
Brief Announcement: A New Improved Bound for Coflow
Scheduling

Mehrnoosh Sha�ee and Javad Ghaderi

Department of Electrical Engineering

Columbia University, New York, NY

ABSTRACT
Many data-parallel computing frameworks in today’s datacenters

consist of multiple computation and communication stages. A

stage o�en cannot start or be completed unless all the required data

pieces from the preceding stages are received. Co�ow is a recently

proposed networking abstraction to capture such communication

pa�erns. We consider the problem of e�ciently scheduling co�ows

with release dates in a shared datacenter network so as to mini-

mize the total weighted completion time of co�ows. �is problem

has been shown to be NP-complete, and several polynomial-time

approximation algorithms have been recently proposed with prov-

able performance guarantees. Our main result in this paper is a

new polynomial-time approximation algorithm that improves the

best prior known results. Speci�cally, we propose a deterministic

algorithm with an approximation ratio of 5, which improves the

prior best known ratio of 12. For the special case when all the

co�ows are released at time zero, we obtain an algorithm with an

approximation ratio of 4 which improves the prior best known ratio

of 8.

KEYWORDS
Scheduling Algorithms, Approximation Algorithms, Co�ow, Data-

center Network

1 INTRODUCTION
Many data-parallel computation frameworks, such asMapReduce [3],

Dryad [5], Hadoop [13], and Spark [14], alternate between com-

putation and communication stages. Usually, a computation stage

produces many pieces of data that need to be processed in remote

servers, therefore, it is followed by a communication stage that

transfers the intermediate data across the datacenter network. �e

next computation stage o�en cannot start unless all the required

data pieces from the previous stage are received. Hence, the collec-

tive e�ect of all the �ows between the two server groups is more

important than that of any of the individual �ows.

Recently Chowdhury and Stoica [1] have introduced the co�ow
abstraction to capture these application level communication re-

quirement. A co�ow is de�ned as a collection of parallel �ows whose
completion time is determined by the completion time of the last �ow
in the collection.

�is work is supported by NSF Grants CNS-1652115 and CNS-1565774.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA’17, July 24–26, 2017, Washington, DC, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-4593-4/17/07.

DOI: h�p://dx.doi.org/10.1145/3087556.3087598

In this paper, we study the co�ow scheduling problem with

release dates, namely, the algorithmic task of determining when to

start serving each �ow and at what rate, in order to minimize the

weighted sum of completion times of co�ows in the system.

1.1 Related Work
�e problem of co�ow scheduling without release dates was in-

troduced in Varys [2] where the authors proposed a heuristic to

minimize the average completion time of co�ows. Here, we would

like to highlight three papers [6, 7, 10] that are more relevant to our

work. �e two papers [6, 10] consider the problem of minimizing

the total weighted completion time of co�ows with release dates.

�is problem is shown to be NP-complete through its connection

with the concurrent open shop problem [2, 10], and then approxi-

mation algorithms are proposed which run in polynomial time and

return a solution whose value is guaranteed to be within a constant

fraction of the optimal. Both papers rely on linear programming

relaxation techniques.

In [10], the authors utilize an interval-indexed linear program for-

mulation to partition the co�ows into disjoint groups. All co�ows

that fall into one partition are then viewed as a single co�ow, where

a polynomial-time algorithm is used to optimize its completion

time. �e deterministic algorithm proposed in [10] is a 67/3 and
64/3-approximation algorithm for co�ow scheduling problem with

and without release dates, respectively.

Authors of [6] improved these bounds to 12 and 8, respectively,

by constructing an instance of the concurrent open shop problem

from the original co�ow scheduling problem, and applying the

well-known approximation algorithms for the concurrent open

shop problem to the constructed instance to obtain an ordering of

co�ows which is then used in a similar fashion as in [10].

2 MODEL AND PROBLEM STATEMENT
Similar to [2, 10], we abstract out the datacenter network as one

giant N × N non-blocking switch, with N input links connected to

N source servers and N output links connected to N destination

servers. �us, the network can be viewed as a bipartite graph with

source nodes denoted by set I on one side and destination nodes

denoted by set J on the other side. Moreover, there are capacity

constraints on the input and output links. We assume that all the

link capacities are equal and normalized to one.

A co�ow is a collection of �ows whose completion time is deter-

mined by the completion time of the latest �ow in the collection.

�e co�ow k can be denoted as an N × N matrix D(k ). Every �ow

is a triple (i, j,k), where i ∈ I is its source node, j ∈ J is its des-

tination node, and k is the co�ow to which it belongs. �e size of

SESSION 2 SPAA’17, July 24-26, 2017, Washington, DC, USA

91



�ow (i, j,k) is denoted by dki j , which is the (i, j)-th element of the

matrix D(k ).
�ere is a set of K co�ows denoted by K . Co�ow k ∈ K is

released (arrives) at time rk which means it can only be scheduled

a�er time rk . For simplicity, we assume that all �ows within a

co�ow arrive to the system at the same time (as in [10]).

For a source node i ∈ I and a co�ow k ∈ K , we de�ne

dki =
∑
j ∈J

dki j ,

which is the aggregate �ow that node i needs to transmit for co�ow

k . dkj is de�ned similarly for destination node j ∈ J and co�ow

k ∈ K .
We use fk to denote the �nishing (completion) time of co�ow

k , which, by de�nition of co�ow, is the time when all its �ows

have �nished processing. In other words, for every co�ow k ∈ K ,
fk = maxi ∈I, j ∈J f ki j , where f ki j is the completion time of �ow

(i, j,k). �en the co�ow scheduling problem with release dates is

de�ned as follows. For given positive weightswk , k ∈ K , the goal
is to minimize the weighted sum of co�ow completion times, i.e.,

minimize

∑
k ∈K wk fk

subject to Capacity and release date constraints.

�e weightswk can capture di�erent priority for di�erent co�ows.

3 MAIN RESULT
�emain contribution of this paper is that we propose a polynomial-

time approximation algorithm with the following improved approx-

imation guarantees for the o�ine co�ow scheduling problem.

Theorem 3.1. �ere exists a deterministic 5-approximation algo-
rithm for co�ow scheduling with release dates so as to minimize total
weighted completion times.

Corollary 3.2. When all co�ows are released at time zero, the
approximation ratio of this algorithm is 4.

�e prior best known ratios for this problem is 12 for the case

of release dates and 8 for the case of without release dates [6].

Furthermore, our deterministic algorithm has be�er performance

ratios even compared with the randomized algorithms of [6, 10, 12].

4 LINEAR PROGRAMING RELAXATION
In this section, we use linear ordering variables (see, e.g., [4, 8, 9])
to present a relaxed linear program of co�ow scheduling problem.

�is formulation is very similar to what has been introduced in [8]

for concurrent open shop problem. In the next section, we use the

optimal solution to this LP as a subroutine in our deterministic

algorithm.

Ordering variables. For each pair of co�ows, we de�ne a binary
variable which indicates which co�ow is completed (�nishes all

its �ows) before the other co�ow is completed. Formally, for any

two co�ows k,k ′, we introduce a binary variable δkk ′ ∈ {0, 1} such
that δkk ′ = 1 if co�ow k is �nished before co�ow k ′, and it is 0

otherwise.

Relaxed Integer Program (IP). We formulate the following

Integer Program (IP):

(IP) min

∑
k ∈K

wk fk (1a)

fk ≥ dki +
∑
k ′∈K

dk
′

i δk ′k i ∈ I,k ∈ K (1b)

fk ≥ dkj +
∑
k ′∈K

dk
′

j δk ′k j ∈ J ,k ∈ K (1c)

fk ≥ rk k ∈ K (1d)

δkk ′ + δk ′k = 1 k,k ′ ∈ K (1e)

δkk ′ ∈ {0, 1} k,k ′ ∈ K . (1f)

�e constraint (1b) (similarly (1c)) follows from the de�nition of

ordering variables and the fact that �ows incident to a source node i
(a destination node j) are processed by a single link of unit capacity.
By constraint (1d), each co�ow cannot get completed before its

release date. �is optimization problem is a relaxed integer program

for co�ow scheduling problem since the set of constraints in (IP) do

not capture all the requirements which a feasible schedule should

satisfy.

Relaxed Linear Program (LP). In the linear program relax-

ation, we allow the ordering variables to be fractional. Speci�cally,

we replace the constraint (1f) with the constraints (2b) below. We

refer to the obtained linear problem by (LP).

(LP) min

K∑
k=1

wk fk (2a)

subject to: (1b) – (1e),

δkk ′ ∈ [0, 1] k,k ′ ∈ K . (2b)

We denote by
˜fk the optimal solution to the (LP) for completion

time of co�ow k ∈ K . We order co�ows based on values of
˜fk in

nondecreasing order. More precisely, we number co�ows such that,

˜f1 ≤ ˜f2 ≤ ... ≤ ˜fK . (3)

Ties are broken arbitrarily. Also, we de�neW (k) to be themaximum

aggregate data that a node should send or receive considering the

�rst k co�ows according to the ordering in (3). Speci�cally,

W (k) = max{max

i ∈I
(
k∑
l=1

dli ),max

j ∈J
(
k∑
l=1

dlj )}. (4)

Now we characterize the solution to the linear program (LP).

Lemma 4.1.
˜fk ≥

W (k)
2

.

Proof. Variant versions of this lemma were used in other sched-

uling problems (see e.g., [4, 8, 9]). We refer to the extended version

of this paper [11] for the proof. �

Furthermore, the following lemma establishes a relationship

between optimal value of (LP) solution, i.e.,

∑K
k=1wk ˜fk and optimal

value of co�ow scheduling problem, i.e.,

∑K
k=1wk f

?
k , where f ?k is

the completion time of co�ow k in the optimal schedule.

Lemma 4.2.

∑K
k=1wk ˜fk ≤

∑K
k=1wk f

?
k .

SESSION 2 SPAA’17, July 24-26, 2017, Washington, DC, USA

92



Proof. Consider an optimal solution to the co�ow scheduling

problem. We set the ordering variables so as δkk ′ = 1 if co�ow k
precedes co�ow k ′ in this solution, and δkk ′ = 0, otherwise. We

note that this set of ordering variables and co�ow completion times

satis�es constraints (1b) and (1c) since the optimal solution should

respect capacity constraints on the communication links. It also

satis�es constraint (1d). �erefore, the optimal solution can be

converted to a feasible solution to (LP). �is implies the desired

inequality. �

5 APPROXIMATION ALGORITHM
�e approximation algorithm is depicted in Algorithm 1 which

is a simple list scheduling algorithm based on the ordering in (3).

More speci�cally, the algorithm maintains a list of �ows such that

for every two �ows (i, j,k) and (i ′, j ′,k ′) with k < k ′, �ow (i, j,k)
is before �ow (i ′, j ′,k ′) in the list. Flows of the same co�ow are

listed arbitrarily. �e algorithm scans the list starting from the

�rst �ow and schedules a �ow if both its corresponding source and

destination links are idle at that time. Upon completion of a �ow or

arrival of a co�ow, the algorithm preempts the schedule, updates

the list, and starts scheduling the �ows in the updated list.

Algorithm 1 Deterministic Co�ow Scheduling Algorithm

Suppose Co�ows

{
dki j

}N
i, j=1

for k ∈ K with release dates rk ,

k ∈ K , and weightswk , k ∈ K , are given.
1: Solve the linear program (LP) and denote optimal solution

by { ˜fk ;k ∈ K}.
2: Order and re-index co�ows such that:

˜f1 ≤ ˜f2 ≤ ... ≤ ˜fK , (5)

where ties are broken arbitrarily.

3: Wait until the �rst co�ow(s) is released.

4: while �ere is some incomplete �ow, do
5: List the released and incomplete �ows respecting the

ordering in (5). Let L be the total number of �ows in the list.

6: for l = 1 to L do
7: Denote the l-th �ow in the list by (il , jl ,kl ),
8: if Both the links il and jl are unused, then
9: Schedule �ow (il , jl ,kl ).
10: end if
11: end for
12: while No �ow is complete and no co�ow is released do
13: Transmit the �ows that get scheduled in line 9 with

rate 1.

14: end while
15: end while

Now we present a sketch of the proof of �eorem 3.1 and Corol-

lary 3.2 regarding performance of Algorithm 1.

Proof of Theorem 3.1. Denote by fk completion time of co�ow

k under Algortihm 1. Suppose �ow (i, j,k) is the last �ow of co�ow

k that is completed. In general, Algorithm 1 may preempt a �ow

several times during its execution. For now, suppose �ow (i, j,k) is
not preempted and use tk to denote the time when its transmission

is started (the arguments can be easily extended to the preemption

case as we show at the end of the proof). �erefore

fk = f ki j = tk + d
k
i j (6)

From the algorithm description, tk is the �rst time both links i and
j are available and there is no �ow from i to j before �ow (i, j,k) in
the list to be scheduled. By de�nition ofW (k) (Equation (4)), node i

(similarly node j) has at mostW (k) − dki j data �ow to send by time

tk . Recall that capacity of all links are normalized to 1. Hence,

tk ≤ rk +W (k) − dki j +W (k) − d
k
i j .

Combining this inequality with equality (6) yields that: fk ≤ rk +
2W (k). Using Lemma 4.1 and constraint (1d), we can conclude that

fk ≤ 5
˜fk ,

which implies that

K∑
k=1

wk fk ≤ 5

K∑
k=1

wk ˜fk .

�is shows approximation ratio of 5 for Algorithm 1 using Lemma 4.2.

Finally, if �ow (i, j,k) is preempted, the above argument can still

be used by le�ing tk to be the starting time of its last piece and dki j
to be the remaining size of its last piece at time tk . �is completes

the proof. �

Proof of Corollary 3.2. When all co�ows are released at time

0, tk ≤W (k) −dki j +W (k) −d
k
i j . �e rest of the argument is similar.

�erefore, the algorithm has approximation ratio of 4 when all

co�ows are release at time 0. �

REFERENCES
[1] M. Chowdhury and I. Stoica. Co�ow: A networking abstraction for cluster

applications. In Proceedings of the 11th ACM Workshop on Hot Topics in Networks,
pages 31–36. ACM, 2012.

[2] M. Chowdhury, Y. Zhong, and I. Stoica. E�cient co�ow scheduling with varys.

In ACM SIGCOMM Computer Communication Review, volume 44, pages 443–454.

ACM, 2014.

[3] J. Dean and S. Ghemawat. Mapreduce: simpli�ed data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008.

[4] L. A. Hall, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion

time: O�-line and on-line algorithms. In SODA, volume 96, pages 142–151, 1996.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fe�erly. Dryad: distributed data-

parallel programs from sequential building blocks. In ACM SIGOPS Operating
Systems Review, volume 41, pages 59–72. ACM, 2007.

[6] S. Khuller and M. Purohit. Brief announcement: Improved approximation algo-

rithms for scheduling co-�ows. In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, pages 239–240. ACM, 2016.

[7] S. Luo, H. Yu, Y. Zhao, S. Wang, S. Yu, and L. Li. Towards practical and near-

optimal co�ow scheduling for data center networks. 2016.

[8] M. Mastrolilli, M.�eyranne, A. S. Schulz, O. Svensson, and N. A. Uhan. Minimiz-

ing the sum of weighted completion times in a concurrent open shop. Operations
Research Le�ers, 38(5):390–395, 2010.

[9] C. Po�s. An algorithm for the single machine sequencing problem with prece-

dence constraints. In Combinatorial Optimization II, pages 78–87. Springer, 1980.
[10] Z. Qiu, C. Stein, and Y. Zhong. Minimizing the total weighted completion time

of co�ows in datacenter networks. In Proceedings of the 27th ACM symposium on
Parallelism in Algorithms and Architectures, pages 294–303. ACM, 2015.

[11] M. Sha�ee and J. Ghaderi. An improved bound for minimizing the total weighted

completion time of co�ows in datacenters. arXiv preprint arXiv:1704.08357, 2017.
[12] M. Sha�ee and J. Ghaderi. Scheduling co�ows in datacenter networks: Improved

bound for total weighted completion time. ACM SIGMETRICS, Poster Paper, 2017.
[13] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. �e hadoop distributed �le

system. In 2010 IEEE 26th symposium on mass storage systems and technologies
(MSST), pages 1–10. IEEE, 2010.

[14] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:

Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

SESSION 2 SPAA’17, July 24-26, 2017, Washington, DC, USA

93


	Abstract
	1 Introduction
	1.1 Related Work

	2 Model and Problem Statement
	3 Main Result
	4 Linear Programing Relaxation
	5 Approximation Algorithm
	References



