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SUMMARY

Fisher randomization tests for Neyman’s null hypothesis of no average treatment effect are
considered in a finite-population setting associated with completely randomized experiments
involving more than two treatments. The consequences of using the F statistic to conduct such a
test are examined, and we argue that under treatment effect heterogeneity, use of the F statistic in
the Fisher randomization test can severely inflate the Type I error under Neyman’s null hypothesis.
We propose to use an alternative test statistic, derive its asymptotic distributions under Fisher’s
and Neyman’s null hypotheses, and demonstrate its advantages through simulations.

Some key words: Additivity; Fisher randomization test; Null hypothesis; One-way layout.

1. INTRODUCTION

One-way analysis of variance (Fisher, 1925; Scheffe, 1959) is perhaps the most commonly
used tool to analyse completely randomized experiments with more than two treatments. The
standard £ test for testing equality of mean treatment effects can be justified either by assuming
a linear additive superpopulation model with identically and independently distributed normal
error terms, or by using the asymptotic randomization distribution of the F statistic. Units in real-
life experiments are rarely random samples from a superpopulation, making a finite-population
randomization-based perspective on inference important (e.g., Rosenbaum, 2010; Dasgupta et al.,
2015; Imbens & Rubin, 2015). Fisher randomization tests are useful tools for such inference,
because they pertain to a finite population of units and assess the statistical significance of
treatment effects without any assumptions about the underlying outcome distribution.

In causal inference from a finite population, two hypotheses are of interest: Fisher’s sharp
null hypothesis of no treatment effect on any experimental unit (Fisher, 1935; Rubin, 1980), and
Neyman’s null hypothesis of no average treatment effect (Neyman, 1923, 1935). These hypotheses
are equivalent when there is no treatment effect heterogeneity (Ding et al., 2016) or, equivalently,
under the assumption of strict additivity of treatment effects, i.e., the same treatment effect for each
unit (Kempthorne, 1952). In the context of a multi-treatment completely randomized experiment,
Neyman’s null hypothesis allows for treatment effect heterogeneity, which is weaker than Fisher’s
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null hypothesis and is sometimes of greater interest. We find that the Fisher randomization test
using the F statistic can inflate the Type I error under Neyman’s null hypothesis, when the sample
sizes and variances of the outcomes under different treatment levels are negatively associated.
We propose to use the X2 statistic defined in § 5, a statistic that is robust with respect to treatment
effect heterogeneity, because the resulting Fisher randomization test is exact under Fisher’s null
hypothesis and controls asymptotic Type I error under Neyman’s null hypothesis.

2. COMPLETELY RANDOMIZED EXPERIMENT WITH J TREATMENTS

Consider a finite population of N experimental units, each of which can be exposed to any
one of J treatments. Let Y;(j) denote the potential outcome (Neyman, 1923; Rubin, 1974) of unit
i when assigned to treatment level j i = 1,...,N;j = 1,...,J). For two different treatment
levels j and j/, we define the unit-level treatment effect as 7;(j,;j/) = Y;(j) — Y;(j') and the
population-level treatment effect as

N N
(/) =N""Y 6. =N () = Vi) = V.6) = Y.,
i=1 i=1

where Y.(j) = N~! va: 1 Yi(j) is the average of the N potential outcomes for treatment j. For
treatment level j = 1,...,J, define p; = N;/N as the proportion of the units and S2(j) =
(N—-17! Zf\[: i) — Y.(j)}? as the finite-population variance of the potential outcomes.
The treatment assignment mechanism can be represented by the binary random variable W;(j),
which equals 1 if the ith unit is assigned to treatment j and 0 otherwise. Equivalently, it can
be represented by the discrete random variable W; = Zle JWi(j), the treatment received by
unit i. Let (W1,..., Wy) be the treatment assignment vector, and let (wy,...,wy) denote its
realization. For the N = 2}121 N; units, (N1,...,Ny) are assigned at random to treatments
(1,...,J), respectively, and the treatment assignment mechanism satisfies pr{(Wi,..., Wy) =
Wwi,...,wy)} = ]_[f:1 NjI/N!if vazl Wi(j) = N; and 0 otherwise. The observed outcome of
unit 7 is a deterministic function of the treatment it has received and the potential outcomes, given

by Y% = Y, Wi() Yi().

3. THE FISHER RANDOMIZATION TEST UNDER THE SHARP NULL HYPOTHESIS

Fisher (1935) was interested in testing the following sharp null hypothesis of zero individual
treatment effects:

Hyfp:Yi()=---=Y:(J) @G=1,...,N).

Under Hor, all J potential outcomes Y;(1),..., ¥;(J) equal the observed outcome YI-ObS, for all
units i = 1,..., N. Thus any possible realization of the treatment assignment vector would gen-
erate the same vector of observed outcomes. This means that under Hor and given any realization
Wi,....,Wn) = (w1,...,wn), the observed outcomes are fixed. Consequently, the random-
ization distribution or null distribution of any test statistic, which is a function of the observed
outcomes and the treatment assignment vector, is its distribution over all possible realizations of
the treatment assignment. The p-value is the tail probability measuring the extremeness of the
test statistic with respect to its randomization distribution. Computationally, we can enumerate
or simulate a subset of all possible randomizations to obtain the randomization distribution
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Randomization-based perspective on analysis of variance 47

of any test statistic and thus perform the Fisher randomization test (Fisher, 1935; Imbens &
Rubin, 2015). Flsher (1925) suggested using the F statistic to test the departure from Hor. Define
Yobs(jy = N~ Zl L Wi(HY; obs a5 the sample average of the observed outcomes within treatment
level j, and deﬁne yobs — N ! Z 1 Y obs a5 the sample average of all the observed outcomes.
Lets2,, () = (N — 1)L 0, W) (Y% — 7)) and 2, = (N — 1)~ T (xobs — Fobsy2
be the corresponding sample variances with divisors N; — 1 and N — 1, respectively. Let

J
SST = Z]\/}{Yobs(]-) o YobS}Z

j=1
be the treatment sum of squares, and let

J

J
SSR = Z Z {Y,'ObS - ?.()bs(]')}2 = Z(]Vj - 1)S(2)bs(i)
=1

J=1 i Wi)=1

be the residual sum of squares. The treatment and residual sums of squares add up to the total
sum of squares Z;vzl(}’i(’bs yobs$)2 — (N — l)S . The F statistic

_osst/(J—1) _ wmsy

T ssg/(N —J)  Msg M

is defined as the ratio of the treatment mean square Mst = sst/(J — 1) to the residual mean
square MSR = SSR/(N — J).

The distribution of (1) under Hor can be well approximated by an F;_1 y_ distribution with
degrees of freedom.J — 1 and N —J, as is often used in the analysis of variance table obtained from
fitting a normal linear model. Although it is relatively easy to show that (1) follows F;_| y_; if
the observed outcomes follow a normal linear model drawn from a superpopulation, arriving at
such a result via a purely randomization-based argument is nontrivial. Below, we state a known
result on the approximate randomization distribution of (1), and throughout our discussion we
assume the following regularity conditions required by the finite-population central limit theorem
for causal inference (Li & Ding, 2017).

Condition 1. As N — oo, for all j, N;/N has a positive limit, Y.(j) has a finite limit, S?(f)
has a finite and positive limit, and N~ max1<,<N 1Y: () — Y.()|> — 0.

THEOREM 1. Assume Hop. Over repeated sampling of (W1, ..., Wy), the expectations of the
residual and treatment sums of squares are E(sst) = (J — 1)s2 b and E(ssp) = (N —J )52
and as N — oo, the asymptotic distribution of (1) is

obs’

X2 /U =1

~x2 T = 1) ~Fy_in_y.
(N —1)— 22 )/(N — ) X7—1/( )~ Fr_in—y

Remark 1. In Theorem 1 and the following discussion, we use the notation Ay ~ By to
represent two sequences of random variables {4y}%_; and {By}3_, that have the same asymp-
totic distribution as N — oo. The original F' approximation for randomization inference for a
finite population was derived by cumbersome moment matching between the statistic (1) and
the corresponding F;_j y—, distribution (Welch, 1937; Pitman, 1938; Kempthorne, 1952). In
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the Supplementary Material, we give a simpler proof based on the finite-population central limit
theorem, similar to Silvey (1954).

Remark 2. Under Hor, the total sum of squares is fixed, but its components sst and SsSg are
random through the treatment assignment (W71, ..., Wy), and their expectations are calculated
with respect to the distribution of the treatment assignment. Also, the ratio of the expectations of
the numerator Mst and the denominator Msgr of (1) is 1 under Hor.

4. SAMPLING PROPERTIES OF THE F' STATISTIC UNDER NEYMAN’S NULL HYPOTHESIS

In § 3 we discussed the randomization distribution, i.e., the sampling distribution under Hor,
of the F' statistic in (1). However, the sampling distribution of the F statistic under Neyman’s
null hypothesis of no average treatment effect (Neyman, 1923, 1935),

Hon:Y.(1)=---=Y.()),

is often of interest but has received limited attention (Imbens & Rubin, 2015). This hypothesis
imposes weaker restrictions on the potential outcomes than Hyr, making it impossible to compute
the corresponding exact, or even approximate, distribution of . However, analytical expressions
for E(ssT) and E(Ssr) can be derived under Hon along the lines of Theorem 1, and can be used
to gain insights into the consequences of testing Hoy using the Fisher randomization test with F.

Let Y.(\) = ijzl p;Y.(j) and §? = ZjJ=1 p;S?(j) be the weighted averages of the finite-
population means and variances. The sampling distribution of F depends crucially on the finite-

population variance of the unit-level treatment effects,

N
S2G) =N = DY (w(.) — G OF

i=1

DEerINITION 1. The potential outcomes {Y;(j) : i = 1,...,N; j = 1,...,J} have strictly
additive treatment effects if for all j % j' the unit-level treatment effects t;(j,j') are the same for
i=1,...,N or equivalently, if S?(j,j’) = 0 for all j % j'.

Kempthorne (1955) obtained the following result for balanced designs with p; = 1/J under
the assumption of strict additivity:

J
N _ _
mmozw—ﬂ#,Emﬂ=7§{rm—rmﬁ+u—nﬁ. 2)
j=1

This result implies that with balanced treatment assignments and strict additivity,
E(Msr—MsT)=0 under Hyy, and it provides a heuristic justification for testing Hon using the
Fisher randomization test with the F statistic. However, strict additivity combined with Hon
implies Hor, for which this result is already known by Theorem 1. We will now derive results
that do not require strict additivity, and thus are more general than those in Kempthorne (1955).
For this purpose, we introduce a measure of deviation from additivity. Let

A= pipiStG.j)

Ji<J
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Randomization-based perspective on analysis of variance 49

be a weighted average of the variances of unit-level treatment effects. By Definition 1, A = 0
under strict additivity. If strict additivity does not hold, i.e., if there is treatment effect hetero-
geneity, then A # 0. Thus A is a measure of the deviation from additivity and plays a crucial
role in the following results on the sampling distribution of the F statistic.

THEOREM 2. Over repeated sampling of (W1, ..., Wx), the expectation of the residual sum of
squares is E(SSR) = Zle V; — DS 2(j), and the expectation of the treatment sum of squares is

J J
E@sst) = Y N{7.0) = LY + D (= pps2¢) — A,
j=1 j=1

which reduces to E(SST) = Z}-’Zl (1 —pj)S,2 (j) — A under Hyn.

COROLLARY 1. Under Hon with strict additivity in Definition 1 or, equivalently, under Hyr, the
results in Theorem 2 reduce to E(ssgr) = (N — J)S? and E(sst) = (J — 1)S2, which coincide
with the statements in Theorem 1.

COROLLARY 2. For a balanced design with p; = 1/J,

J
E(ssg) = (N —J)S?, E(sst) = ]7\[ Z{Y(;) —YOP+ U -DS?-A.
j=1

Furthermore, under Hon, E(ssg) = (N — J)S? and E(sst) = (J — 1)S? — A, implying that
the difference between the residual mean square and treatment mean square is E(MSR — MST) =
A/J—=1)=0.

The result in (2) is a special case of Corollary 2 for A = 0. Corollary 2 implies that, for
balanced designs, if the assumption of strict additivity does not hold, then testing Hyn using
the Fisher randomization test with the F' statistic may be conservative, in the sense that it may
reject a null hypothesis less often than the nominal level. However, for unbalanced designs, the
conclusion is not definite, as can be seen from the following corollary.

COROLLARY 3. Under Hyn, the difference between the residual and treatment mean square is

W= & o A
E(MsR — MST) = m;(ﬁj JOSO) + To1

Corollary 3 shows that the residual mean square may be larger or smaller than that of
the treatment, depending on the balance or lack thereof in the experiment and the variances
of the potential outcomes. Under Hon, when the p; and S2(j) are positively associated, the
Fisher randomization test using F tends to be conservative; when the p; and S2(j) are negatively
associated, the Fisher randomization test using /' may not control correct Type I error.

5. A TEST STATISTIC THAT CONTROLS TYPE I ERROR MORE PRECISELY THAN F'

To address the failure of the F statistic to control Type I error of the Fisher randomization
test under Hon in unbalanced experiments, we propose to use (3) for the Fisher random-

ization test. Let Qj = Nj/sgbs(j), and define the weighted average of the sample means as
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¥t = 331 0;7°%()/ ¥, 0. Define

J
X2 =307y — v, 3)

j=1
This test statistic has been exploited in classical analysis of variance (e.g., James, 1951; Welch,
1951; Johansen, 1980; Rice & Gaines, 1989; Weerahandi, 1995; Krishnamoorthy et al., 2007)
based on the normal linear model with heteroskedasticity, and a similar idea called studentization
has been adopted in permutation tests (e.g., Neuhaus, 1993; Janssen, 1997, 1999; Janssen &

Pauls, 2003; Chung & Romano, 2013; Pauly et al., 2015).

Replacing F with (3) does not affect the validity of the Fisher randomization test for testing
Hor, because we always have an exact test for Hor no matter which test statistic we use. We show
below that the Fisher randomization test using X can also control the asymptotic Type I error
for testing Hon, so the Fisher randomization test using X2 can control the Type I error under both
Hor and Hoy asymptotically, making X2 a more attractive choice than the classical F statistic for
the Fisher randomization test.

THEOREM 3. Under Hor, the asymptotic distribution of X 2is x J271 as N — oo. Under Hy, the
asymptotic distribution of X? is stochastically dominated by x }_1, i.e., for any constant a > 0,
Iimy_s 0 pr(X2 > a) < plr()(Jz_1 > a).

Remark 3. Under Hyr, the randomization distribution of sst /sgbS follows ij_l asymptoti-

cally, as shown in the Supplementary Material. Under Hgn, however, the asymptotic distribution
of sst /sgbs is not X}_lv and the asymptotic distribution of F is not Fy_; s—1 as suggested by
Corollary 3. Fortunately, if we weight each treatment square by the inverse of the sample variance
of the outcomes, the resulting X statistic preserves the asymptotic x Jz_l randomization distri-
bution under Hor and has an asymptotic distribution that is stochastically dominated by x }_1

under Hy.

Therefore, under Hon, the Type I error of the Fisher randomization test using X2 does not
exceed the nominal level. Although we can perform the Fisher randomization test by enumerating
or simulating from all possible realizations of the treatment assignment, Theorem 3 suggests that
an asymptotic rejection rule against Hor or Hox is X2 > x|_q, the | — o quantile of the Xf—l
distribution. Because the asymptotic distribution of X2 under Hoy is stochastically dominated
by ij_ |» its true 1 — a quantile is asymptotically smaller than x|, and the corresponding
Fisher randomization test is conservative in the sense of having smaller Type I error than the
nominal level asymptotically.

Remark 4. The asymptotic conservativeness described above is not particular to our test statis-
tic, but rather a feature of the finite-population inference (Neyman, 1923; Aronow et al., 2014;
Imbens & Rubin, 2015). It distinguishes Theorem 3 from previous results on permutation tests
(e.g., Chung & Romano, 2013; Pauly et al., 2015), where the conservativeness did not appear
and the correlation between the potential outcomes played no role in the theory.

The form of (3) suggests its difference from F' when the potential outcomes have different vari-
ances under different treatment levels. Otherwise we show that they are asymptotically equivalent
in the following sense.

COROLLARY 4. IfS?>(1) = --- = §?(J), then (J — 1)F ~ X2
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Randomization-based perspective on analysis of variance 51

Under strict additivity in Definition 1, the condition S2(1) = --- = S2(J) holds, and the
equivalence between (J — 1)F and X? guarantees that the Fisher randomization tests using F
and X2 have the same asymptotic Type I error and power. However, Corollary 4 is a large-sample
result; we evaluate it in finite samples in the Supplementary Material.

6. SIMULATION
6-1. Type I error of the Fisher randomization test using F

In this subsection, we use simulation to evaluate the finite-sample performance of the
Fisher randomization test using F under Hon. We consider the following three cases, where
N (i, 0?) denotes a normal distribution with mean y and variance 2. We choose significance
level 0-05 for all tests.

Case 1. For balanced experiments with sample sizes N = 45 and N = 120, we generate
potential outcomes under two settings: (1A) ¥;(1) ~ A(0,1), ¥;(2) ~ N(0,1-2%) and ¥;(3) ~
N(0,1-5%); (1B) Yi(1) ~ N(0,1), Y¥;(2) ~ N(0,2?) and Y;(3) ~ N(0,3%). These potential
outcomes are independently generated and standardized to have zero mean.

Case 2. For unbalanced experiments with sample sizes (Ni,N>,N3) = (10,20,30) and
(N1, N2, N3) = (20,30,50), we generate potential outcomes under two settings: (2A) Y;(1) ~
N(,1), ¥;(2) = 2Y;(1) and ¥;(3) = 3Y;(1); 2B) Y;(1) ~ N(0,1), Yi(2) = 3Y;(1) and
Yi(3) = 5Y;(1). These potential outcomes are standardized to have zero mean. In this case,
p1 <p2 <p3and S2(1) < S2(2) < S2(3).

Case 3. For unbalanced experiments with sample sizes (N1, N>, N3) = (30,20,10) and
(N1, N2, N3) = (50,30,20), we generate potential outcomes under two settings: (3A) Y;(1) ~
N(,1), ¥;(2) = 2Y;(1) and ¥;(3) = 3Y;(1); 3B) Y;(1) ~ N(0,1), Yi(2) = 3Y;(1) and
Yi(3) = 5Y;(1). These potential outcomes are standardized to have zero mean. In this case,
p1 > p2 > p3and S2(1) < S2(2) < S2(3).

Once generated, the potential outcomes are treated as fixed constants. Over 2000 simulated ran-
domizations, we calculate the observed outcomes and then perform the Fisher randomization test
using F' to approximate the p-values by 2000 draws of the treatment assignment. The histograms
of the p-values are shown in Figs. 1(a)—(c) corresponding to cases 1-3 above. In the next few para-
graphs we report the rejection rates associated with these cases along with their standard errors.

In Fig. 1(a), the Fisher randomization test using F is conservative with p-values distributed
towards 1. With greater heterogeneity in the potential outcomes, the histograms of the p-values
have larger masses near 1. For case (1A) the rejection rates are 0-010 and 0-018, and for case
(1B) the rejection rates are 0-023 and 0-016, for sample sizes N = 45 and N = 120 respectively,
with all Monte Carlo standard errors no greater than 0-003.

In Fig. 1(b), the sample sizes under each treatment level are increasing in the variances of
the potential outcomes. The Fisher randomization test using F is conservative with p-values dis-
tributed towards 1. Similar to Fig. 1(a), when there is greater heterogeneity in the potential
outcomes, the p-values have larger masses near 1. For case (2A) the rejection rates are 0-016 and
0-014, and for case (2B) the rejection rates are 0-015 and 0-011, for sample sizes N = 45 and
N = 120 respectively, with all Monte Carlo standard errors no greater than 0-003.

In Fig. 1(c), the sample sizes under different treatment levels are decreasing in the variances of
the potential outcomes. For case (3A) the rejection rates are 0-133 and 0-126, and for case (3B) the
rejection rates are 0-189 and 0-146, for sample sizes N = 45 and N = 120 respectively, with all
Monte Carlo standard errors no greater than 0-009. The Fisher randomization test using /' does
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Fig. 1. Histograms ofthe p-values under Hyn based on the Fisher randomization tests using F: (a) balanced experiments,

case 1; (b) unbalanced experiments, case 2; (c) unbalanced experiments, case 3. Grey and white histograms correspond
to the subcases A and B, respectively.
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Fig.2. Histograms of the p-values under Hoy based on the Fisher randomization tests using X: (a) balanced exper-
iments, case 1; (b) unbalanced experiments, case 2; (¢) unbalanced experiments, case 3. Grey and white histograms
correspond to the subcases A and B, respectively.

not preserve correct Type I error, with p-values distributed towards 0. With greater heterogeneity

in the potential outcomes, the p-values have larger masses near 0.
These empirical findings agree with our theory in § 4; that is, if the sample sizes under differ-
ent treatment levels are decreasing in the sample variances of the observed outcomes, then the

Fisher randomization test using /' may not yield correct Type I error under Hyn.

6-2. Type I error of the Fisher randomization test using X >

Figure 2 shows the same simulation as in Fig. 1, but with test statistic X 2.
Figure 2(a) is similar to Fig. 1(a). For case (1A) the rejection rates are 0-016 and 0-012, and
for case (1B) the rejection rates are 0-014 and 0-010, for sample sizes N = 45 and N = 120

respectively, with all Monte Carlo standard errors no greater than 0-003.
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Figure 2(b) shows better performance of the Fisher randomization test using X2 than in
Fig. 1(b), with p-values closer to uniform. For case (2A) the rejection rates are 0-032 and 0-038,
and for case (2B) the rejection rates are 0-026 and 0-030, for sample sizes N = 45 and N = 120
respectively, with all Monte Carlo standard errors no greater than 0-004.

Figure 2(c) shows much better performance of the Fisher randomization test using X2 than
in Fig. 1(c), because the p-values are much closer to uniform. For case (3A) the rejection rates
are 0-052 and 0-042, and for case (3B) the rejection rates are 0-048 and 0-040, for sample sizes
N =45 and N = 120 respectively, with all Monte Carlo standard errors no greater than 0-005.
This agrees with our theory that the Fisher randomization test using X > can control the asymptotic
Type I error under Hyn.

6-3. Power comparison of the Fisher randomization tests using F and X*

In this subsection, we compare the powers of the Fisher randomization tests using F and X?
under alternative hypotheses. We consider the following cases.

Case 4. For balanced experiments with sample sizes N = 30 and N = 45, we generate
potential outcomes from Y;(1) ~ N(0,1), Yi(2) ~ N(0,2?) and ¥;(3) ~ N(0,3%). These
potential outcomes are independently generated and transformed to have means (0, 1, 2).

Case 5. For unbalanced experiments with sample sizes (N1, N2,N3) = (10,20,30) and
(N1, N2, N3) = (20,30, 50), we first generate Y;(1) ~ N (0, 1) and standardize them to have mean
zero; we then generate Y;(2) = 3Y;(1) 4+ 1 and ¥;(3) = 5Y;(1) + 2. In this case, p; < p2 < p3
and S?(1) < S2(2) < S%(3).

Case 6. For unbalanced experiments with sample sizes (N1, N>,N3) = (30,20,10) and
(N1, N2, N3) = (50, 30,20), we generate potential outcomes in the same way as in case 5 above.
In this case, p; > p» > p3 and S2(1) < §%2(2) < S%(3).

Over 2000 simulated datasets, we perform the Fisher randomization test using ¥ and X2 and
obtain the p-values by 2000 draws of the treatment assignment. The histograms of the p-values,
shown in Figs. 3(a)—(c), correspond to cases 4—6 above. The Monte Carlo standard errors for the
rejection rates are all close to but no greater than 0-011.

For case 4, the rejection rates using X 2 and F are respectively 0-290 and 0-376 with sample size
N = 30, and 0-576 and 0-692 with sample size N = 45. For case 5, the powers using X2 and F
are respectively 0-178 and 0-634 with sample size N = 60, and 0-288 and 0-794 with sample size
N = 100. Therefore, when the experiments are balanced or when the sample sizes are positively
associated with the variances of the potential outcomes, the Fisher randomization test using F
has higher power than that using X?.

For case 6, the rejection rates using X2 and F are respectively 0-494 and 0-355 with
sample size N = 60, and 0-642 and 0-576 with sample size N = 100. Therefore, when
the sample sizes are negatively associated with the variances of the potential outcomes, the
Fisher randomization test using ¥ has lower power than that using X?.

6-4. Simulation studies under other distributions and applications

Inthe Supplementary Material, we give more numerical examples. First, we conduct simulation
studies that parallel those in § § 6-1—6-3 but have outcomes generated from exponential distribu-
tions. The conclusions are nearly identical to those in § § 6-1-6-3, because the finite-population
central limit theorem holds under mild moment conditions without distributional assumptions.

Second, we use two numerical examples to illustrate the conservativeness issue in Theorem 3.
Third, we compare the different behaviours of the Fisher randomization tests using ' and X in
two real-life examples.
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Fig. 3. Histograms of the p-values under alternative hypotheses based on the Fisher randomization tests using F* and
X?: (a) balanced experiments, case 4; (b) unbalanced experiments, case 5; (c) unbalanced experiments, case 6. Grey
histograms correspond to X? and white histograms to F.

7. DIScuUSSION

As shown in the proofs of Theorems 1 and 3 in the Supplementary Material, we need to analyse
the eigenvalues of the covariance matrix of {7°%5(1), . . ., Y°%(J)} to obtain the properties of F and
X? for general J > 2. Moreover, by considering the case of / = 2 we can gain more insight and
make connections with existing literature. For j = j’, an unbiased estimator for 7 (j, ;") is (7, j") =
o5 (j) — ¥4 ('), which has sampling variance var{z (j, )} = S2(j)/N;+S2(") /Ny —=S2(j,j") /N
and a conservative variance estimator sgbs(j) /N; + Sgbs (")/Ny (Neyman, 1923).

COROLLARY 5. When J = 2, the F and X? statistics reduce to

N 2(1,2) 2 2(1,2)
Saps(D/N2 + 55, (/N1 Sops(D/N1 + 52, (2) /N2

where the approximation for F is due to ignoring the difference between N and N — 2 and the
difference between N; and N; — 1 (j = 1,2). Under Hor, F ~ X12 and X? ~ X12- Under Hyn,
F ~ Clxlz and X% ~ Cz)(lz, where

— lim var{7(1,2)} G i var{7(1,2)} <l @)
No+oo S2(1)/N; + S2(2) /Ny

Ci = Noteo S2(1)/NY + S22) /Ny S

Depending on the sample sizes and the finite-population variances, C; can be either larger
or smaller than 1. Consequently, using F in the Fisher randomization test can be conservative or
anticonservative for testing Hon. In contrast, C, is always no larger than 1, and therefore using X 2
in the Fisher randomization test is conservative for testing Hon. Neyman (1923) proposed using
the square root of X to test Hoy based on a normal approximation, which is asymptotically
equivalent to the Fisher randomization test using X°. Both are conservative unless the unit-level
treatments are constant.

In practice, for treatment-control experiments, the difference-in-means statistic 7(1,2) has
been widely used in the Fisher randomization test (Imbens & Rubin, 2015); it, however, can
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yield either conservative or anticonservative tests for Hoy, as shown by Gail et al. (1996), Lin
et al. (2017) and Ding (2017) using numerical examples. We formally state this result below,
recognizing the equivalence between 7(1,2) and F in a two-sided test.

COROLLARY 6. WhenJ = 2, the two-sided Fisher randomization test using T (1,2) is equivalent
to using

2 £2(1,2) £2(1,2)
Ns?, J(NINy) s, (1)/Ny + 5%, (2)/Ny + £2(1,2)/N’

where the approximation is due to ignoring the difference between (N,N1 — 1,N, — 1) and
(N, N1, Ny). Under Hyr, T2~ F ~ X12, and under Hyx, T2~ F ~ C1X12 with C| defined in (4).

Remark 5. Analogously, under the superpopulation model, Romano (1990) showed that the
Fisher randomization test using 7(1,2) can be conservative or anticonservative for testing the
hypothesis of equal means of two samples. Janssen (1997, 1999) and Chung & Romano (2013)
suggested using the studentized statistic, or equivalently X2, to remedy the problem of possibly
inflated Type I error, which is asymptotically exact under the superpopulation model.

After rejecting either Hor or Hyy, it is often of interest to test pairwise hypotheses; that is, for
j &/, Yi(j) = Y;(j) forall i, or Y.(j) = Y.(j/). According to Corollaries 5 and 6, we recommend
using the Fisher randomization test with test statistic £2(j, ")/ {sgbs(i) /N; + sgbs (")/Nj’}, which
will yield conservative Type I error even if the experiment is unbalanced and the variances of the
potential outcomes vary across treatment groups.

The analogy between our finite-population theory and the superpopulation theory of Chung
& Romano (2013) suggests that similar results may also hold for layouts of higher order and
other test statistics (Pauly et al., 2015; Chung & Romano, 2016a,b; Friedrich et al., 2017). In
more complex experimental designs, often multiple effects are of interest simultaneously, giving
rise to the problem of multiple testings (Chung & Romano, 2016b). We leave these questions to
future work.
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§S1 presents the proofs, §S2 contains examples, and §S3 gives additional simulation.

S1. PROOFS

To prove the theorems, we need the following lemmas about completely randomized experi-
ments.

LEMMA S1. The treatment assignment indicator W;(j) is a Bernoulli random variable with
mean p; = N;j/N and variance p;(1 — p;). The covariances of the treatment assignment indi-
cators are

cov{Wi(). Wo (i)} = —py(L—p)/(N 1), (i #1)
cod{Wi(7). Wili)} = ~pypy. G#5)
cov{Wi(j), Wi (i)} = pjpj /(N — 1), (i #d5#5)

Proof of Lemma S1. The proof is straightforward. O
~ LEMMA S2. Assume (c1,...,cn) and (dy, ..., dN) are two fixed vectors with means ¢ and
d, finite-population variances S? and Sﬁ. The finite-population covariance is Se.q = (S? + Sg —
Sg_d)/Z, where Sg_d is the finite-population variance of (¢y — dy,...,cy — dn). For j # 7/,

1 N . 1-— p] 2 1 N . 1 ./ Scd
var szwl(])cz = Tjsc, [¢{0)% FJZWZ(‘])C“Nij,ZWI(] )dl = — N .
i=1 i=1 i

=1
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Proof of Lemma S2. Lemma S2 is known, and its special forms appeared in Kempthorne
(1955). We give an elementary proof for completeness. Applying Lemma S1, we have

N
Var{]\lfj ZWi(J)Cz}
'LJ—Vl
= QVM{Z Wi(j)(ei — E)}
J =1
1 N
i =1 i/
Jiz{zpj D) M IR
14!
N .
p
— NJsZ

J

For j # j', applying Lemma S1 again, we have

N
cov{ ZW 0171\17;2Wi(j/)di}

1 N N _
- NAN,,C"V{ZWAM—exzwz-@’)(d@"d’}
J4Vi =1 ;

N
- N;N; {ZCOV{Wi(j)a Wi(3")}(ci — €)(di — d)
i=1

373 corWilh), W (1)} (e — @)(dr — d)

il
_ 1 - vy :
B P S TRV NS 39 5 = X
g’ i=1 i
— pp -/ N —
{pjp] Z )(d; —d)—l—NJ_JlZ(c,-—E)(di—d)}
i=1
= — cd/N. O

Proof of Theorem 1. Under Hop, {Y"* :i=1,..., N} and SS = (N — 1)s% are fixed. Be-
cause {Y,°™ : W;(j) = 1} is a simple random sample from the finite population {Y°* : i =
1,..., N}, the sample mean Y.°®(5) is unbiased for the population mean Y°*, and the sample
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variance sgbs (4) is unbiased for the population variance s> bs- Therefore,
J J
E(SSR) = ZE {(N] - 1)8(2)bs(j)} = Z(NJ - 1) Sobs — (N J) Sobss
j=1 j=1
which further implies that

E(SST) =SS — E(SSR) - (N - 1) Sobs — (N J) Sobs = (J - l)sng'

Applying Lemma S2, we have

_ 1=, 2
Val‘{YObs(j)} — pj Sgbsa COV{YObS( ) YObS( )} — _Sobs‘ (S1)
N; N

Therefore, the finite-population central limit theorem (Li & Ding, 2017, Theorem 5), coupled
with the variance and covariance formulae in (S1), implies

1/2 . 1/2 1/2 1/2 1/2
Nl; {YObs(l) _ Yobs} 1 7}71/ pl/ Py /2. plj P j
1/2 v . 1/2 1/2 1/2 1/2
N. yobs(9) _ yobs _ 1— _
v MY {) ) SN o2 | TP P2 RN
1/2 . 3, 1/2 1/2 1/2 1/2 .
NJ/ (Yo (1) = Yo} pJ/ pl/ PJ/ Pz/ o L=py

where A; denotes a J-dimensional normal random vector. The above asymptotic covariance
matrix can be simplified as s, (17 — qq") = s%, P, where I; is the J x J identity matrix, and
q= (p}/ 2, e ,p}/ 2)T. The matrix P is a projection matrix of rank J — 1, which is orthogonal to
the vector ¢q. Consequently, the treatment sum of squares can be represented as SSt = VTV ~

X5 _15%, and the F statistic can be represented as

F— SST/( - 1) - X?J 15aps/(J — 1)
{(N = 1)s, = SSt}/(N = J)  {(N = 1)sg — XF_ 15005}/ (N = J)
. Xjfl/ - ) . . 2
__{UV‘—l)—‘ng}/UV—‘J)AJF&_LN_JAJXJ_I/L]_-D. 0
Proof of Theorem 2. First, because Y °%(j) = Z Wi(3)Yi(j)/N;, Lemma S2 implies that

Y.°®%(j) has mean Y.(j) and variance (1 —p])SQ(])/NJ’ and

N
cov{¥ % (j), YOO () —cov{ ZW )’]\}VZWi(j/)YE(]‘/)}
I =1

{52( )+ S2(5') = 825,57}

20

25
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Therefore,

J
Var(i_/_(’bs) = Z Var{Y°bs )} + Z ijpJ/COV{YObS( ), YobS( "y
J=1 J#5

I
Mk

2t N, S0 = 303wy S {870) + 82— 826,7)
1 J#i’

J
{Z (1 —p;)S%(5)

.
Il

= \

_*ZZPJPJ’S —*ZZPJPJ'SQ ZZPJPJIS 3,5 }

J#3’ J#5 J#5

Because

ZZW%/S ij 1 —p;)S2(4),

J#5’
> oS Zpa (1-py)S Zp] (1-p))S?(5).
J#J’
the variance of Y°% reduces to

var(Yo%) = 2N) ™Y 0> " pipiS2(4, 4') = A/N.
J#J’

30 Second,

vV (), Y0} = pvar{ V() + D pyrcov V), Vo ()}

J 7&3
1 .
=51 =p)S0) - 5 ij {S2(4) + S2(3") — 8233, 5}
] '#j
We further define 3, ; piS2(4,j') = Aj. Because
> piS2G) = (1—p)S?G), D piSPG") =57 - piSP),
J'#i 3'#3

the covariance between Y °% () and Y.°® reduces to

cov{Y.*(5), Y°b5} = 2N) 201 - pj)S2() — (1= p))S?(4) = S* + piS° () + Aj )
— V) {S2) — S+ A}

Third, Y°*(5) — Y°* has mean Y.(j) — Z}']:1 p;Y.(j) and variance

Val‘{YObs(j) _ YObS} — Var{YObS( )} + Var(YObS) QCOV{YObS( ) Yobi}

L [1-pj 2 2 }
S S2(5) + A — S2(j) + 52— A L
7 {5s0) 4) ;
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Finally, the expectation of the treatment sum of squares is

SST ZN {Y0b§ YObS}Q
J J .
=Y N; Z Y.(5) +ij{ jSQ()JrA—S,Q(j)JrSQ—Aj},
J=1 J=1
which follows from the mean and variance formulas of Y,°®(5) — Y.°®. Some algebra gives
2
J J J
E(SSt) =Y N;{Y. Z Y.(j) ¢+ (1—p))S?() + A— 5%+ 8% —2A
j=1 j=1 j=1
J J 2 J
=2 N T =20 D (1S - A
j=1 j=1 j=1
Under Hoy, ie., Y.(1) = --- = Y.(J), or, equivalently, Y.(j) — ijlij.( ) =0 for all j,
the expectation of the treatment sum of squares further reduces to
J
E(SSt) =) (1 —p;)S*(j) - A.
j=1
Because {Y;°* : W;(j) = 1} is a simple random sample from {Y( j):i=1,2,...,N}, the
sample variance is unbiased for the population variance, i.e., E{s%(j)} = S?(j). Therefore
the mean of the residual sum of squares is
J
E(SS) = B{(N; = 1)sis (1)} = D_(N; = 1)S2());
j=1
I:, 35

This completes the proof.
= S2%(j) for all j and A = 0, and the conclusions
(]

Proof of Corollary 1. Additivity implies 52
follow.
Proof of Corollary 2. For balanced designs, p; = 1/J,N; = N/J and S? = Z;-Izl S2(5)/J,

and therefore Theorem 2 implies

ZS2 (N —J)S?,

E(SSR) =
N _
B(SST) = & Y {V() = V()P + (]~ 1) - A
j=1
=(J— 1)52 — A. Therefore, the 4

Moreover, under Hon, E(SSR) is unchanged, and E(SSt)
expectation of the mean treatment squares is no larger than the expectation of the mean residual
— EMSt)=A/(J—-1)>0. O

squares, because £ (MSg)
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Proof of Corollary 3. Under Hyy,

J
E(MSg) — E(MSr) =Z<N ; 1J—1>52() %
7j=1
W= S A
C(J-D(N-) ;(pﬂ'—J N8I + 7 0

To prove Theorem 3, we need the following two lemmas: the first is about the quadratic form
of the multivariate normal distribution, and the second, due to Schur (1911), provides an upper
bound for the largest eigenvalue of the element-wise product of two matrices. The proof of the
first follows from straightforward linear algebra, and the proof of the second can be found in
Styan (1973, Corollary 3). Below we use A * B to denote the element-wise product of A and B,
i.e, the (7, j)-th element of A x B is the product of the (7, j)-th elements of A and B, A;;B;;.

LEMMA S3. If X ~ N;(0, A), then X"BX ~ Z}'le N;&;, where the &;’s are iid X3, and the
A;’s are eigenvalues of BA.

LEMMA S4. If A is positive semidefinite and B is a correlation matrix, then the maximum
eigenvalue of A x B does not exceed the maximum eigenvalue of A.

Proof of Theorem 3. We first prove the result under Hoy, and then view the result under Hgg
as a special case.

Let Q; = N;/S?(j) for j=1,...,J, and Q = Z}]:1 Q; be their sum. Define ¢, =
( }/2, R Ql/z)/Ql/2 and P, = I; — quwq,, is a projection matrix of rank J — 1. Let YObS =
Q™ Z i1 @ Y% (5) be a weighted average of the means of the observed outcomes. Accord-

ing to Li & Ding (2017, Proposition 3), s%.(j) — S?(j) — 0 in probability (j = 1,...,J). By
Slutsky’s Theorem, X2 has the same asymptotic distribution as

XO — ZQ {Yobs obs}

Define p] % as the finite-population correlation coefficient of potential outcomes {Y;(5)}¥, and
{Y;(k)}Y ., and R as the corresponding correlation matrix with (j, k)-th element p;y.. The finite-
population central limit theorem (Li & Ding, 2017, Theorem 5) implies

V2o (1) - V(1))
Qy/*{Yo™(2) - Y(2)}

(=
1/2 v ' =
QYY) — V()
2 1 2 1/2 1/2

1/_1;1 _pl/ / pl; pJ; P1J
1/2 1/2 1

— 1— el =

<N 0, Py 1‘71 P21 b2 V%) pJ P2J —P+R|,

1/2 ‘1 2 1/2 1/2

—p/ pl/ pJ1 —Pp / pg/ P2 1—py

recalling P = I; — qq" and the element-wise product operator *. In the above, the mean and
covariance matrix of the random vector Vj follow directly from Lemmas S1 and S2.
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Under Hon with Y.(1) = - -+ = Y.(J), we can verify that

2

J J
X3 = Q0 - VO - 5 | LAV - Y0 |
j=1

j=1
which can be further rewritten as a quadratic form (cf. Chung & Romano, 2013)
X§ = Vo' (L1 = qudw)Vo = Vg PuVo.

According to Lemma S3, X2 has asymptotic distribution Z‘]]:_ll A;j&j, where the A;’s are the J —

1 nonzero eigenvalues of P, (P * R). The summation is from j = 1 to J — 1 because P, (P * R)

has rank at most J — 1. The eigenvalues (A1, . .., Aj_1) are all smaller than or equal to the largest
eigenvalue of P % R, because P, is a projection matrix. According to Lemma S4, the maximum
eigenvalue of the element-wise product P x R is no larger than the maximum eigenvalue of s
P, which is 1. Therefore, Xg ~ Zj:_ll A;&j, where A; < 1 for all j. Because the X?}—l can be
represented as &1 + - - - + £7_1, it is clear that the asymptotic distribution of Xg is stochastically
dominated by X?f—l'

When performing the Fisher randomization test, we treat all observed outcomes as fixed, and
consequently, the randomization distribution is essentially the repeated sampling distribution of 7
X2 under Y;(1) = - -+ = Y;(J) = Y,°*. This restricts S?(j) to be constant, and the correlation
coefficients between potential outcomes to be 1. Correspondingly, P, = P, R = 1;1%, and the
asymptotic covariance matrix of Vg is P. Applying Lemma S3 again, we know that the asymp-
totic randomization distribution of X2 is X%-p because PP = P has J — 1 nonzero eigenvalues
and all of them are 1. 75

Mathematically, the randomization distribution under Hor is the same as the permutation dis-
tribution. Therefore, applying Chung & Romano (2013) yields the same result for X2 under
Hog. O

Proof of Corollary 4. As shown in the proof of Theorem 3, X? is asymptotically equivalent to
X3, and therefore we need only to show the equivalence between (J — 1)F and X§. If 5(1) =
o= 82(J) = S?, then Y20 = Y°, and

S V() — YO sy

2 _
XO = SQ = ?
Because MSg = E}]=1(Nj —1)s%,,(j)/(IN — J) converges to S? in probability (Li & Ding,
2017, Proposition 3), Slutsky’s Theorem implies
SSt . SSt

J—1)F =L 22T

( ) MSg 52
Therefore, (J — 1)F ~ X2 ~ X2 O

Proof of Corollary 5. First, we discuss F. Because Y°% = p;Y°%(1) + poY.°%%(2), we have
YObS(l) . Yobs — pzf'(l, 2)7 Y0b5(2) _ Yobs — —pﬁ'(l, 2)
The treatment sum of squares reduces to

SST — Nl {YobS(l) . }_/-obs}2 + N2 {Yob5(2) . }_/.obs}2 — Np1p2722(1, 2)7
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and the residual sum of squares reduces to SSg = (N7 — 1)s2,,(1) + (N2 — 1)s%,(2). There-
fore, the F' statistic reduces to
SSt 72(1,2) ~ 72(1,2)

SSR/(N-2) UL (1) + B2 (2) saw(D/Ne + 55, (2)/N)

F

where the approximation follows from ignoring the difference between N and N — 2 and the
difference between N; and N; — 1 (j = 1, 2). Following from Theorem 1 or proving it directly,
we know that ' ~ I} y_o ~ X% under Hor. However, under Hyyn, Neyman (1923), coupled with
the finite-population central limit theorem (Li & Ding, 2017, Theorem 5), imply

7(1,2) .
2 2 9 1/2 ~ N(07 1)5
{S. (1) n S2(2) 57(172)}
N1 N2 N

2.s(4) — S2(j) in probability (j = 1, 2). Therefore, the asymptotic distribution of F' under
Hon is F <~ Cyx3, where

and s2

O = S /N SH2)/Na — S2(1,2) /N
LN o S2(1)/Ny + S2(2)/N; '

Second, we discuss X 2. Because

= {am™ 0 me O m  ne )

Sobs ol Sobs Sobs

we have

_ — N N N:
Y,Obs(l) o Yl(gbs _ 2 %2(1’ 2)/ . 1 + . 2 7
2 Sobs(l) Sobs(2)

_ — N1 N Nl N2
YOoPS(2) — Vb = — 72(1,2)/{ + } :
b Sgbs(m Sgbs(l) 5(2,]35(2)

Therefore, the X ? statistic reduces to

N1 N2 N, N2 N Ny 2
X2:{21 2 72(1,2) + 5 %2(1,2)}/{21 + = }
Sobs(l) Sobs(2) Sobs(2) Sobs(l) Sobs(l) Sobs(2)

B 72(1,2)
s, (1)/N1 + 82,,(2) /N

obs

Following from Theorem 3 or proving it directly, we know that X2 <~ x% under Hor. However,
under Hyy, we can use an argument similar to that for ' and obtain X2 ~ Cy X%» where

.. S%(1)/Ny + S%(2)/N, — S%(1,2)/N
G = fim SN+ S ) /N =1

The constant C5 is smaller than or equal to 1 with equality holding if the limit of S?(1, 2) is zero,
i.e., the unit-level treatment effects are constant asymptotically. O

Proof of Corollary 6. In the Fisher randomization test, sgbs is fixed, and therefore using 7(1, 2)
is equivalent to using 7. Using simple algebra similar to Ding (2017), we have the following
decomposition

(N —1)s%, = (N1 — 1)s%,(1) + (No — 1)s3,4(2) + N1 No7(1,2) /N,

obs
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Fig. S1: Distributions of X 2. The histograms are the sampling distributions, the dotted lines are
the asymptotic distributions, and the solid lines are the 3 distribution.

which implies the equivalent formula of 72 in Corollary 6. Under Hog or Hoy, 7(1,2) — 0 in
probability, which coupled with Slutsky’s Theorem, implies the asymptotic equivalence 7% ~
F. O

S2. NUMERICAL EXAMPLES

Example S1. We consider J = 3, sample sizes N; = 120, N2 = 80 and N3 = 40. We gener-
ate the first set of potential outcomes from

Yi(1) ~N(0,1), Yi(2) =3Yi(1), Yi(3)=5Y;(1), (S2)
and the second set of potential outcomes from
Yi(1) ~ N(0,1),  Yi(2) ~N(0,3%), Yi(3) ~ N(0,5%). (S3)

After generating the potential outcomes, we center the Y;(j)’s by subtracting the mean to make
Y.(j) = 0 for all j so that Hoy holds. Figure S1 shows the distributions of X2 over repeated sam-
pling of the treatment assignment vector (W71, ..., Wy) for potential outcomes generated from
(S2) and (S3). The true sampling distributions under both cases are stochastically dominated by
X3. Under (S2), the correlation coefficients between the potential outcomes are 1; whereas under
(S3), the correlation coefficients are 0. With less correlated potential outcomes, the gap between
the true distribution and x3 becomes larger.

Example S2. We use an example from Montgomery (2000, Exercise 3.15) with 4 treatment
levels. The sample variances and the sample sizes differ for the four treatment levels, as shown
in Table S1. The p-values of the Fisher randomization test using F' and X2 are 0.003 and 0.010,
respectively. If we choose a stringent size, say o = 0.01, then the evidence against the null
is strong from the first test, but the evidence is weak from the second test. If our interest is
Hyn, then the different strength of evidence may be due to the different variances and sample
sizes of the treatment groups. Because of this, we recommend making decision based on the
Fisher randomization test using X?2.
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Table S1: A randomized experiment with J = 4

1 2 3 4
observed outcome 58.2 563 50.1 529
572 545 542 499
584 57.0 554 50.0

55.8 553 51.7
54.9
sample size 5 4 3 4
mean 56.9 558 532 5l1.1
variance 2.3 1.2 7.7 2.1

Table S2: A randomized experiment with J = 4, where control, sfp, ssp and sfsp denote the four
treatment groups.

control stp ssp sfsp

sample size 854 219 212 119
mean  63.86 6583 64.13  66.10
variance 144.97 124.45 159.76 114.33

Example S3. We reanalyze the data from Angrist et al. (2009), which contain a control
group and 3 treatment groups designed to improve academic performance among college fresh-
men. Table S2 summaries the sample sizes, means and variances of the final grades under
4 treatment groups. The p-values of the Fisher randomization test using ' and X? are 0.058
and 0.045, respectively. The Fisher randomization tests using F and X? give different con-
clusions at the commonly-used significance level 0.05. In this unbalanced experiment, the
Fisher randomization test using F' is less powerful.

S3. MORE SIMULATION WITH NONNORMAL OUTCOMES
S3-1.  Type I error of the Fisher randomization test using F'

In this subsection, we use simulation to evaluate the finite sample performance of the
Fisher randomization test using F' under Hgn. We consider the following three cases, where £
denotes an exponential distribution with mean 1.

Case S1. For balanced experiments with sample sizes N = 45 and N = 120, we generate po-
tential outcomes under two cases: (S1.1) Y;(1) ~ &, Y;(2) ~ £/0.7, Yi(3) ~ £/0.5; and (S1.2)
Yi(1) ~ &, Y;(2) ~ £/0.5, Y;(3) ~ £/0.3. These potential outcomes are independently gener-
ated, and standardized to have zero means.

Case S2. For unbalanced experiments with sample sizes (Np, N2, N3) = (10,20, 30) and
(N1, N2, N3) = (20, 30, 50), we generate potential outcomes under two cases: (S2.1) Y;(1) ~ &,
Yi(2) = 2Y;(1), Yi(3) = 3Y;(1); and (52.2) Yi(1) ~ &, Y;(2) = 3Yi(1), Y;(3) = 5Y;(1). These
potential outcomes are standardized to have zero means. In this case, p; < pa < p3 and S%(1) <
52(2) < S%(3).

Case S3. For unbalanced experiments with sample sizes (N7, N2, N3) = (30,20, 10) and
(N1, N2, N3) = (50, 30, 20), we generate potential outcomes under two cases: (S3.1) Y;(1) ~ &,
Yi(2) = 1.2Yi(1), ¥;(3) = L5Y;(1); and (S3.2) V(1) ~ £, Yi(2) = L5Y;(1), Yi(3) = 2Y;(1).
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Fig. S2: Histograms of the p-values under Hgn based on the Fisher randomization tests using
X2, with grey histogram and white histograms for the first and second sub-cases.

These potential outcomes are standardized to have zero means. In this case, p; > ps > p3 and
S2(1) < 52(2) < S2(3).

We follow §6-1 and obtain the same conclusions about the Fisher randomization test using F',
because Figures 1 and S2 exhibit the same pattern.

In Figure 2(a), for case (S1.1), the rejection rates are 0.022 and 0.014, and for case (S1.2),
the rejection rates are 0.030 and 0.030, for sample sizes N = 45 and N = 120 respectively.
In Figure 2(b), for case (S2.1), the rejection rates are 0.018 and 0.024, and for case (2.2), the
rejection rates are 0.026 and 0.018, for sample sizes N = 45 and N = 120 respectively. The
Monte Carlo standard errors are all close to but no larger than 0.003.

In Figure 2(c), for case (S3.1), the rejection rates are 0.076 and 0.086, and for case
(S3.2), the rejection rates are 0.108 and 0.109, for sample sizes N =45 and N = 120 re-
spectively, with all Monte Carlo standard errors no larger than 0.008. In these two cases, the
Fisher randomization test using F' does not preserve correct type I error.

S3-2.  Type I error of the Fisher randomization test using X >

We follow §6-2, generate the same data as §S3-1, and obtain the same conclusions about the
Fisher randomization test using X2, because Figures 2 and S3 exhibit the same pattern. All the
Monte Carlo standard errors of the rejection rates below are close but no larger than 0.005.

In Figure 3(a), for case (S1.1), the rejection rates are 0.034 and 0.018, and for case (S1.2), the
rejection rates are 0.048 and 0.029, for sample sizes N = 45 and N = 120 respectively. In Figure
3(b), for case (S2.1), the rejection rates are 0.032 and 0.035, and for case (S2.2), the rejection
rates are 0.025 and 0.036, for sample sizes N = 45 and N = 120 respectively. In Figure 3(c),
for case (S3.1), the rejection rates are 0.060 and 0.062, and for case (S3.2), the rejection rates are
0.054 and 0.044, for sample sizes N = 45 and N = 120 respectively. This, coupled with Figure
S2, agrees with our theory that the Fisher randomization test using X2 can control type I error
under Hoy better than using F'.
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Fig. S3: Histograms of the p-values under Hgy based on the Fisher randomization tests using
X2, with grey histogram and white histograms for the first and second sub-cases.
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Fig. S4: Histograms of the p-values under alternative hypotheses based on the Fisher randomiza-
tion tests using F' and X2, with grey histograms for X2 and white histograms for F.

155 S3-3.  Power comparison of the Fisher randomization tests using F and X?
We follow §6-3 to compare the powers of the Fisher randomization tests using I’ and X 2. We
consider the following cases and summarize the results in Figure S4.
Case S4. For balanced experiments with sample sizes N = 30 and N = 45, we generate po-
tential outcomes from Y;(1) ~ &, Y;(2) ~ £/0.7, Y;(3) ~ £/0.5. These potential outcomes are
w0 independently generated, and shifted to have means (0,0.5,1).



A randomization-based perspective on analysis of variance 13

0 0 «©

1.0
1.0
1.0

sity

density
density

05
05
0.5

0.0
0.0
0.0

N=45, (N1,N2,N3)=(10,15,20) N=45, (N1,N2,N3)=(20,15,10)

(a) Hon holds

density
density

N=30 Balanced N=45, (N1,N2,N3)=(10,15,20) N=45, (N1,N2,N3)=(20,15,10)

(b) Hgn does not hold

Fig. S5: Histograms of the p-values under equal finite-population variances based on the Fisher
randomization tests using ' and X2, with grey histograms for X2 and white histograms for F.

Case S5. For unbalanced experiments with sample sizes (Ny, Na, N3) = (10,20, 30) and
(N1, N2, N3) = (20, 30,50), we first generate Y;(1) ~ £ and standardize them to have mean
zero, and we then generate Y;(2) = 3Y;(1) + 1 and Y;(3) = 5Y;(1) + 2. In this case, p; < p2 <
p3 and S%(1) < S%(2) < S2%(3).

Case S6. For unbalanced experiments with sample sizes (N1, N2, N3) = (30,20, 10) and
(N1, N2, N3) = (50, 30,20), we generate potential outcomes the same as the above case SS.
In this case, p; > p2 > p3 and S%(1) < S?(2) < S?(3).

When the sample sizes are positively associated with the variances of the potential outcomes,
the Fisher randomization test using F has larger power than that using X 2. However, when the
treatment groups are balanced or when the sample sizes are negatively associated with the vari-
ances of the potential outcomes, the Fisher randomization test using F' has smaller power than
that using X 2. We report the rejection rates below with all the Monte Carlo standard errors no
larger than 0.01.

For case S4, the rejection rates using X2 and F are 0.087 and 0.066 with sample size N = 30,
and 0.207 and 0.198 with sample size N = 45. For case S5, the powers using X2 and F are 0.044
and 0.106 with sample size N = 60, and 0.293 and 0.729 with sample size N = 100. For case
S6, the rejection rates using X2 and F are 0.211 and 0.037 with sample size N = 60, and 0.578
and 0.274 with sample size N = 100.

S3-4.  Finite sample evaluation of Corollary 4 with skewed outcomes

We first generate log-normal potential outcomes Y;(1) ~ exp{N(0,1)}, Y;(2) ~
exp{N(1,1)}, and Y;(3) ~ exp{N(2,1)}, and then standard them to have equal finite-
population means 0 and variances 1.

Under Hoy, the p-values of the Fisher randomization test using ' and X? are shown in Figure
S5(a). With sample size (N1, N2, N3) = (10, 10, 10), the rejection rates using X2 and F are
0.012 and 0.016; with sample size (10, 15,20), the rejection rates are 0.016 and 0.028; with
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sample size (20, 15,10), the rejection rates are 0.006 and 0.015. The Monte Carlo standard
errors are all close to but no larger than 0.004.

Under alternative hypotheses, the p-values of the Fisher randomization test using F and X2
are shown in Figure S5(b). With sample size (N1, N3, N3) = (10, 10, 10), we shift the potential
outcomes by constants (0,0.5, 1), and the rejection rates using X2 and F are 0.514 and 0.512;
with sample size (10, 15, 20), we shift the potential outcomes by constants (0, 0.2,0.5), and the
rejection rates are 0.164 and 0.215; with sample size (20, 15, 10), we shift the potential outcomes
by constants (0, 0.2, 0.5), and the rejection rates are 0.256 and 0.179. The Monte Carlo standard
errors are all close but no larger than 0.011.

In finite samples, we observe moderate difference between the Fisher randomization tests
using X2 and F even with homoskedastic potential outcomes, although Corollary 4 ensures
their asymptotic equivalence.
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