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Let A; be the class of all unital separable simple C*-algebras A such that A ® U has
tracial rank no more than one for all UHF-algebra U of infinite type. It has been shown
that all amenable Z-stable C*-algebras in A; which satisfy the Universal Coefficient
Theorem can be classified up to isomorphism by the Elliott invariant. In this note, we
show that A € A; if and only if A® B has tracial rank no more than one for some unital
simple infinite dimensional AF-algebra B. In fact, we show that A € A; if and only if A®
B € A; for some unital simple AH-algebra B. We actually prove a more general result.
Other results regarding the tensor products of C*-algebras in A; are also obtained.

Keywords: Classification; tensor products; tracial rank; rational tracial rank; TAC; tra-
cially AF; AH-algebra.

1. Introduction

The Elliott program of classification of amenable C*-algebras is to classify separable
amenable C*-algebras up to isomorphism by their K-theoretic data known as the
Elliott invariant. It is a very successful program. Two important classes of unital
separable simple C*-algebras, the class of amenable separable purely infinite simple
C*-algebras satisfying the Universal Coefficient Theorem (UCT) and the class of
unital simple AH-algebras with no dimension growth, are classified by their Elliott
invariant (see [5, 7-10, 13, 16, 24, 31] among many articles in the literature). There
has been other significant progress in the Elliott program. Related to this note,
it has been shown that unital separable amenable simple C*-algebras with tracial
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rank at most one and satisfying the UCT are classifiable by the Elliott invariant. In
fact, they are isomorphic to unital simple AH-algebras with no dimension growth.
More recently, with a remarkable method developed by Winter ([36]), the notion
of rational tracial rank at most one was introduced (a unital separable simple C*-
algebra A is said to have rational tracial rank at most one if A ® U has tracial
rank at most one for every UHF-algebra U of infinite type), and it was shown in
[23] that unital separable amenable simple Z-stable C*-algebras which satisfy the
UCT and have rational tracial rank at most one are also classifiable by the Elliott
invariant (see also [25, 26, 36]). This class is significantly larger than the class of
all unital simple AH-algebras with no dimension growth. Denote by A; the class
of all unital separable simple C*-algebras which have rational tracial rank at most
one. A special unital separable simple C*-algebra in A; which does not have finite
tracial rank is the Jiang—Su algebra Z. The range of the Elliott invariant for C*-
algebras of rational tracial rank at most one has been characterized and computed
(see [27]). This class of C*-algebras includes C*-algebras whose ordered Ky-groups
may not have the Riesz interpolation property. The verification that a particular
unital simple C*-algebra is in the class A; was slightly eased when it was proved
in [27] that, A € A; if and only if A ® U has tracial rank at most one for some
UHF-algebra U of infinite type (instead of for all UHF-algebras of infinite type).
Suppose that A is a unital separable simple C*-algebra such that A® B has tracial
rank at most one for some unital simple infinite dimensional AF-algebra B. Does it
follow that A € A;7 We will answer this question affirmatively in this short note.
In fact, we will show that if A ® B has tracial rank at most one for some unital
infinite dimensional separable simple C*-algebra B with tracial rank at most one
then A € A;. This may provide a better way to determine which C*-algebras are in
Aj. In a more recent development, the class of all finite unital separable simple C*-
algebras which satisfy the UCT has been classified ([12, 14, 33]). These C*-algebras
have rational generalized tracial rank at most one (see the end of Definition 3.1
below). As defined in Definition 3.1, a unital separable simple C*-algebra A has
rational generalized tracial rank at most one if gT R(A®U) < 1 for all UHF-algebras
U of infinite type. It is much more convenient to deal with A ® @ as demonstrated
n [12]. This short note also provides such a convenient passage.

Denote by A the class of all unital separable amenable C*-algebras which satisfy
the Universal Coefficient Theorem. For the purpose of classification, we also consider
A1 NN, the class of all unital separable simple amenable C*-algebras which have
rational tracial rank at most one and satisfy the UCT. We will show that if A and
B are both in A; NN, then A® B is also in A; NN. Assume that A € 4; NN and
B is a simple amenable infinite dimensional C*-algebra with tracial rank at most
one and satisfies the UCT. From the fact above, A® B is also in .A; NN. One might
ask whether A ® B has tracial rank at most one. We will also give an affirmative
answer to this question.

Most of the results are in a more general setting which may provide an oppor-
tunity for the future applications. In fact, with a much more recent classification
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result in [14], we expect some of the results presented in this note can be used to
ease some technical constrains. In fact, for example, for a unital simple separable
C*-algebra A, it is much more delightful to work with A ® @ than A ® U, since
Ki(A®Q) (i = 0,1) is torsion free and divisible, while Kj(A®U) could have torsion
in general. Some applications of results in this short note can be found in [14].

2. Preliminaries

Definition 2.1. Let A be a C*-algebra, F and G be two subsets of A and ¢ > 0.
We say that F Cp @ if for each x € F, there exists y € G, such that || — y|| <e.

By Ay, we mean the positive cone of all positive elements in A.

If a,b € Ay, we write a 0 b if there is a sequence {wn} in A such that
limp oo || bzn — al| = 0. We say two positive elements = and y are Cuntz equiva-
lent and write it as x ~ ¥, if z [ y and y 0 =.

Let A be a unital stably finite simple C*-algebra. Denote by T(A) the tracial
state space of A. Define dy(a) = limp o 7(a¥™) for all a € A, and 7 € T(A).
A is said to have strict comparison property for positive elements if for any pair
a,b € A, \{0}, dr(a) < d(b) for all 7 € T(A) implies that a B b.

Let F C A be a finite subset and let p € A be a projection. We use pFp to
denote {pap: x € F}.

Definition 2.2. Let B be a family of unital C'*-algebras. We say a unital simple
separable C*-algebra A is tracially approximated by C*-subalgebras in B and write
it as A € TAB, if the following holds: For any e > 0, any finite subset F C A and
any a € A;\{0}, there exist a projection p € A and a C*-subalgebra B C A with
B € B and 1g = p such that

lpx — ap|| < e forall x € F, (2.1)
pFp CaB and (2.2)
1-pl a. (2.3)

Let B = Z; be the family of C*-algebras of the form C([0,1], F'), where F is a
unital finite dimensional C*-algebra. Then we write TR(A) < 1if A € TAT;.

Note that, in the original Definition 3.1 of [20], Z; is replaced by the class of all
finite direct sums of C*-algebras of the form M, (C(Xy)), where each X, is a finite
CW complex with dimension one. But those definitions are equivalent. Please see
Theorems 6.13 and 7.1 of [20] for more details on such equivalence. In the definition
above, if we replace B by Z, the class of finite dimensional C*-algebras, then we
say that A has tracial rank zero (see Theorem 7.1 of [20]). If A has tracial rank at
most one, we denote it by TR(A) < 1. If A has tracial rank zero, we denote it by
TR(A) = 0. For more details, see [17, 18, 20].

Notations. Let A be a unital C*-algebra. For each n € N, there is an embedding
of My (A) into Myy1(A) defined by a — (§ 8). Denote by My (A) the algebraic
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inductive limit of M;(A) — Ms(A) — ---, whose connecting maps are just the
embeddings above. Suppose that T'(A) # 0. For any p € My (A) and for any
7 € T(A), we may assume that p € M, (A) for certain n. By identifying M, (A)
with A ® My (C), we define 7(p) to be (7 @ Tr)(p), where Tr is the standard matrix
trace (not normalized) on M, (C). Note that the value (7 ® Tr)(p) is independent
of the choice of n.

Denote by AV the class of all unital separable amenable C*-algebras which satisfy
the Universal Coefficient Theorem.

Denote by @ the UHF-algebra with (Ko(Q), Ko(Q)+, [1a]) = (Q,Q4, 1).

Use Ay to denote the class of all unital separable simple C*-algebras A for which
TR(A® My) = 0 for all supernatural numbers p of infinite type.

Use A; to denote the class of all unital separable simple C*-algebras A for which
TR(A® My) <1 for all supernatural numbers p of infinite type.

By the above defined notations, Ag NN is the class of all C*-algebras which are
separable, amenable, satisfies the UCT, and are in Ag, and A; N A is the class of
all C*-algebras which are separable, amenable, satisfies the UCT, and are in Aj.

Definition 2.3. Let € > 0. Define

4]
Bl t> 2,
fﬂ(t)zg(l/e)t—l €<t < 2,
0 0<t<e.

It is easy to check that such fgis a continuous function on [0, c0).

3. Tensor with AF-Algebras

Definition 3.1. Throughout this section and the next, let C be a class of unital
separable amenable C*-algebras which satisfy the following properties: (1) Every
finite dimensional C*-algebrasis in C; (2) If A € C, then A® F' € C, for every finite
dimensional C*-algebra F; (3) Every C*-algebra in C is weakly semiprojective (see
[28, Chap. 4] for the definition and some basic properties of weak semiprojectivity);
(4) Every unital hereditary C*-subalgebra of C*-algebras in C is in C; (5) Suppose
that A € C and I C A is a closed ideal. Then, for any finite subset 7 C A/I and any
€ > 0, there exists a C*-subalgebra B C A/I such that B € C and dist(z, B) < ¢
for all x € F.

It is easy to verify that the class Z7 defined in Sec. 2 satisfies (1)—(5).

Let F; and F5 be two finite dimensional C*-algebras, and let @1, ps : F} — Fb
be two homomorphisms. Define the mapping torus

A= A(F1,F2,Q01,S02)
= {(f,a) € C([0,1], F2) & F1 : f(0) = p1(a) and f(1) = p2(a)}.

Let C’ be the class consisting of all such mapping tori and all finite dimensional
C*-algebras. It is obvious that C’ satisfy properties (1) and (2) above. It is proved
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in [6] that all C*-algebras in C’ are semiprojective (property (3)). It is proved in
[14] that the class also satisfies properties (4) and (5).

Unital separable simple C*-algebras which are in TAC’ are also called C*-
algebras with generalized tracial rank at most one. If A is in TAC’, then we write
gTR(A) < 1. We say a unital separable simple C*-algebra A has rational gen-
eralized tracial rank at most one, if gTR(A ® U) < 1 for all UHF-algebras U of
infinite type. Via Theorem 3.4 below, we will show that if gTR(A® U) < 1 for one
UHF-algebra U of infinite type (preferably U = @), then A has rational generalized
tracial rank at most one.

We begin with the following:

Proposition 3.2. Let A be a unital separable simple infinite dimensional C*-
algebra in TAC. Then, for any simple AF-algebra B (B could be finite dimensional),
A® B e TAC.

Proof. The case that B is finite dimensional follows from properties (1) and (2)
of C*-algebras in C.

Now we assume B is infinite dimensional. It is easy to see that A ® B is a
unital simple C*-algebra. Note that B is approximately divisible (see [1] for the
definition). By Theorem 1.4 of [1], A ® B has the strict comparison property for
positive elements. Let F C A ® B be a finite subset, ¢ > 0 and ¢ € (A ® B);\{0}.
Since A is a unital infinite dimensional simple C*-algebra, it is non-elementary. It
is easy to find, for any integer n > 1, n nonzero mutually orthogonal and Cuntz
equivalent positive elements in A. By the strict comparison, one obtains a nonzero
element ag € A such that ag ® 1g H c.

To prove that A ® B is in TAC, we may assume, without loss of generality,
that F = {a®b:a € F1 and b € Fa}, where F; and Fy are finite subsets in A
and B, respectively. Since B is AF, we may further assume that Fo C F, where F’
is a unital finite dimensional C*-subalgebra of B. Moreover, to simplify notation
further, without loss of generality, we may also assume that ||al, ||b]] < 1 for all
a € F, and b € Fs.

Since A € TAC, there exists a projection p; € A and a C*-subalgebra Cy € C
of A with 1¢, = pi such that

llapy — pral| < €/2 for all a € Fy, (3.1)
dist(prap1,Co) < €/2 foralla € F; and (3.2)
1 —P1 EI ag. (33)

Define C; = Cy @ F and p = p; ® 1g. Then C; € C and 1¢, = p. It follows that

lep — px|| < e forall z € F (34)
dist(pzp,Cy) < e forallz € F and (3.5)
1-pHa®ig e (3.6)

O
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Remark 3.3. If A is finite dimensional, Proposition 3.2 still holds.

Theorem 3.4. Let A be a unital separable simple C*-algebra. Suppose that AQU €
TAC for some infinite dimensional UHF-algebra U. Then A ® B € TAC for any
unital infinite dimensional simple AF-algebra B.

Proof. Suppose that A @ U € TAC. Let B be a unital infinite dimensional simple
AF-algebra.

Fix € > 0, and also fix a finite subset F C A ® B and a € (A ® B)4+\{0}.

As B is approximately divisible, so is A ® B. It follows from Theorem 1.4(a)
of [1] that A ® B is either purely infinite or has the strict comparison property for
positive elements. In either case, there is a nonzero element ag € 1o ® B such that
apd ain A® B. As A® B is simple, there is an integer Ny > 1 such that

1A®B E‘ No[ao]. (37)

We write B = limp_co(Bn,%n), where each By is a finite dimensional C*-
algebra and in : By — DBpip is a unital embedding. If n > m, put ¢Ymn =
Yn_10---0%Um : Bn — DBn. We will also use ¢n oo : By — B for the unital
embedding induced by the inductive limit. Write

Bn = MR(n,1) ® MR(n,2) ® - ©MR(n k(n))-

According to Proposition 2.2 and Lemma 2.3(b) of [30], to simplify notation, with-
out loss of generality, by replacing ag with a smaller (in sense of the Cuntz relation)
element, we may assume that ay € B for some large n. Moreover, we may assume
that ag = ain ©agn ©---® ak(n),n, where ain € Br(n,i),i = 1,2,...,k(n). Since B
is simple, we may assume that R(n, j) > 4Ny for all j and all n. It follows from (3.7)
that we may assume that the range projection of aj n has rank at least two. Then

we may write aj n > aj(?g + aj(,lg, where a-(i% has exactly rank one range projection,

B
and aj(?rz and aj(ylrz are mutually orthogonal. Thus

a>af) =al) @al) & @al), ., i=01

By choosing possibly smaller ag (in the sense of the Cuntz relation), we may assume
that a]-('!% is a rank one projection for each j and n, ¢ = 0, 1.

By changing notation, without loss of generality, we may further assume that
F C A® By and ay, a(()o), agl) € Bj. Define m : By — Mg(,j) to be the
canonical projection to the jth summand, j = 1,2,...,k(1),n = 2,3,.... Put
Fo=m(F)j=12,... k1)

For each A® Mg (1,iy @ U € TAC, there exists a projection pi € A® Mg(1,i) @ U
and a C*-subalgebra Dy; € C with 1p,, = pi such that

ll[pi, «]|| < e/8 forall x € F, (3.8)
dist(piapi, Do) < €/8 forallxz € /i and (3.9)

1A®MR(1_i)®U — Di i al(,Ol) (310)
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Let Gi C By, be a finite subset such that, for every x € Fi, there exists o’ € G
such that ||pizp — || < €/16. We may also assume that 1p,, € Gi.

Write U = 2, M, (n), Where limp .o 7(n) = oo and M, (ny C M; (n41) unitally.
Since each Dy; is weakly semiprojective, we can choose ng large enough, such
that for each i = 1,2,...,k(1), there exists a unital homomorphism ¢; : Dyi —
AQ® MR(l,i) ® Mr(no)a satisfying

loi(z') —2'|| <e/8 forallx’ €. (3.11)

Without loss of generality (by replacing ¢ with Adw; o ¢ for some unitary u; in
A® Mg(1,iy ® My (n,) if necessary), we may assume that i (1g,,) = pi. It follows
from property (5) of C*-algebras in C that there exists a unital C*-algebra D; C
©i (Do,i) such that D; € C, 1p, = ¢i(Dy,i) and

dist(pi (z'), Di) < €/16 for all 2’ € G;. (3.12)
Note that 1p;, = ¢i(1p,,) = pi. Thus
dist(piazpi, Di) <€/4 forall z € Fi. (3.13)

Denote by 2,i : Mg(1,i) — Mg,y m,) the map defined as wi(z) = 2 ®
IM, (g 8 = 1,2,...,k(1), and define 190 : A® By — A ® B1 ® M;(n, by
w(r)=r®1w,,, foralzeAd® B.

Since B is a unital simple AF-algbera, we may assume that 11 n, : B1 — Bh,

has multiplicities at least N > 1 for each simple summand of By, such that

Ez
2rino) (SRS -
< L. .
= (3.14)
Put U;; = m, o (¢11n1|MR(1,i)) : MR(I,i) — MR(m,j)v where m,,j is

the canonical projection to the jth summand of Bp,. The assumption on the
multiplicity implies that Vi (Imy,,,) = Im,.;, € MRr(n,,j) with m(i,j) >
N,i = 1,2,...,k(1) and j = 1,2,...,k(n1). It follows that R(1,i)|m(i,j),i
1,2,....k(1)and j = 1,2,...,k(n1). Note that Iy, ;) = k:11) Ui (Mg )0 d =
1,2,...,k(ny). Write

m(t,j) =13, 5)r(no)R(1,%) + sij, (3.15)

where {(z,7) > 1 and r(no)R(1,4) > si; > 0 are integers. It follows that

B sy _®reores 8 gorey o 1
— ] ; o -
ymea) N =1 2(mo) (Y ROLE 27 (Y R(L)
(3.16)
Since R(1,i)|m(i, ), we may write sjj; = si(,rj)R(l,i),z’ =1,2,...,k(1) and j =
1,2,...,k(ny). Define pij : Mr,iy — Ms,; by + — x® 1y . Note also that
N

B . o
KD (i, 5) = R(n,7),5 = 1,2,..., k(n1).
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It follows from (3.16) that

B 1)
Pij (1MR(1.i)) B wl,m(aj,l)' (3'17)
i=1
Let 21,ij @ My (no)r(1,i) = Mii,j)r(no)R(1,i) be the embedding defined by a — a ®
My, - Let oz o Migjyr(no)R(1i) — \I/,,, (Mg (1,iy) be defined by the embedding
which sends rank one projection to rank one projection. Put 23 ; = 12ij 021,i-

Define 14ij ¢ A®MR(1J) ®Mr(no) — A®Mﬂ(n1’j) by 14, j (a®b) = a®13,i,j (b) for
all a € A and b € M, (ny)R(1,i)- Note that

lﬁm) lﬂm) n1)
13,1 OZmE] ol pi,jEI = Uiy =10 Mg
j=1 j=1 i=1
and
fgo ) K o)
E'E' ZSIjOZOIEIEBl pl,]ElEI :w1,n1'
i=1 j=1 j=1
Define 1 : Bm A®Bt0betmapg1venbya®b»—>a®w1m()
l.Put Ch = llkill) ]k(,nf)u. i (Di) . Then Cy € C and p = 1¢, has the form
:<£11) pi ®@p] , where pj € A® MR1,iy ® My (ny) and pj = J!((an) Im ;- A fact

we use here is

|zp — pz|| = [|z(pi @ p)) — (0 @ pi)z|| = |zpi — piz|| < e/4 (3.18)

for all x € F, since x = a ® b, where a € A and b € By. We also have

dist(pzp, Cy) < e/4 for all x € F. (3.19)
By (3.10) and (3.17),
80 K1) . .
1-p< (I—pi)+ Pij (IMR(Li))Eaé)—Fag)a, (3.20)
i=1 j=1

where we identify ag) with 1/11,Oo(ag)). Therefore 1 — p H . This implies that
A® B e TAC. i

Proposition 3.5. Let A be a unital separable simple C*-algebra in TAC and let
p € A be a nonzero projection. Then pAp € TAC.

Proof. Let 1/4 > € > 0. Let F C pAp be a finite subset and let a € (pAp)  \{0}.
Without loss of generality, we may assume that p € F and [|z|| <1 for all x € F.
Since A is in TAC, there is a projection e € A and a C*-subalgebra Cy € C of A
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with 1c, = e such that

lex — ze|| < /64 for all z € F, (3.21)
dist(exe, Cy) < /64 for all z € F and (3.22)
1—el a. (3.23)

We have ||ep — pe|| < €/64. One computes that there is a projection ey < p and
ey € Cop such that ||eg — pep|| < €/32, |le) — epe|| < €/32 and ||eg — ep] < €/8.
Then there is a unitary v € A such that ||u — 1|| < €/4 and u*e{u = ey. Define
Cy = u*(e,Coe(y)u. By property (4) as in the definition of C, e[;Cype(, € C. Therefore
Cy € C. Note that pz = xp = z for all z € F. We then estimate that (with ||z| <1
for x € F as assumed), for all x € F,

leox — weol| < [leox — pepa|| + [Ipepr — zeol|
< /16 + |pepz — paepl| + |prep — weo|
< €e/16+¢/64+¢/16 < e. (3.24)
By (3.23),
p—pep l a. (3.25)
Since [|(p — pep) — (p — eo)|| < €/32, by Proposition 2.2 and Lemma 2.3(b) of [30],
p—eo=fas(p—eo) B p—pepl a. (3.26)
We also estimate that
dist(egzeg, C1) < e forall x € F. (3.27)
It follows that pAp € TAC. O

Theorem 3.6. Let A be a unital simple separable C*-algebra. Then A ® C € TAC
for all unital simple AF-algebra C if and only if A ® C € TAC for some infinite
simple AF-algebra C.

Proof. Following Theorem 3.4, it suffices to show the following: Suppose that A ®
C € TAC for some unital simple AF-algebra C'. Then A ® @) € TAC.

Since every finite dimensional C*-algebra is in C, it is easy to see that we only
need to consider the case that A is infinite dimensional.

Let B=A®Q,1/4>¢>0,ac BL\{0} and let F C B be a finite subset. To
simplify the notation, without loss of generality, we may assume that ||z|| < 1 for
all z € F and |ja] = 1.

We will write A® Q as limk oo (A ® Mk, jk ), where jk: A® My — A® M1y
is given by jk(a) = a ® lm,, ,, for all a € A® M,k =1,2,.... Without loss of
generality, we may assume that F C A ® My, for some k > 1.

Without loss of generality again, we may assume that there exists a positive
element o’ € A® My, such that |la —d'|| < e. By Proposition 2.2 and Lemma 2.3(b)
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of [30], fa(a’) B a. Put ag = fa(a’). As |jal]] = 1 and € < 1/4, it is clear that
ap € (A ® Mia)+\{0}.

For C' in the statement, we write it as limm —.0o(Cm,tm ), where each Cn, is a
finite dimensional C*-algebra and iy, is a unital embedding of C, into Cp, 1. Since
C' is an infinite dimensional unital simple AF-algebra, for k above, we can assume
that for m large enough, each Cy, satisfies

Cm = Mn, ®Mn, ®---® M, (3.28)

s(m)?

where nj > k!,j = 1,2,...,s(m). Fix one such m. Then one obtains a projection
q € Cnm such that My, is a unital C*-subalgebra of ¢Cnq (with unit ¢). Put e =
1a ®q¢in A® C and let ¢} : My — ¢Cmq be a unital embedding. Define ¢; :
A@ My — AR q¢Cnqgby p1(z®@y) =2 ® @) (y) for all z € A and y € M.

By Proposition 3.5, e(A ® C)e € TAC. Therefore there exists a projection p €
e(A® C)e and a C*-subalgebra Iy € C of e(A ® C)e with 1j, = p, satisfying

lpx — zp|| < €/16 for all x € w1 (F), (3.29)
dist(pap, Iy) < €/16 for all z € 1 (F) and (3.30)
1—p p1(ap). (3.31)

Choose a finite set Gy in Iy such that po1 (F)p Cg 16 Go- Since Iy is weakly semi-
projective, for n large enough, there exists a homomorphism h: Iy — A ® (¢Chq)
such that [|h(y) — y|| < €/32 for all y € Gy. Without loss of generality, replacing h
by Adw o h for some unitary u if necessary, we may assume that h(p) = p. Using
property (5), we obtains a unital C*-subalgebra Iog C h(lp) with 1155 = Iha,) =p
such that Ipg € C,

dist(g, Ioo) < €/16 for all g € Go. (3.32)
Therefore
dist(pap, Ing) < €/4  for all & € p1(F). (3.33)

Write ¢Ch g as My, ®Mm, @ - - - ©Mpm, . Note that E'|mj forj =1,2,...,r as ¢}
r

is unital. Put N = =1 M- Then there is a unital embedding ¢} : ¢Chq — My .
Consider the canonical embedding jk : Mxy — My and @5 o) : Myy — M. Since
they are both unital, there is a unitary v € My such that

Adu o 0 ¢ = jk.
Define s : A ® qCrq — A ® My by
p2(z®@y) =2 ® (Aduo ps(y))

for all x € A and y € qChq.
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Then
(p2o¢@i)(c)=c forall ce A® M. (3.34)

Put p1 = p2(p) € AQMN1 C A®Q and D = pa(Ipg) C A® My C A® Q with
1p = pi1. Note also D € C. Moreover, by (3.29), (3.30) and (3.33), we have

Iprz = zp1|| = llp2(per () — e (2)p) |

= [pp1(x) — p1(x)pl| < /2 for all x € F; (3.35)
dist(p1ap1, D) < dist(pps (2)p, Ioo) < €/2 for all z € F. (3.36)
Then, by (3.31),
1—p1 =21 —p) 0 pa(p1(a)) = a. (3.37)
This implies that A @ @ € TAC. O

The following corollary is a special case of Theorem 3.6.

Corollary 3.7. Let A be a unital simple separable C*-algebra, and let C' be a unital
infinite dimensional simple AF-algebra. Suppose that A® C has tracial rank at most
one. Then A € A;.

4. Criterions for C*-algebras to be in A ;

Lemma 4.1. Let A be a unital separable simple C*-algebra. Let C' be a unital
simple AH-algebra with no dimension growth and with Tor(Ky(C)) = {0}. Suppose
that A® C is in TAC. Then for any simple unital infinite dimensional AF algebra
F,A® F is also in TAC.

Proof. According to Theorem 3.6, we just need to show that A ® F'is in TAC for
some simple unital AF-algebra F'.

By Theorem 3.7 of [29], we know that K(C') is weakly unperforated. By The-
orem 2.7 of [15], K(C) has the Riesz interpolation property. As Tor(Ky(C)) = 0,
we have that Ky(C) is an unperforated Riesz group. It follows from the Effros—
Handelman—Shen theorem (Theorem 2.2 of [5]) that there exists a unital separable
simple AF-algebra B with

(Ko(B), Ko(B)+,[18]) = (Ko(C), Ko(C)+, [1c])- (4.1)

We will show that A ® B is in TAC. For that, let 1/4 > ¢ > 0. Let F C A® B

be a finite subset and let a € (A ® B);+\{0}. Without loss of generality, we may
assume that 1/2 > €, F is a subset of the unit ball and ||a|| = 1.

For any f € F, we may assume that there are af,1,af,2,...,0f n) € A and
bf‘l,bf,27...,bf!n(f) €B suh that

af,i®bf,i

< ¢/32. (4.2)
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We may also assume that there exist x1,72,...,7h@) € A and y1,¥2,...,Yn(a) € B
such that .
:
H
Ti ® yi < €/32. (4.3)
Let
Ky =n(a) +max{n(f): f € F}, (4.4)
Ky = max{||zi|| + [|vi]|: 1 <i<n(a)} and (4.5)
K =max{|as i| +|bsill: 1 <i<n(f) and f € F}. (4.6)

Put a1 = fy2(a).

As B is an AF-algebra and C has stable rank one (see [4]), it is known that
there exists a unital homomorphism ¢’: B — C such that (¢’). gives the identi-
fication (4.1). Define p: A® B — A® C as ¢ = ida ® ¢'. Now since A ® C' is in
TAC, there exists a C*-subalgebra D of A ® C such that D € C and (using p to
denote 1p)

lpx — zp|| < €/32 for all x € o(F), (4.7)
dist(pap, D) < €/32 for all x € p(F) and (4.8)
1—pl p(a). (4.9)

Thus there exists w € A ® C such that w*w = 1 — p and ww*p(f14(a)) = ww*.
Let Go C D be a finite subset such that, for each x € F, there exists y € Gy such
that ||z — y[| < e/32.

By the UCT (see [3]), we obtain x € KL(C,B) such that x|k,c) = 0 and
Klko(c) = (¢')ry - Choose a unital AH-algebra Cy with no dimension growth whose
Elliott invariant is

(KO(CO)’ (KO(CO))+7 [100]’ K1(00)7 T(CO)7 TCO)
= (KO(C)v (KO(O)-H [10]5 {0}7 T(O)a rc )

With the identification above, it is known (by Theorem 6.10 of [22], for example)
that there exists a unital homomorphism H : C' — Cp such that H.o = idk,(c),
H,; = 0 and H induces the identity map on T(C). By the UCT, we obtain x €
K L(Cy, B) such that [k ,(c,) = idk o(c,) (With the above identification). Note that
K1(Cy) = {0} = K1(B). It follows from Theorem 9.12 of [21] (see also Theorem 4.7
of [19]) that there exists a sequence of unital contractive completely positive linear
maps ¥/, : Cy — B such that

{a}l=r and  lim W (2)P; (y) = Uy (zy)] =0 (4.10)

for all z, y € Cy. Define ¥y = ¥, o H : C — B,n = 1,2,.... By Theorem 3.5.3
of [2], there exists a sequence of unital contractive completely positive linear maps
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P, : A® C — A® B such that
Pn(z@y) =2® ¥n(y) (4.11)

for all x € A and y € C. Since D is weakly semiprojective, we may assume that,
there exists ng > 1 such that, for all n > ng, there exists a unital homomorphism
hn : D — A® B such that

Ihn () — ®n(g)|| < €/32 for all g € Go. (4.12)
Let

Gi={lg}U{y:1<i<n(a)}Ufbri:1<i<n(f)and fcF} and (4.13)
Go={ari:1<i<n(f)and fe FlU{z :1<i<n(a)} (4.14)

As B is an AF algebra, without loss of generality, we may assume that there exists
a finite dimensional C*-subalgebra E C B such that G; C E.
Put
€

0= ————.

32K1 Ky K3

As F is weakly semiprojective, so is ¢/(FE) (note that E is simple). There then
exists a unital homomorphism A}, : ¢'(E) — B such that, when n is large enough,

1hn (9) = Wn(g) < 6/2 for all g € ' (Gr). (4.16)

We may also assume, without loss of generality, that (h, o ¢’)«o = ((id)|g )«0-
Then we can choose sufficiently large nq, such that for each n > ny, there exists a
unitary v € C satisfying

l(Ad v o b, 0o ') (y) —y|l < /2 forally € G. (4.17)

For n > ny, define ®,: A®@ C — A® B by ®, = Ad(1a ® v) o &,. Put
p1 = hl (p) and Dy = hny (D). By choosing even larger ni, we may assume, without

(4.15)

loss of generality
1% ()" @) (1) — (1~ py)l| < /16 and  (4.18)
1% (w)@p, (w)"(Ph © (f1r4(a))) — O (w)@h (w)* ]| < €/16. (4.19)
Then, one estimates, by (4.17) and (4.2), that
@ 0 o(f) — fll <€/32+¢€/32+ K1 K35 < 3¢/32 forall feF. (4.20)
Similarly,
195 0 e(fiala)) = frala)ll < €/32+¢/32+ K1 K0 < 3€/32. (4.21)
By applying (4.7), (4.12) and (4.20), we then have that
Iprz = ap1|| < llpra — @4 (p) 2 0 @) + (|24 () Dry 0 () — Py 0 () Pn ()
+ @ 0 (x)® (p) — @p1]| < 3€/16
+ llpe(x) — ¢(z)pl| + 3€/16 < 7€/16 (4.22)
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for all x € F. Similarly,
dist(p1axp1, D1) < €/2 for all x € F. (4.23)

By property (5) of C*-algebras in C, there is a C*-subalgebra Dy C D; with
1p, = 1lp, = p1 such that Dy € C and

dist(p1axpr, Do) < ¢ forall z € F. (4.24)

Now, by (4.18) and (4.19), there are projections e; € @/ (w)*®, (w)(A® B)
O/ (w)* @ (w) and ey € O (w) P, (w)* (A @ B)®), (w)®) (w)* such that ey ~ ez and

ller — @5 (w)* @) (w)|| < €/8 and |ex — @] (w)®], (w)*|| < /8. (4.25)

Moreover,
J0—p)—erl <e/s and [es® 0 p(fya(a) —esll < /4. (4.26)
It follows from (4.21) that
lle2f1 a(a) — eall < €/2+ 3e/32. (4.27)
Thus
| f1ra(a)eafiya(a) — eal| < e+ 6€/32 < 1/2. (4.28)

Then we can find a projection in Her(f1;4(a)) which is unitarily equivalent to es.
It follows that ex 0 fi,16(a). Therefore, by (4.26),

1—pr~er~el fi16(a)H a. (4.29)

From (4.22), (4.23), and (4.29), we conclude that A ® B is in TAC. By Theo-
rem 3.6, for any unital simple infinite dimensional AF algebra F';, A® F € TAC.
O

Theorem 4.2. Let A be a unital separable simple C*-algebra. Suppose that A® C'is
in TAC for some unital amenable separable simple C*-algebra C' such that TR(C) <
1 and C satisfies the UCT. Then A ® F' is in TAC for any simple unital infinite
dimensional AF algebra F'.

Proof. We may assume that C' has infinite dimension. Otherwise, as C' is simple,
C' = My (C) for some n € N. As My (A) is in TAC, by applying Proposition 3.5, we
conclude that A is also in TAC. It follows from Proposition 3.2 that A ® F' is in
TAC for any unital simple infinite dimensional AF algebra F'.

Now assume that C' is infinite dimensional. It follows from the assumption that
A® C is in TAC and from Proposition 3.2 that (A ® C) ® @ is in TAC. Note that
(AC)®Q =2 A (C®Q). Since TR(C') < 1, it follows that TR(C® Q) < 1. Since
C' is amenable and satisfies the UCT, C' ® @ is also a unital separable amenable
simple C*-algebra which satisfies the UCT. It follows from Theorem 10.4 of [21]
that C'® @ is a unital simple AH-algebra with no dimension growth. One computes
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that Ko(C' ® Q) is torsion-free. Applying Lemma 4.1, we have that A® F' is in TAC
for any unital simple infinite dimensional AF algebra F'. O

As a special case to Theorem 4.2, we have the following corollary.

Corollary 4.3. Let A be a unital separable simple C*-algebra. Then A € Ay if and
only if TR(A ® C) = 0 for some unital amenable separable simple C*-algebra C'
with TR(C) < 1 which satisfies the UCT.

Corollary 4.4. Let A be a unital separable simple C*-algebra. Then A € A, if and
only if TR(A ® C) <1 for some unital simple AH-algebra C.

Proof. For the “only if” part, we only need to choose C' to be (. The corollary
then follows from Corollary 3.7.

For the “if” part, note that by Theorem 10.4 of [21], C' ® @ is a unital simple
AH-algebra with no dimension growth. Since TR(A ® C) < 1, we have TR(A ®
C ® Q) < 1. Theorem 4.2 then applies. O

5. Tensor Products

In this section we are ready to answer the following three questions:

(1) Let A and B be both in A; N N.Is A® B in A; N N7?

(2) Let A be a unital separable simple C*-algebra and let B € A; N A. Suppose
that A® B € A;. Is it true that A € A;?

(3) Let A€ A NN and B € N with TR(B) < 1. Is it true that TR(A ® B) <17

Proposition 5.1. Let A and B be two unital separable simple C*-algebras in A; N
N.Then A B A NN.

Proof. Let A,B € A; NN. Then
(A®B)®Q=(A®B)® (Qe Q)= (A0 Q)® (B®Q).

Since both A and B are in A1 NN, A®Q and B ® Q have tracial rank no more
than one and satisfy the UCT. Therefore, by Lemma 10.9 and Theorem 10.10 of [21],
each of them is isomorphic to some unital simple AH-algebra with no dimension
growth. It is then easy to see that (A® Q) ® (B® Q) can be written as a unital sim-
ple AH-algebra with no dimension growth, which implies that TR(A® B® Q) < 1.

O

Theorem 5.2. Let A be a unital separable simple C*-algebra. Suppose that there
exists a unital separable simple C*-algebra B € A; NN such that A® B € A, then
Aec A
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Proof. Since A® B € Ay, we have that TR(A® B® Q) < 1. As Be A1 NN,
we have that B ® @ satisfies the UCT and TR(B ® Q) < 1. By Lemma 10.9 and
Theorem 10.10 of [21], B ® @ is a unital simple AH-algebra with no dimension
growth. Note that Tor(Ky(B®Q)) = 0. It follows from Lemma 4.1 (by setting TAC
to TAT algebras) that A € A;. O

We now consider the converse of a special case of Theorem 4.2 (when TAC
are just TAT algebras) in the following sense. Let A € A; N N. Is it true that
TR(A® C) < 1if C is a unital separable amenable infinite dimensional simple
C*-algebra with TR(C') < 1 and satisfies the UCT? An affirmative answer is given
in Theorem 5.6.

Lemma 5.3. Let G be a countable weakly unperforated simple ordered group which
is rationally Riesz. Suppose that G also has the following property: for any x, y € G
with x < y and for any integer N > 1, there exists z € GG such that

r < Nz<y. (5.1)
Then G has the Riesz interpolation property.
Proof. Let u € G4 be an order unit. Denote by Sy (G) the state space of G, i.e.
the set of order and unit preserving homomorphisms from G to the additive group

R. First, we claim the following: For any a1, as € G \{0}, there is b € G\{0} such
that

0<b<a, i=1,2. (5.2)
In fact, as G is simple, there exists an integer n; > 0 such that
niai >u, i=12. (5.3)
By the assumption, there exists by € G such that
0 < niby < u. (5.4)
As G is weakly unperforated, we get
0<by <aj, 1=1,2, (5.5)

which proves the claim.
Suppose that zj <y for 4,5 = 1,2. We will show that there exists z € G such
that

x <z<vy, i,j=12. (5.

(=2}

)

If ;- = yj- for some pair of i' and j’, choose z = y;. Then z;j < yjr = z =
zi- <yi, 1 =1,2. Now assume that x; <y for all < and j.
Since G is rationally Riesz, there are m,n € N\{0} and w € G such that
nw < my; and mx; < nw, 4,5 =12 (5.7)

If nw = ma;- = my; - for certain i’ and 5, then m(y;- —xi-) = 0. Since y; - — i+ >
0 and G is an ordered group, this is impossible.
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If nw < my; for all j, by the claim above, there exists by € G4 such that
0<byg <my; —nw, j=1,2. (5.8)
By the assumption, there exists z € G such that
mz <nw < mz<nw+by <my;, j=1,2. (5.9)
By the weak unperforation,
xi <z<y, i,j=12. (5.10)
If nw > maj, i = 1,2, by the claim above again, there exists by € G+ such that
0<by <nw-—mzxy, i=12. (5.11)
Then, as above, we obtain z € G such that
maxi <nw —by <mz<nw<my, ij=1,2. (5.12)
We then conclude, as above,
i <z<vyp, 4,j=12. (5.13)

Thus G has the Riesz interpolation property. O

Lemma 5.4. Let A € A; NN. Suppose that B is a unital separable amenable
simple C*-algebra with TR(B) < 1 which satisfies the UCT. Then Ky(A ® B) has
the Riesz interpolation property.

Proof. Since A € A; NN and TR(B) < 1 where B is amenable and satisfies the
UCT, by Proposition 5.1, A® B € A; N N. It follows from [27] that Ko(A ® B) is
rationally Riesz.

By Lemma 10.9 and Theorem 10.10 of [21], B is isomorphic to a unital simple
AH-algebra with no dimension growth. It follows from Theorem 2.1 of [11] that B
is approximately divisible. Therefore A ® B is approximately divisible. It follows
that, for any pair z,y € Ko(A® B) and any integer N > 1 with z < y, there exists
z € Ko(A ® B) such that

r < Nz<uy. (5.14)

Moreover, from the approximate divisibility, by Theorem 1.4 of [1], A ® B has the
strict comparison for positive elements. In particular, it follows that Ko(A ® B) is
weakly unperforated. The lemma then follows by applying Lemma 5.3. O

Theorem 5.5. Let A € A; N N. Then, for any unital infinite dimensional simple
AH-algebra B with slow dimension growth, A ® B is a unital simple AH-algebra
with no dimension growth.
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Proof. Since A € A; NN, it follows from Proposition 5.1 that A® B € A;NN. By
Lemma 5.4, Ko(A ® B) has the Riesz interpolation property. Since B is an infinite
dimensional simple AH-algebra of no dimension growth, from Theorem 2.1 of [11],
B is approximately divisible. So A ® B is approximately divisible. It follows that
Ko(A® B) # Z. Since A® B ® Q is a unital simple AH-algebra of no dimension
growth, the canonical map ragseq: T'(A® B ® Q) — S;jj(Ko(A ® B® Q)) maps
extreme points to extreme points. Therefore the canonical map rags : T(A® B) —
Sy (Ko(A® B)) maps the extreme points to extreme points (see Lemma 5.6 of [27]).
It follows from [35] (see also [32, 34] for more background knowledge) that there
is a unital simple AH-algebra C' with no dimension growth such that its Elliott
invariant is exactly the same as that of A ® B. According to Theorem 10.4 of [21],
we have that A ® B = C. m|

We end this note with the following summary:

Theorem 5.6. Let A € N be a unital separable simple amenable C*-algebra that
satisfies the UCT. Then the following are equivalent.

) Ae .Al;
) TR(A®Q) < 1;
) A® Qe A
4) TR(A® B) <1 for some unital simple infinite dimensional AF-algebra B;
) TR(A® B) <1 for all unital simple infinite dimensional AF-algebras B;
) A® B € A; for some unital simple infinite dimensional AF-algebra B;
) A® B € A, for all unital simple infinite dimensional AF-algebras B;
) TR(A® B) <1 for some unital simple infinite dimensional AH-algebra B with
no dimension growth;
(9) TR(A® B) <1 for all unital simple infinite dimensional AH-algebras B with
no dimension growth;
(10) A® B € A, for some unital simple infinite dimensional AH-algebra B with
no dimension growth;
(11) A® B € A, for all unital simple infinite dimensional AH-algebras B with no
dimension growth;
(12) A® B € Ay for some unital simple infinite dimensional C*-algebra B in
AN N;
(13) A®B € A for all unital simple infinite dimensional C*-algebras B in A; NN.

Proof. Note that “(1) = (2)”, “(2) = (3)”, “(5) = (4)7, “(4) = (6)”, “(7) = (6)",
“9) = (8)”, “(9) = (10)”, “(11) = (10)”, “(11) = (7)”, “(13) = (11)", “(13) =
(7)” and “(13) = (12)” are straightforward.

Note that “(1) = (5)” and “(1)=(9)” follow from Theorem 5.5. To see that
“1) = (13)",let Ac A;NN and Be AyNN. Then TR(B® Q) <1.So B®Q
is a unital simple infinite dimensional AH-algebra with no dimension growth. Since
“(1)=(9)”, this implies that TR(A® (B®Q)) < 1. It then follows that A® B € A;.
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For “(12) = (1)”, assume that TR(A® B® Q) < 1. It follows that TR(A® (B ®
Q)) < 1.Since TR(B® Q) < 1, again, B® @ is a unital simple infinite dimensional
AH-algebra with no dimension growth. It follows from Corollary 4.4 that A € A;.

That “(3) = (1)” follows from [27] and “(4) = (1)” follows from Corollary 3.7.

For “(6) = (4)”, one considers A ® B ® @ and notes that B ® @ is a unital
simple infinite dimensional AF-algebra.

That “(8) = (4)” follows from Corollary 4.4.

The rest of the implications follow similarly as established above. O
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