SESSION 2

SPAA’17, July 24-26, 2017, Washington, DC, USA

Brief Announcement: A New Improved Bound for Coflow
Scheduling

Mehrnoosh Shafiee and Javad Ghaderi

Department of Electrical Engineering
Columbia University, New York, NY

ABSTRACT

Many data-parallel computing frameworks in today’s datacenters
consist of multiple computation and communication stages. A
stage often cannot start or be completed unless all the required data
pieces from the preceding stages are received. Coflow is a recently
proposed networking abstraction to capture such communication
patterns. We consider the problem of efficiently scheduling coflows
with release dates in a shared datacenter network so as to mini-
mize the total weighted completion time of coflows. This problem
has been shown to be NP-complete, and several polynomial-time
approximation algorithms have been recently proposed with prov-
able performance guarantees. Our main result in this paper is a
new polynomial-time approximation algorithm that improves the
best prior known results. Specifically, we propose a deterministic
algorithm with an approximation ratio of 5, which improves the
prior best known ratio of 12. For the special case when all the
coflows are released at time zero, we obtain an algorithm with an
approximation ratio of 4 which improves the prior best known ratio
of 8.

KEYWORDS

Scheduling Algorithms, Approximation Algorithms, Coflow, Data-
center Network

1 INTRODUCTION

Many data-parallel computation frameworks, such as MapReduce [3],
Dryad [5], Hadoop [13], and Spark [14], alternate between com-
putation and communication stages. Usually, a computation stage
produces many pieces of data that need to be processed in remote
servers, therefore, it is followed by a communication stage that
transfers the intermediate data across the datacenter network. The
next computation stage often cannot start unless all the required
data pieces from the previous stage are received. Hence, the collec-
tive effect of all the flows between the two server groups is more
important than that of any of the individual flows.

Recently Chowdhury and Stoica [1] have introduced the coflow
abstraction to capture these application level communication re-
quirement. A coflow is defined as a collection of parallel flows whose
completion time is determined by the completion time of the last flow
in the collection.

This work is supported by NSF Grants CNS-1652115 and CNS-1565774.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA’17, July 24-26, 2017, Washington, DC, USA

© 2017 Copyright held by the owner/author(s). 978-1-4503-4593-4/17/07.

DOI: http://dx.doi.org/10.1145/3087556.3087598

91

In this paper, we study the coflow scheduling problem with
release dates, namely, the algorithmic task of determining when to
start serving each flow and at what rate, in order to minimize the
weighted sum of completion times of coflows in the system.

1.1 Related Work

The problem of coflow scheduling without release dates was in-
troduced in Varys [2] where the authors proposed a heuristic to
minimize the average completion time of coflows. Here, we would
like to highlight three papers [6, 7, 10] that are more relevant to our
work. The two papers [6, 10] consider the problem of minimizing
the total weighted completion time of coflows with release dates.
This problem is shown to be NP-complete through its connection
with the concurrent open shop problem [2, 10], and then approxi-
mation algorithms are proposed which run in polynomial time and
return a solution whose value is guaranteed to be within a constant
fraction of the optimal. Both papers rely on linear programming
relaxation techniques.

In [10], the authors utilize an interval-indexed linear program for-
mulation to partition the coflows into disjoint groups. All coflows
that fall into one partition are then viewed as a single coflow, where
a polynomial-time algorithm is used to optimize its completion
time. The deterministic algorithm proposed in [10] is a 67/3 and
64/3-approximation algorithm for coflow scheduling problem with
and without release dates, respectively.

Authors of [6] improved these bounds to 12 and 8, respectively,
by constructing an instance of the concurrent open shop problem
from the original coflow scheduling problem, and applying the
well-known approximation algorithms for the concurrent open
shop problem to the constructed instance to obtain an ordering of
coflows which is then used in a similar fashion as in [10].

2 MODEL AND PROBLEM STATEMENT

Similar to [2, 10], we abstract out the datacenter network as one
giant N X N non-blocking switch, with N input links connected to
N source servers and N output links connected to N destination
servers. Thus, the network can be viewed as a bipartite graph with
source nodes denoted by set 7 on one side and destination nodes
denoted by set J on the other side. Moreover, there are capacity
constraints on the input and output links. We assume that all the
link capacities are equal and normalized to one.

A coflow is a collection of flows whose completion time is deter-
mined by the completion time of the latest flow in the collection.
The coflow k can be denoted as an N X N matrix D). Every flow
is a triple (i, j, k), where i € 7 is its source node, j € J is its des-
tination node, and k is the coflow to which it belongs. The size of

SESSION 2

flow (i, j, k) is denoted by dll.cj, which is the (i, j)-th element of the

matrix D).

There is a set of K coflows denoted by K. Coflow k € K is
released (arrives) at time ry which means it can only be scheduled
after time ry. For simplicity, we assume that all flows within a
coflow arrive to the system at the same time (as in [10]).

For a source node i € J and a coflow k € K, we define

df =" df,

jeg

which is the aggregate flow that node i needs to transmit for coflow
k. d]].c is defined similarly for destination node j € J and coflow
keX.
We use f; to denote the finishing (completion) time of coflow
k, which, by definition of coflow, is the time when all its flows
have finished processing. In other words, for every coflow k € %K,
fk = maxjer jeqg lej’ where fl]; is the completion time of flow
(i, J, k). Then the coflow scheduling problem with release dates is
defined as follows. For given positive weights wg, k € K, the goal
is to minimize the weighted sum of coflow completion times, i.e.,
minimize Dkek Wi fk

subject to Capacity and release date constraints.

The weights wy. can capture different priority for different coflows.

3 MAIN RESULT

The main contribution of this paper is that we propose a polynomial-
time approximation algorithm with the following improved approx-
imation guarantees for the offline coflow scheduling problem.

THEOREM 3.1. There exists a deterministic 5-approximation algo-
rithm for coflow scheduling with release dates so as to minimize total
weighted completion times.

COROLLARY 3.2. When all coflows are released at time zero, the
approximation ratio of this algorithm is 4.

The prior best known ratios for this problem is 12 for the case
of release dates and 8 for the case of without release dates [6].
Furthermore, our deterministic algorithm has better performance
ratios even compared with the randomized algorithms of [6, 10, 12].

4 LINEAR PROGRAMING RELAXATION

In this section, we use linear ordering variables (see, e.g., [4, 8, 9])
to present a relaxed linear program of coflow scheduling problem.
This formulation is very similar to what has been introduced in (8]
for concurrent open shop problem. In the next section, we use the
optimal solution to this LP as a subroutine in our deterministic
algorithm.

Ordering variables. For each pair of coflows, we define a binary
variable which indicates which coflow is completed (finishes all
its flows) before the other coflow is completed. Formally, for any
two coflows k, k’, we introduce a binary variable 8- € {0, 1} such
that s = 1 if coflow k is finished before coflow k’, and it is 0
otherwise.

92

SPAA’17, July 24-26, 2017, Washington, DC, USA

Relaxed Integer Program (IP). We formulate the following
Integer Program (IP):

(IP) min Z wi fk (1a)
keK
fezdf+ > A iekek (1b)
k' eK
fezdf+ 3 d o je T kek (10
k' eK
fizre keX (1d)
5kk’ + 5k’k =1k, Kex (16)
S € {0,1} k. k' € K. (1f)

The constraint (1b) (similarly (1c)) follows from the definition of
ordering variables and the fact that flows incident to a source node i
(a destination node j) are processed by a single link of unit capacity.
By constraint (1d), each coflow cannot get completed before its
release date. This optimization problem is a relaxed integer program
for coflow scheduling problem since the set of constraints in (IP) do
not capture all the requirements which a feasible schedule should
satisfy.

Relaxed Linear Program (LP). In the linear program relax-
ation, we allow the ordering variables to be fractional. Specifically,
we replace the constraint (1f) with the constraints (2b) below. We
refer to the obtained linear problem by (LP).

K
(LP) min Zwk fi (2a)
k=1
subject to: (1b) - (1e),
Sk €10,1] k k" € K. (2b)

We denote by fk the optimal solution to the (LP) for completion
time of coflow k € K. We order coflows based on values of fj in
nondecreasing order. More precisely, we number coflows such that,

];1 <]Zz <...=Z];K. 3)

Ties are broken arbitrarily. Also, we define W (k) to be the maximum
aggregate data that a node should send or receive considering the
first k coflows according to the ordering in (3). Specifically,

k k
wW(k) = max{max(z dll»), max(z dJl)} (4)
iel = jeg =

Now we characterize the solution to the linear program (LP).

Fos W)
LEmmA 4.1. fr > ——.

ProoF. Variant versions of this lemma were used in other sched-
uling problems (see e.g., [4, 8, 9]). We refer to the extended version
of this paper [11] for the proof. O

Furthermore, the following lemma establishes a relationship
between optimal value of (LP) solution, i.e., Zle wg fx and optimal

value of coflow scheduling problem, i.e., 2115:1 Wi fk* , where fk* is
the completion time of coflow k in the optimal schedule.

LEMMA 4.2. 2115:1 wfr < Zle wif

SESSION 2

Proor. Consider an optimal solution to the coflow scheduling
problem. We set the ordering variables so as di; = 1 if coflow k
precedes coflow k’ in this solution, and dgps = 0, otherwise. We
note that this set of ordering variables and coflow completion times
satisfies constraints (1b) and (1c) since the optimal solution should
respect capacity constraints on the communication links. It also
satisfies constraint (1d). Therefore, the optimal solution can be
converted to a feasible solution to (LP). This implies the desired
inequality.]

5 APPROXIMATION ALGORITHM

The approximation algorithm is depicted in Algorithm 1 which
is a simple list scheduling algorithm based on the ordering in (3).
More specifically, the algorithm maintains a list of flows such that
for every two flows (i, j, k) and (i’, j/, k") with k < k’, flow (i, j, k)
is before flow (i’, j’, k) in the list. Flows of the same coflow are
listed arbitrarily. The algorithm scans the list starting from the
first flow and schedules a flow if both its corresponding source and
destination links are idle at that time. Upon completion of a flow or
arrival of a coflow, the algorithm preempts the schedule, updates
the list, and starts scheduling the flows in the updated list.

Algorithm 1 Deterministic Coflow Scheduling Algorithm
N

for k € K with release dates ry,
i,j=1
k € K, and weights wy, k € K, are given.

Suppose Coflows {d{cj}

1: Solve the linear program (LP) and denote optimal solution

by {fi:k € K}
2: Order and re-index coflows such that:

fi<fo<..<fk,
where ties are broken arbitrarily.
3: Wait until the first coflow(s) is released.
4: while There is some incomplete flow, do
5 List the released and incomplete flows respecting the
ordering in (5). Let L be the total number of flows in the list.

®)

6 for/=1toLdo

7 Denote the I-th flow in the list by (i, j;, k;),

8: if Both the links i; and j; are unused, then

9 Schedule flow (iy, j;, k).
10: end if

11: end for
12: while No flow is complete and no coflow is released do
13: Transmit the flows that get scheduled in line 9 with
rate 1.

14: end while

15: end while

Now we present a sketch of the proof of Theorem 3.1 and Corol-
lary 3.2 regarding performance of Algorithm 1.

ProoF oF THEOREM 3.1. Denote by f. completion time of coflow
k under Algortihm 1. Suppose flow (i, j, k) is the last flow of coflow
k that is completed. In general, Algorithm 1 may preempt a flow
several times during its execution. For now, suppose flow (i, j, k) is
not preempted and use #; to denote the time when its transmission

93

SPAA’17, July 24-26, 2017, Washington, DC, USA

is started (the arguments can be easily extended to the preemption
case as we show at the end of the proof). Therefore

fo= 5 =t +df (©)
From the algorithm description, t. is the first time both links i and
Jj are available and there is no flow from i to j before flow (i, j, k) in
the list to be scheduled. By definition of W (k) (Equation (4)), node i
(similarly node j) has at most W (k) — dl].‘j data flow to send by time
t.. Recall that capacity of all links are normalized to 1. Hence,

te < i+ W(k) - db + W(k) - dfs.

Combining this inequality with equality (6) yields that: fi. < rp +
2W(k). Using Lemma 4.1 and constraint (1d), we can conclude that

fi <5fk.

which implies that

K K .
Z Wi fie <5 Z Wi fie-
k=1 k=1

This shows approximation ratio of 5 for Algorithm 1 using Lemma 4.2.
Finally, if flow (i, j, k) is preempted, the above argument can still
be used by letting t;. to be the starting time of its last piece and dzkj
to be the remaining size of its last piece at time ;. This completes
the proof. O

PRrROOF OF COROLLARY 3.2. When all coflows are released at time
0, tp < W(k)- dfj +Wi(k) - dlkj The rest of the argument is similar.
Therefore, the algorithm has approximation ratio of 4 when all
coflows are release at time 0. O

REFERENCES

[1] M. Chowdhury and I Stoica. Coflow: A networking abstraction for cluster
applications. In Proceedings of the 11th ACM Workshop on Hot Topics in Networks,
pages 31-36. ACM, 2012.

[2] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling with varys.
In ACM SIGCOMM Computer Communication Review, volume 44, pages 443-454.
ACM, 2014.

[3] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107-113, 2008.

[4] L.A.Hall,D.B. Shmoys, and J. Wein. Scheduling to minimize average completion
time: Off-line and on-line algorithms. In SODA, volume 96, pages 142-151, 1996.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-
parallel programs from sequential building blocks. In ACM SIGOPS Operating
Systems Review, volume 41, pages 59-72. ACM, 2007.

[6] S.Khuller and M. Purohit. Brief announcement: Improved approximation algo-
rithms for scheduling co-flows. In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, pages 239-240. ACM, 2016.

[7] S.Luo, H. Yu, Y. Zhao, S. Wang, S. Yu, and L. Li. Towards practical and near-
optimal coflow scheduling for data center networks. 2016.

[8] M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and N. A. Uhan. Minimiz-
ing the sum of weighted completion times in a concurrent open shop. Operations
Research Letters, 38(5):390-395, 2010.

[9] C.Potts. An algorithm for the single machine sequencing problem with prece-

dence constraints. In Combinatorial Optimization II, pages 78-87. Springer, 1980.

Z. Qiu, C. Stein, and Y. Zhong. Minimizing the total weighted completion time

of coflows in datacenter networks. In Proceedings of the 27th ACM symposium on

Parallelism in Algorithms and Architectures, pages 294-303. ACM, 2015.

M. Shafiee and J. Ghaderi. An improved bound for minimizing the total weighted

completion time of coflows in datacenters. arXiv preprint arXiv:1704.08357, 2017.

M. Shafiee and J. Ghaderi. Scheduling coflows in datacenter networks: Improved

bound for total weighted completion time. ACM SIGMETRICS, Poster Paper, 2017.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file

system. In 2010 IEEE 26th symposium on mass storage systems and technologies

(MSST), pages 1-10. IEEE, 2010.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:

Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

(10]

(1]

	Abstract
	1 Introduction
	1.1 Related Work

	2 Model and Problem Statement
	3 Main Result
	4 Linear Programing Relaxation
	5 Approximation Algorithm
	References

