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Abstract—To perform power system monitoring and control
using synchrophasor measurements, various dynamic state es-
timators have been proposed in the literature, including the
extended Kalman filte (EKF) and the unscented Kalman filte
(UKF). However, they are unable to handle system model
parameter errors and any type of outliers, precluding them
from being adopted for power system real-time applications.
In this paper, we develop a robust iterated extended Kalman
filte based on the generalized maximum likelihood approach
(termed GM-IEKF) for dynamic state estimation. The proposed
GM-IEKF can effectively suppress observation and innovation
outliers, which may be induced by model parameter gross errors
and cyber attacks. We assess its robustness by carrying out
extensive simulations on the IEEE 39-bus test system. From the
results, we fin that the GM-IEKF is able to cope with at least
25% outliers, including in position of leverage.

Index Terms—Dynamic state estimation, cyber attacks, model
uncertainty, robust estimation, extended Kalman filte , unscented
Kalman filte , phasor measurement unit, breakdown point.

I. INTRODUCTION

TTH widespread deployment of synchrophasor measure-
ment units (PMUs) on power transmission grids has

made possible the real-time monitoring and control of power
system dynamics. However, these functions cannot be reliably
achieved without the development of a fast and robust dynamic
state estimator (DSE). Indeed, the benefit of using a DSE are
an improved system oscillation monitoring and an enhanced
local and global system control, to cite a few [1], [2].
To date, a variety of dynamic state estimators have been

proposed in the literature, including the extended Kalman
filte (EKF), the iterated EKF (IEKF), and the unscented
Kalman filte (UKF) [5]–[8], to cite a few. They can produce
good results if the system model is well calibrated and the
PMU measurements are reliable and secure. However, these
assumptions may not hold true in practical power systems.
Indeed, the system parameters may change with time and the
load models are uncertain, among others, yielding uncertain
dynamical system model. In addition, with the strong reliance
of smart grid functions on communication networks, cyber
attacks have become a major concern. The latter can be
classifie as follows [11]:

• Bias injection attacks, where an adversary attempts to
corrupt the content of either the measurement or the con-
trol signals; for example, the man-in-the-middle attacks
intercept the PMU measurement signals and corrupt them
with large bias;
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• Denial of Service (DoS) attack, where the actuator and
sensor data are prevented from reaching their respective
destinations, resulting in the absence of data; for instance,
this will be the case if the PMU metered values do not
reach the phasor data concentrator (PDC);

• Replay attacks, where a hacker firs performs a disclosure
attack from a certain time period, gathering sequences of
data, and then begins replaying the data during a certain
period; for example, the current PMU measurements
processed by a DSE are replaced by past values.

To handle observation and innovation outliers, we develop
a robust iterated extended Kalman filte -based DSE using the
generalized maximum likelihood approach, termed GM-IEKF
for short. Specificall , we firs build a batch-mode regression
form to enhance data redundancy, which allows our projection
statistics to detect innovation and observation outliers. The
innovation outliers can be induced by system model parameter
errors while the observation outliers may be induced by
impulsive communication noise or cyber attack, among others.
Then, a GM-estimator using the convex Huber cost function
is proposed to suppress the outliers. Next, a robust estimation
error covariance matrix is updated by means of the total
influenc function. Finally, the finite-sampl breakdown point
of the GM-IEKF is evaluated to quantify the resistance of
our DSE to cyber attacks. The rest of the paper is organized
as follows. Section II deals with the problem formulation.
Section III presents the proposed GM-IEKF, while Section IV
discusses the results of some simulations carried out on the
IEEE 39-bus test system. Section V concludes the paper.

II. PROBLEM FORMULATION

A discrete-time state space representation of a general
nonlinear dynamical power system can be expressed as

xk = f (xk−1,uk) +wk, (1)

zk = h (xk,uk) + vk, (2)

where xk ∈ R
n×1 and zk ∈ R

m×1 are the state vector
and the measurement/observation vector at time sample k,
respectively; f and h are vector-valued nonlinear functions;
wk and vk are the system process and observation noise,
respectively, and they are assumed to be independent and
identically distributed with zero mean and covariance matrices
Wk andRk, respectively; uk is the system input vector. In this
paper, the detailed two-axis model with IEEE-DC1A exciter
and TGOV1 turbine-governor is considered, yielding a 9th-
order model [9]. It should be noted that in most literature, the
four-order generator model is used for DSE, assuming that the
fiel voltage is known and the mechanical power is a constant
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[8]. However, they may not hold as the fiel current and
voltage are not measured in brushless excitation systems [4],
and the mechanical power can vary significantl when control
features such as fast valving or special protection schemes are
used to limit the output of the steam driven generator during
transients [10]. Therefore, it is of vital importance to keep
track of the dynamic state variables of the exciter and the
governor for controls and system stability analysis.
To estimate the system dynamic states using Kalman-type

filters a two-step procedure is applied, namely a prediction
step using (1), which is a Markov model, and a filtering/updat
step using (2). Specificall , given a state estimate at time step
k − 1, x̂k−1|k−1 , with its covariance matrix, Σk−1|k−1 , the
predicted state is directly calculated from (1) or through a set
of points drawn from the distribution that are following the
probability distribution of x̂k−1|k−1 . The latter is dependent
on the assumed probability distributions of wk and vk. As for
the filterin step, the predictions are used together with the
observations at time sample k to estimate the state vector and
its covariance matrix.
The Kalman-type filters including EKF, IEKF and UKF

work well if the system model is well calibrated and the
PMU measurements are reliable and secure. However, these
assumptions may not hold true in practice; for instance,
the parameter values of the synchronous generators may be
inaccurate or the inputs may be unknown [12], yielding
an uncertain system model; the PMU measurements may
be attacked, resulting in strongly biased measurements (bias
injection attacks); measurements may be lost (Dos attacks) or
may be repeated from previous time samples (replay attacks),
to cite a few [11], [13]. To address these problems, we propose
to develop a robust GM-IEKF as described next.

III. PROPOSED GM-IEKF AND ITS BREAKDOWN POINT

A. Development of GM-IEKF

The proposed GM-IEKF consists of three major steps,
which are the construction of batch-mode regression form, the
robust prewhitening step, and the robust regression step with
state and estimation error covariance matrix updating. The
details for the development of the GM-IEKF are elaborated
below.
First of all, we propose to build the batch-mode regression

form to enhance the data redundancy by processing the ob-
servations and the predictions simultaneously. Note that this
redundant regression form allows our GM-IEKF to bound the
influenc of model uncertainties and various cyber attacks. To
be specific given the filtere state vector x̂k−1|k−1 and its
covariance matrix Σk−1|k−1 at time step k− 1, the predicted
state and its covariance matrix can be obtained through

x̂k|k−1 = f(x̂k−1|k−1), (3)
Σk|k−1 = Fk−1Σk−1|k−1F

T
k−1 +Wk, (4)

where Fk−1 = ∂f/∂x
∣∣
x=x̂k−1|k−1

. Defin x̂k|k−1 = xk−ηk,
where xk is the true state vector and ηk is the state prediction
error vector with zero mean and covariance matrix Σ k|k−1 .

Then, by putting it with (2) into a compact form, we obtain[
x̂k|k−1

zk

]
=

[
xk

h (xk)

]
+

[ −ηk

vk

]
, (5)

which can be rewritten as

z̃k = h̃(xk) + ẽk, (6)

associated with the augmented error covariance matrix

E
[
ẽkẽ

T
k

]
=

[
Σk|k−1 0

0 Rk

]
= SkS

T
k , (7)

where Sk is calculated by the Cholesky decomposition tech-
nique.
In the batch-mode regression form given by (6), a data

prewhitening process is performed to uncorrelate the state
prediction errors by using the matrix Sk. This is done by pre-
multiplying that nonlinear regression model by S−1

k , yielding

S−1
k z̃k = S−1

k h̃(xk) + S−1
k ẽk, (8)

which is further rewritten as

yk = ϕ(xk) + ξk. (9)

where E[ξkξ
T
k ] = Ik and Ik is an identity matrix.

To bound the influenc of system parameter errors and
suppress outliers when performing nonlinear regression on
(9), a GM-estimator is proposed that minimizes an objective
function given by

J (x) =

m+n∑
i=1

�2
i ρ (rSi) , (10)

where �i is the weight that will be elaborated later; rSi =
ri/s�i is the standardized residual; ri = yi − ϕi(x̂) is
the residual; s = 1.4826·bm·mediani |ri| is the robust scale
estimate; bm is a correction factor for unbiasedness at the
Gaussian distribution [15]; ρ(·) is the convex Huber ρ-function
made up of a quadratic and a tangent function.
Calculating the weight �i: Note that applying Sk directly

for prewhitening will cause a smearing effect to the estimation
results when outliers occur. To address this issue, we firs
detect and downweight the outliers in the derived batch-mode
regression form by means of weights calculated using the
projection statistics (PS) [14], [15] and a statistical test applied
to them. The outliers are data points that are distant from the
bulk of the point cloud. The PS values are some kinds of robust
distances of a collection of data points, �i. Mathematically, the
i-th PS value is define as

PSi = max
‖l‖=1

∣∣�Ti l −medj
(
�Tj l

)∣∣
1.4826medk

∣∣�Tk l−medj
(
�Tj l

)∣∣ . (11)

To detect outliers, we apply the PS to a 2-dimensional
matrix Z that contains serially correlated samples of the
innovations and the predicted state variables. Note that the
innovation vector is define as the difference between the ob-
servations and their associated predicted values at the previous
step. Formally, we have

Z =

[
x̂k−1|k−2 x̂k|k−1

zk−1 − h(x̂k−1|k−2) zk − h(x̂k|k−1)

]
. (12)
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Instead, we may apply the PS to higher dimensional sam-
ples, but we found that 2 dimensions are enough to identify
outliers. Note that the PS values are calculated separately for
the four subgroups of the matrix Z, i.e., the predicted state
vector and the innovation vectors of the real and the reactive
power and of the voltage magnitudes and angles. Then, the PS
values are compared to a threshold to identify the outliers. By
conducting extensive Mote Carlo simulations and QQ-plots,
we fin that the PS values follow a chi-square distribution
with 2 degrees of freedom. Therefore, the threshold for the
statistical test will be set to χ2

2,0.975 for a 97.5% significanc
level. Those PS values that satisfy PSi > χ2

2,0.975 will be
flagge as outliers and downweighted via

�i = min
(
1, d2

/
PS2

i

)
, (13)

where d is set to 1.5 to yield good statistical efficien y without
increasing too much the bias induced by the outliers.
Robust batch-mode regression: To minimize (10), one takes

its partial derivative and sets it equal to zero, yielding

∂J (x)

∂x
=

m∑
i=1

−�ici
s

ψ (rSi) = 0, (14)

where ci is the i-th column vector of the matrix C T given
by C = ∂ϕ/∂x |x=x̂ ; ψ (rSi) = ∂ρ (rSi)/∂rSi . Then, by
dividing and multiplying by rSi on both sides of (14), we
get the following equation in matrix form

CTQ (y −ϕ (x)) = 0, (15)

where Q =diag(q (rSi)) and q (rSi) = ψ (rSi)/rSi .
Taking a first-orde Taylor series expansion of ϕ(x) about

x̂k|k and using the iteratively reweighted least squares algo-
rithm [16], the state vector correction at the j-th iteration is
calculated by

Δx̂
(j+1)
k|k =

(
CTQ(j)C

)−1

CTQ(j)
(
y −ϕ

(
x̂j
k|k

))
,

(16)
where Δx̂

(j+1)
k|k = x̂

(j+1)
k|k − x̂

(j)
k|k and C is evaluated at x̂(j)

k|k .

The algorithm converges when
∥∥∥Δx̂

(j+1)
k|k

∥∥∥
∞

≤ 10−2.
After the convergence of the iterative process, the estimation

error covariance matrix Σk|k of the GM-IEKF needs to be
updated so that the state prediction at the next time sample can
be performed. Following the work from [14], [16], we derive
the estimation error covariance matrix of our GM-IEKF as

Σk|k =
EΦ

[
ψ2 (rSi)

]
{EΦ [ψ′ (rSi)]}2

(
CT

k Ck

)−1(
CT

k Q�Ck

)(
CT

k Ck

)−1
,

(17)
where E(·) is the expectation operator; Φ is the standard nor-
mal probability distribution function; ψ ′(rSi) is the derivative
of ψ(rSi) with respect to rSi ; Q� = diag(�i).
Remark: If a non-iterative EKF is considered such as the

one in [17], the innovation outliers will corrupt the results of
PS, yielding unreliable estimation results. In other words, it is
unable to suppress any model parameter errors. By contrast,
our GM-IEKF is able to effectively handle them.

B. Breakdown Point of GM-IEKF
Thanks to the statistical robustness of PS and the GM-

estimator, GM-IEKF is resistant to outliers induced by cyber
attacks. Then the remaining question is how many outliers
GM-IEKF can handle without giving unreliable estimation
results, that is, what is its breakdown point? This concept
provides a general measure of the robustness of an estimator
to outliers. Formally, it is define as [18]

ε (x̂,ϕ, T (x̂)) = min {ε− (x̂,ϕ, T (x̂)) , ε+ (x̂,ϕ, T (x̂))} ,
(18)

where the lower and upper breakdown are define as

ε− (x̂,ϕ, T (x̂))

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

0≤p≤m+n

{
p

m+n ; sup
p∈Dp

ϕ (x̂, T (x̂)) = sup
T (x̂)

ϕ (x̂, T (x̂))

}
if sup

T (x̂)

ϕ (x̂, T (x̂)) > ϕ (x̂, T (x̂))

1 otherwise
(19)

ε+ (x̂,ϕ, T (x̂))

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

0≤p≤m+n

{
p

m+n ; sup
p∈Dp

ϕ (x̂, T (x̂)) = sup
T (x̂)

ϕ (x̂, T (x̂))

}
if sup

T (x̂)

ϕ (x̂, T (x̂)) < ϕ (x̂, T (x̂))

1 otherwise
(20)

where p is the number of outliers induced by either cyber
attacks or other reasons; Dp represents the data sample space
where p data points are replaced by outliers; T (·) is the
proposed GM-IEKF estimator in the functional form.

IV. NUMERICAL RESULTS

The performance of the proposed GM-IEKF is evaluated on
the IEEE 39-bus test system. The standard EKF and UKF are
implemented for comparisons. In the simulations, the time-
domain simulation results are used to generate a collection of
samples of the nodal voltage magnitudes and phase angles as
well as real and reactive power injections at the terminal buses
of all the generators; a sampling rate of 48 samples/second
is assumed; both system process and measurement noise are
assumed to follow Gaussian distribution with zero mean and
standard deviation 10−2; the diagonal elements of the initial
error covariance matrix of the UKF are set to 10−4; the
initial values of the state vector are arbitrarily chosen for
all three estimators; the machine parameters are taken from
[19]; at t=0.5s Line 15-16 is switched off to simulate system
transients; the maximal number of iterations of GM-IEKF is
20. Due to the space limitation, only the estimated rotor speed,
rotor angle, fiel voltage and mechanical power of Generator
5 are provided for illustration.

A. Case 1: Bias Injection Attacks
The real and reactive power measurements of Generator 5

are corrupted with 20% error from 3s to 4s to simulate the
bias injection attacks. The test results are shown in Fig. 1. It
is observed that both EKF and UKF are providing strongly
biased state estimates due to their lack of robustness to gross
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Fig. 1. Comparison results of three methods in terms of bias injection attacks
on Generator 5 from 3s to 4s.

measurement errors. By contrast, the proposed GM-IEKF
is able to suppress their influence leading to very reliable
tracking results.

B. Case 2: DoS Attacks
All the PMU measurements of Generator 5 are lost due to

the jammed communication between PMU to PDC or between
PDC to the control center by means of DoS attacks. This
absence of PMU measurements is modeled by considering
them to be zeros or pure communication noise. The tracking
performance of each method is presented in Fig. 2. It is found
that EKF and UKF are mislead by those pure noise signals,
yielding unreliable estimates. However, the proposed GM-
IEKF is capable of suppressing them. This is achieved by
firs identifying the pure noise signal as outliers and assigning
them with very small weights, then suppressing their effects
by using the GM-estimator.
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Fig. 2. Comparison results of three methods in terms of Dos attacks on
Generator 5 from 2s to 4s.

C. Case 3: Replay Attacks
The received PMU measurements of Generator 5 from 6s to

8s are replaced by the past measurements from 4s to 6s. Fig.
3 shows the state estimates of each method. We observe that
EKF and UKF have relative larger bias than the proposed GM-
IEKF since they could not balance well the tradeoff between
the predicted state vector and the incoming measurements. It
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Fig. 3. Comparison results of three methods in terms of replay attacks on
Generator 5 from 6s to 8s.
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Fig. 4. Comparison results of three methods in terms of large model
uncertainties on Generator 5 from 4s to 6s.

is also seen that GM-IEKF is biased slightly. This is because
the large inconsistency between the model outputs and the
measurements would be effectively identifie as outliers and
downweighted. By contrast, if this inconsistency is small, it
will not be identifie as outliers and as a result the GM-IEKF
processes the predicted state vector and measurements equally
somehow, yielding slightly biased estimation results.
D. Case 4: Model Uncertainties
To simulate the large generator model uncertainties, we

assume that Generator 5 is not well calibrated, i.e., a gen-
erator parameter error occurs from 2s to 4s, leading to two
incorrectly predicted dynamic states. The latter is represented
by adding 20% errors to the predicted ω5 and δ5. The tracking
performance of each method is shown in Fig. 4. It can be
found that the UKF is less sensitive to model parameter error
than the EKF, but its estimations of rotor angle and mechanical
power are not acceptable. By contrast, the proposed GM-IEKF
is able to balance the tradeoff between predicted state and the
measurements through the projection statistics and the iterative
robust regression, resulting in the best tracking performance
among three methods. On the other hand, if the generator
model is calibrated and only 1% error occurs on the predicted
ω5 and δ5, the tracking results of both EKF and UKF are
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TABLE I
AVERAGE COMPUTING TIMES OF THE THREE DSE METHODS FOR EVERY

PMU SAMPLE

Cases EKF UKF GM-IEKF
Case 1 5.24ms 5.28ms 9.56ms
Case 2 5.28ms 5.29ms 9.58ms
Case 3 5.33ms 5.38ms 9.50ms
Case 4 6.42ms 6.37ms 9.62ms

improved significantl as shown in Fig. 5. However, GM-IEKF
still outperforms EKF and UKF.
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Fig. 5. Comparison results of three methods in terms of small model
uncertainties on Generator 5 from 4s to 6s.

E. Breakdown Point to Cyber Attacks
To investigate the breakdown point of GM-IEKF to cyber

attacks, we carry out extensive simulations on the IEEE 39-
bus test system using the concept of finit sample breakdown
in nonlinear regression define in (18). By replacing a varying
number of observations by outliers in the vector yk of dimen-
sion mt = m+n, it is observed that the GM-IEKF can handle
at least 25% outliers. Please note that the determination of the
exact breakdown point of GM-IEKF is an open question that
requires further investigations.
F. Computational Efficienc
To validate the applicability of the proposed GM-IEKF to

online estimation with PMU sampling rate 30 or 60 samples
per second, its computational efficien y is analyzed and com-
pared to that of the EKF and UKF in the previous four cases.
The test is performed on a PC with Intel Core i5, 2.50 GHz,
8GB of RAM. The average computing time of each method for
every PMU sample is displayed in Table I. We observe from
this table that EKF and UKF have comparative computational
efficien y and their computing time are much lower than the
PMU sampling period, which are 33.3ms and 16.7ms for 30
sample/s and 60 samples/s, respectively. Although GM-IEKF
spends about 4 more millisecond, its execution time is still
lower than the PMU sampling period, demonstrating its ability
to track system real-time dynamic states.

V. CONCLUSION

This paper proposes a robust GM-IEKF method to track
power system dynamic state variables using PMU measure-
ments. The proposed GM-IEKF can effectively bound the

influenc of a few parameter errors and various types of cyber
attacks thanks to its statistical robustness, which is achieved by
means of projection statistics and the GM-estimator. Compari-
son results with EKF and UKF on the IEEE 39-bus test system
demonstrate the enhanced robustness of the proposed GM-
IEKF. However, our GM-IEKF provides poor results when
there are a large number of inaccurate parameters in the model.
By contrast, the H-infinit filte can handle that case, but it
lacks robustness to any type of outliers. As a future work, we
will develop a hybrid robust DSE that integrates the H-infinit
and the GM-IEKF filte , which will have the strengths of both
methods.
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Abstract—Real time state information provided by the state
estimator plays a major role in power system monitoring and
control. As a result, the convergence of the estimator under
various system operating conditions becomes one of the key
requirements. This paper presents a robust state estimation
framework that generalizes several well-known estimators. The
statistical robustness of each estimator has been studied ana-
lytically through the total influenc function. Furthermore, the
correlation between the statistical robustness of an estimator and
the numerical robustness of the iterative algorithm is investigated
as well. Numerical results carried out on the IEEE test system
reveal that the Schweppe-type Huber generalized maximum-
likelihood estimator works well in all simulated scenarios while
the other alternatives have convergence problems or numerical
instability issues under stressed system operating conditions.

Index Terms—Power system state estimation, heavily loaded
system, robust estimation, power system operation, convergence.

I. INTRODUCTION

POWER system static state estimator is a basic operational
tool in modern energy management system as it provides

a complete, coherent and reliable real-time data-base for
various applications, such as contingency analysis, voltage
stability assessment, optimal power fl w, to cite a few. As
a result, its convergence property under different operation
conditions is a critical issue for system monitoring and control.
Indeed, the divergence of the state estimator under stressed
system condition is one of the most important factors that
contributed to the 2003 northeast blackout [1].
Among all estimators proposed in the literature, the

weighted least squares (WLS)-based state estimator is one
of the most widely used methods by utilities. However, its
convergence characteristic under different system operating
conditions has not been well-investigated. Extensive simula-
tions were carried out in [2]–[4] to study the convergence
characteristic of the Gauss-Newton-based WLS estimator sub-
ject to topology errors and load changes. It is found that
the WLS estimator yields highly biased state estimates or
may suffer from convergence problems under these condi-
tions. Note that the converged state estimates are extremely
important for assessing system voltage stability margin and
taking preventive control actions to avoid voltage collapse.
Besides the WLS estimator, other statistical robust estimators
have been proposed, including the least absolute value (LAV)
estimator, the Huber Maximum-likelihood (M)-estimator and
the Schweppe-type Huber generalized Maximum-likelihood

This work is partially sponsored by U.S. National Science Foundation
Award ECCS-1711191. The authors are with the Bradley Department of
Electrical and Computer Engineering, Virginia Polytechnic Institute and
State University, Falls Church, VA 22043, USA (e-mail: zjunbo@vt.edu,
lmili@vt.edu).

(SHGM)-estimator [5]. However, their performances under
stressed system conditions have not been studied. In addition,
the relationship between statistical robustness and numerical
robustness is rarely discussed. In this paper, we present a
robust state estimation framework that generalizes all the
aforementioned estimators. The statistical robustness of each
estimator has been studied analytically through the total influ
ence function. Furthermore, the correlation between the statis-
tical robustness of an estimator and the numerical robustness
of the iterative algorithm is investigated as well. It is found
through extensive simulation results that the WLS estimator
has convergence problem in presence of stressed system
conditions while the LAV and the Huber M-estimator only
present numerical stability issue for heavily loaded system.
By contrast, the SHGM-estimator works well in all scenarios
thanks to its statistical and numerical robustness.
The organization of this paper is as follows: Section II

shows the proposed robust state estimation framework and
investigates the statistical and numerical robustness of each
estimator. Section III presents and analyzes the simulation
results, and finall Section IV concludes the paper.
II. GENERALIZED MAXIMUM-LIKELIHOOD ESTIMATION

FRAMEWORK

A. Proposed Estimation Framework
For an N -bus power system, the relationship between the

vector of measurements z ∈ R
m and the state vector x ∈

R
n, n = 2N − 1 < m is given by

z = h(x) + e, (1)

where x contains the nodal voltage magnitudes and phase
angles; h(·) : Rn → R

m is a vector-valued nonlinear function;
e ∈ R

m is the measurement error vector that is assumed to
have zero mean and a covariance matrix R ∈ R

m×m.
There exist several approaches to estimate x and among

them, the WLS, the LAV, the Huber M-estimator and the
SHGM-estimator are well investigated. This paper proposes
to cast them into the generalized Maximum-likelihood (GM)-
estimator framework by resorting to the robust statistics [6].
It aims to minimizes the following objective function

J(x) =
m∑
i=1

ω2
i ρ(rSi), (2)

where ωi is the weight to bound the influenc of bad data,
including vertical outliers and bad leverage points; ρ(·) denotes
the cost function; rSi = ri/σiωi is the standardized residual;
ri = zi − hi(x̂); σi is the standard deviation of ith measure-
ment. Depending on the choice of ρ(·), different estimators can
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be obtained. One of the popular choice that generalizes all the
four estimators is the Huber convex cost function, which is
define as

ρ (rSi) =

{
r2
Si
/2 for |rSi | ≤ λ

λ |rSi | − λ2/2 for |rSi | > λ
, (3)

where λ is the breakpoint that balances the trade-off between
least squares and least absolute criterion. Then, we have the
following conclusions:
1) The WLS-estimator: when λ tends to infinit and all

the weights ωi are equal to 1, the objective function becomes
J(x) =

m∑
i=1

rSi
2, which is precisely the criterion used by

the WLS estimator. If the Gauss-Newton iterative algorithm
is adopted to solve for the state vector, we have

xk+1 = xk +Δxk, k = 1, 2, ..., (4)

Δxk = (HTR−1H)−1HTR−1(z − h(xk)), (5)

where H = ∂h(x)/∂x|x=xk ∈ R
m×n is the Jacobian matrix.

The algorithm converges once the norm of Δxk is smaller
than a pre-specifie threshold.
2) The LAV-estimator: if λ tends to zero and all the weights

ωi are equal to 1, the objective function reduces to the
equivalent form J(x) =

m∑
i=1

|rSi |, which is precisely the

criterion used by least absolute value (LAV) estimator.
3) The Huber M-estimator: all the weights ωi are equal to

1 and the objective function reduces to J(x) =
m∑
i=1

ρ(ri/σi),

yielding the well-known Huber M-estimator in robust statis-
tics; note that λ can be any value between zero and infinit ,
but the widely adopted value is chosen between 1.5 and 3 to
achieve high statistical efficien y under Gaussian noise [6]–
[8];
4) The SHGM-estimator: the weight is calculated through

ωi = min[1, χ2
ν,0.975/PSi] and the objective function is

J(x) =
m∑
i=1

ω2
i ρ(ri/σiωi), where PSi is calculated by ap-

plying the projection statistics (PS) [9] to the Jacobian matrix
H evaluated at fla voltage profile the mathematical represen-
tation of PS is shown as follows:

PSi = max
‖�‖=1

∣∣lTi �−medj
(
lTj �

)∣∣
1.4826med�

∣∣lT� �−medj
(
lTi �

)∣∣ , (6)

where i, j, � = 1, 2, ...,m. The PS of the ith row vector, li,
of the Jacobian matrix H is define as the maximum of the
standardized projections of all the li’s on every direction �
that originates from the coordinatewise medians of the H
and that passes through every data point, and where the
standardized projections are based on the sample median
and the median-absolute-deviation [9]. Extensive Monte-Carlo
simulations reveal that the PS values follow a χ2 distribution
with ν degree of freedom [9]. The latter is the number of none-
zero elements of the ith row ofH . Note that if σi is unknown,
it can be estimated by s = 1.4826·bm·median |ri|, where
bm denotes a correction factor [9]. When the standardized
residual of the ith measurement is smaller than the threshold
λ, we have ω2

i ρ(ri/σiωi) = ri
2/2σ2

i and it will not be

downweighted no matter it is a leverage point or not; otherwise
the linear part of the ρ function is used and the measurement
will be downweighted by ωi. As a result, high statistical
efficien y can be achieved under Gaussian and other non-
Gaussian measurement noise.
Since the LAV-estimator, the Huber M-estimator and the

SHGM-estimator are special cases of (2), the key is to fin
its general solution. It should be noted that (2) is a convex
objective function, its local optimal solution is thus the global
one. Therefore, the necessary and sufficien condition that the
minimum of (2) satisfie is given by

∂J (x)

∂x
=

m∑
i=1

−ciωi

σi
ψ (rSi) = 0, (7)

where cTi is the ith column vector of the Jacobian matrix H ;
ψ (rSi) = ∂ρ (rSi) /∂rSi . We multiply and divide both sides
of (7) by rSi , yielding

HTR−1Q (z − h(x)) = 0, (8)

where q (rSi) = ψ (rSi) /rSi and Q = diag (q (rSi)). By
taking the first-orde Taylor series expansion of h(x) about
x̂� and using the iteratively reweighted least squares (IRLS)
algorithm [6], we obtain the following iterative form:

Δx̂(�+1) =
(
HTR−1Q(�)H

)−1

HTR−1Q(�)(z − h(x̂�)),

(9)
where � is the iteration counter. The algorithm converges if
‖Δx̂(�+1)‖∞ ≤ 10−3. It can be observed from (9) that the
iterative process is very similar to that of the Gauss-Newton-
based WLS estimator shown in (5) except for the presence
of the weight matrix Q that changes at each iteration. Here,
we would like to emphasize that ωi is calculated by applying
the PS to the Jacobian matrix assessed at the fla voltage
profil and it does not require re-calculation if no topology
or measurement configuratio changes.

B. Correlation Between Statistical Robustness and Numerical
Robustness
The statistical robustness of an estimator represents its

capability to be resistant to outliers or other departures from
model assumptions. It can be studied by assessing the total
influenc function (IF) of that estimator. As for numerical
robustness, the principal concern is the instabilities caused
by the proximity to singularities of the gain matrix. To be
more general, the iterative algorithm of an estimator should not
produce a wildly different result for very small change in the
input data. It mainly refers to the effectiveness of inverting the
gain matrix (HTR−1H) or (HTR−1QH) without stability
issues. In this section, we investigate the inherent correlation
between the statistical robustness and the numerical robustness
of an estimator.
We firs derive the total IF of each estimator and study their

statistical robustness. To this end, consider the ε-contaminated
model G = (1− ε) Φ + εΔr, where Φ is the Gaussian
distribution and Δr is the probability mass at r that is used to
model bad data or the deviation from the assumption, and let
the cumulative probability distribution of the residual vector
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r = z − h(x) define as Φ(r). A GM-estimator provides an
estimate of the state by solving the following implicit equation:

m∑
i=1

ξi (r,x) =
m∑
i=1

−ωi
∂hi (x)

∂x
ψ (rSi) = 0. (10)

By virtue of the Glivenko-Cantelli theorem, (10) can be written
asymptotically as ∫

ξ (r, T ) dG = 0, (11)

where T (G) is the functional form of the GM-estimator at G.
Substituting G into (11) results in∫

ξ(r,T (G))dΦ + ε

∫
ξ(r,T (G))d (Δr − Φ) = 0. (12)

Knowing that the GM-estimator is Fisher consistent at Φ, that
is
∫
ξ(r,T (Φ))dΦ = 0, and taking the derivative of (12) with

respect to ε, we obtain
∂

∂ε

∫
ξ(r,T (G))dΦ

∣∣
ε=0

+

∫
ξ(r,T (G))d(Δr)|

ε=0
= 0.

(13)
Applying the sifting property of the Dirac impulse to the
second term yields

∂

∂ε

∫
ξ(r,T (G))dΦ

∣∣
ε=0

+ ξ(r,T (Φ)) = 0. (14)

Using the interchangeability of differentiation and integration
theorem to the firs term of (14), we get∫

∂ξ(r,T (G))

∂x
|
T (Φ)

.
∂T (G)

∂ε
|
ε=0
dΦ+ξ(r,T (Φ)) = 0. (15)

By using the definitio of the asymptotic total influenc
function [10], we derive the IF of T (G) from (14) as

IF (r,Φ) =
∂T (G)

∂ε
|
ε=0

= −[

∫
∂ξ(r,T (G))

∂x
|
T (Φ)

dΦ]−1ξ(r,T (Φ)),

∂ξ(r,T (G))

∂x
= −ψ′(rSi)H

TR−1H , (16)

where H is the Jacobian matrix. Finally, IF is derived as
follows:

IF (r,Φ) =
ψ (rSi)

EΦ [ψ′ (rSi)]

(
HTR−1H

)−1
ciωi, (17)

where E[·] is the expectation operator; ψ ′ (rSi) =
∂ψ (rSi)/∂rSi ; ci is the ith column vector of H T .
Thus, the total IF of each estimator can be obtained as

follows:
• If the weight ωi = 1 and ψ(rSi) = rSi, GM-estimator
reduces to the WLS estimator and its IF is

IF (rSi,Φ) = rSi

(
HTR−1H

)−1
ci. (18)

• If the weight ωi = 1 and λ tends to zero, GM-estimator
reduces to the LAV estimator and its IF is

IF (rSi,Φ) =
1

2
sign(rSi)

(
HTR−1H

)−1
ci, (19)

where sign(·) is the signum function;

• If the weight ωi = 1, GM-estimator reduces to the Huber
M-estimator. In this case, its IF is

IF (rSi,Φ) =
ψ (rSi)

EΦ [ψ′ (rSi)]

(
HTR−1H

)−1
ci. (20)

• If the weight ωi is calculated through the projection
statistics, GM-estimator is represented as the SHGM
estimator with its IF shown as (17).

It can be easily verifie that both the residual rSi and the
position of leverage ci of the WLS estimator is unbounded in
the presence of outliers while the residuals of the LAV and
the Huber M-estimator are bounded thanks to the bounded
signum function and the ψ function, respectively. However, the
position of leverage is unbounded for both LAV and Huber M-
estimator if bad leverage points present, yielding unbounded
IF. By contrast, thanks to the bounded ψ function as well
as the weight ωi, the IF of the SHGM-estimator is bounded,
demonstrating its statistical robustness. Note that vertical out-
liers only affect the residual rSi while bad leverage points
affect both the residual and the position of leverage. In power
system, a leverage point is a power injection measurement
on a bus with a relatively large number of incident branches
compared to the others or a power injection or a power fl w
measurement associated with a line having a relatively small
reactance compared to the others [9].
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Fig. 1. PV curves of Buses 20-25 for the 30-bus system as the loading level
at Bus 21 increases.

It is well-known that when the condition number of the gain
matrix (HTR−1H) is very large, the Gauss-Newton approach
suffers from numerical instability issue. To address that issue,
many numerically stable approaches have been proposed in the
literature, among them stands the Levenberg-Marquardt and
its variants. These methods are widely used due to their well-
proved performance [11], [12]. The key idea is to enhance the
condition number of the gain matrix when updating the states
through the following trail step:

Δxk = (HTR−1H + ηI)−1HTR−1(z − h(xk)), (21)

where η > 0 is the Levenberg-Marquardt parameter updated
at each iteration.
We fin that the weight matrix Q in (9) plays the same role

as ηI in (21). The difference is thatQ is adaptively adjusted at
each iteration according to the system operation conditions and
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Fig. 2. Voltage angle estimation error of each bus for Case 1.

measurement quality instead of the trail and error step of the
Levenberg-Marquardt approach. This provides the theoretical
justificatio of the good convergence property of the algorithm
that implements the SHGM-estimator to the right solution even
when the system is highly stressed while the Gauss-Newton
algorithm that implements the WLS (their Q is an identity
matrix) fail. On the other hand, as demonstrated in [13], the
type of measurements can significantl affect the condition
number of the gain matrix. Therefore, the weight ω i pro-
vides the SHGM-estimator better capability to handle stressed
system operation conditions than the LAV estimator and the
Huber M-estimator, such as leverage points. In summary, the
weight ωi and the bounded ψ function not only guarantee
the statistical robustness of an estimator but also enhance
the numerical robustness of the iterative algorithm. Here, we
would like to emphasize that the statistical robustness of an
estimator can typically yield enhanced numerical robustness
but not the other way around.

III. NUMERICAL RESULTS

To evaluate the performance of each estimator under various
operating conditions, the IEEE 30-bus test system is used
as the benchmark. To simulate different stress levels of the
system, we increase the load at Bus 21 continuously and use
the continuation power fl w (CPF) approach to obtain the PV
curves at Buses 20-25 as shown in Fig. 1. Note that Buses 20,
22-25 are adjacent to Bus 21. The obtained voltage magnitudes
and angles at each bus are used to calculate the real and
reactive power injections and fl ws, then Gaussian noise with
zero mean and standard deviation 0.01 is added to simulate
realistic measurements. Specificall , this system is measured
by 93 SCADA measurements, including 18 pairs of active and
reactive power injections, 28 of pairs power fl ws and voltage
magnitude of Bus 1. The maximum iteration of all estimators
are 30; the breakpoint of the ρ function is 1.5, a typical
value used in the literature. 100 Monte Carlo simulations are
performed and the average value of the absolute error is taken
as the index to evaluate the performance of each estimator.

A. Case Studies
The following three cases are considered and tested:
• Case 1: Normal operation condition, where the load at
Bus 21 changes slowly and reaches to the loading point
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Fig. 3. Voltage angle estimation error of each bus for Case 2.

α=0.3; only the estimation error of the voltage angle is
shown in Fig. 2 due to space limitation;

• Case 2: Stressed operation condition, where the load
at Bus 21 has reached to the loading point α=1.24,
demonstrating a stressed operating condition; note that
the maximum loading point is α=1.66; the estimation
error of the voltage angle is shown in Fig. 3;

• Case 3: Heavily loaded condition, where the load at Bus
21 has reached to the loading point α=1.52, demonstrat-
ing a highly stressed operation condition. The simulation
results are displayed in Figs. 4-5.

Based on the results, the following conclusions are drawn:
1) Under normal operation condition, the WLS, the Hu-

ber M-estimator and the SHGM-estimator have comparative
performance while LAV shows lower statistical efficien y.
However, this is not surprising because the LAV estimator
is the maximum-likelihood estimator under Laplace noise
and it only achieves 64% statistical efficien y in presence of
Gaussian noise. With the increase of the loading level of the
system, the WLS estimator is subject to numerical stability
issues, yielding significantl biased estimates of the voltage
angles while the LAV estimator, the Huber M-estimator and
the SHGM-estimator are able to converge to the right solu-
tions. When the system load level is further increased, the
WLS, the LAV estimator and the Huber M-estimator suffer
from numerical instabilities, yielding large estimation errors
of voltage magnitudes and angles, in contrast with the SHGM-
estimator. The reasons behind these observations are the
following: the heavily loaded buses will have eigenvalues or
singular values associated to them close to zeros, yielding ill-
conditioning of the gain matrix. Thus, the Gaussian-Newton is
unable to address this issue. By contrast, the SHGM-estimator
will automatically detect the measurements associated with
the stressed bus as outliers and downweight them, yielding
enhanced numerical robustness as analyzed in the previous
section. Then, during the iteration step, the effects of the ill-
conditioned rows of the Jacobian matrix are eliminated. Note
that the variances of the state estimates on a stressed bus
may increase because of downweighting the measurements,
leading to slightly decreased statistical efficien y. On the other
hand, due to the lack of weights ωi, the capability of the
LAV estimator and the Huber M-estimator to downweight
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TABLE I
COMPUTING TIMES AND ASSOCIATED NUMBER OF ITERATIONS FOR

EACH ESTIMATOR.

Cases WLS LAV Huber M SHGM
Case 1 0.016s (8) 0.019s (6) 0.027 (7) 0.039s (10)
Case 2 0.032s (18) 0.053s (18) 0.046s (11) 0.068s (15)
Case 3 0.11s (25) 0.092s (24) 0.079s (17) 0.086s (19)

the measurements associated with the stressed bus is limited,
preventing it from handling the heavily loaded condition;
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Fig. 4. Voltage magnitude estimation error of each bus for Case 3.

2) It is interesting to fin that under heavy loading condi-
tions, except for the problem of estimating voltage magnitude
and angle of Bus 21, its adjacent buses may encounter nu-
merical instabilities as well (see Figs. 4-5). This is due to
the fact their states are strongly correlated and if one has
severe stability issue, it is likely that the others are affected
significantl . On the other hand, it is observed that the leverage
points at bus 16 cause numerical problem to the LAV estimator
and the Huber M-estimator under highly stressed system
condition. This is because their IFs are unbounded for the
leverage points and the rounding errors of these measurements
cause numerical problem of inverting the gain matrix.
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B. Computational Efficienc
The computing times as well as their associated number

of iterations for each estimator to reach the solutions are

shown in Table I. All the tests are performed on a PC with
Intel Core i5, 2.50 GHz, 8GB of RAM. It is found that
under normal operation condition, SHGM-estimator is the
most time consuming approach among all four approaches
because of the requirement of additional time to calculate
measurement weights through PS. However, their difference is
acceptable given that SHGM-estimator has robustness to both
vertical outliers and bad leverage points. With the increase
of system loading level, each approach needs more time and
iterations to reach the solution. Interestingly, thanks to the
enhanced numerical robustness by the weighting matrix Q,
the SHGM-estimator, the Huber M-estimator and the LAV-
estimator spend less time than the WLS estimator under heavy
loading conditions.

IV. CONCLUSION

This paper presents a robust state estimation framework
that generalizes several well-known estimators. The statistical
robustness of each estimator has been studied analytically
through the total influenc function. Its correlation with nu-
merical robustness of the iterative algorithm is investigated as
well. The convergence characteristic of each estimator under
different system operating conditions is compared. It is found
that the SHGM-estimator works well in all scenarios while
the other alternatives have convergence problems or suffer
from numerical instabilities under stressed system conditions.
Future work includes the test of all methods in large-scale
systems under various conditions.
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