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Let A1 be the class of all unital separable simple C∗-algebras A such that A ⊗ U has

tracial rank no more than one for all UHF-algebra U of infinite type. It has been shown

that all amenable Z-stable C∗-algebras in A1 which satisfy the Universal Coefficient

Theorem can be classified up to isomorphism by the Elliott invariant. In this note, we

show that A ∈ A1 if and only if A⊗B has tracial rank no more than one for some unital

simple infinite dimensional AF-algebra B. In fact, we show that A ∈ A1 if and only if A⊗
B ∈ A1 for some unital simple AH-algebra B. We actually prove a more general result.

Other results regarding the tensor products of C∗-algebras in A1 are also obtained.

Keywords: Classification; tensor products; tracial rank; rational tracial rank; TAC; tra-

cially AF; AH-algebra.

1. Introduction

The Elliott program of classification of amenable C∗-algebras is to classify separable
amenable C∗-algebras up to isomorphism by their K-theoretic data known as the
Elliott invariant. It is a very successful program. Two important classes of unital
separable simple C∗-algebras, the class of amenable separable purely infinite simple
C∗-algebras satisfying the Universal Coefficient Theorem (UCT) and the class of
unital simple AH-algebras with no dimension growth, are classified by their Elliott
invariant (see [5, 7–10, 13, 16, 24, 31] among many articles in the literature). There
has been other significant progress in the Elliott program. Related to this note,
it has been shown that unital separable amenable simple C∗-algebras with tracial
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486 H. Lin & W. Sun

rank at most one and satisfying the UCT are classifiable by the Elliott invariant. In
fact, they are isomorphic to unital simple AH-algebras with no dimension growth.
More recently, with a remarkable method developed by Winter ([36]), the notion
of rational tracial rank at most one was introduced (a unital separable simple C∗-
algebra A is said to have rational tracial rank at most one if A ⊗ U has tracial
rank at most one for every UHF-algebra U of infinite type), and it was shown in
[23] that unital separable amenable simple Z-stable C∗-algebras which satisfy the
UCT and have rational tracial rank at most one are also classifiable by the Elliott
invariant (see also [25, 26, 36]). This class is significantly larger than the class of
all unital simple AH-algebras with no dimension growth. Denote by A1 the class
of all unital separable simple C∗-algebras which have rational tracial rank at most
one. A special unital separable simple C∗-algebra in A1 which does not have finite
tracial rank is the Jiang–Su algebra Z. The range of the Elliott invariant for C∗-
algebras of rational tracial rank at most one has been characterized and computed
(see [27]). This class of C∗-algebras includes C∗-algebras whose ordered K0-groups
may not have the Riesz interpolation property. The verification that a particular
unital simple C∗-algebra is in the class A1 was slightly eased when it was proved
in [27] that, A ∈ A1 if and only if A ⊗ U has tracial rank at most one for some
UHF-algebra U of infinite type (instead of for all UHF-algebras of infinite type).
Suppose that A is a unital separable simple C∗-algebra such that A⊗B has tracial
rank at most one for some unital simple infinite dimensional AF-algebra B. Does it
follow that A ∈ A1? We will answer this question affirmatively in this short note.
In fact, we will show that if A ⊗ B has tracial rank at most one for some unital
infinite dimensional separable simple C∗-algebra B with tracial rank at most one
then A ∈ A1. This may provide a better way to determine which C∗-algebras are in
A1. In a more recent development, the class of all finite unital separable simple C∗-
algebras which satisfy the UCT has been classified ([12, 14, 33]). These C∗-algebras
have rational generalized tracial rank at most one (see the end of Definition 3.1
below). As defined in Definition 3.1, a unital separable simple C∗-algebra A has
rational generalized tracial rank at most one if gTR(A⊗U) ≤ 1 for all UHF-algebras
U of infinite type. It is much more convenient to deal with A⊗Q as demonstrated
in [12]. This short note also provides such a convenient passage.

Denote by N the class of all unital separable amenable C∗-algebras which satisfy
the Universal Coefficient Theorem. For the purpose of classification, we also consider
A1 ∩N , the class of all unital separable simple amenable C∗-algebras which have
rational tracial rank at most one and satisfy the UCT. We will show that if A and
B are both in A1 ∩N , then A⊗B is also in A1 ∩N . Assume that A ∈ A1 ∩N and
B is a simple amenable infinite dimensional C∗-algebra with tracial rank at most
one and satisfies the UCT. From the fact above, A⊗B is also in A1∩N . One might
ask whether A ⊗ B has tracial rank at most one. We will also give an affirmative
answer to this question.

Most of the results are in a more general setting which may provide an oppor-
tunity for the future applications. In fact, with a much more recent classification
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Tensor products of classifiable C∗-algebras 487

result in [14], we expect some of the results presented in this note can be used to
ease some technical constrains. In fact, for example, for a unital simple separable
C∗-algebra A, it is much more delightful to work with A ⊗ Q than A ⊗ U, since
Ki (A⊗Q) (i = 0, 1) is torsion free and divisible, while Ki (A⊗U) could have torsion
in general. Some applications of results in this short note can be found in [14].

2. Preliminaries

Definition 2.1. Let A be a C∗-algebra, F and G be two subsets of A and ε > 0.
We say that F ⊂ G if for each x ∈ F , there exists y ∈ G, such that ‖x − y‖ < ε.

By A+, we mean the positive cone of all positive elements in A.
If a, b ∈ A+, we write a b if there is a sequence {xn } in A such that

limn→∞ ‖x∗
n bxn − a‖ = 0. We say two positive elements x and y are Cuntz equiva-

lent and write it as x ∼ y, if x y and y x.

Let A be a unital stably finite simple C∗-algebra. Denote by T (A) the tracial
state space of A. Define dτ (a) = limn→∞ τ(a1/ n ) for all a ∈ A+ and τ ∈ T (A).
A is said to have strict comparison property for positive elements if for any pair
a, b ∈ A+\{0}, dτ (a) < dτ (b) for all τ ∈ T (A) implies that a b.

Let F ⊂ A be a finite subset and let p ∈ A be a projection. We use pFp to
denote {pxp : x ∈ F}.
Definition 2.2. Let B be a family of unital C∗-algebras. We say a unital simple
separable C∗-algebra A is tracially approximated by C∗-subalgebras in B and write
it as A ∈ TAB, if the following holds: For any ε > 0, any finite subset F ⊂ A and
any a ∈ A+\{0}, there exist a projection p ∈ A and a C∗-subalgebra B ⊂ A with
B ∈ B and 1B = p such that

‖px − xp‖ < ε for all x ∈ F , (2.1)

pFp ⊂ B and (2.2)

1 − p a. (2.3)

Let B = I1 be the family of C∗-algebras of the form C([0, 1], F ), where F is a
unital finite dimensional C∗-algebra. Then we write TR(A) ≤ 1 if A ∈ TAI1.

Note that, in the original Definition 3.1 of [20], I1 is replaced by the class of all
finite direct sums of C∗-algebras of the form Mn (C(Xn )), where each Xn is a finite
CW complex with dimension one. But those definitions are equivalent. Please see
Theorems 6.13 and 7.1 of [20] for more details on such equivalence. In the definition
above, if we replace B by I0, the class of finite dimensional C∗-algebras, then we
say that A has tracial rank zero (see Theorem 7.1 of [20]). If A has tracial rank at
most one, we denote it by TR(A) ≤ 1. If A has tracial rank zero, we denote it by
TR(A) = 0. For more details, see [17, 18, 20].

Notations. Let A be a unital C∗-algebra. For each n ∈ N, there is an embedding
of Mn (A) into Mn+1(A) defined by a 	→ (a 0

0 0). Denote by M∞(A) the algebraic
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488 H. Lin & W. Sun

inductive limit of M1(A) → M2(A) → · · ·, whose connecting maps are just the
embeddings above. Suppose that T (A) �= 0. For any p ∈ M∞(A) and for any
τ ∈ T (A), we may assume that p ∈ Mn (A) for certain n. By identifying Mn (A)
with A⊗Mn (C), we define τ(p) to be (τ ⊗Tr)(p), where Tr is the standard matrix
trace (not normalized) on Mn (C). Note that the value (τ ⊗ Tr)(p) is independent
of the choice of n.

Denote by N the class of all unital separable amenable C∗-algebras which satisfy
the Universal Coefficient Theorem.

Denote by Q the UHF-algebra with (K0(Q), K0(Q)+, [1Q ]) = (Q,Q+, 1).
Use A0 to denote the class of all unital separable simple C∗-algebras A for which

TR(A ⊗ Mp) = 0 for all supernatural numbers p of infinite type.
Use A1 to denote the class of all unital separable simple C∗-algebras A for which

TR(A ⊗ Mp) ≤ 1 for all supernatural numbers p of infinite type.
By the above defined notations, A0∩N is the class of all C∗-algebras which are

separable, amenable, satisfies the UCT, and are in A0, and A1 ∩ N is the class of
all C∗-algebras which are separable, amenable, satisfies the UCT, and are in A1.

Definition 2.3. Let ε > 0. Define

f (t) =

1 t ≥ 2ε,

(1/ε)t − 1 ε < t < 2ε,

0 0 ≤ t ≤ ε.

It is easy to check that such f is a continuous function on [0,∞).

3. Tensor with AF-Algebras

Definition 3.1. Throughout this section and the next, let C be a class of unital
separable amenable C∗-algebras which satisfy the following properties: (1) Every
finite dimensional C∗-algebras is in C; (2) If A ∈ C, then A⊗F ∈ C, for every finite
dimensional C∗-algebra F ; (3) Every C∗-algebra in C is weakly semiprojective (see
[28, Chap. 4] for the definition and some basic properties of weak semiprojectivity);
(4) Every unital hereditary C∗-subalgebra of C∗-algebras in C is in C; (5) Suppose
that A ∈ C and I ⊂ A is a closed ideal. Then, for any finite subset F ⊂ A/I and any
ε > 0, there exists a C∗-subalgebra B ⊂ A/I such that B ∈ C and dist(x, B) < ε

for all x ∈ F .

It is easy to verify that the class I1 defined in Sec. 2 satisfies (1)–(5).
Let F1 and F2 be two finite dimensional C∗-algebras, and let ϕ1, ϕ2 : F1 → F2

be two homomorphisms. Define the mapping torus

A = A(F1, F2, ϕ1, ϕ2)

= {(f, a) ∈ C([0, 1], F2) ⊕ F1 : f(0) = ϕ1(a) and f(1) = ϕ2(a)}.
Let C′ be the class consisting of all such mapping tori and all finite dimensional
C∗-algebras. It is obvious that C′ satisfy properties (1) and (2) above. It is proved
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Tensor products of classifiable C∗-algebras 489

in [6] that all C∗-algebras in C′ are semiprojective (property (3)). It is proved in
[14] that the class also satisfies properties (4) and (5).

Unital separable simple C∗-algebras which are in TAC′ are also called C∗-
algebras with generalized tracial rank at most one. If A is in TAC ′, then we write
gTR(A) ≤ 1. We say a unital separable simple C∗-algebra A has rational gen-
eralized tracial rank at most one, if gTR(A ⊗ U) ≤ 1 for all UHF-algebras U of
infinite type. Via Theorem 3.4 below, we will show that if gTR(A⊗U) ≤ 1 for one
UHF-algebra U of infinite type (preferably U = Q), then A has rational generalized
tracial rank at most one.

We begin with the following:

Proposition 3.2. Let A be a unital separable simple infinite dimensional C∗-
algebra in TAC. Then, for any simple AF-algebra B (B could be finite dimensional),
A ⊗ B ∈ TAC.

Proof. The case that B is finite dimensional follows from properties (1) and (2)
of C∗-algebras in C.

Now we assume B is infinite dimensional. It is easy to see that A ⊗ B is a
unital simple C∗-algebra. Note that B is approximately divisible (see [1] for the
definition). By Theorem 1.4 of [1], A ⊗ B has the strict comparison property for
positive elements. Let F ⊂ A ⊗ B be a finite subset, ε > 0 and c ∈ (A ⊗ B)+\{0}.
Since A is a unital infinite dimensional simple C∗-algebra, it is non-elementary. It
is easy to find, for any integer n ≥ 1, n nonzero mutually orthogonal and Cuntz
equivalent positive elements in A. By the strict comparison, one obtains a nonzero
element a0 ∈ A+ such that a0 ⊗ 1B c.

To prove that A ⊗ B is in TAC, we may assume, without loss of generality,
that F = {a ⊗ b : a ∈ F1 and b ∈ F2}, where F1 and F2 are finite subsets in A

and B, respectively. Since B is AF, we may further assume that F2 ⊂ F, where F

is a unital finite dimensional C∗-subalgebra of B. Moreover, to simplify notation
further, without loss of generality, we may also assume that ‖a‖, ‖b‖ ≤ 1 for all
a ∈ F1 and b ∈ F2.

Since A ∈ TAC, there exists a projection p1 ∈ A and a C∗-subalgebra C0 ∈ C
of A with 1C0 = p1 such that

‖ap1 − p1a‖ < ε/2 for all a ∈ F1, (3.1)

dist(p1ap1, C0) < ε/2 for all a ∈ F1 and (3.2)

1 − p1 a0. (3.3)

Define C1 = C0 ⊗ F and p = p1 ⊗ 1B . Then C1 ∈ C and 1C1 = p. It follows that

‖xp − px‖ < ε for all x ∈ F (3.4)

dist(pxp, C1) < ε for all x ∈ F and (3.5)

1 − p a0 ⊗ 1B c. (3.6)
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490 H. Lin & W. Sun

Remark 3.3. If A is finite dimensional, Proposition 3.2 still holds.

Theorem 3.4. Let A be a unital separable simple C∗-algebra. Suppose that A⊗U ∈
TAC for some infinite dimensional UHF-algebra U. Then A ⊗ B ∈ TAC for any
unital infinite dimensional simple AF-algebra B.

Proof. Suppose that A ⊗ U ∈ TAC. Let B be a unital infinite dimensional simple
AF-algebra.

Fix ε > 0, and also fix a finite subset F ⊂ A ⊗ B and a ∈ (A ⊗ B)+\{0}.
As B is approximately divisible, so is A ⊗ B. It follows from Theorem 1.4(a)

of [1] that A ⊗ B is either purely infinite or has the strict comparison property for
positive elements. In either case, there is a nonzero element a0 ∈ 1A ⊗B such that
a0 a in A ⊗ B. As A ⊗ B is simple, there is an integer N0 ≥ 1 such that

1A⊗B N0[a0]. (3.7)

We write B = limn→∞(Bn , ψn ), where each Bn is a finite dimensional C∗-
algebra and ψn : Bn → Bn+1 is a unital embedding. If n > m, put ψm ,n =
ψn−1 ◦ · · · ◦ ψm : Bm → Bn . We will also use ψn ,∞ : Bn → B for the unital
embedding induced by the inductive limit. Write

Bn = MR (n ,1) ⊕ MR (n ,2) ⊕ · · · ⊕MR (n ,k(n )).

According to Proposition 2.2 and Lemma 2.3(b) of [30], to simplify notation, with-
out loss of generality, by replacing a0 with a smaller (in sense of the Cuntz relation)
element, we may assume that a0 ∈ Bn for some large n. Moreover, we may assume
that a0 = a1,n ⊕a2,n ⊕· · ·⊕ ak(n ),n , where ai ,n ∈ BR (n ,i ), i = 1, 2, . . . , k(n). Since B

is simple, we may assume that R(n, j) > 4N0 for all j and all n. It follows from (3.7)
that we may assume that the range projection of aj ,n has rank at least two. Then
we may write aj ,n ≥ a

(0)
j ,n + a

(1)
j ,n , where a

(i )
j ,n has exactly rank one range projection,

and a
(0)
j ,n and a

(1)
j ,n are mutually orthogonal. Thus

a0 ≥ a
(i )
0 = a

(i )
1,n ⊕ a

(i )
2,n ⊕ · · · ⊕ a

(i )
k(n ),n , i = 0, 1.

By choosing possibly smaller a0 (in the sense of the Cuntz relation), we may assume
that a

(i )
j ,n is a rank one projection for each j and n, i = 0, 1.

By changing notation, without loss of generality, we may further assume that
F ⊂ A ⊗ B1 and a0, a

(0)
0 , a

(1)
0 ∈ B1. Define πj : B1 → MR (1,j ) to be the

canonical projection to the jth summand, j = 1, 2, . . . , k(1), n = 2, 3, . . . . Put
Fj = πj (F), j = 1, 2, . . . , k(1).

For each A⊗MR (1,i ) ⊗U ∈ TAC, there exists a projection pi ∈ A⊗MR (1,i ) ⊗U

and a C∗-subalgebra D0,i ∈ C with 1D 0 , i = pi such that

‖[pi , x]‖ < ε/8 for all x ∈ Fi , (3.8)

dist(pi xpi , D0,i ) < ε/8 for all x ∈ Fi and (3.9)

1A⊗M R ( 1 , i )⊗U − pi a
(0)
i ,1 . (3.10)
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Tensor products of classifiable C∗-algebras 491

Let Gi ⊂ B0,i be a finite subset such that, for every x ∈ Fi , there exists x′ ∈ Gi
such that ‖pixpi − x′‖ < ε/16. We may also assume that 1D 0 , i ∈ Gi .

Write U =
pppppppppppp

∞
n=1 Mr (n ), where limn→∞ r(n) = ∞ and Mr (n ) ⊂ Mr (n+1) unitally.

Since each D0,i is weakly semiprojective, we can choose n0 large enough, such
that for each i = 1, 2, . . . , k(1), there exists a unital homomorphism ϕi : D0,i →
A ⊗ MR (1,i ) ⊗ Mr (n 0 ), satisfying

‖ϕi (x′) − x′‖ < ε/8 for all x′ ∈ Gi . (3.11)

Without loss of generality (by replacing ϕi with Ad ui ◦ ϕi for some unitary ui in
A⊗MR (1,i ) ⊗Mr (n 0 ) if necessary), we may assume that ϕi (1B 0 , i ) = pi . It follows
from property (5) of C∗-algebras in C that there exists a unital C∗-algebra Di ⊂
ϕi (D0,i ) such that Di ∈ C, 1D i = ϕi (D0,i ) and

dist(ϕi (x′), Di ) < ε/16 for all x′ ∈ Gi . (3.12)

Note that 1D i = ϕi (1D 0 , i ) = pi . Thus

dist(pixpi , Di ) < ε/4 for all x ∈ Fi . (3.13)

Denote by ı0,i : MR (1,i ) → MR (1,i )r (n 0 ) the map defined as ı0,i (x) = x ⊗
1M r ( n 0 )

, i = 1, 2, . . . , k(1), and define ı0 : A ⊗ B1 → A ⊗ B1 ⊗ Mr (n 0 ) by
ı0(x) = x ⊗ 1M r ( n 0 )

for all x ∈ A ⊗ B1.

Since B is a unital simple AF-algbera, we may assume that ψ1,n 1 : B1 → Bn 1

has multiplicities at least N ≥ 1 for each simple summand of B1, such that

2r(n0)
k(1)
j =1 R(1, j)

2

N
< 1. (3.14)

Put Ψi ,j = πn 1 ,j ◦ (ψ1,n 1 |M R ( 1 , i ) ) : MR (1,i ) → MR (n 1 ,j ), where πn 1 ,j is
the canonical projection to the jth summand of Bn 1 . The assumption on the
multiplicity implies that Ψi ,j (1M R ( 1 , i ) ) = 1M m ( i , j ) ∈ MR (n 1 ,j ) with m(i, j) ≥
N, i = 1, 2, . . . , k(1) and j = 1, 2, . . . , k(n1). It follows that R(1, i) |m(i, j), i =
1, 2, . . . , k(1) and j = 1, 2, . . . , k(n1). Note that 1M R ( n 1 , j ) =

hhhhhhhh
k(1)
i=1 Ψi ,j (1M R ( 1 , i ) ), j =

1, 2, . . . , k(n1). Write

m(i, j) = l(i, j)r(n0)R(1, i) + si ,j , (3.15)

where l(i, j) ≥ 1 and r(n0)R(1, i) > si ,j ≥ 0 are integers. It follows that

k(1)kkkk

i=1

si ,j
m(i, j)

<

k(1)kkkk

i=1

r(n0)R(1, i)
N

<

k(1)kkkk

i=1

r(n0)R(1, i)

2r(n0)(
k(1)
i=1 R(1, i))2

<
1

2 k(1)
i=1 R(1, i))

.

(3.16)

Since R(1, i) |m(i, j), we may write si ,j = s
(r )
i ,j R(1, i), i = 1, 2, . . . , k(1) and j =

1, 2, . . . , k(n1). Define ρi ,j : MR (1,i ) → Msi , j by x → x ⊗ 1M
s
( r )
i , j

. Note also that

k(1)
i=1 m(i, j) = R(n1, j), j = 1, 2, . . . , k(n1).
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492 H. Lin & W. Sun

It follows from (3.16) that

k(1)kkkkkk

i=1

ρi ,j (1M R ( 1 , i ) ) ψ1,n 1 (a
(1)
j ,1 ). (3.17)

Let ı1,i ,j : Mr (n 0 )R (1,i ) → Ml (i ,j )r (n 0 )R (1,i ) be the embedding defined by a 	→ a ⊗
1M l ( i , j ) . Let ı2,i ,j : Ml (i ,j )r (n 0 )R (1,i ) → Ψi ,j (MR (1,i )) be defined by the embedding
which sends rank one projection to rank one projection. Put ı3,i ,j = ı2,i ,j ◦ ı1,i ,j .

Define ı4,i ,j : A⊗MR (1,i ) ⊗Mr (n 0 ) → A⊗MR (n 1 ,j ) by ı4,i ,j (a⊗ b) = a⊗ ı3,i ,j (b) for
all a ∈ A and b ∈ Mr (n 0 )R (1,i ). Note that

k(n 1 )kkkkkk(((((((((((

j =1

ı3,i ,j ◦ ı0,i ⊕
k(n 1 )kkkkk(((((((((((

j =1

ρi ,j =
k(n 1 )(((((((((((

j =1

Ψi ,j = ψ1,n 1 |M R ( 1 , i )

and

k(1)kkkk

i=1

k(n 1 )kkkkk(((((((((((

j =1

ı3,i ,j ◦ ı0,i ⊕
k(n 1 )kkkkk(((((((((((

j =1

ρi ,j = ψ1,n 1 .

Define ı : A ⊗ Bn 1 → A ⊗ B to be the map given by a ⊗ b 	→ a ⊗ ψ1,∞(b).
Put C1 =

AA
k(1)
i=1 ı

→→→→→→
k(n 1 )
j =1 ı4,i ,j (Di )

hhhhhh
. Then C1 ∈ C and p = 1C1 has the form

ı k(1)
i=1 pi ⊗ p′i , where pi ∈ A ⊗ MR (1,i ) ⊗ Mr (n 0 ) and p′i =

pppppp
k(n 1 )
j =1 1M l ( i , j ) . A fact

we use here is

‖xp − px‖ = ‖x(pi ⊗ p′i ) − (pi ⊗ p′i )x‖ = ‖xpi − pi x‖ < ε/4 (3.18)

for all x ∈ F , since x = a ⊗ b, where a ∈ A and b ∈ B1. We also have

dist(pxp, C1) < ε/4 for all x ∈ F . (3.19)

By (3.10) and (3.17),

1 − p ≤
k(1)kkkkkkkk

i=1

(1 − pi ) +
k(n 1 )(((((((((((

j =1

ρi ,j (1M R ( 1 , i ) ) a
(0)
0 + a

(1)
0 a, (3.20)

where we identify a
(i )
0 with ψ1,∞(a(i )

0 ). Therefore 1 − p a. This implies that
A ⊗ B ∈ TAC.

Proposition 3.5. Let A be a unital separable simple C∗-algebra in TAC and let
p ∈ A be a nonzero projection. Then pAp ∈ TAC.

Proof. Let 1/4 > ε > 0. Let F ⊂ pAp be a finite subset and let a ∈ (pAp)+\{0}.
Without loss of generality, we may assume that p ∈ F and ‖x‖ ≤ 1 for all x ∈ F .

Since A is in TAC, there is a projection e ∈ A and a C∗-subalgebra C0 ∈ C of A
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Tensor products of classifiable C∗-algebras 493

with 1C0 = e such that

‖ex − xe‖ < ε/64 for all x ∈ F , (3.21)

dist(exe, C0) < ε/64 for all x ∈ F and (3.22)

1 − e a. (3.23)

We have ‖ep − pe‖ < ε/64. One computes that there is a projection e0 ≤ p and
e′0 ∈ C0 such that ‖e0 − pep‖ < ε/32, ‖e′0 − epe‖ < ε/32 and ‖e0 − e′0‖ < ε/8.

Then there is a unitary u ∈ A such that ‖u − 1‖ < ε/4 and u∗e′0u = e0. Define
C1 = u∗(e′0C0e

′
0)u. By property (4) as in the definition of C, e′0C0e

′
0 ∈ C. Therefore

C1 ∈ C. Note that px = xp = x for all x ∈ F . We then estimate that (with ‖x‖ ≤ 1
for x ∈ F as assumed), for all x ∈ F ,

‖e0x − xe0‖ ≤ ‖e0x − pepx‖ + ‖pepx − xe0‖
< ε/16 + ‖pepx− pxep‖ + ‖pxep − xe0‖
< ε/16 + ε/64 + ε/16 < ε. (3.24)

By (3.23),

p − pep a. (3.25)

Since ‖(p − pep) − (p − e0)‖ < ε/32, by Proposition 2.2 and Lemma 2.3(b) of [30],

p − e0 = f / 16(p − e0) p − pep a. (3.26)

We also estimate that

dist(e0xe0, C1) < ε for all x ∈ F . (3.27)

It follows that pAp ∈ TAC.

Theorem 3.6. Let A be a unital simple separable C∗-algebra. Then A⊗C ∈ TAC
for all unital simple AF-algebra C if and only if A ⊗ C ∈ TAC for some infinite
simple AF-algebra C.

Proof. Following Theorem 3.4, it suffices to show the following: Suppose that A⊗
C ∈ TAC for some unital simple AF-algebra C. Then A ⊗ Q ∈ TAC.

Since every finite dimensional C∗-algebra is in C, it is easy to see that we only
need to consider the case that A is infinite dimensional.

Let B = A ⊗ Q, 1/4 > ε > 0, a ∈ B+\{0} and let F ⊂ B be a finite subset. To
simplify the notation, without loss of generality, we may assume that ‖x‖ ≤ 1 for
all x ∈ F and ‖a‖ = 1.

We will write A⊗Q as limk→∞(A⊗Mk !, jk ), where jk : A⊗Mk ! → A⊗M(k+1)!

is given by jk (a) = a ⊗ 1M ( k + 1) for all a ∈ A ⊗ Mk !, k = 1, 2, . . . . Without loss of
generality, we may assume that F ⊂ A ⊗ Mk ! for some k ≥ 1.

Without loss of generality again, we may assume that there exists a positive
element a′ ∈ A⊗Mk ! such that ‖a−a′‖ < ε. By Proposition 2.2 and Lemma 2.3(b)
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494 H. Lin & W. Sun

of [30], f (a′) a. Put a0 = f (a′). As ‖a‖ = 1 and ε < 1/4, it is clear that
a0 ∈ (A ⊗ Mk !)+\{0}.

For C in the statement, we write it as limm→∞(Cm , ım ), where each Cm is a
finite dimensional C∗-algebra and ım is a unital embedding of Cm into Cm+1. Since
C is an infinite dimensional unital simple AF-algebra, for k above, we can assume
that for m large enough, each Cm satisfies

Cm = Mn 1 ⊕ Mn 2 ⊕ · · · ⊕ Mn s (m ) , (3.28)

where nj ≥ k!, j = 1, 2, . . . , s(m). Fix one such m. Then one obtains a projection
q ∈ Cm such that Mk ! is a unital C∗-subalgebra of qCm q (with unit q). Put e =
1A ⊗ q in A ⊗ C and let ϕ′

1 : Mk ! → qCm q be a unital embedding. Define ϕ1 :
A ⊗ Mk ! → A ⊗ qCm q by ϕ1(x ⊗ y) = x ⊗ ϕ′

1(y) for all x ∈ A and y ∈ Mk !.

By Proposition 3.5, e(A ⊗ C)e ∈ TAC. Therefore there exists a projection p ∈
e(A ⊗ C)e and a C∗-subalgebra I0 ∈ C of e(A ⊗ C)e with 1I 0 = p, satisfying

‖px − xp‖ < ε/16 for all x ∈ ϕ1(F), (3.29)

dist(pxp, I0) < ε/16 for all x ∈ ϕ1(F) and (3.30)

1 − p ϕ1(a0). (3.31)

Choose a finite set G0 in I0 such that pϕ1(F)p ⊂ / 16 G0. Since I0 is weakly semi-
projective, for n large enough, there exists a homomorphism h : I0 → A ⊗ (qCn q)
such that ‖h(y) − y‖ < ε/32 for all y ∈ G0. Without loss of generality, replacing h

by Adu ◦ h for some unitary u if necessary, we may assume that h(p) = p. Using
property (5), we obtains a unital C∗-subalgebra I00 ⊂ h(I0) with 1I 00 = 1h(I 0 ) = p

such that I00 ∈ C,

dist(g, I00) < ε/16 for all g ∈ G0. (3.32)

Therefore

dist(pxp, I00) < ε/4 for all x ∈ ϕ1(F). (3.33)

Write qCn q as Mm1⊕Mm2⊕ · · · ⊕Mm r . Note that k! |mj for j = 1, 2, . . . , r, as ϕ′
1

is unital. Put N =
MMMmmMmMMmMmMMm

r
j =1 mj . Then there is a unital embedding ϕ′

2 : qCn q → MN !.

Consider the canonical embedding jk : Mk ! → MN ! and ϕ′
2 ◦ϕ′

1 : Mk ! → MN !. Since
they are both unital, there is a unitary u ∈ MN ! such that

Adu ◦ ϕ′
2 ◦ ϕ′

1 = jk .

Define ϕ2 : A ⊗ qCn q → A ⊗ MN ! by

ϕ2(x ⊗ y) = x ⊗ (Adu ◦ ϕ′
2(y))

for all x ∈ A and y ∈ qCn q.
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Tensor products of classifiable C∗-algebras 495

Then

(ϕ2 ◦ ϕ1)(c) = c for all c ∈ A ⊗ Mk !. (3.34)

Put p1 = ϕ2(p) ∈ A⊗MN ! ⊂ A⊗Q and D = ϕ2(I00) ⊂ A⊗MN ! ⊂ A⊗Q with
1D = p1. Note also D ∈ C. Moreover, by (3.29), (3.30) and (3.33), we have

‖p1x − xp1‖ = ‖ϕ2(pϕ1(x) − ϕ1(x)p)‖
= ‖pϕ1(x) − ϕ1(x)p‖ < ε/2 for all x ∈ F ; (3.35)

dist(p1xp1, D) ≤ dist(pϕ1(x)p, I00) < ε/2 for all x ∈ F . (3.36)

Then, by (3.31),

1 − p1 = ϕ2(1 − p) ϕ2(ϕ1(a)) = a. (3.37)

This implies that A ⊗ Q ∈ TAC.

The following corollary is a special case of Theorem 3.6.

Corollary 3.7. Let A be a unital simple separable C∗-algebra, and let C be a unital
infinite dimensional simple AF-algebra. Suppose that A⊗C has tracial rank at most
one. Then A ∈ A1.

4. Criterions for C∗-algebras to be in A 1

Lemma 4.1. Let A be a unital separable simple C∗-algebra. Let C be a unital
simple AH-algebra with no dimension growth and with Tor(K0(C)) = {0}. Suppose
that A ⊗ C is in TAC. Then for any simple unital infinite dimensional AF algebra
F, A ⊗ F is also in TAC.

Proof. According to Theorem 3.6, we just need to show that A⊗ F is in TAC for
some simple unital AF-algebra F .

By Theorem 3.7 of [29], we know that K0(C) is weakly unperforated. By The-
orem 2.7 of [15], K0(C) has the Riesz interpolation property. As Tor(K0(C)) = 0,
we have that K0(C) is an unperforated Riesz group. It follows from the Effros–
Handelman–Shen theorem (Theorem 2.2 of [5]) that there exists a unital separable
simple AF-algebra B with

(K0(B), K0(B)+, [1B ]) = (K0(C), K0(C)+, [1C ]). (4.1)

We will show that A ⊗ B is in TAC. For that, let 1/4 > ε > 0. Let F ⊂ A ⊗ B

be a finite subset and let a ∈ (A ⊗ B)+\{0}. Without loss of generality, we may
assume that 1/2 > ε,F is a subset of the unit ball and ‖a‖ = 1.

For any f ∈ F , we may assume that there are af ,1, af ,2, . . . , af ,n (f ) ∈ A and
bf ,1, bf ,2, . . . , bf ,n (f ) ∈ B such that

f −
n (f )n

i=1

af ,i ⊗ bf ,i < ε/32. (4.2)
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496 H. Lin & W. Sun

We may also assume that there exist x1, x2, . . . , xn (a) ∈ A and y1, y2, . . . , yn (a) ∈ B

such that

f1/ 4(a) −
n (a)nn

i=1

xi ⊗ yi < ε/32. (4.3)

Let

K1 = n(a) + max{n(f) : f ∈ F}, (4.4)

K2 = max{‖xi ‖ + ‖yi ‖ : 1 ≤ i ≤ n(a)} and (4.5)

K3 = max{‖af ,i ‖ + ‖bf ,i ‖ : 1 ≤ i ≤ n(f) and f ∈ F}. (4.6)

Put a1 = f1/ 2(a).
As B is an AF-algebra and C has stable rank one (see [4]), it is known that

there exists a unital homomorphism ϕ′ : B → C such that (ϕ′)∗ gives the identi-
fication (4.1). Define ϕ : A ⊗ B → A ⊗ C as ϕ = idA ⊗ ϕ′. Now since A ⊗ C is in
TAC, there exists a C∗-subalgebra D of A ⊗ C such that D ∈ C and (using p to
denote 1D )

‖px − xp‖ < ε/32 for all x ∈ ϕ(F), (4.7)

dist(pxp, D) < ε/32 for all x ∈ ϕ(F) and (4.8)

1 − p ϕ(a1). (4.9)

Thus there exists w ∈ A ⊗ C such that w∗w = 1 − p and ww∗ϕ(f1/ 4(a)) = ww∗.
Let G0 ⊂ D be a finite subset such that, for each x ∈ F , there exists y ∈ G0 such
that ‖x − y‖ < ε/32.

By the UCT (see [3]), we obtain κ ∈ KL(C, B) such that κ|K 1 (C ) = 0 and
κ|K 0 (C ) = (ϕ′)−1

∗0 . Choose a unital AH-algebra C0 with no dimension growth whose
Elliott invariant is

(K0(C0), (K0(C0))+, [1C0 ], K1(C0), T (C0), rC0 )

= (K0(C), (K0(C)+, [1C ], {0}, T (C), rC ).

With the identification above, it is known (by Theorem 6.10 of [22], for example)
that there exists a unital homomorphism H : C → C0 such that H∗0 = idK 0 (C ),

H∗1 = 0 and H induces the identity map on T (C). By the UCT, we obtain κ ∈
KL(C0, B) such that κ|K 0 (C0 ) = idK 0 (C0 ) (with the above identification). Note that
K1(C0) = {0} = K1(B). It follows from Theorem 9.12 of [21] (see also Theorem 4.7
of [19]) that there exists a sequence of unital contractive completely positive linear
maps Ψ′

n : C0 → B such that

[{Ψ′
n }] = κ and lim

n→∞ ‖Ψ′
n (x)Ψ′

n (y) − Ψ′
n (xy)‖ = 0 (4.10)

for all x, y ∈ C0. Define Ψn = Ψ′
n ◦ H : C → B, n = 1, 2, . . . . By Theorem 3.5.3

of [2], there exists a sequence of unital contractive completely positive linear maps
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Tensor products of classifiable C∗-algebras 497

Φn : A ⊗ C → A ⊗ B such that

Φn (x ⊗ y) = x ⊗ Ψn (y) (4.11)

for all x ∈ A and y ∈ C. Since D is weakly semiprojective, we may assume that,
there exists n0 ≥ 1 such that, for all n ≥ n0, there exists a unital homomorphism
hn : D → A ⊗ B such that

∥hn (g) − Φn (g)∥ < ϵ/32 for all g ∈ G0. (4.12)

Let

G1 = {1B } ∪ {yi : 1 ≤ i ≤ n(a)} ∪ {bf ,i : 1 ≤ i ≤ n(f) and f ∈ F} and (4.13)

G2 = {af ,i : 1 ≤ i ≤ n(f) and f ∈ F} ∪ {xi : 1 ≤ i ≤ n(a)}. (4.14)

As B is an AF algebra, without loss of generality, we may assume that there exists
a finite dimensional C∗-subalgebra E ⊂ B such that G1 ⊂ E.

Put

δ =
ϵ

32K1K2K3
. (4.15)

As E is weakly semiprojective, so is ϕ′(E) (note that E is simple). There then
exists a unital homomorphism h′

n : ϕ′(E) → B such that, when n is large enough,

∥h′
n (g) − Ψn (g)∥ < δ/2 for all g ∈ ϕ′(G1). (4.16)

We may also assume, without loss of generality, that (h′
n ◦ ϕ′)∗0 = ((idB )|E )∗0.

Then we can choose sufficiently large n1, such that for each n > n1, there exists a
unitary vn ∈ C satisfying

∥(Ad vn ◦ h′
n ◦ ϕ′)(y) − y∥ < δ/2 for all y ∈ G1. (4.17)

For n ≥ n1, define Φ′
n : A ⊗ C → A ⊗ B by Φ′

n = Ad (1A ⊗ v) ◦ Φn . Put
p1 = h′

n (p) and D1 = hn (D). By choosing even larger n1, we may assume, without
loss of generality

∥Φ′
n (w)∗Φ′

n (w) − (1 − p1)∥ < ϵ/16 and (4.18)

∥Φ′
n (w)Φ′

n (w)∗(Φ′
n ◦ ϕ(f1/ 4(a))) − Φ′

n (w)Φ′
n (w)∗∥ < ϵ/16. (4.19)

Then, one estimates, by (4.17) and (4.2), that

∥Φ′
n ◦ ϕ(f) − f∥ < ϵ/32 + ϵ/32 + K1K3δ < 3ϵ/32 for all f ∈ F . (4.20)

Similarly,

∥Φ′
n ◦ ϕ(f1/ 4(a)) − f1/ 4(a)∥ < ϵ/32 + ϵ/32 + K1K2δ < 3ϵ/32. (4.21)

By applying (4.7), (4.12) and (4.20), we then have that

∥p1x − xp1∥ ≤ ∥p1x − Φ′
n (p)Φ′

n ◦ ϕ(x)∥ + ∥Φ′
n (p)Φ′

n ◦ ϕ(x) − Φ′
n ◦ ϕ(x)Φ′

n (p)∥

+ ∥Φ′
n ◦ ϕ(x)Φ′

n (p) − xp1∥ < 3ϵ/16

+ ∥pϕ(x) − ϕ(x)p∥ + 3ϵ/16 < 7ϵ/16 (4.22)
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498 H. Lin & W. Sun

for all x ∈ F . Similarly,

dist(p1xp1, D1) < ε/2 for all x ∈ F . (4.23)

By property (5) of C∗-algebras in C, there is a C∗-subalgebra D2 ⊂ D1 with
1D 2 = 1D 1 = p1 such that D2 ∈ C and

dist(p1xp1, D2) < ε for all x ∈ F . (4.24)

Now, by (4.18) and (4.19), there are projections e1 ∈ Φ′
n (w)∗Φ′

n (w)(A ⊗ B)
Φ′
n (w)∗Φ′

n (w) and e2 ∈ Φ′
n (w)Φ′

n (w)∗(A ⊗ B)Φ′
n (w)Φ′

n (w)∗ such that e1 ∼ e2 and

‖e1 − Φ′
n (w)∗Φ′

n (w)‖ < ε/8 and ‖e2 − Φ′
n (w)Φ′

n (w)∗‖ < ε/8. (4.25)

Moreover,

‖(1 − p1) − e1‖ < ε/8 and ‖e2Φ′
n ◦ ϕ(f1/ 4(a)) − e2‖ < ε/4. (4.26)

It follows from (4.21) that

‖e2f1/ 4(a) − e2‖ < ε/2 + 3ε/32. (4.27)

Thus

‖f1/ 4(a)e2f1/ 4(a) − e2‖ < ε + 6ε/32 < 1/2. (4.28)

Then we can find a projection in Her(f1/ 4(a)) which is unitarily equivalent to e2.
It follows that e2 f1/ 16(a). Therefore, by (4.26),

1 − p1 ∼ e1 ∼ e2 f1/ 16(a) a. (4.29)

From (4.22), (4.23), and (4.29), we conclude that A ⊗ B is in TAC. By Theo-
rem 3.6, for any unital simple infinite dimensional AF algebra F , A ⊗ F ∈ TAC.

Theorem 4.2. Let A be a unital separable simple C∗-algebra. Suppose that A⊗C is
in TAC for some unital amenable separable simple C∗-algebra C such that TR(C) ≤
1 and C satisfies the UCT. Then A ⊗ F is in TAC for any simple unital infinite
dimensional AF algebra F .

Proof. We may assume that C has infinite dimension. Otherwise, as C is simple,
C ∼= Mn (C) for some n ∈ N. As Mn (A) is in TAC, by applying Proposition 3.5, we
conclude that A is also in TAC. It follows from Proposition 3.2 that A ⊗ F is in
TAC for any unital simple infinite dimensional AF algebra F .

Now assume that C is infinite dimensional. It follows from the assumption that
A ⊗ C is in TAC and from Proposition 3.2 that (A ⊗ C) ⊗ Q is in TAC. Note that
(A⊗C)⊗Q ∼= A⊗ (C⊗Q). Since TR(C) ≤ 1, it follows that TR(C⊗Q) ≤ 1. Since
C is amenable and satisfies the UCT, C ⊗ Q is also a unital separable amenable
simple C∗-algebra which satisfies the UCT. It follows from Theorem 10.4 of [21]
that C⊗Q is a unital simple AH-algebra with no dimension growth. One computes
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Tensor products of classifiable C∗-algebras 499

that K0(C ⊗Q) is torsion-free. Applying Lemma 4.1, we have that A⊗F is in TAC
for any unital simple infinite dimensional AF algebra F .

As a special case to Theorem 4.2, we have the following corollary.

Corollary 4.3. Let A be a unital separable simple C∗-algebra. Then A ∈ A0 if and
only if TR(A ⊗ C) = 0 for some unital amenable separable simple C∗-algebra C

with TR(C) ≤ 1 which satisfies the UCT.

Corollary 4.4. Let A be a unital separable simple C∗-algebra. Then A ∈ A1 if and
only if TR(A ⊗ C) ≤ 1 for some unital simple AH-algebra C.

Proof. For the “only if” part, we only need to choose C to be Q. The corollary
then follows from Corollary 3.7.

For the “if” part, note that by Theorem 10.4 of [21], C ⊗ Q is a unital simple
AH-algebra with no dimension growth. Since TR(A ⊗ C) ≤ 1, we have TR(A ⊗
C ⊗ Q) ≤ 1. Theorem 4.2 then applies.

5. Tensor Products

In this section we are ready to answer the following three questions:

(1) Let A and B be both in A1 ∩N . Is A ⊗ B in A1 ∩N ?
(2) Let A be a unital separable simple C∗-algebra and let B ∈ A1 ∩ N . Suppose

that A ⊗ B ∈ A1. Is it true that A ∈ A1?
(3) Let A ∈ A1 ∩N and B ∈ N with TR(B) ≤ 1. Is it true that TR(A ⊗ B) ≤ 1?

Proposition 5.1. Let A and B be two unital separable simple C∗-algebras in A1 ∩
N . Then A ⊗ B ∈ A1 ∩N .

Proof. Let A, B ∈ A1 ∩N . Then

(A ⊗ B) ⊗ Q∼=(A ⊗ B) ⊗ (Q ⊗ Q)∼= (A ⊗ Q) ⊗ (B ⊗ Q).

Since both A and B are in A1 ∩N , A⊗Q and B⊗Q have tracial rank no more
than one and satisfy the UCT. Therefore, by Lemma 10.9 and Theorem 10.10 of [21],
each of them is isomorphic to some unital simple AH-algebra with no dimension
growth. It is then easy to see that (A⊗Q)⊗ (B⊗Q) can be written as a unital sim-
ple AH-algebra with no dimension growth, which implies that TR(A⊗B⊗Q) ≤ 1.

Theorem 5.2. Let A be a unital separable simple C∗-algebra. Suppose that there
exists a unital separable simple C∗-algebra B ∈ A1 ∩N such that A⊗B ∈ A1, then
A ∈ A1.
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500 H. Lin & W. Sun

Proof. Since A ⊗ B ∈ A1, we have that TR(A ⊗ B ⊗ Q) ≤ 1. As B ∈ A1 ∩ N ,
we have that B ⊗ Q satisfies the UCT and TR(B ⊗ Q) ≤ 1. By Lemma 10.9 and
Theorem 10.10 of [21], B ⊗ Q is a unital simple AH-algebra with no dimension
growth. Note that Tor(K0(B⊗Q)) = 0. It follows from Lemma 4.1 (by setting TAC
to TAI algebras) that A ∈ A1.

We now consider the converse of a special case of Theorem 4.2 (when TAC
are just TAI algebras) in the following sense. Let A ∈ A1 ∩ N . Is it true that
TR(A ⊗ C) ≤ 1 if C is a unital separable amenable infinite dimensional simple
C∗-algebra with TR(C) ≤ 1 and satisfies the UCT? An affirmative answer is given
in Theorem 5.6.

Lemma 5.3. Let G be a countable weakly unperforated simple ordered group which
is rationally Riesz. Suppose that G also has the following property: for any x, y ∈ G

with x < y and for any integer N ≥ 1, there exists z ∈ G such that

x < Nz < y. (5.1)

Then G has the Riesz interpolation property.

Proof. Let u ∈ G+ be an order unit. Denote by Su (G) the state space of G, i.e.
the set of order and unit preserving homomorphisms from G to the additive group
R. First, we claim the following: For any a1, a2 ∈ G+\{0}, there is b ∈ G+\{0} such
that

0 < b < ai , i = 1, 2. (5.2)

In fact, as G is simple, there exists an integer n1 > 0 such that

n1ai > u, i = 1, 2. (5.3)

By the assumption, there exists b0 ∈ G such that

0 < n1b0 < u. (5.4)

As G is weakly unperforated, we get

0 < b0 < ai , i = 1, 2, (5.5)

which proves the claim.
Suppose that xi ≤ yj for i, j = 1, 2. We will show that there exists z ∈ G such

that

xi ≤ z ≤ yj , i, j = 1, 2. (5.6)

If xi ′ = yj ′ for some pair of i′ and j′, choose z = yj ′. Then xi ≤ yj ′ = z =
xi ′ ≤ yi , i = 1, 2. Now assume that xi < yj for all i and j.

Since G is rationally Riesz, there are m, n ∈ N\{0} and w ∈ G such that

nw ≤ myj and mxi ≤ nw, i, j = 1, 2. (5.7)

If nw = mxi ′ = myj ′ for certain i′ and j′, then m(yj ′−xi ′) = 0. Since yj ′−xi ′ >

0 and G is an ordered group, this is impossible.
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If nw < myj for all j, by the claim above, there exists b0 ∈ G+ such that

0 < b0 < myj − nw, j = 1, 2. (5.8)

By the assumption, there exists z ∈ G such that

mxi ≤ nw < mz < nw + b0 < myj , j = 1, 2. (5.9)

By the weak unperforation,

xi < z < yj , i, j = 1, 2. (5.10)

If nw > mxi , i = 1, 2, by the claim above again, there exists b0 ∈ G+ such that

0 < b0 < nw − mxi , i = 1, 2. (5.11)

Then, as above, we obtain z ∈ G such that

mxi < nw − b0 < mz < nw ≤ myj , i, j = 1, 2. (5.12)

We then conclude, as above,

xi < z < yj , i, j = 1, 2. (5.13)

Thus G has the Riesz interpolation property.

Lemma 5.4. Let A ∈ A1 ∩ N . Suppose that B is a unital separable amenable
simple C∗-algebra with TR(B) ≤ 1 which satisfies the UCT. Then K0(A ⊗ B) has
the Riesz interpolation property.

Proof. Since A ∈ A1 ∩N and TR(B) ≤ 1 where B is amenable and satisfies the
UCT, by Proposition 5.1, A ⊗ B ∈ A1 ∩N . It follows from [27] that K0(A ⊗ B) is
rationally Riesz.

By Lemma 10.9 and Theorem 10.10 of [21], B is isomorphic to a unital simple
AH-algebra with no dimension growth. It follows from Theorem 2.1 of [11] that B

is approximately divisible. Therefore A ⊗ B is approximately divisible. It follows
that, for any pair x, y ∈ K0(A⊗B) and any integer N ≥ 1 with x < y, there exists
z ∈ K0(A ⊗ B) such that

x < Nz < y. (5.14)

Moreover, from the approximate divisibility, by Theorem 1.4 of [1], A ⊗ B has the
strict comparison for positive elements. In particular, it follows that K0(A ⊗ B) is
weakly unperforated. The lemma then follows by applying Lemma 5.3.

Theorem 5.5. Let A ∈ A1 ∩N . Then, for any unital infinite dimensional simple
AH-algebra B with slow dimension growth, A ⊗ B is a unital simple AH-algebra
with no dimension growth.
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Proof. Since A ∈ A1∩N , it follows from Proposition 5.1 that A⊗B ∈ A1∩N . By
Lemma 5.4, K0(A⊗B) has the Riesz interpolation property. Since B is an infinite
dimensional simple AH-algebra of no dimension growth, from Theorem 2.1 of [11],
B is approximately divisible. So A ⊗ B is approximately divisible. It follows that
K0(A ⊗ B) ̸= Z. Since A ⊗ B ⊗ Q is a unital simple AH-algebra of no dimension
growth, the canonical map rA⊗B⊗Q : T (A ⊗ B ⊗ Q) → S[1](K0(A ⊗ B ⊗ Q)) maps
extreme points to extreme points. Therefore the canonical map rA⊗B : T (A⊗B) →
S[1](K0(A⊗B)) maps the extreme points to extreme points (see Lemma 5.6 of [27]).
It follows from [35] (see also [32, 34] for more background knowledge) that there
is a unital simple AH-algebra C with no dimension growth such that its Elliott
invariant is exactly the same as that of A ⊗ B. According to Theorem 10.4 of [21],
we have that A ⊗ B ∼= C.

We end this note with the following summary:

Theorem 5.6. Let A ∈ N be a unital separable simple amenable C∗-algebra that
satisfies the UCT. Then the following are equivalent.

(1) A ∈ A1;
(2) TR(A ⊗ Q) ≤ 1;
(3) A ⊗ Q ∈ A1;
(4) TR(A ⊗ B) ≤ 1 for some unital simple infinite dimensional AF-algebra B;
(5) TR(A ⊗ B) ≤ 1 for all unital simple infinite dimensional AF-algebras B;
(6) A ⊗ B ∈ A1 for some unital simple infinite dimensional AF-algebra B;
(7) A ⊗ B ∈ A1 for all unital simple infinite dimensional AF-algebras B;
(8) TR(A⊗B) ≤ 1 for some unital simple infinite dimensional AH-algebra B with

no dimension growth;
(9) TR(A⊗B) ≤ 1 for all unital simple infinite dimensional AH-algebras B with

no dimension growth;
(10) A ⊗ B ∈ A1 for some unital simple infinite dimensional AH-algebra B with

no dimension growth;
(11) A ⊗ B ∈ A1 for all unital simple infinite dimensional AH-algebras B with no

dimension growth;
(12) A ⊗ B ∈ A1 for some unital simple infinite dimensional C∗-algebra B in

A1 ∩N ;
(13) A⊗B ∈ A1 for all unital simple infinite dimensional C∗-algebras B in A1 ∩N .

Proof. Note that “(1) ⇒ (2)”, “(2) ⇒ (3)”, “(5) ⇒ (4)”, “(4) ⇒ (6)”, “(7) ⇒ (6)”,
“(9) ⇒ (8)”, “(9) ⇒ (10)”, “(11) ⇒ (10)”, “(11) ⇒ (7)”, “(13) ⇒ (11)”, “(13) ⇒
(7)” and “(13) ⇒ (12)” are straightforward.

Note that “(1) ⇒ (5)” and “(1)⇒ (9)” follow from Theorem 5.5. To see that
“(1) ⇒ (13)”, let A ∈ A1 ∩N and B ∈ A1 ∩N . Then TR(B ⊗ Q) ≤ 1. So B ⊗ Q

is a unital simple infinite dimensional AH-algebra with no dimension growth. Since
“(1)⇒ (9)”, this implies that TR(A⊗(B⊗Q)) ≤ 1. It then follows that A⊗B ∈ A1.
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For “(12) ⇒ (1)”, assume that TR(A⊗B⊗Q) ≤ 1. It follows that TR(A⊗(B⊗
Q)) ≤ 1. Since TR(B⊗Q) ≤ 1, again, B⊗Q is a unital simple infinite dimensional
AH-algebra with no dimension growth. It follows from Corollary 4.4 that A ∈ A1.

That “(3) ⇒ (1)” follows from [27] and “(4) ⇒ (1)” follows from Corollary 3.7.
For “(6) ⇒ (4)”, one considers A ⊗ B ⊗ Q and notes that B ⊗ Q is a unital

simple infinite dimensional AF-algebra.
That “(8) ⇒ (4)” follows from Corollary 4.4.
The rest of the implications follow similarly as established above.
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