise corresponding to 
20,000 photons collected from the molecule and a background of 20 photons/pixel.  Color bar in units of photons/pixel.  
(c)  Recovered image of the molecule by MLE  with orientation ( 𝜇 𝑥 = 0 . 486 , 𝜇 𝑦 = 0 . 649 )  and rotational constraint 𝛾 =

0 . 788 .  Scale bar: 1 µm.  

3.2  Characterizing measurement precision  

The theoretical lower bound on the variance of any unbiased estimator is given by the Cram ér - Rao lower bound (CRLB) , 
which can be calculated using the inverse of the Fisher information matrix 23 .  The appropriate choice of an estimator can 
yield measurement p erformance approaching the CRLB 24 .  Here, we calculated the precision of our estimator as 𝜎 𝜃 =

std ( 𝜃 ̂ ) , where 𝜃  is the parameter to be estimated.  

The spatial pattern of orientation measurement precision (Figure 4(a)) is similar to that of the best - possible measurement 
precision as calculated by √ CRLB  (Figure 4(b)) .  The orientation measur ement precision of 𝜇 𝑥  for most orientations is less 
than 1 . 5 √ CRLB , which indicates that MLE achieves good performance relative to the theoretical limits of the Tri - spot 
PSF.  Overall, the precision of our MLE is 1.15 times larger than √ CRLB  for 𝛾 = { 0 . 25 , 0 . 5 , 0 . 75 }  and 1.08 times larger 
than √ CRLB  for 𝛾 = 1  when averaged across all possible molecular orientations.  

3.3  Characterizing measurement accuracy  

We evaluated the measurement bias of MLE by comparing  the  mean bias over 100 trials  (Figure 5(a))  to t he expected 
standard error given by  

 std ( bias 𝜃 ) =
1

√ 100
√ CRLB 𝜃   ( 12 )  

Therefore, if MLE is sufficiently accurate, the ratio of bias 𝜃  to √ CRLB 𝜃  (Figure 5(b)) should be mostly confined to values 
± 3 / √ 10 0 = 0 . 3 .  There are a set of orientations for 𝛾 = { 0 . 25 , 1 }  that have larger bias than the aforementioned threshold .  
Since this bias appears to be deterministic as a function of orientation ( 𝜇 𝑥 , 𝜇 𝑦 )  and rotational constraint 𝛾 , we can remove 
the bias  by using the measured bias (Figure 5(a)) as a calibration map  to restore accuracy of the estimator .  

Since the range of rotational constraint is bounded  to  𝛾 ̂ ∈ [ 0 , 1 ] , the distributions  of  measured  𝛾 ̂  are no t Gaussian near the 
edges of the domain, and we  define measurement bias as the median of the measurements over 100 trials.  Our MLE is also 
slightly biased (Figure 6) when estimating rotational constraint 𝛾  for small values of 𝛾 . However, this bias similarly appears 
to be deterministic  with respect to  rotational constraint , and the measured bias can be used as a calibration map.  
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Figure 4 . P recision of the Tri - spot PSF using MLE . (a) P recision of measuring orientation component 𝜇 𝑥  for various 
orientations ( 𝜇 𝑥 , 𝜇 𝑦 )  and rotational constraints 𝛾 = { 0 . 25 , 0 . 5 , 0 . 75 , 1 } .  (b) Theoretical best - possible  measurement precision 
of 𝜇 𝑥 , as computed by √ CRLB . (c) The ratio of the precision of MLE to  the best - possible measurement precision.  
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Figure 5 . A ccuracy of the Tri - spot PSF using MLE. (a) Average estimation bias of 𝜇 𝑥  across 100 simulated trials  for various 
orientations ( 𝜇 𝑥 , 𝜇 𝑦 )  and rotational constraints 𝛾 = { 0 . 25 , 0 . 5 , 0 . 75 , 1 } . (b)  Estimation bias compared to √ CRLB . For 100 
trials, these values should be mostly confined to  within  ± 0 . 3  for a sufficiently accurate estimator.  
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Figure 6 . A ccuracy of  measuring rotational constraint 𝛾  for  the Tri - spot PSF using MLE  on 30,900 simulated images 
span ning all  possible  molecular orientations . For the ground - truth rotational constraints 𝛾 = { 0 , 0 . 25 , 0 . 5 , 0 . 75 , 1 } , the median 
estimates of rotational constraint are given by 𝛾 ̂ = { 0 . 073 , 0 . 257 , 0 . 503 , 0 . 753 , 1 . 000 } , averaged over all possible 
orientations ( 𝜇 𝑥 , 𝜇 𝑦 ) . In our implementation of MLE, the  estimates of rotational constraint are bounded to the range 𝛾 ̂ ∈

[ 0 , 1 ] .  

4.  MEASURING THE ORIENT ATION OF SINGLE MOLECULES  
4.1  Experimental setup  

To create a sample containing rotationally - fixed dipole emitters, we embedd ed CF640R Amine (Biotium, 92043) in a thin 
film of 1% PMMA (poly methyl methacrylate, Aldrich Chemistry 182265)  on top of a high - tolerance No. 1.5 glass 
coverslip. The sample was excited by a 637 - nm laser (peak intensity 3.41 kW / cm 2 ). The fluorescence was collected using 
a custom - built epifluorescence microscope (1.4 NA Olympus objective lens, UPLSAPO100XO ) with two orthogonally -
polarized imaging channels 22 , and the Tri - spot phase mask was loaded as the mask pattern on a liquid - crystal spatial light 
modulator (Meadowlark, 256 XY Phase Series)  placed in the Fourier plane of the microscope .  The images were captured 
using a scientific CMOS came ra (Hamamatsu C11440 - 22CU ) with 150 ms exposure time.  An example image of a CF640R 
molecule is shown in Figure 7.  

4.2  Orientation measurements using the Tri - spot PSF  

Using MLE, we measured the orientation and rotational constraint of two molecules embedded in the polymer film (Figure 
8).  Due to crosslinking of the polymer matrix, we expect the rotational constraint of each molecule to be nearly unity. The 
median rotational constraint measured for 21 molecules is 𝛾 ̂ = 1  as expected ( Figure 9 (a)) .  Comparing the e xperimentally -
measured distribution to that of a simulated rotationally - fixed dipole emitter (Figure 9(b)) reveals that the two distributions 
are similar in shape. Measurements that significantly deviate from 𝛾 ̂ = 1  could result from optical aberrations or  variations 
in the local environment surrounding particular molecules.  
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Figure 7 . Raw image of one CF640R fluorescent molecule. (a) y - polarized imaging channel. (b) x - polarized imaging 
channel . The image s  contain  a total of  1 1789 photons from the molecule with a local average background of 9.37 
photons/pixel.  Scale bar: 10 µm.  

 
Figure 8 . Orientation measurements of two single - molecule emitters. The maximum likelihood estimator used one image of 
e ach molecule to estimate its orientation. (a)  Raw image of molecule 1  with 5195 photons detected . (b) Recovered image of 
molecule 1 using MLE with orientation  ( 𝜇 𝑥 = − 0 . 35 , 𝜇 𝑦 = − 0 . 92 )  and rotational constraint  𝛾 = 1 . 00 .  ( c )  Raw image of 
molecule 2  wit h 2492 photons detected .  (d) Recovered image of molecule 2 using MLE with orientation 
( 𝜇 𝑥 = 0 . 59 , 𝜇 𝑦 = 0 . 81 )  and rotational constraint  𝛾 = 0 . 86 .  Color bar in units of photons/pixel. Scale bar: 1  µm.  
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Figure 9 . Measured r otational constraint of single - molecule emitte rs using the Tri - spot PSF. (a) Experimental d istribution of 
estimated rotational constraint s  𝛾 ̂  for 21 emitters  embedded in a thin polymer film.  (b)  Simu lated d istribution of estimated 
rotational constraint s  𝛾 ̂  for 30900 images of rotationally - fixed molec ules with 20000 photons  detected and 20 photons/pixel 
fluorescence background .  

5.  CONCLUSION  
We developed a Tri - spot PSF that enables the measurement of the orientation and rotational mobility of single fluorescent 
molecules. We characterized the precision an d accuracy of MLE using simulated images of the Tri - spot PSF . 
Measurements of molecular orientation and rotational mobility were accurate to within standard error, and the precision 
of MLE approached the theoretical limit given by √ CRLB .  We also demonstr ated the Tri - spot PSF for measuring the 
orientation of molecules embedded in a thin polymer film, and measurements revealed that these molecules were fixed in 
orientation as expected.  

In the future, the signal - to - background ratio of the Tri - spot PSF can be  improved by optimizing the mask to minimize 
zero - order diffraction leakage, thereby improving measurement precision and accuracy. Further, a combined position and 
orientation estimator can be developed for generated localization and orientation images in single - molecule super -
resolution microscopy.  
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