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ABSTRACT

In single-molecule (SM) super-resolution microscopy, the complexity of a biological structure, high molecular density,
and a low signal-to-background ratio (SBR) may lead to imaging artifacts without a robust localization algorithm.
Moreover, engineered point spread functions (PSFs) for 3D imaging pose difficulties due to their intricate features. We
develop a Robust Statistical Estimation algorithm, called RoSE, that enables joint estimation of the 3D location and photon
counts of SMs accurately and precisely using various PSFs under conditions of high molecular density and low SBR.
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1. INTRODUCTION

Fluorescence imaging and spectroscopy have been workhorse technologies in biological laboratories since their inception!.
Labeling a specific biomolecule with a small organic dye or fluorescent protein enables single copies of these biomolecules
to be detected as bright objects against a dark background within living cells>?. The recent development of super-resolved
fluorescence microscopy* magnifies the power and utility of these tools, enabling images of biological structures to be
created with resolution beyond the diffraction limit of light (~250 nm for visible light). Single-molecule localization
microscopy (SMLM) achieves this resolution by repeatedly localizing individual blinking fluorophores over time. The
capabilities of SMLM are further augmented by its three-dimensional (3D) variants’, where the point spread function
(PSF), or optical response to a point emitter, is specifically designed to give 3D information from a 2D image captured by
a camera. Indeed, SMLM is part of a modern trend in optics®® that integrates computational algorithms with physical
hardware in order to improve imaging performance.

The attainable resolution of SMLM is limited by the precision of localizing an individual molecule, termed localization
precision'®!2, from Poissonian shot noise due to the finite number of photons detected from each molecule. Modern SM
localization algorithms are capable of achieving the theoretical limit of localization precision!*~!3, Localization precision
can be improved by utilizing brighter fluorophores!'s'8, reducing photobleaching!®?’, and reducing background
fluorescence within a sample. Further, the number and spatial distribution of molecular blinking events on the target
structure can also limit the quality of reconstructed SMLM images®!*2. SMLM imaging performance is also limited by the
accuracy of localizing an individual molecule. Localization bias can result from model PSF mismatch?? (e.g., arising from
anisotropic molecular emission'4?+2%), optical aberrations?®, and the image-processing algorithm?’ utilized to localize each
molecule.

Recently, algorithms capable of localizing multiple overlapping molecules?®=3! have been utilized to decrease the time
needed to acquire an SMLM dataset. However, they are optimized for specific optical PSFs and are not readily adaptable
to analyze others. Here, we develop RoSE to accurately and precisely estimate the 3D location and brightness of SMs from
microscopes utilizing a variety of 3D PSFs.

2. ROBUST STATISTICAL ESTIMATION
2.1 Forward model

We assume that within each imaging frame, no two molecules emit within a certain neighborhood. Therefore, the
continuous position of a single molecule can be mapped to a distinct grid point in object space, where each point is
associated with a brightness and a set of position gradients. Importantly, our signal model explicitly handles sub-pixel
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shifts in the position of a molecule, whereas conventional brightness-only signal models cannot. This joint signal model
together with a first-order approximation result in a linear forward imaging model with a convex set of constraints on the
molecular parameters to be estimated, denoted as O € RV**, given by:

g=Ay (1)
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where g € R™ represents the vectorized noiseless image relayed by the microscope; ® € R™*Y demotes the PSF matrix
sampled at grid points; G, € R™*V, G, € R™N and G, € R™" represent corresponding gradient matrices along x, y,
and z, respectively; N is the number of object grid points; and m is the number of image pixels. Further, s € RV is the
vectorized brightness and Ax € RV, Ay € RY, and Az € RV are the corresponding gradient vectors (( represents
component-wise multiplication of two vectors). Additionally, € represents the convex set of constraints for a box centered
at each grid point i with side lengths 27y, 27y, and 27, (Figure 1(a)).

2.2 Structured deconvolution

We first apply a structured deconvolution program to identify single molecules from their overlapping images. Our key
insight is that the brightnesses s and position gradients (Gx, G,,G Z) corresponding to single molecules are jointly sparse.
That is, if the brightness of a molecule associated with a grid point is zero, then the corresponding position gradients should
also be zero. The structured deconvolution is then cast as an optimization problem:

min L(y, 4; g, b) + Ayl (6)
YEe
where L() is the Poisson negative log likelihood function, |||, , denotes the mixed ¢, , norm to enforce joint sparsity,

b € R™ is the vectorized background, and A is a penalty parameter.

Figure 1(b) illustrates a 2D example of two closely-spaced molecules with significantly overlapping images. The molecular
parameters O recovered by Eqn. (6) cannot resolve the brightness and position of the two molecules. However, examining
the joint structure of O reveals that the brightness-weighted position gradients converge to the positions of each molecule.
To make this mapping precise, we define a tensor G, called GradMap, in which each pixel, termed the source coefficient,
takes on a value in [—1,1] that signifies the local degree of convergence to that pixel (Figure 1(c)). Notably, GradMap
leverages the convergent symmetry of the position gradients and does not require a symmetric PSF profile. Thus, the
number of molecules and their initial parameters O are estimated from the local maxima of GradMap (Figure 1(d)).

2.3 Adaptive maximum likelihood

After identifying the correct number of molecules via structured deconvolution, the errors in the initial estimates of their
parameters need to be refined, as conventional sparse deconvolution programs exhibit systematic bias*’. Interestingly, the
distance between the true molecular position and the sparse recovery solution could be larger than a few grid points (Figure
1(e)). To restore accuracy, RoSE adaptively updates the grid point closest to the current estimate of the molecule’s position
by maximizing adaptively a constrained maximum likelihood. This strategy enhances the accuracy of both molecular
position and brightness and attains the limits of precision indicated by the Cramér-Rao bound (CRB)32.
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