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SUMMARY

Fisher randomization tests for Neyman’s null hypothesis of no average treatment effect are

considered in a finite-population setting associated with completely randomized experiments

involving more than two treatments. The consequences of using the F statistic to conduct such a

test are examined, and we argue that under treatment effect heterogeneity, use of the F statistic in

the Fisher randomization test can severely inflate the Type I error under Neyman’s null hypothesis.

We propose to use an alternative test statistic, derive its asymptotic distributions under Fisher’s

and Neyman’s null hypotheses, and demonstrate its advantages through simulations.
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1. INTRODUCTION

One-way analysis of variance (Fisher, 1925; Scheffe, 1959) is perhaps the most commonly

used tool to analyse completely randomized experiments with more than two treatments. The

standard F test for testing equality of mean treatment effects can be justified either by assuming

a linear additive superpopulation model with identically and independently distributed normal

error terms, or by using the asymptotic randomization distribution of the F statistic. Units in real-

life experiments are rarely random samples from a superpopulation, making a finite-population

randomization-based perspective on inference important (e.g., Rosenbaum, 2010; Dasgupta et al.,

2015; Imbens & Rubin, 2015). Fisher randomization tests are useful tools for such inference,

because they pertain to a finite population of units and assess the statistical significance of

treatment effects without any assumptions about the underlying outcome distribution.

In causal inference from a finite population, two hypotheses are of interest: Fisher’s sharp

null hypothesis of no treatment effect on any experimental unit (Fisher, 1935; Rubin, 1980), and

Neyman’s null hypothesis of no average treatment effect (Neyman, 1923, 1935). These hypotheses

are equivalent when there is no treatment effect heterogeneity (Ding et al., 2016) or, equivalently,

under the assumption of strict additivity of treatment effects, i.e., the same treatment effect for each

unit (Kempthorne, 1952). In the context of a multi-treatment completely randomized experiment,

Neyman’s null hypothesis allows for treatment effect heterogeneity, which is weaker than Fisher’s
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null hypothesis and is sometimes of greater interest. We find that the Fisher randomization test

using the F statistic can inflate the Type I error under Neyman’s null hypothesis, when the sample

sizes and variances of the outcomes under different treatment levels are negatively associated.

We propose to use the X 2 statistic defined in § 5, a statistic that is robust with respect to treatment

effect heterogeneity, because the resulting Fisher randomization test is exact under Fisher’s null

hypothesis and controls asymptotic Type I error under Neyman’s null hypothesis.

2. COMPLETELY RANDOMIZED EXPERIMENT WITH J TREATMENTS

Consider a finite population of N experimental units, each of which can be exposed to any

one of J treatments. Let Yi(j) denote the potential outcome (Neyman, 1923; Rubin, 1974) of unit

i when assigned to treatment level j (i = 1, . . . , N ; j = 1, . . . , J ). For two different treatment

levels j and j′, we define the unit-level treatment effect as τi(j, j′) = Yi(j) − Yi(j
′) and the

population-level treatment effect as

τ (j, j′) = N−1
N

∑

i=1

τi(j, j′) = N−1
N

∑

i=1

{Yi(j) − Yi(j
′)} ≡ Ȳ·(j) − Ȳ·(j

′),

where Ȳ·(j) = N−1
∑N

i=1 Yi(j) is the average of the N potential outcomes for treatment j. For

treatment level j = 1, . . . , J , define pj = Nj/N as the proportion of the units and S2
· (j) =

(N − 1)−1
∑N

i=1{Yi(j) − Ȳ·(j)}
2 as the finite-population variance of the potential outcomes.

The treatment assignment mechanism can be represented by the binary random variable Wi(j),

which equals 1 if the ith unit is assigned to treatment j and 0 otherwise. Equivalently, it can

be represented by the discrete random variable Wi =
∑J

j=1 jWi(j), the treatment received by

unit i. Let (W1, . . . , WN ) be the treatment assignment vector, and let (w1, . . . , wN ) denote its

realization. For the N =
∑J

j=1 Nj units, (N1, . . . , NJ ) are assigned at random to treatments

(1, . . . , J ), respectively, and the treatment assignment mechanism satisfies pr{(W1, . . . , WN ) =

(w1, . . . , wN )} =
∏J

j=1 Nj!/N ! if
∑N

i=1 Wi(j) = Nj and 0 otherwise. The observed outcome of

unit i is a deterministic function of the treatment it has received and the potential outcomes, given

by Y obs
i =

∑J
j=1 Wi(j)Yi(j).

3. THE FISHER RANDOMIZATION TEST UNDER THE SHARP NULL HYPOTHESIS

Fisher (1935) was interested in testing the following sharp null hypothesis of zero individual

treatment effects:

H0F : Yi(1) = · · · = Yi(J ) (i = 1, . . . , N ).

Under H0F, all J potential outcomes Yi(1), . . . , Yi(J ) equal the observed outcome Y obs
i , for all

units i = 1, . . . , N . Thus any possible realization of the treatment assignment vector would gen-

erate the same vector of observed outcomes. This means that under H0F and given any realization

(W1, . . . , WN ) = (w1, . . . , wN ), the observed outcomes are fixed. Consequently, the random-

ization distribution or null distribution of any test statistic, which is a function of the observed

outcomes and the treatment assignment vector, is its distribution over all possible realizations of

the treatment assignment. The p-value is the tail probability measuring the extremeness of the

test statistic with respect to its randomization distribution. Computationally, we can enumerate

or simulate a subset of all possible randomizations to obtain the randomization distribution
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of any test statistic and thus perform the Fisher randomization test (Fisher, 1935; Imbens &

Rubin, 2015). Fisher (1925) suggested using the F statistic to test the departure from H0F. Define

Ȳ obs
· (j) = N−1

j

∑N
i=1 Wi(j)Y

obs
i as the sample average of the observed outcomes within treatment

level j, and define Ȳ obs
· = N−1

∑N
i=1 Y obs

i as the sample average of all the observed outcomes.

Let s2
obs(j) = (Nj −1)−1

∑N
i=1 Wi(j){Y

obs
i − Ȳ obs

· (j)}2 and s2
obs = (N −1)−1

∑N
i=1(Y

obs
i − Ȳ obs

· )2

be the corresponding sample variances with divisors Nj − 1 and N − 1, respectively. Let

SST =

J
∑

j=1

Nj{Ȳ
obs
· (j) − Ȳ obs

· }2

be the treatment sum of squares, and let

SSR =

J
∑

j=1

∑

i: Wi(j)=1

{Y obs
i − Ȳ obs

· (j)}2 =

J
∑

j=1

(Nj − 1)s2
obs(j)

be the residual sum of squares. The treatment and residual sums of squares add up to the total

sum of squares
∑N

i=1(Y
obs
i − Ȳ obs

· )2 = (N − 1)s2
obs. The F statistic

F =
SST/(J − 1)

SSR/(N − J )
≡

MST

MSR
(1)

is defined as the ratio of the treatment mean square MST = SST/(J − 1) to the residual mean

square MSR = SSR/(N − J ).

The distribution of (1) under H0F can be well approximated by an FJ−1,N−J distribution with

degrees of freedom J −1 and N −J , as is often used in the analysis of variance table obtained from

fitting a normal linear model. Although it is relatively easy to show that (1) follows FJ−1,N−J if

the observed outcomes follow a normal linear model drawn from a superpopulation, arriving at

such a result via a purely randomization-based argument is nontrivial. Below, we state a known

result on the approximate randomization distribution of (1), and throughout our discussion we

assume the following regularity conditions required by the finite-population central limit theorem

for causal inference (Li & Ding, 2017).

Condition 1. As N → ∞, for all j, Nj/N has a positive limit, Ȳ·(j) has a finite limit, S2
· (j)

has a finite and positive limit, and N−1 max1!i!N |Yi(j) − Ȳ·(j)|
2

→ 0.

THEOREM 1. Assume H0F. Over repeated sampling of (W1, . . . , WN ), the expectations of the

residual and treatment sums of squares are E(SST) = (J − 1)s2
obs and E(SSR) = (N − J )s2

obs,

and as N → ∞, the asymptotic distribution of (1) is

F
·
∼

χ2
J−1/(J − 1)

{(N − 1) − χ2
J−1}/(N − J )

·
∼ χ2

J−1/(J − 1)
·
∼ FJ−1,N−J .

Remark 1. In Theorem 1 and the following discussion, we use the notation AN
·
∼ BN to

represent two sequences of random variables {AN }∞N=1 and {BN }∞N=1 that have the same asymp-

totic distribution as N → ∞. The original F approximation for randomization inference for a

finite population was derived by cumbersome moment matching between the statistic (1) and

the corresponding FJ−1,N−J distribution (Welch, 1937; Pitman, 1938; Kempthorne, 1952). In
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the Supplementary Material, we give a simpler proof based on the finite-population central limit

theorem, similar to Silvey (1954).

Remark 2. Under H0F, the total sum of squares is fixed, but its components SST and SSR are

random through the treatment assignment (W1, . . . , WN ), and their expectations are calculated

with respect to the distribution of the treatment assignment. Also, the ratio of the expectations of

the numerator MST and the denominator MSR of (1) is 1 under H0F.

4. SAMPLING PROPERTIES OF THE F STATISTIC UNDER NEYMAN’S NULL HYPOTHESIS

In § 3 we discussed the randomization distribution, i.e., the sampling distribution under H0F,

of the F statistic in (1). However, the sampling distribution of the F statistic under Neyman’s

null hypothesis of no average treatment effect (Neyman, 1923, 1935),

H0N : Ȳ·(1) = · · · = Ȳ·(J ),

is often of interest but has received limited attention (Imbens & Rubin, 2015). This hypothesis

imposes weaker restrictions on the potential outcomes than H0F, making it impossible to compute

the corresponding exact, or even approximate, distribution of F . However, analytical expressions

for E(SST) and E(SSR) can be derived under H0N along the lines of Theorem 1, and can be used

to gain insights into the consequences of testing H0N using the Fisher randomization test with F .

Let Ȳ·(·) =
∑J

j=1 pjȲ·(j) and S2 =
∑J

j=1 pjS
2
· (j) be the weighted averages of the finite-

population means and variances. The sampling distribution of F depends crucially on the finite-

population variance of the unit-level treatment effects,

S2
τ (j, j′) = (N − 1)−1

N
∑

i=1

{τi(j, j′) − τ (j, j′)}2.

DEFINITION 1. The potential outcomes {Yi(j) : i = 1, . . . , N ; j = 1, . . . , J } have strictly

additive treatment effects if for all j |= j′ the unit-level treatment effects τi(j, j′) are the same for

i = 1, . . . , N or, equivalently, if S2
τ (j, j′) = 0 for all j |= j′.

Kempthorne (1955) obtained the following result for balanced designs with pj = 1/J under

the assumption of strict additivity:

E(SSR) = (N − J )S2, E(SST) =
N

J

J
∑

j=1

{Ȳ·(j) − Ȳ·(·)}
2 + (J − 1)S2. (2)

This result implies that with balanced treatment assignments and strict additivity,

E(MSR−MST)=0 under H0N, and it provides a heuristic justification for testing H0N using the

Fisher randomization test with the F statistic. However, strict additivity combined with H0N

implies H0F, for which this result is already known by Theorem 1. We will now derive results

that do not require strict additivity, and thus are more general than those in Kempthorne (1955).

For this purpose, we introduce a measure of deviation from additivity. Let

# =
∑ ∑

j<j′

pjpj′S
2
τ (j, j′)
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be a weighted average of the variances of unit-level treatment effects. By Definition 1, # = 0

under strict additivity. If strict additivity does not hold, i.e., if there is treatment effect hetero-

geneity, then # |= 0. Thus # is a measure of the deviation from additivity and plays a crucial

role in the following results on the sampling distribution of the F statistic.

THEOREM 2. Over repeated sampling of (W1, . . . , WN ), the expectation of the residual sum of

squares is E(SSR) =
∑J

j=1(Nj − 1)S2
· (j), and the expectation of the treatment sum of squares is

E(SST) =

J
∑

j=1

Nj

{

Ȳ·(j) − Ȳ·(·)
}2

+

J
∑

j=1

(1 − pj)S
2
· (j) − #,

which reduces to E(SST) =
∑J

j=1(1 − pj)S
2
· (j) − # under H0N.

COROLLARY 1. Under H0N with strict additivity in Definition 1 or, equivalently, under H0F, the

results in Theorem 2 reduce to E(SSR) = (N − J )S2 and E(SST) = (J − 1)S2, which coincide

with the statements in Theorem 1.

COROLLARY 2. For a balanced design with pj = 1/J ,

E(SSR) = (N − J )S2, E(SST) =
N

J

J
∑

j=1

{Ȳ·(j) − Ȳ·(·)}
2 + (J − 1)S2

− #.

Furthermore, under H0N, E(SSR) = (N − J )S2 and E(SST) = (J − 1)S2
− #, implying that

the difference between the residual mean square and treatment mean square is E(MSR − MST) =

#/(J − 1) ! 0.

The result in (2) is a special case of Corollary 2 for # = 0. Corollary 2 implies that, for

balanced designs, if the assumption of strict additivity does not hold, then testing H0N using

the Fisher randomization test with the F statistic may be conservative, in the sense that it may

reject a null hypothesis less often than the nominal level. However, for unbalanced designs, the

conclusion is not definite, as can be seen from the following corollary.

COROLLARY 3. Under H0N, the difference between the residual and treatment mean square is

E(MSR − MST) =
(N − 1)J

(J − 1)(N − J )

J
∑

j=1

(pj − J −1)S2
· (j) +

#

J − 1
.

Corollary 3 shows that the residual mean square may be larger or smaller than that of

the treatment, depending on the balance or lack thereof in the experiment and the variances

of the potential outcomes. Under H0N, when the pj and S2
· (j) are positively associated, the

Fisher randomization test using F tends to be conservative; when the pj and S2
· (j) are negatively

associated, the Fisher randomization test using F may not control correct Type I error.

5. A TEST STATISTIC THAT CONTROLS TYPE I ERROR MORE PRECISELY THAN F

To address the failure of the F statistic to control Type I error of the Fisher randomization

test under H0N in unbalanced experiments, we propose to use (3) for the Fisher random-

ization test. Let Q̂j = Nj/s2
obs(j), and define the weighted average of the sample means as

Downloaded from https://academic.oup.com/biomet/article-abstract/105/1/45/4582744
by guest
on 12 February 2018



50 P. DING AND T. DASGUPTA

Ȳ obs
w =

∑J
j=1 Q̂jȲ

obs
· (j)/

∑J
j=1 Q̂j. Define

X 2 =

J
∑

j=1

Q̂j

{

Ȳ obs
· (j) − Ȳ obs

w

}2
. (3)

This test statistic has been exploited in classical analysis of variance (e.g., James, 1951; Welch,

1951; Johansen, 1980; Rice & Gaines, 1989; Weerahandi, 1995; Krishnamoorthy et al., 2007)

based on the normal linear model with heteroskedasticity, and a similar idea called studentization

has been adopted in permutation tests (e.g., Neuhaus, 1993; Janssen, 1997, 1999; Janssen &

Pauls, 2003; Chung & Romano, 2013; Pauly et al., 2015).

Replacing F with (3) does not affect the validity of the Fisher randomization test for testing

H0F, because we always have an exact test for H0F no matter which test statistic we use. We show

below that the Fisher randomization test using X 2 can also control the asymptotic Type I error

for testing H0N, so the Fisher randomization test using X 2 can control the Type I error under both

H0F and H0N asymptotically, making X 2 a more attractive choice than the classical F statistic for

the Fisher randomization test.

THEOREM 3. Under H0F, the asymptotic distribution of X 2 is χ2
J−1 as N → ∞. Under H0N, the

asymptotic distribution of X 2 is stochastically dominated by χ2
J−1, i.e., for any constant a > 0,

limN→∞ pr(X 2 ! a) " pr(χ2
J−1 ! a).

Remark 3. Under H0F, the randomization distribution of SST/s2
obs follows χ2

J−1 asymptoti-

cally, as shown in the Supplementary Material. Under H0N, however, the asymptotic distribution

of SST/s2
obs is not χ2

J−1, and the asymptotic distribution of F is not FN−J ,J−1 as suggested by

Corollary 3. Fortunately, if we weight each treatment square by the inverse of the sample variance

of the outcomes, the resulting X 2 statistic preserves the asymptotic χ2
J−1 randomization distri-

bution under H0F and has an asymptotic distribution that is stochastically dominated by χ2
J−1

under H0N.

Therefore, under H0N, the Type I error of the Fisher randomization test using X 2 does not

exceed the nominal level.Although we can perform the Fisher randomization test by enumerating

or simulating from all possible realizations of the treatment assignment, Theorem 3 suggests that

an asymptotic rejection rule against H0F or H0N is X 2 > x1−α , the 1 − α quantile of the χ2
J−1

distribution. Because the asymptotic distribution of X 2 under H0N is stochastically dominated

by χ2
J−1, its true 1 − α quantile is asymptotically smaller than x1−α , and the corresponding

Fisher randomization test is conservative in the sense of having smaller Type I error than the

nominal level asymptotically.

Remark 4. The asymptotic conservativeness described above is not particular to our test statis-

tic, but rather a feature of the finite-population inference (Neyman, 1923; Aronow et al., 2014;

Imbens & Rubin, 2015). It distinguishes Theorem 3 from previous results on permutation tests

(e.g., Chung & Romano, 2013; Pauly et al., 2015), where the conservativeness did not appear

and the correlation between the potential outcomes played no role in the theory.

The form of (3) suggests its difference from F when the potential outcomes have different vari-

ances under different treatment levels. Otherwise we show that they are asymptotically equivalent

in the following sense.

COROLLARY 4. If S2
· (1) = · · · = S2

· (J ), then (J − 1)F
·
∼ X 2.
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Under strict additivity in Definition 1, the condition S2
· (1) = · · · = S2

· (J ) holds, and the

equivalence between (J − 1)F and X 2 guarantees that the Fisher randomization tests using F

and X 2 have the same asymptotic Type I error and power. However, Corollary 4 is a large-sample

result; we evaluate it in finite samples in the Supplementary Material.

6. SIMULATION

6·1. Type I error of the Fisher randomization test using F

In this subsection, we use simulation to evaluate the finite-sample performance of the

Fisher randomization test using F under H0N. We consider the following three cases, where

N (µ, σ 2) denotes a normal distribution with mean µ and variance σ 2. We choose significance

level 0·05 for all tests.

Case 1. For balanced experiments with sample sizes N = 45 and N = 120, we generate

potential outcomes under two settings: (1A) Yi(1) ∼ N (0, 1), Yi(2) ∼ N (0, 1·22) and Yi(3) ∼

N (0, 1·52); (1B) Yi(1) ∼ N (0, 1), Yi(2) ∼ N (0, 22) and Yi(3) ∼ N (0, 32). These potential

outcomes are independently generated and standardized to have zero mean.

Case 2. For unbalanced experiments with sample sizes (N1, N2, N3) = (10, 20, 30) and

(N1, N2, N3) = (20, 30, 50), we generate potential outcomes under two settings: (2A) Yi(1) ∼

N (0, 1), Yi(2) = 2Yi(1) and Yi(3) = 3Yi(1); (2B) Yi(1) ∼ N (0, 1), Yi(2) = 3Yi(1) and

Yi(3) = 5Yi(1). These potential outcomes are standardized to have zero mean. In this case,

p1 < p2 < p3 and S2
· (1) < S2

· (2) < S2
· (3).

Case 3. For unbalanced experiments with sample sizes (N1, N2, N3) = (30, 20, 10) and

(N1, N2, N3) = (50, 30, 20), we generate potential outcomes under two settings: (3A) Yi(1) ∼

N (0, 1), Yi(2) = 2Yi(1) and Yi(3) = 3Yi(1); (3B) Yi(1) ∼ N (0, 1), Yi(2) = 3Yi(1) and

Yi(3) = 5Yi(1). These potential outcomes are standardized to have zero mean. In this case,

p1 > p2 > p3 and S2
· (1) < S2

· (2) < S2
· (3).

Once generated, the potential outcomes are treated as fixed constants. Over 2000 simulated ran-

domizations, we calculate the observed outcomes and then perform the Fisher randomization test

using F to approximate the p-values by 2000 draws of the treatment assignment. The histograms

of the p-values are shown in Figs. 1(a)–(c) corresponding to cases 1–3 above. In the next few para-

graphs we report the rejection rates associated with these cases along with their standard errors.

In Fig. 1(a), the Fisher randomization test using F is conservative with p-values distributed

towards 1. With greater heterogeneity in the potential outcomes, the histograms of the p-values

have larger masses near 1. For case (1A) the rejection rates are 0·010 and 0·018, and for case

(1B) the rejection rates are 0·023 and 0·016, for sample sizes N = 45 and N = 120 respectively,

with all Monte Carlo standard errors no greater than 0·003.

In Fig. 1(b), the sample sizes under each treatment level are increasing in the variances of

the potential outcomes. The Fisher randomization test using F is conservative with p-values dis-

tributed towards 1. Similar to Fig. 1(a), when there is greater heterogeneity in the potential

outcomes, the p-values have larger masses near 1. For case (2A) the rejection rates are 0·016 and

0·014, and for case (2B) the rejection rates are 0·015 and 0·011, for sample sizes N = 45 and

N = 120 respectively, with all Monte Carlo standard errors no greater than 0·003.

In Fig. 1(c), the sample sizes under different treatment levels are decreasing in the variances of

the potential outcomes. For case (3A) the rejection rates are 0·133 and 0·126, and for case (3B) the

rejection rates are 0·189 and 0·146, for sample sizes N = 45 and N = 120 respectively, with all

Monte Carlo standard errors no greater than 0·009. The Fisher randomization test using F does
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Fig. 1. Histograms of the p-values under H0N based on the Fisher randomization tests using F : (a) balanced experiments,
case 1; (b) unbalanced experiments, case 2; (c) unbalanced experiments, case 3. Grey and white histograms correspond

to the subcases A and B, respectively.
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Fig. 2. Histograms of the p-values under H0N based on the Fisher randomization tests using X 2: (a) balanced exper-
iments, case 1; (b) unbalanced experiments, case 2; (c) unbalanced experiments, case 3. Grey and white histograms

correspond to the subcases A and B, respectively.

not preserve correct Type I error, with p-values distributed towards 0. With greater heterogeneity

in the potential outcomes, the p-values have larger masses near 0.

These empirical findings agree with our theory in § 4; that is, if the sample sizes under differ-

ent treatment levels are decreasing in the sample variances of the observed outcomes, then the

Fisher randomization test using F may not yield correct Type I error under H0N.

6·2. Type I error of the Fisher randomization test using X 2

Figure 2 shows the same simulation as in Fig. 1, but with test statistic X 2.

Figure 2(a) is similar to Fig. 1(a). For case (1A) the rejection rates are 0·016 and 0·012, and

for case (1B) the rejection rates are 0·014 and 0·010, for sample sizes N = 45 and N = 120

respectively, with all Monte Carlo standard errors no greater than 0·003.
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Figure 2(b) shows better performance of the Fisher randomization test using X 2 than in

Fig. 1(b), with p-values closer to uniform. For case (2A) the rejection rates are 0·032 and 0·038,

and for case (2B) the rejection rates are 0·026 and 0·030, for sample sizes N = 45 and N = 120

respectively, with all Monte Carlo standard errors no greater than 0·004.

Figure 2(c) shows much better performance of the Fisher randomization test using X 2 than

in Fig. 1(c), because the p-values are much closer to uniform. For case (3A) the rejection rates

are 0·052 and 0·042, and for case (3B) the rejection rates are 0·048 and 0·040, for sample sizes

N = 45 and N = 120 respectively, with all Monte Carlo standard errors no greater than 0·005.

This agrees with our theory that the Fisher randomization test using X 2 can control the asymptotic

Type I error under H0N.

6·3. Power comparison of the Fisher randomization tests using F and X 2

In this subsection, we compare the powers of the Fisher randomization tests using F and X 2

under alternative hypotheses. We consider the following cases.

Case 4. For balanced experiments with sample sizes N = 30 and N = 45, we generate

potential outcomes from Yi(1) ∼ N (0, 1), Yi(2) ∼ N (0, 22) and Yi(3) ∼ N (0, 32). These

potential outcomes are independently generated and transformed to have means (0, 1, 2).

Case 5. For unbalanced experiments with sample sizes (N1, N2, N3) = (10, 20, 30) and

(N1, N2, N3) = (20, 30, 50), we first generate Yi(1) ∼ N (0, 1) and standardize them to have mean

zero; we then generate Yi(2) = 3Yi(1) + 1 and Yi(3) = 5Yi(1) + 2. In this case, p1 < p2 < p3

and S2
· (1) < S2

· (2) < S2
· (3).

Case 6. For unbalanced experiments with sample sizes (N1, N2, N3) = (30, 20, 10) and

(N1, N2, N3) = (50, 30, 20), we generate potential outcomes in the same way as in case 5 above.

In this case, p1 > p2 > p3 and S2
· (1) < S2

· (2) < S2
· (3).

Over 2000 simulated datasets, we perform the Fisher randomization test using F and X 2 and

obtain the p-values by 2000 draws of the treatment assignment. The histograms of the p-values,

shown in Figs. 3(a)–(c), correspond to cases 4–6 above. The Monte Carlo standard errors for the

rejection rates are all close to but no greater than 0·011.

For case 4, the rejection rates using X 2 and F are respectively 0·290 and 0·376 with sample size

N = 30, and 0·576 and 0·692 with sample size N = 45. For case 5, the powers using X 2 and F

are respectively 0·178 and 0·634 with sample size N = 60, and 0·288 and 0·794 with sample size

N = 100. Therefore, when the experiments are balanced or when the sample sizes are positively

associated with the variances of the potential outcomes, the Fisher randomization test using F

has higher power than that using X 2.

For case 6, the rejection rates using X 2 and F are respectively 0·494 and 0·355 with

sample size N = 60, and 0·642 and 0·576 with sample size N = 100. Therefore, when

the sample sizes are negatively associated with the variances of the potential outcomes, the

Fisher randomization test using F has lower power than that using X 2.

6·4. Simulation studies under other distributions and applications

In the Supplementary Material, we give more numerical examples. First, we conduct simulation

studies that parallel those in § § 6·1–6·3 but have outcomes generated from exponential distribu-

tions. The conclusions are nearly identical to those in § § 6·1–6·3, because the finite-population

central limit theorem holds under mild moment conditions without distributional assumptions.

Second, we use two numerical examples to illustrate the conservativeness issue in Theorem 3.

Third, we compare the different behaviours of the Fisher randomization tests using F and X 2 in

two real-life examples.
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Fig. 3. Histograms of the p-values under alternative hypotheses based on the Fisher randomization tests using F and
X 2: (a) balanced experiments, case 4; (b) unbalanced experiments, case 5; (c) unbalanced experiments, case 6. Grey

histograms correspond to X 2 and white histograms to F .

7. DISCUSSION

As shown in the proofs of Theorems 1 and 3 in the Supplementary Material, we need to analyse

the eigenvalues of the covariance matrix of {Ȳ obs
· (1), . . . , Ȳ obs

· (J )} to obtain the properties of F and

X 2 for general J > 2. Moreover, by considering the case of J = 2 we can gain more insight and

make connections with existing literature. For j |= j′, an unbiased estimator for τ (j, j′) is τ̂ (j, j′) =

Ȳ obs
· (j)−Ȳ obs

· (j′), which has sampling variance var{τ̂ (j, j′)} = S2
· (j)/Nj+S2

· (j′)/Nj′ −S2
τ (j, j′)/N

and a conservative variance estimator s2
obs(j)/Nj + s2

obs(j
′)/Nj′ (Neyman, 1923).

COROLLARY 5. When J = 2, the F and X 2 statistics reduce to

F ≈

τ̂ 2(1, 2)

s2
obs(1)/N2 + s2

obs(2)/N1

, X 2 =
τ̂ 2(1, 2)

s2
obs(1)/N1 + s2

obs(2)/N2

,

where the approximation for F is due to ignoring the difference between N and N − 2 and the

difference between Nj and Nj − 1 (j = 1, 2). Under H0F, F
·
∼ χ2

1 and X 2 ·
∼ χ2

1 . Under H0N,

F
·
∼ C1χ

2
1 and X 2 ·

∼ C2χ
2
1 , where

C1 = lim
N→+∞

var{τ̂ (1, 2)}

S2
· (1)/N2 + S2

· (2)/N1
, C2 = lim

N→+∞

var{τ̂ (1, 2)}

S2
· (1)/N1 + S2

· (2)/N2
" 1. (4)

Depending on the sample sizes and the finite-population variances, C1 can be either larger

or smaller than 1. Consequently, using F in the Fisher randomization test can be conservative or

anticonservative for testing H0N. In contrast, C2 is always no larger than 1, and therefore using X 2

in the Fisher randomization test is conservative for testing H0N. Neyman (1923) proposed using

the square root of X 2 to test H0N based on a normal approximation, which is asymptotically

equivalent to the Fisher randomization test using X 2. Both are conservative unless the unit-level

treatments are constant.

In practice, for treatment-control experiments, the difference-in-means statistic τ̂ (1, 2) has

been widely used in the Fisher randomization test (Imbens & Rubin, 2015); it, however, can
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yield either conservative or anticonservative tests for H0N, as shown by Gail et al. (1996), Lin

et al. (2017) and Ding (2017) using numerical examples. We formally state this result below,

recognizing the equivalence between τ̂ (1, 2) and F in a two-sided test.

COROLLARY 6. When J = 2, the two-sided Fisher randomization test using τ̂ (1, 2) is equivalent

to using

T 2 =
τ̂ 2(1, 2)

Ns2
obs/(N1N2)

≈

τ̂ 2(1, 2)

s2
obs(1)/N2 + s2

obs(2)/N1 + τ̂ 2(1, 2)/N
,

where the approximation is due to ignoring the difference between (N , N1 − 1, N2 − 1) and

(N , N1, N2). Under H0F, T 2 ·
∼ F

·
∼ χ2

1 , and under H0N, T 2 ·
∼ F

·
∼ C1χ

2
1 with C1 defined in (4).

Remark 5. Analogously, under the superpopulation model, Romano (1990) showed that the

Fisher randomization test using τ̂ (1, 2) can be conservative or anticonservative for testing the

hypothesis of equal means of two samples. Janssen (1997, 1999) and Chung & Romano (2013)

suggested using the studentized statistic, or equivalently X 2, to remedy the problem of possibly

inflated Type I error, which is asymptotically exact under the superpopulation model.

After rejecting either H0F or H0N, it is often of interest to test pairwise hypotheses; that is, for

j |= j′, Yi(j) = Yi(j
′) for all i, or Ȳ·(j) = Ȳ·(j

′). According to Corollaries 5 and 6, we recommend

using the Fisher randomization test with test statistic τ̂ 2(j, j′)/{s2
obs(j)/Nj + s2

obs(j
′)/Nj′}, which

will yield conservative Type I error even if the experiment is unbalanced and the variances of the

potential outcomes vary across treatment groups.

The analogy between our finite-population theory and the superpopulation theory of Chung

& Romano (2013) suggests that similar results may also hold for layouts of higher order and

other test statistics (Pauly et al., 2015; Chung & Romano, 2016a,b; Friedrich et al., 2017). In

more complex experimental designs, often multiple effects are of interest simultaneously, giving

rise to the problem of multiple testings (Chung & Romano, 2016b). We leave these questions to

future work.
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§S1 presents the proofs, §S2 contains examples, and §S3 gives additional simulation.

S1. PROOFS

To prove the theorems, we need the following lemmas about completely randomized experi-

ments. 15

LEMMA S1. The treatment assignment indicator Wi(j) is a Bernoulli random variable with

mean pj = Nj/N and variance pj(1− pj). The covariances of the treatment assignment indi-

cators are

cov{Wi(j),Wi0(j)} = −pj(1− pj)/(N − 1), (i 6= i0)
cov{Wi(j),Wi(j

0)} = −pjpj0 , (j 6= j0)
cov{Wi(j),Wi0(j

0)} = pjpj0/(N − 1), (i 6= i0, j 6= j0).

Proof of Lemma S1. The proof is straightforward. ⇤

LEMMA S2. Assume (c1, . . . , cN ) and (d1, . . . , dN ) are two fixed vectors with means c̄ and

d̄, finite-population variances S2
c and S2

d . The finite-population covariance is Scd = (S2
c + S2

d −
S2
c-d)/2, where S2

c-d is the finite-population variance of (c1 − d1, . . . , cN − dN ). For j 6= j0,

var

(

1

Nj

N
X

i=1

Wi(j)ci

)

=
1− pj
Nj

S2
c , cov

(

1

Nj

N
X

i=1

Wi(j)ci,
1

Nj0

N
X

i=1

Wi(j
0)di

)

= −
Scd

N
.



2 PENG DING AND TIRTHANKAR DASGUPTA

Proof of Lemma S2. Lemma S2 is known, and its special forms appeared in Kempthorne

(1955). We give an elementary proof for completeness. Applying Lemma S1, we have

var

(

1

Nj

N
X

i=1

Wi(j)ci

)

=
1

N2
j

var

(

N
X

i=1

Wi(j)(ci − c̄)

)

=
1

N2
j

8

<

:

N
X

i=1

var{Wi(j)}(ci − c̄)2 −
XX

i 6=i0

cov{Wi(j),Wi0(j)}(ci − c̄)(ci0 − c̄)

9

=

;

=
1

N2
j

8

<

:

N
X

i=1

pj(1− pj)(ci − c̄)2 −
XX

i 6=i0

pj(1− pj)

N − 1
(ci − c̄)(ci0 − c̄)

9

=

;

=
1

N2
j

(

pj(1− pj)

N
X

i=1

(ci − c̄)2 +
pj(1− pj)

N − 1

N
X

i=1

(ci − c̄)2

)

=
1− pj
Nj

S2
c .

For j 6= j0, applying Lemma S1 again, we have

cov

(

1

Nj

N
X

i=1

Wi(j)ci,
1

N 0
j

N
X

i=1

Wi(j
0)di

)

=
1

NjNj0
cov

(

N
X

i=1

Wi(j)(ci − c̄),

N
X

i=1

Wi(j
0)(di − d̄)

)

=
1

NjNj0

(

N
X

i=1

cov{Wi(j),Wi(j
0)}(ci − c̄)(di − d̄)

+
XX

i 6=i0

cov{Wi(j),Wi0(j
0)}(ci − c̄)(di0 − d̄)

9

=

;

=
1

NjNj0

8

<

:

−
N
X

i=1

pjpj0(ci − c̄)(di − d̄) +
XX

i 6=i0

pjpj0

N − 1
(ci − c̄)(di0 − d̄)

9

=

;

= −
1

NjNj0

(

pjpj0
N
X

i=1

(ci − c̄)(di − d̄) +
pjpj0

N − 1

N
X

i=1

(ci − c̄)(di − d̄)

)

= −Scd/N. ⇤

Proof of Theorem 1. Under H0F, {Y obs
i : i = 1, . . . , N} and SS = (N − 1)s2obs are fixed. Be-

cause {Y obs
i : Wi(j) = 1} is a simple random sample from the finite population {Y obs

i : i =
1, . . . , N}, the sample mean Ȳ obs

· (j) is unbiased for the population mean Ȳ obs
· , and the sample
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variance s2obs(j) is unbiased for the population variance s2obs. Therefore,

E(SSR) =

J
X

j=1

E
{

(Nj − 1)s2obs(j)
 

=

J
X

j=1

(Nj − 1)s2obs = (N − J)s2obs,

which further implies that

E(SST) = SS − E(SSR) = (N − 1)s2obs − (N − J)s2obs = (J − 1)s2obs.

Applying Lemma S2, we have 20

var{Ȳ obs
· (j)} =

1− pj
Nj

s2obs, cov{Ȳ obs
· (j), Ȳ obs

· (j0)} = −
s2obs

N
. (S1)

Therefore, the finite-population central limit theorem (Li & Ding, 2017, Theorem 5), coupled

with the variance and covariance formulae in (S1), implies

V ⌘

2

6

6

6

6

4

N
1/2
1 {Ȳ obs

· (1)− Ȳ obs
· }

N
1/2
2 {Ȳ obs

· (2)− Ȳ obs
· }

...

N
1/2
J {Ȳ obs

· (J)− Ȳ obs
· }

3

7

7

7

7

5

.
⇠ NJ

2

6

6

6

6

4

0, s2obs

0

B

B

B

B

@

1− p1 −p
1/2
1 p

1/2
2 · · · −p

1/2
1 p

1/2
J

−p
1/2
2 p

1/2
1 1− p2 · · · −p

1/2
2 p

1/2
J

...
...

−p
1/2
J p

1/2
1 −p

1/2
J p

1/2
2 · · · 1− pJ

1

C

C

C

C

A

3

7

7

7

7

5

,

where NJ denotes a J-dimensional normal random vector. The above asymptotic covariance

matrix can be simplified as s2obs(IJ − qqT) ⌘ s2obsP , where IJ is the J ⇥ J identity matrix, and

q = (p
1/2
1 , . . . , p

1/2
J )T. The matrix P is a projection matrix of rank J − 1, which is orthogonal to

the vector q. Consequently, the treatment sum of squares can be represented as SST = V TV
.
⇠

χ2
J−1s

2
obs, and the F statistic can be represented as 25

F =
SST/(J − 1)

{(N − 1)s2obs − SST}/(N − J)

.
⇠

χ2
J−1s

2
obs/(J − 1)

{(N − 1)s2obs − χ2
J−1s

2
obs}/(N − J)

=
χ2
J−1/(J − 1)

{(N − 1)− χ2
J−1}/(N − J)

.
⇠ FJ−1,N−J

.
⇠ χ2

J−1/(J − 1). ⇤

Proof of Theorem 2. First, because Ȳ obs
· (j) =

PN
i=1Wi(j)Yi(j)/Nj , Lemma S2 implies that

Ȳ obs
· (j) has mean Ȳ·(j) and variance (1− pj)S

2
· (j)/Nj , and

cov{Ȳ obs
· (j), Ȳ obs

· (j0)} = cov

(

1

Nj

N
X

i=1

Wi(j)Yi(j),
1

Nj0

N
X

i=1

Wi(j
0)Yi(j

0)

)

= −
1

2N
{S2

· (j) + S2
· (j

0)− S2
τ (j, j

0)}.
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Therefore,

var(Ȳ obs
· ) =

J
X

j=1

p2jvar{Ȳ obs
· (j)}+

XX

j 6=j0

pjpj0cov{Ȳ obs
· (j), Ȳ obs

· (j0)}

=

J
X

j=1

p2j
1− pj
Nj

S2
· (j)−

XX

j 6=j0

pjpj0
1

2N
{S2

· (j) + S2
· (j

0)− S2
τ (j, j

0)}

=
1

N

8

<

:

J
X

j=1

pj(1− pj)S
2
· (j)

−
1

2

XX

j 6=j0

pjpj0S
2
· (j)−

1

2

XX

j 6=j0

pjpj0S
2
· (j

0) +
1

2

XX

j 6=j0

pjpj0S
2
τ (j, j

0)

9

=

;

.

Because

XX

j 6=j0

pjpj0S
2
· (j) =

J
X

j=1

pj(1− pj)S
2
· (j),

XX

j 6=j0

pjpj0S
2
· (j

0) =
J
X

j=1

pj0(1− pj0)S
2
· (j

0) =
J
X

j=1

pj(1− pj)S
2
· (j),

the variance of Ȳ obs
· reduces to

var(Ȳ obs
· ) = (2N)−1

XX

j 6=j0

pjpj0S
2
τ (j, j

0) = ∆/N.

Second,30

cov{Ȳ obs
· (j), Ȳ obs

· } = pjvar{Ȳ obs
· (j)}+

X

j0 6=j

pj0cov{Ȳ obs
· (j), Ȳ obs

· (j0)}

=
1

N
(1− pj)S

2
· (j)−

1

2N

X

j0 6=j

pj0{S
2
· (j) + S2

· (j
0)− S2

τ (j, j
0)}.

We further define
P

j0 6=j pj0S
2
τ (j, j

0) = ∆j . Because

X

j0 6=j

pj0S
2
· (j) = (1− pj)S

2
· (j),

X

j0 6=j

pj0S
2
· (j

0) = S2 − pjS
2
· (j),

the covariance between Ȳ obs
· (j) and Ȳ obs

· reduces to

cov{Ȳ obs
· (j), Ȳ obs

· } = (2N)−1
{

2(1− pj)S
2
· (j)− (1− pj)S

2
· (j)− S2 + pjS

2
· (j) + ∆j

 

= (2N)−1
{

S2
· (j)− S2 +∆j

 

.

Third, Ȳ obs
· (j)− Ȳ obs

· has mean Ȳ·(j)−
PJ

j=1 pj Ȳ·(j) and variance

var{Ȳ obs
· (j)− Ȳ obs

· } = var{Ȳ obs
· (j)}+ var(Ȳ obs

· )− 2cov{Ȳ obs
· (j), Ȳ obs

· }

=
1

N

⇢

1− pj
pj

S2
· (j) + ∆− S2

· (j) + S2 −∆j

}

.
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Finally, the expectation of the treatment sum of squares is

E(SST) = E

2

4

J
X

j=1

Nj{Ȳ
obs
· (j)− Ȳ obs

· }2

3

5

=

J
X

j=1

Nj

8

<

:

Ȳ·(j)−
J
X

j=1

pj Ȳ·(j)

9

=

;

2

+

J
X

j=1

pj

⇢

1− pj
pj

S2
· (j) + ∆− S2

· (j) + S2 −∆j

}

,

which follows from the mean and variance formulas of Ȳ obs
· (j)− Ȳ obs

· . Some algebra gives

E(SST) =

J
X

j=1

Nj

8

<

:

Ȳ·(j)−
J
X

j=1

pj Ȳ·(j)

9

=

;

2

+

J
X

j=1

(1− pj)S
2
· (j) + ∆− S2 + S2 − 2∆

=

J
X

j=1

Nj

8

<

:

Ȳ·(j)−
J
X

j=1

pj Ȳ·(j)

9

=

;

2

+

J
X

j=1

(1− pj)S
2
· (j)−∆.

Under H0N, i.e., Ȳ·(1) = · · · = Ȳ·(J), or, equivalently, Ȳ·(j)−
PJ

j=1 pj Ȳ·(j) = 0 for all j,

the expectation of the treatment sum of squares further reduces to

E(SST) =

J
X

j=1

(1− pj)S
2
· (j)−∆.

Because {Y obs
i : Wi(j) = 1} is a simple random sample from {Yi(j) : i = 1, 2, . . . , N}, the

sample variance is unbiased for the population variance, i.e., E{s2obs(j)} = S2
· (j). Therefore,

the mean of the residual sum of squares is

E(SSR) = E
{

(Nj − 1)s2obs(j)
 

=

J
X

j=1

(Nj − 1)S2
· (j).

This completes the proof. ⇤ 35

Proof of Corollary 1. Additivity implies S2 = S2
· (j) for all j and ∆ = 0, and the conclusions

follow. ⇤

Proof of Corollary 2. For balanced designs, pj = 1/J,Nj = N/J and S2 =
PJ

j=1 S
2
· (j)/J ,

and therefore Theorem 2 implies

E(SSR) =
N − J

J

J
X

j=1

S2
· (j) = (N − J)S2,

E(SST) =
N

J

J
X

j=1

{Ȳ·(j)− Ȳ·(·)}
2 + (J − 1)S2 −∆.

Moreover, under H0N, E(SSR) is unchanged, and E(SST) = (J − 1)S2 −∆. Therefore, the 40

expectation of the mean treatment squares is no larger than the expectation of the mean residual

squares, because E(MSR)− E(MST) = ∆/(J − 1) ≥ 0. ⇤
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Proof of Corollary 3. Under H0N,

E(MSR)− E(MST) =

J
X

j=1

✓

Nj − 1

N − J
−

1− pj
J − 1

◆

S2
· (j) +

∆

J − 1

=
(N − 1)J

(J − 1)(N − J)

J
X

j=1

(pj − J−1)S2
· (j) +

∆

J − 1
. ⇤

To prove Theorem 3, we need the following two lemmas: the first is about the quadratic form

of the multivariate normal distribution, and the second, due to Schur (1911), provides an upper45

bound for the largest eigenvalue of the element-wise product of two matrices. The proof of the

first follows from straightforward linear algebra, and the proof of the second can be found in

Styan (1973, Corollary 3). Below we use A ⇤B to denote the element-wise product of A and B,

i.e, the (i, j)-th element of A ⇤B is the product of the (i, j)-th elements of A and B, AijBij .

LEMMA S3. If X ⇠ NJ(0, A), then XTBX ⇠
PJ

j=1 λjξj , where the ξj’s are iid χ2
1, and the50

λj’s are eigenvalues of BA.

LEMMA S4. If A is positive semidefinite and B is a correlation matrix, then the maximum

eigenvalue of A ⇤B does not exceed the maximum eigenvalue of A.

Proof of Theorem 3. We first prove the result under H0N, and then view the result under H0F

as a special case.55

Let Qj = Nj/S
2
· (j) for j = 1, . . . , J , and Q =

PJ
j=1Qj be their sum. Define qT

w =

(Q
1/2
1 , . . . , Q

1/2
J )/Q1/2, and Pw = IJ − qwq

T

w is a projection matrix of rank J − 1. Let Ȳ obs
w0 =

Q−1
PJ

j=1Qj Ȳ
obs
· (j) be a weighted average of the means of the observed outcomes. Accord-

ing to Li & Ding (2017, Proposition 3), s2obs(j)− S2
· (j) ! 0 in probability (j = 1, . . . , J). By

Slutsky’s Theorem, X2 has the same asymptotic distribution as

X2
0 =

J
X

j=1

Qj

{

Ȳ obs
· (j)− Ȳ obs

w0

 2
.

Define ρjk as the finite-population correlation coefficient of potential outcomes {Yi(j)}
N
i=1 and

{Yi(k)}
N
i=1, and R as the corresponding correlation matrix with (j, k)-th element ρjk. The finite-

population central limit theorem (Li & Ding, 2017, Theorem 5) implies

V0 ⌘

2

6

6

6

6

4

Q
1/2
1 {Ȳ obs

· (1)− Ȳ·(1)}

Q
1/2
2 {Ȳ obs

· (2)− Ȳ·(2)}
...

Q
1/2
J {Ȳ obs

· (J)− Ȳ·(J)}

3

7

7

7

7

5

.
⇠ NJ

2

6

6

6

6

4

0,

0

B

B

B

B

@

1− p1 −p
1/2
1 p

1/2
2 ρ12 · · · −p

1/2
1 p

1/2
J ρ1J

−p
1/2
2 p

1/2
1 ρ21 1− p2 · · · −p

1/2
2 p

1/2
J ρ2J

...
...

−p
1/2
J p

1/2
1 ρJ1 −p

1/2
J p

1/2
2 ρJ2 · · · 1− pJ

1

C

C

C

C

A

= P ⇤R

3

7

7

7

7

5

,

recalling P = IJ − qqT and the element-wise product operator ⇤. In the above, the mean and

covariance matrix of the random vector V0 follow directly from Lemmas S1 and S2.60
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Under H0N with Ȳ·(1) = · · · = Ȳ·(J), we can verify that

X2
0 =

J
X

j=1

Qj{Ȳ
obs
· (j)− Ȳ·(j)}

2 −
1

Q

2

4

J
X

j=1

Qj{Ȳ
obs
· (j)− Ȳ·(j)}

3

5

2

,

which can be further rewritten as a quadratic form (cf. Chung & Romano, 2013)

X2
0 = V T

0 (IJ − qwq
T

w)V0 ⌘ V T

0 PwV0.

According to Lemma S3, X2
0 has asymptotic distribution

PJ−1
j=1 λjξj , where the λj’s are the J −

1 nonzero eigenvalues of Pw(P ⇤R). The summation is from j = 1 to J − 1 because Pw(P ⇤R)
has rank at most J − 1. The eigenvalues (λ1, . . . , λJ−1) are all smaller than or equal to the largest

eigenvalue of P ⇤R, because Pw is a projection matrix. According to Lemma S4, the maximum

eigenvalue of the element-wise product P ⇤R is no larger than the maximum eigenvalue of 65

P , which is 1. Therefore, X2
0

.
⇠
PJ−1

j=1 λjξj , where λj  1 for all j. Because the χ2
J−1 can be

represented as ξ1 + · · ·+ ξJ−1, it is clear that the asymptotic distribution of X2
0 is stochastically

dominated by χ2
J−1.

When performing the Fisher randomization test, we treat all observed outcomes as fixed, and

consequently, the randomization distribution is essentially the repeated sampling distribution of 70

X2 under Yi(1) = · · · = Yi(J) = Y obs
i . This restricts S2

· (j) to be constant, and the correlation

coefficients between potential outcomes to be 1. Correspondingly, Pw = P,R = 1J1
T

J , and the

asymptotic covariance matrix of V0 is P . Applying Lemma S3 again, we know that the asymp-

totic randomization distribution of X2 is χ2
J−1, because PP = P has J − 1 nonzero eigenvalues

and all of them are 1. 75

Mathematically, the randomization distribution under H0F is the same as the permutation dis-

tribution. Therefore, applying Chung & Romano (2013) yields the same result for X2 under

H0F. ⇤

Proof of Corollary 4. As shown in the proof of Theorem 3, X2 is asymptotically equivalent to

X2
0 , and therefore we need only to show the equivalence between (J − 1)F and X2

0 . If S2
· (1) =

· · · = S2
· (J) = S2, then Ȳ obs

w0 = Ȳ obs
· , and

X2
0 =

PJ
j=1{Ȳ

obs
· (j)− Ȳ obs

· }2

S2
=

SST

S2
.

Because MSR =
PJ

j=1(Nj − 1)s2obs(j)/(N − J) converges to S2 in probability (Li & Ding,

2017, Proposition 3), Slutsky’s Theorem implies

(J − 1)F =
SST

MSR

.
⇠

SST

S2
.

Therefore, (J − 1)F
.
⇠ X2

0
.
⇠ X2. ⇤

Proof of Corollary 5. First, we discuss F. Because Ȳ obs
· = p1Ȳ

obs
· (1) + p2Ȳ

obs
· (2), we have

Ȳ obs
· (1)− Ȳ obs

· = p2τ̂(1, 2), Ȳ obs
· (2)− Ȳ obs

· = −p1τ̂(1, 2).

The treatment sum of squares reduces to

SST = N1

{

Ȳ obs
· (1)− Ȳ obs

·

 2
+N2

{

Ȳ obs
· (2)− Ȳ obs

·

 2
= Np1p2τ̂

2(1, 2),
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and the residual sum of squares reduces to SSR = (N1 − 1)s2obs(1) + (N2 − 1)s2obs(2). There-

fore, the F statistic reduces to

F =
SST

SSR/(N − 2)
=

τ̂2(1, 2)
N(N1−1)

(N−2)N1N2
s2obs(1) +

N(N2−1)
(N−2)N1N2

s2obs(2)
⇡

τ̂2(1, 2)

s2obs(1)/N2 + s2obs(2)/N1
,

where the approximation follows from ignoring the difference between N and N − 2 and the

difference between Nj and Nj − 1 (j = 1, 2). Following from Theorem 1 or proving it directly,

we know that F
.
⇠ F1,N−2

.
⇠ χ2

1 under H0F. However, under H0N, Neyman (1923), coupled with

the finite-population central limit theorem (Li & Ding, 2017, Theorem 5), imply

τ̂(1, 2)
n

S2
·
(1)

N1
+ S2

·
(2)

N2
− S2

τ
(1,2)
N

o1/2

.
⇠ N (0, 1),

and s2obs(j) ! S2
· (j) in probability (j = 1, 2). Therefore, the asymptotic distribution of F under

H0N is F
.
⇠ C1χ

2
1, where

C1 = lim
N!+1

S2
· (1)/N1 + S2

· (2)/N2 − S2
τ (1, 2)/N

S2
· (1)/N2 + S2

· (2)/N1
.

Second, we discuss X2. Because

Ȳ obs
w =

⇢

N1

s2obs(1)
Ȳ obs
· (1) +

N2

s2obs(2)
Ȳ obs
· (2)

}

.

⇢

N1

s2obs(1)
+

N2

s2obs(2)

}

,

we have80

Ȳ obs
· (1)− Ȳ obs

w =
N2

s2obs(2)
τ̂2(1, 2)

.

⇢

N1

s2obs(1)
+

N2

s2obs(2)

}

,

Ȳ obs
· (2)− Ȳ obs

w = −
N1

s2obs(1)
τ̂2(1, 2)

.

⇢

N1

s2obs(1)
+

N2

s2obs(2)

}

.

Therefore, the X2 statistic reduces to

X2 =

⇢

N1

s2obs(1)

N2
2

s4obs(2)
τ̂2(1, 2) +

N2

s2obs(2)

N2
1

s4obs(1)
τ̂2(1, 2)

}

.

⇢

N1

s2obs(1)
+

N2

s2obs(2)

}2

=
τ̂2(1, 2)

s2obs(1)/N1 + s2obs(2)/N2
.

Following from Theorem 3 or proving it directly, we know that X2 .
⇠ χ2

1 under H0F. However,

under H0N, we can use an argument similar to that for F and obtain X2 .
⇠ C2χ

2
1, where

C2 = lim
N!+1

S2
· (1)/N1 + S2

· (2)/N2 − S2
τ (1, 2)/N

S2
· (1)/N1 + S2

· (2)/N2
 1.

The constant C2 is smaller than or equal to 1 with equality holding if the limit of S2
τ (1, 2) is zero,

i.e., the unit-level treatment effects are constant asymptotically. ⇤

Proof of Corollary 6. In the Fisher randomization test, s2obs is fixed, and therefore using τ̂(1, 2)
is equivalent to using T 2. Using simple algebra similar to Ding (2017), we have the following

decomposition

(N − 1)s2obs = (N1 − 1)s2obs(1) + (N2 − 1)s2obs(2) +N1N2τ̂(1, 2)/N,
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Fig. S1: Distributions of X2. The histograms are the sampling distributions, the dotted lines are

the asymptotic distributions, and the solid lines are the χ2
2 distribution.

which implies the equivalent formula of T 2 in Corollary 6. Under H0F or H0N, τ̂(1, 2) ! 0 in

probability, which coupled with Slutsky’s Theorem, implies the asymptotic equivalence T 2 .
⇠ 85

F. ⇤

S2. NUMERICAL EXAMPLES

Example S1. We consider J = 3, sample sizes N1 = 120, N2 = 80 and N3 = 40. We gener-

ate the first set of potential outcomes from

Yi(1) ⇠ N (0, 1), Yi(2) = 3Yi(1), Yi(3) = 5Yi(1), (S2)

and the second set of potential outcomes from 90

Yi(1) ⇠ N (0, 1), Yi(2) ⇠ N (0, 32), Yi(3) ⇠ N (0, 52). (S3)

After generating the potential outcomes, we center the Yi(j)’s by subtracting the mean to make

Ȳ·(j) = 0 for all j so that H0N holds. Figure S1 shows the distributions of X2 over repeated sam-

pling of the treatment assignment vector (W1, . . . ,WN ) for potential outcomes generated from

(S2) and (S3). The true sampling distributions under both cases are stochastically dominated by

χ2
2. Under (S2), the correlation coefficients between the potential outcomes are 1; whereas under 95

(S3), the correlation coefficients are 0. With less correlated potential outcomes, the gap between

the true distribution and χ2
2 becomes larger.

Example S2. We use an example from Montgomery (2000, Exercise 3.15) with 4 treatment

levels. The sample variances and the sample sizes differ for the four treatment levels, as shown

in Table S1. The p-values of the Fisher randomization test using F and X2 are 0.003 and 0.010, 100

respectively. If we choose a stringent size, say α = 0.01, then the evidence against the null

is strong from the first test, but the evidence is weak from the second test. If our interest is

H0N, then the different strength of evidence may be due to the different variances and sample

sizes of the treatment groups. Because of this, we recommend making decision based on the

Fisher randomization test using X2. 105
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Table S1: A randomized experiment with J = 4

1 2 3 4

observed outcome 58.2 56.3 50.1 52.9

57.2 54.5 54.2 49.9

58.4 57.0 55.4 50.0

55.8 55.3 51.7

54.9

sample size 5 4 3 4

mean 56.9 55.8 53.2 51.1

variance 2.3 1.2 7.7 2.1

Table S2: A randomized experiment with J = 4, where control, sfp, ssp and sfsp denote the four

treatment groups.

control sfp ssp sfsp

sample size 854 219 212 119

mean 63.86 65.83 64.13 66.10

variance 144.97 124.45 159.76 114.33

Example S3. We reanalyze the data from Angrist et al. (2009), which contain a control

group and 3 treatment groups designed to improve academic performance among college fresh-

men. Table S2 summaries the sample sizes, means and variances of the final grades under

4 treatment groups. The p-values of the Fisher randomization test using F and X2 are 0.058
and 0.045, respectively. The Fisher randomization tests using F and X2 give different con-110

clusions at the commonly-used significance level 0.05. In this unbalanced experiment, the

Fisher randomization test using F is less powerful.

S3. MORE SIMULATION WITH NONNORMAL OUTCOMES

S3·1. Type I error of the Fisher randomization test using F

In this subsection, we use simulation to evaluate the finite sample performance of the115

Fisher randomization test using F under H0N. We consider the following three cases, where E
denotes an exponential distribution with mean 1.

Case S1. For balanced experiments with sample sizes N = 45 and N = 120, we generate po-

tential outcomes under two cases: (S1.1) Yi(1) ⇠ E , Yi(2) ⇠ E/0.7, Yi(3) ⇠ E/0.5; and (S1.2)

Yi(1) ⇠ E , Yi(2) ⇠ E/0.5, Yi(3) ⇠ E/0.3. These potential outcomes are independently gener-120

ated, and standardized to have zero means.

Case S2. For unbalanced experiments with sample sizes (N1, N2, N3) = (10, 20, 30) and

(N1, N2, N3) = (20, 30, 50), we generate potential outcomes under two cases: (S2.1) Yi(1) ⇠ E ,

Yi(2) = 2Yi(1), Yi(3) = 3Yi(1); and (S2.2) Yi(1) ⇠ E , Yi(2) = 3Yi(1), Yi(3) = 5Yi(1). These

potential outcomes are standardized to have zero means. In this case, p1 < p2 < p3 and S2
· (1) <125

S2
· (2) < S2

· (3).
Case S3. For unbalanced experiments with sample sizes (N1, N2, N3) = (30, 20, 10) and

(N1, N2, N3) = (50, 30, 20), we generate potential outcomes under two cases: (S3.1) Yi(1) ⇠ E ,

Yi(2) = 1.2Yi(1), Yi(3) = 1.5Yi(1); and (S3.2) Yi(1) ⇠ E , Yi(2) = 1.5Yi(1), Yi(3) = 2Yi(1).
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(a) Balanced experiments, case S1
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(b) Unbalanced experiments, case S2

N=60, (N1,N2,N3)=(30,20,10)
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(c) Unbalanced experiments, case S3

Fig. S2: Histograms of the p-values under H0N based on the Fisher randomization tests using

X2, with grey histogram and white histograms for the first and second sub-cases.

These potential outcomes are standardized to have zero means. In this case, p1 > p2 > p3 and 130

S2
· (1) < S2

· (2) < S2
· (3).

We follow §6·1 and obtain the same conclusions about the Fisher randomization test using F ,

because Figures 1 and S2 exhibit the same pattern.

In Figure 2(a), for case (S1.1), the rejection rates are 0.022 and 0.014, and for case (S1.2),

the rejection rates are 0.030 and 0.030, for sample sizes N = 45 and N = 120 respectively. 135

In Figure 2(b), for case (S2.1), the rejection rates are 0.018 and 0.024, and for case (2.2), the

rejection rates are 0.026 and 0.018, for sample sizes N = 45 and N = 120 respectively. The

Monte Carlo standard errors are all close to but no larger than 0.003.
In Figure 2(c), for case (S3.1), the rejection rates are 0.076 and 0.086, and for case

(S3.2), the rejection rates are 0.108 and 0.109, for sample sizes N = 45 and N = 120 re- 140

spectively, with all Monte Carlo standard errors no larger than 0.008. In these two cases, the

Fisher randomization test using F does not preserve correct type I error.

S3·2. Type I error of the Fisher randomization test using X2

We follow §6·2, generate the same data as §S3·1, and obtain the same conclusions about the

Fisher randomization test using X2, because Figures 2 and S3 exhibit the same pattern. All the 145

Monte Carlo standard errors of the rejection rates below are close but no larger than 0.005.
In Figure 3(a), for case (S1.1), the rejection rates are 0.034 and 0.018, and for case (S1.2), the

rejection rates are 0.048 and 0.029, for sample sizes N = 45 and N = 120 respectively. In Figure

3(b), for case (S2.1), the rejection rates are 0.032 and 0.035, and for case (S2.2), the rejection

rates are 0.025 and 0.036, for sample sizes N = 45 and N = 120 respectively. In Figure 3(c), 150

for case (S3.1), the rejection rates are 0.060 and 0.062, and for case (S3.2), the rejection rates are

0.054 and 0.044, for sample sizes N = 45 and N = 120 respectively. This, coupled with Figure

S2, agrees with our theory that the Fisher randomization test using X2 can control type I error

under H0N better than using F .
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(a) Balanced experiments, case S1
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(b) Unbalanced experiments, case S2.
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(c) Unbalanced experiments, case S3

Fig. S3: Histograms of the p-values under H0N based on the Fisher randomization tests using

X2, with grey histogram and white histograms for the first and second sub-cases.
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(a) Balanced experiments, case S4
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(b) Unbalanced experiments, case S5
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(c) Unbalanced experiments, case S6

Fig. S4: Histograms of the p-values under alternative hypotheses based on the Fisher randomiza-

tion tests using F and X2, with grey histograms for X2 and white histograms for F .

S3·3. Power comparison of the Fisher randomization tests using F and X2
155

We follow §6·3 to compare the powers of the Fisher randomization tests using F and X2. We

consider the following cases and summarize the results in Figure S4.

Case S4. For balanced experiments with sample sizes N = 30 and N = 45, we generate po-

tential outcomes from Yi(1) ⇠ E , Yi(2) ⇠ E/0.7, Yi(3) ⇠ E/0.5. These potential outcomes are

independently generated, and shifted to have means (0, 0.5, 1).160



A randomization-based perspective on analysis of variance 13

N=30 Balanced

d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

N=45, (N1,N2,N3)=(10,15,20)

d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

N=45, (N1,N2,N3)=(20,15,10)

d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

(a) H0N holds
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(b) H0N does not hold

Fig. S5: Histograms of the p-values under equal finite-population variances based on the Fisher

randomization tests using F and X2, with grey histograms for X2 and white histograms for F .

Case S5. For unbalanced experiments with sample sizes (N1, N2, N3) = (10, 20, 30) and

(N1, N2, N3) = (20, 30, 50), we first generate Yi(1) ⇠ E and standardize them to have mean

zero, and we then generate Yi(2) = 3Yi(1) + 1 and Yi(3) = 5Yi(1) + 2. In this case, p1 < p2 <
p3 and S2

· (1) < S2
· (2) < S2

· (3).
Case S6. For unbalanced experiments with sample sizes (N1, N2, N3) = (30, 20, 10) and 165

(N1, N2, N3) = (50, 30, 20), we generate potential outcomes the same as the above case S5.

In this case, p1 > p2 > p3 and S2
· (1) < S2

· (2) < S2
· (3).

When the sample sizes are positively associated with the variances of the potential outcomes,

the Fisher randomization test using F has larger power than that using X2. However, when the

treatment groups are balanced or when the sample sizes are negatively associated with the vari- 170

ances of the potential outcomes, the Fisher randomization test using F has smaller power than

that using X2. We report the rejection rates below with all the Monte Carlo standard errors no

larger than 0.01.
For case S4, the rejection rates using X2 and F are 0.087 and 0.066 with sample size N = 30,

and 0.207 and 0.198 with sample size N = 45. For case S5, the powers using X2 and F are 0.044 175

and 0.106 with sample size N = 60, and 0.293 and 0.729 with sample size N = 100. For case

S6, the rejection rates using X2 and F are 0.211 and 0.037 with sample size N = 60, and 0.578
and 0.274 with sample size N = 100.

S3·4. Finite sample evaluation of Corollary 4 with skewed outcomes

We first generate log-normal potential outcomes Yi(1) ⇠ exp{N (0, 1)}, Yi(2) ⇠ 180

exp{N (1, 1)}, and Yi(3) ⇠ exp{N (2, 1)}, and then standard them to have equal finite-

population means 0 and variances 1.
Under H0N, the p-values of the Fisher randomization test using F and X2 are shown in Figure

S5(a). With sample size (N1, N2, N3) = (10, 10, 10), the rejection rates using X2 and F are

0.012 and 0.016; with sample size (10, 15, 20), the rejection rates are 0.016 and 0.028; with 185
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sample size (20, 15, 10), the rejection rates are 0.006 and 0.015. The Monte Carlo standard

errors are all close to but no larger than 0.004.
Under alternative hypotheses, the p-values of the Fisher randomization test using F and X2

are shown in Figure S5(b). With sample size (N1, N2, N3) = (10, 10, 10), we shift the potential

outcomes by constants (0, 0.5, 1), and the rejection rates using X2 and F are 0.514 and 0.512;190

with sample size (10, 15, 20), we shift the potential outcomes by constants (0, 0.2, 0.5), and the

rejection rates are 0.164 and 0.215; with sample size (20, 15, 10), we shift the potential outcomes

by constants (0, 0.2, 0.5), and the rejection rates are 0.256 and 0.179. The Monte Carlo standard

errors are all close but no larger than 0.011.
In finite samples, we observe moderate difference between the Fisher randomization tests195

using X2 and F even with homoskedastic potential outcomes, although Corollary 4 ensures

their asymptotic equivalence.
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