On Non-Preemptive VM Scheduling in the Cloud

KONSTANTINOS PSYCHAS, AND JAVAD GHADERI, Columbia University

We study the problem of scheduling VMs (Virtual Machines) in a distributed server platform, motivated by
cloud computing applications. The VMs arrive dynamically over time to the system, and require a certain
amount of resources (e.g. memory, CPU, etc) for the duration of their service. To avoid costly preemptions,
we consider non-preemptive scheduling: Each VM has to be assigned to a server which has enough residual
capacity to accommodate it, and once a VM is assigned to a server, its service cannot be disrupted (preempted).
Prior approaches to this problem either have high complexity, require synchronization among the servers,
or yield queue sizes/delays which are excessively large. We propose a non-preemptive scheduling algorithm
that resolves these issues. In general, given an approximation algorithm to Knapsack with approximation
ratio r, our scheduling algorithm can provide rf fraction of the throughput region for § < r. In the special
case of a greedy approximation algorithm to Knapsack, we further show that this condition can be relaxed
to f < 1. The parameters f and r can be tuned to provide a tradeoff between achievable throughput, delay,
and computational complexity of the scheduling algorithm. Finally extensive simulation results using both
synthetic and real traffic traces are presented to verify the performance of our algorithm.

Additional Key Words and Phrases: Scheduling Algorithms, Stability, Queues, Knapsack Problem, Cloud

ACM Reference Format:
Konstantinos Psychas, and Javad Ghaderi. 2017. On Non-Preemptive VM Scheduling in the Cloud. Proc. ACM
Meas. Anal. Comput. Syst. 1, 2, Article 35 (December 2017), 29 pages. https://doi.org/10.1145/3154493

1 INTRODUCTION

There has been an enormous momentum recently in orage, computing, and various services to the
cloud. By using cloud, clients no longer require to install and maintain their own infrastructure
and can instead use massive cloud computing resources on demand (for example, Expedia [8] and
Netflix are hosted on Amazon’s cloud service [6]). Clients can procure Virtual Machines (VMs)
with specific configurations of CPU, memory, disk, and networking in the cloud. In a more complex
scenario, clients can put together an entire service by procuring and composing VMs with specific
capabilities [1, 17].

The datacenter is a distributed server platform, consisting of a large number of servers. The
key challenge for the cloud operator is to efficiently support a wide range of applications on their
physical platform. Recent studies estimate in many large datacenters the average server utilization
to be 6 to 12% (see [14] and references therein). At such low utilizations, VMs can be potentially
concentrated onto a smaller number of servers, and many of the unused servers can be turned off
(to save energy) or utilized to increase the number of VMs that can be simultaneously supported by
the system (to maximize throughput and reduce delay). For instance, suppose a CPU-intensive VM,
a disk-intensive VM, and a memory-intensive VM are located on three individual servers, we can
pack these VMs in a single server to fully utilize the server’s resources along CPU, disk I/O, and

This work was supported by NSF Grant CNS-1652115.
Author’s address: Konstantinos Psychas, and Javad Ghaderi, Columbia University.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

2476-1249/2017/12-ART35 $$15.00

https://doi.org/10.1145/3154493

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

35

35:2 Konstantinos Psychas, and Javad Ghaderi

memory. However, finding the right packing of VMs is not easy due to two reasons: first, the cloud
workload is a priori unknown and will likely be variable over both time and space; and second,
finding the right packing even in the case that the workload is known is a hard combinatorial
problem.

In this paper, we consider a distributed server platform, consisting of possibly a large number
of servers. The servers could be inhomogeneous in terms of their capacity (e.g. CPU, memory,
storage). As an abstraction in our model, VM is simply a multi-dimensional object (vector of
resource requirements) that cannot be fragmented among the servers. The VMs of various types
arrive dynamically over time. Once a VM arrives, it is queued and later served by one of the servers
that has sufficient remaining capacity to serve it. Once the service is completed, the VM departs
from the server and releases the resources.

We consider non-preemptive scheduling, i.e., once a VM starts getting service, its ongoing
service cannot be preempted (interrupted). This is because preemptions require storing the state
of preempted VMs and recovering them at a later time, which are operationally costly and can
also affect the latency [5]. Admittedly there are scenarios where preemptions could be actually
necessary/useful, e.g. for maintenance, low cost pricing, energy saving [4, 20, 27], or for resource
allocation in long-running services (e.g., a long-running VM where the cost of one-time preemption
can be amortized over the VM’s life time). In this paper, we focus on non-preemptive scheduling,
and postpone the preemption cost modeling to a separate work.

We are interested in scalable non-preemptive scheduling algorithms that can provide high
throughput and low delay. To maintain scalability, we would like the scheduling decisions to be
made by the servers individually in a distributed manner, without the need for coordination among
the servers. In this work, we propose an algorithm to meet these objectives and will characterize
its theoretical performance. Further extensions are also discussed to make the algorithms more
applicable to realistic settings.

We would like to emphasize that although we use the term VM, our model provides clean abstrac-
tions and algorithms that can be applied to other applications as well. For example, in scheduling
tasks in data-parallel clusters, tasks can be viewed as VMs in our model (multi-dimensional objects)
with diverse resource requirements (CPU, memory, storage, etc) [15].

1.1 Motivations and Challenges

Consider a large-scale server system with a finite number of VM types. At any time, each server
could operate in one of many possible configurations, where each configuration is a way of packing
various number of VM types in the server subject to its capacity. As VMs arrive and depart over time,
the configuration of servers may need to change appropriately in order to schedule the VMs waiting
to get service. To avoid costly preemptions, the configuration change has to be non-preemptive. For
example, suppose there are only two VM types, if the server configuration is (2, 2) (i.e., it is currently
serving 2 VMs of type 1 and 2 VMs of type 2), it cannot suddenly transition to (0,4) (i.e., serving 4
VMs of type 2, and 0 VMs of type 1 instead) since this interrupts (preempts) the service of type-1
VMs. There have been two prior approaches to non-preemptive scheduling, namely, MaxWeight
approach [21-23], and randomized sampling approach [11]. In the rest of the paper, we use the
terms VMs and jobs interchangeably.

MaxWeight approach. This approach is based on the classical MaxWeight scheduling [36]. How-
ever unlike scheduling in data packet networks, here a MaxWeight schedule cannot be used at
arbitrary points in time since it might cause preemption of jobs already in service. Recent work
[21, 22] proposes using the MaxWeight schedule at instances when the servers becomes empty (the
so-called refresh times), however the approach requires using a MaxWeight schedule at times when
all the servers become empty simultaneously (the so-called global refresh times). This requires

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

On Non-Preemptive VM Scheduling in the Cloud 35:3

some form of synchronization among the servers to set the MaxWeight schedule at the same time.
Further, such global refresh times become extremely infrequent in large-scale server systems, thus
causing large queues and delays in scheduling. There is no proof that MaxWeight based on local
refresh times (i.e. when each server chooses a MaxWeight schedule locally at its own refresh time)
is stable in general. In fact, it was suggested in [11] that it might be unstable. Also the approach
requires finding the MaxWeight schedule which in our setting requires solving a Knapsack problem
which is a hard combinatorial problem [18].

Randomized sampling approach. A randomized sampling approach was proposed in [11] which
has low complexity and can provide high throughput. The idea is that each queue samples the
servers at random and places a token in the server if it can fit a job in the sampled server. Token
acts as place holder for a future job arrival and reserves resources for future job of that type for
some time duration. When a job arrives, it is placed in a token of that type, if there is any, otherwise
it is queued. The sampling rate used by a queue depends on its size, i.e, as a queue builds up, it
samples the servers faster. The algorithm is proved to be throughput optimal however in general it
suffers from long convergence time and excessive queue sizes/delays.

1.2 Contributions

The main contributions of this work are summarized below.

e A scalable non-preemptive scheduling algorithm. We provide a scalable non-preemptive
scheduling algorithm that can provide high throughput and low delay. Each server makes its
scheduling decisions locally independently of the other servers based on a Knapsack or an
approximated Knapsack solution (e.g. a greedy low-complexity solution). The key ingredient
of our algorithm is a new construct of refresh times. Specifically each server actively estimates
the right moments in time that it needs to reset its schedule and stops scheduling to allow the
schedule to be renewed when the server becomes empty.

e Throughput-delay-complexity tradeoff. We formally prove the fraction of the throughput
region that our algorithm can achieve. Specifically, given an approximation algorithm for solving
the Knapsack problem with approximation ratio r € (0, 1], our algorithm can provide fr fraction
of the maximum throughput where f can be tuned to provide tradeoff between throughput and
delay. Any general off-the-shelf approximation algorithm for the Knapsack problem can be used
as subroutine in our scheduling algorithm, with § € (0,r), however we also present a greedy
approximation algorithm for which f € (0,1) works.

e Empirical evaluations. We provide extensive simulation results, using both synthetic and real
traffic traces, that show that our algorithm in fact outperforms prior scheduling algorithms in
terms of queuing delay.

1.3 Related Work

Our work is related to resource allocation in cloud data centers (e.g. [32],[40], [16, 25, 41], [12]) and
scheduling algorithms in queueing systems (e.g. [3, 24, 31, 36, 42]). The VM placement in an infinite
server system has been studied in [13, 33-35]. Four closely related papers are [23], [21], [22], [11]
where a finite model of the cloud is studied and preemptive [23] and non-preemptive [11, 21, 22]
scheduling algorithms to stabilize the system are proposed. The proposed algorithms either rely
on the MaxWeight approach and hence, as explained in Section 1.1, in general suffer from high
complexity and resetting at the global refresh times, or yield excessive queues and delays in the
case of randomized sampling approach. In the case that all the servers are identical and each server
has its own set of queues, it is sufficient to reset the server configurations at the so-called local
refresh times, namely, time instances when a server becomes empty [21, 22]; however, it is not clear

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

35:4 Konstantinos Psychas, and Javad Ghaderi

if operation based on local refresh times is stable in general when the queues are centralized or the
servers are not homogeneous. In fact, operation based on local refresh times can cause instability
(see Example 1 in Simulations, Section 7.1).

1.4 Notations

In the rest of the paper we use the following notations. ||-|| denotes the Euclidean norm of vectors,
where |||, is the {-infinity norm which is the maximum element of a vector, and ||-||; is the ¢-1
norm which is the sum of the absolute values of the elements of the vector. The inner product of
two vectors will be denoted by (:,-). Conv(S) is the convex hull of the points in the set S. |S] is the
cardinality (the number of elements) of the set S. 0, is a zero vector of size n. 1(E) is the indicator

function which is 1 if condition E is true and 0 otherwise. We write f(x) = o(g(x)) if lim,_, % =0

2 SYSTEM MODEL

Cloud Cluster Model. We consider a collection of L servers denoted by the set L. Each server
¢ € £ has a limited capacity for various resource types (e.g., memory, CPU, storage, etc.). We
assume there are R different types of resources. Servers could be inhomogeneous in terms of their
capacities.

VM-based Job Model. There is a collection of] VM types denoted by the set J. Each VM type
J € J requires fixed amounts of the various resources. So each VM type is a R-dimensional vector
of resource requirements.

Job (VM) Arrivals and Service Times. Henceforth, we use the terms job and VM interchangeably.
We assume VMs of type j arrive according to a Poisson process with rate ;. The highest rate
among them is denoted by A,,4x := max; A;. Each VM must be placed in a server that has enough
remaining resources to accommodate it. Once a VM of type j is placed in server, it departs after an
exponentially distributed amount of time (service time) with mean 1/1;, independently of the other
existing VMs in the server. We will also define the maximum mean service time as T := max; 1/p;
and the maximum service rate as fi;mqx := max; y;. The Poisson and exponential assumptions are
for simplicity and we will in fact broaden the results to more general distributions later in Section 5.

Server Configuration and System Configuration. We denote by kf the number of type-j VMs that
are accommodated by server £. For each server ¢, a vector k’ = (k{,--- ,k;) €]Ng is said to be a

feasible configuration if the server can simultaneously accommodate kf type-1 VMs, kg type-2 VMs,
. k; type-J VMs, without violating its capacity. A feasible configuration is said to be maximal if

no further VM can be added to the configuration without violating the server’s capacity. We also
Lx]J

o~ whose {-th row (k%) is the configuration of

define the system configuration as a matrix k € IN
server £.

We use K to denote the set of all feasible configurations for server ¢ excluding the 0-configuration
07, and K, to denote K, U {0 7}. Note that we do not necessarily need the resource requirements
of VMs in a configuration to be additive (vector addition), we only require the monotonicity of
the feasible configurations, i.e., if k! € K, and k¢ <k’ (component-wise), then ke %Ko Clearly

monotonicity includes additive resource requirements as a special case.

Queueing Dynamics and Stability. When jobs arrive, they are queued and later served by the
servers. We use Q;(t) to denote the number of type-j jobs waiting in the queue to get service. The
vector of all queue sizes at time t is denoted by Q(t). Q;(t) follows the usual dynamics

Qj(t) = Qj(to) + Aj(to,t) — Dj(to, 1),

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

On Non-Preemptive VM Scheduling in the Cloud 35:5

where Aj(ly,t) is the number of type-j jobs arrived from time #, up to time ¢ and D;(ty, t) is the
number of type-j jobs departed from queue in the same time interval. The system is said to be
stable if the queues remain bounded in the sense that

}Lr{)lo sup £ Z Qi) < oo. (1)
j

A vector of arriving rates A and a vector of mean service times 1/p is said to be supportable
if there exists a scheduling algorithm under which the system is stable. Let p; = A;/u; be the
workload of type-j jobs. We will define the capacity (throughout) region of the cluster as

C={xeR/ :x= x’, x € Conv(K¥),t € L}, (2)
teL

where Conv(-) is the convex hull operator. It has been shown [21-23] that the set of supportable
workloads p = (p1,- - - py) is the interior of C. We also define Cp as the f§ fraction of the capacity
region, ie., Cs = fC,for 0 < f < 1.

3 BASIC ALGORITHM AND MAIN RESULT

In this section, we present our non-preemptive scheduling algorithm and state the main result
regarding its performance. Before describing the algorithm, we make two definitions.

DEFINITION 1 (weight of a configuration). The weight of configuration k¢ for server ¢, given a
queue size vector Q, is defined as

¢ 1
FO,Q)= > kL. 3)
Jjeg
DEFINITION 2 (r-max weight configuration). Given a constant r € (0,1], and a queue size vector
Q, an r-max weight configuration for server £ is a feasible configuration k¢ € K, such that

f&,.Q) > rf(k’,Q), VK’ € K.)

Note that by Definition 2, an r-max weight configuration, is also an r’-max weight configuration,
forany 0 <r’ <r.

Various approximation algorithms exist that can provide an r-max weight configuration. In
Section 6.1, we will elaborate further and describe several low complexity approaches to solve (4),
but for now assume that such an approximation algorithm exists and is used as a subroutine in our
scheduling algorithm in a black box fashion.

Under our scheduling algorithm, each server at any time is either in an active period or in a
stalled period, defined below. We will also refer to the state of a server as active or stalled depending
on the period in which it is at a certain time.

Active period: In an active period, the server schedules jobs from the queues according to a fixed
configuration. Formally, let the configuration of server ¢ in an active period be k! = (l%f jeqd).
The server can contain at most I;:f jobs of type j, j € J, at any time. If there are not enough type-j

jobs in the system, the server reserves the remaining empty slots for future type-j arrivals. We use
k() = (kf(t); Jj € J) to denote the actual number of jobs in the server £ at time t. By definition,

K{(r) < k¢ (component-wise) at any time ¢ during the active period of server ¢.
Stalled period: In a stalled period, the server does not schedule any more jobs, even if there are
jobs waiting for service that can fit in the server, and it only processes jobs which already exist in

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

35:6 Konstantinos Psychas, and Javad Ghaderi

the server. The stalled period of the server ends when all the existing jobs in the server finish their
service and leave, at which point the server will enter a new active period.

Note that by the above definitions, an arriving job of type j will not be queued (i.e., it enters the
queue but immediately gets service) if there is an empty slot available for it in any of the active
servers (i.e., if there is a server ¢ such that l;][- l%f(t) > 1), as it will be scheduled in one of the
empty slots immediately. Also the change of configuration in a server can only happen when the
server is empty and stalled and that change results in a transition from a stalled period to an active
period. We will refer to these transition times as configuration reset times.

Our scheduling algorithm determines: (1) the time at which a server must go from active to
stalled, (2) the time at which a server must go from stalled to active, and (3) the server configuration
used during the active period when the server goes from stalled to active.

(1) Transition from active to stalled. Suppose server ¢ is in an active period with configuration
k’. The server makes a transition to a stalled period if upon departure of a job from the server
at time ¢,)

F,Q) < BFE (). Q(1). (5)
where k¢(t) is an r-max configuration given the queue size vector Q(t) (based on Definition
2),and 0 < f < 1is a constant which is a parameter of the algorithm. In other words, transition
occurs when the weight of the active server’s configuration k! becomes worse than B fraction
of the weight of the r-max weight configuration k"(t) computed at the time of job departure
t. Note that condition (5) is only checked when a job hosted in server { is completed.

(2) Transition from stalled to active. Suppose a server is in a stalled period. When the server
becomes empty (i.e., its existing jobs finish service), the server makes a transition to an active
period.

(3) Server configuration during an active period. Suppose server ¢ enters an active period at
time t(4). The configuration of server ¢ for the entire duration of its active period, k', is fixed
and set to k(¢ (t(a)), an r-max weight configuration based on the queues at time #(4). Note that
in Definition 2, the zero configuration k=0 ; is not selected, even when all the queues are
empty.

Algorithm 1 gives a description of our algorithm.

REMARK 1 (choice of r and 5): The parameter r provides a flexibility in solving the optimization
(4) depending on the server and job profiles. In general, it might be difficult to find the max weight
configuration for » = 1 in (4) (this is the so-called Knapsack problem [18]), but there are greedy
algorithms that can guarantee that the configuration will be r-max weight for some r < 1 (see
Section 6.1).

The parameter f that appears in condition (5) controls how often servers transit to stall period
and as we will prove later controls what fraction of the maximum throughput (capacity) region
is achievable. Higher makes a server stall more often, which increases the overall delay of jobs
waiting to get service, however it can achieve higher throughput. Therefore § can be tuned to
provide a tradeoff between throughput and average delay.

REMARK 2 (configuration reset times): The prior approach [22] is based on finding the max weight
configuration (corresponding to r = 1 in (4)), and changing the configuration of a server at the
so-called refresh times when the servers become empty. However their proof of stability requires
resetting the server configuration at ‘global’ refresh times when all the servers become empty at
the same time. Such times could be extremely rare when the system size is large. Resetting the
server configurations at their local refresh times (i.e., when each server itself is empty) cannot
guarantee stability, in fact we can give examples that show that it becomes unstable (see Example 1

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

On Non-Preemptive VM Scheduling in the Cloud 35:7

Algorithm 1 Basic Non-preemptive Scheduling

When a job of type j arrives at time t:

1: Add the job to the queue j
2: if exists empty slots for type-j jobs then
3. Schedule the job in the first empty slot.
4: end if
When a job of type j in server € is completed at time t:

1: if £ is active with configuration k! then
if condition (5) holds then
Switch ¢ to stalled.
else
Schedule a type-j job in server ¢ from queue j. If queue j is empty, register an empty slot
of type j in server .
6 endif
7. end if
8
9

. if € is empty and stalled then
Switch € to active.
10: Find an r-max weight configuration k("¢
11: Set the configuration of server ¢ during its active period to be fixed and equal to k¢,
122 forje J do
13: Schedule kj(’)[jobs of type j in server £. If there are not enough jobs in queue j, register
an empty slot for each unused slot.
14: end for
15: end if

in Section 7.1). Algorithm 1 does not require synchronization among the reset times of servers and
every server can reset its configuration locally based on its local state information. Intuitively our
method works because each server actively estimates the right moment in time that it needs to
reset its configuration, and stops scheduling to allow the configuration to reset, something that
doesn’t happen in the other methods.

The following theorem states the main result about the performance of the algorithm.

THEOREM 3.1. Consider Algorithm 1 with parameterr € (0,1] and 0 < f < r. Then the algorithm
can support any workload vector p in the interior of C, 5 (r-fraction of the capacity region C).

4 PROOF OF MAIN RESULT

The proof of Theorem 3.1 is based on Lyapunov analysis. The idea is to show that for large enough
queue sizes, the servers will be in active periods most of the time and their negative contribution
to the drift of Lyapunov function will outweigh the positive contribution of stalled periods. The
challenge is that servers, under Algorithm 1, make their (active, stalled) decisions locally without
coordination. Despite this, we are still able to show that all the servers will be active simultaneously
for sufficiently large fraction of time. The proof follows 3 main steps as follows.

4.1 System state

The system state at any time is given by
S(t) = (Q(). k(). k(t).1(t)) . (©)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

35:8 Konstantinos Psychas, and Javad Ghaderi

where Q(t) is the vector of queue sizes (i.e., jobs waiting to get service), k(t) denotes the existing
jobs in the servers, lN((t) is the system configuration, and I(t) indicates which server is active or
stalled, i.e., I;(t) = 1 if server ¢ is in active period, and is zero if it is stalled. Under Algorithm 1, the
process S(t) evolves as a continuous-time and irreducible Markov chain. Note that when I(t) = 1,
if l%f(t) < l;f(t) for some type j in server ¢ (i.e., there is at least one empty slot for type-j VMs), that
necessarily implies that Q;(t) = 0. For notational compactness, throughout the proofs, we use g,
to denote the conditional expectation, given state S(t).

4.2 Duration of overlapping active periods among servers

We show that as queues get large, the accumulated duration of overlapping active periods (i.e,
durations when all servers are active simultaneously) will become longer while the accumulated
duration of stalled periods remains bounded, with high probability. To show this, we analyze the
active/stalled periods over an interval of length NT, where T = max; 1/p; and N is a large constant
to be determined.

The following Lemma is essential to our proof.

LEMMA 4.1. Suppose server £ becomes active at time t(g). There exists a constant C > 0 such that
the server will remain active during the interval [t(),t) if

IAC@. 0], + [Pt 0|, < Q)
where A(t(q),t) and D(t(q), t) are respectively the vector of number arrivals and departure during [t(q),).

bl

Proor. In this proof, we use the inner-product notation to represent the function f defined in
(3),i.e f(k,Q(t)) = (k’,Q(t)), to make the vector interpretation easier.
At time ;) when server becomes active, its configuration is set to Rf(t(a)) which by Definition 2
satisfies N
K’ (t() — 1k, Q(t()) = 0; VK € K°. (7)
For the server to become stalled for the first time at job departure time #(5) > f(4), the condition (5)
should hold for the first time at departure time #(). This implies that at time),

Ik’ € K (K (ta) - B, Q(t)) < O, (®)
which is clearly satisfied by at least the choice of k¢ = k() (r-max weight configuration at

time #(;)). Hence, as a sufficient condition, the server will certainly never get stalled (it remains
active) during [t(a), t(s)) if at any time ¢ € [t(g), k(s))

VK € Ko (K (1) — pKE,Q(t)) > 0. (9)

Figure 1 gives a visualization of the boundaries of the Inequalities (7) and (8), in two dimensions.

One can see that if f = r the boundaries will be identical, while as becomes less than r, and

approaches 0, the gap between the boundaries becomes wider, and server ¢ stalls less frequently.

Given a fixed k¢, the boundaries are hyperplanes with respect to variable Q and the angle between
them, as highlighted in Figure 1, is

(k’(ta) — rk’ k" (tq) — k) 0
= = > 0.
i = e[i = |
This implies that the server will certainly remain active during [f4),t) as long as the change in the
queue size vector Q(t(q)), due to arrivals and departures during [f),t), does not move it from the

green region to the red region, a distance of length L as highlighted in Figure 1. Since distance L is
at least sin(6y.¢) HQ(t(a))) the server is guaranteed to remain active, if the change in the norm of the

(10)

Oy = arccos

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

On Non-Preemptive VM Scheduling in the Cloud 35:9

@2 (K!(t) - BK', Q) <0 t .
o to+
S t) "(-:;i
Q) | active stalled(<MT) | active(>NT) stalled
a :
ty=to te) :
stalled(<MT) | active(>NT) stalled
, ts) Lty
(ly(t(a)) —k, Q) >0 active stalled(<|V!T)L active(>NT) stalled
Lty
Q1 active(>NT) | stalled

Fig. 1. lllustration of proof of Lemma 4.1 for ~ Fig. 2. A subset of event Eg;,) y1, - Any server stalls for ‘at
2 dimensions. When server becomes active, most’” MT amount of time and is active for ‘at least” NT
queue size vector Q(,)) is in the green re- amount of time afterwards. All possible cases are illustrated
gion. Server will stall if the queue size vector above. f(5) (> o) is the entrance time to a stalled period, and
reaches the red region for a configuration k. t(a) is the entrance time to the subsequent active period).

queue size vector is less than this quantity. This should be true for every possible choice of k¢, i.e.,
Q@) - Q)| < sin (mmkl%@) eke) Q)

lA-DIl < Ca

‘, or equivalently

Qt(a)) } , (11)

where C, = sin (minkfem’kf#ﬁg(t<a)) sz) . Note that C, is a strictly positive constant, because r >

B> 0and k¢ i l~(€(t(a)) (#f means not parallel). The case ' lN({')(t(a)) never happens. To arrive at a
contradiction, suppose k¢ || R[(t(a)), which implies Rf(t(a)) = Crk! for some constant Cr. On the
other hand by (7), (k’(t()), Q(t(a))) > r{(k’,Q(t(s))). Therefore it holds that Cx > r > f and

(K (t12), Q(t)) = Cr(kE, Q1)) = AL, Q1))

which implies (lzg(t(a)) — Bk, Q(t)) = 0, so inequality (8) is never true and configuration can never
change to k¢.
Note that [|[A —DJ|| < ||A]| + ||D]] £ \/7(||A||‘><J + ||D||s)- Thus a stricter condition than (11) that

ensures the server remains active during [t(4),t) is the one given by the statement of Lemma by
Cq

*

choosing C =
O

Next, we bound the duration of time that servers are active simultaneously during an interval
[to.to + NT]. Define Eg;,) pm,n as the event that in this time interval, every server will be stalled at
most once and for at most MT time duration, for some positive constant M, given the initial state
S(tp). Note that this will imply that the total accumulative amount of time that at least one server

is stalled in the time interval is less than LMT. We show that Eg;,) 1, n is almost certain for large
enough values of M and ||Q(y)]]-

PROPOSITION 4.2. Given anye € (0,1), there are constants Cy and C, such that P(Es() m,N) > 1—€,
if
N
M > —log (€) + C1; [|Q(t)l| > ?C2~ (12)

Proor. A sketch of the proof is as follows:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

35:10 Konstantinos Psychas, and Javad Ghaderi

(1) The number of jobs in any server is bounded and their expected time of service is also
bounded, so once a server enters a stalled period, it will almost certainly enter an active
period again in finite time.

(2) Using Lemma 4.1, we can argue that the minimum expected length of an active period is
proportional to the length of queue size vector at the beginning of the active period.

(3) To bound the probability of event Eg;,) a1, it suffices to consider its following subevent: if a
server becomes stalled at a time in the interval [ty,f) + NT], it becomes empty within MT
amount of time, and once the server becomes active, it remains active for at least NT amount
of time. This event is a subset of Eg,) a1, as illustrated in Figure 2, which considers all
possible transition times between active and stalled periods in the time interval [¢y,f) + NT].

The rest of the proof follows from basic probability calculations. The detailed proof can be found
in Appendix A.1. O

4.3 Lyapunov analysis

To prove the stability of the algorithm, we will use the following Lyapunov function
Q;(t)°
Vit)=) ——. (13)
2 2
Define the infinitesimal generator [28] of the Lyapunov fucntion V(¢) as
B [V(E+u)] - V()
lim

AV (1) := (14)
u—0 u
Then we show the following lemma.
LEMMA 4.3. At any time't,
AV(t) < Y 10;(1p; = D I ()] + By, (15)
J 4

for a positive constant By. Recall that I¢(t) is the indicator function defined in the system state (6).
Proor. See Appendix A.2 for the proof.]

In Algorithm 1, transition from active to stalled could happen only at the departure times of the
jobs hosted in the server. Nevertheless, the weight of the server configuration at any time in the
active period, is still ‘roughly’ at least fr fraction of the max weight configuration. The following
lemma formalizes this statement.

LEMMA 4.4. Suppose server { is active and has configuration k! for the duration of its active period.
Let Ep, ¢ be the event that f(ﬁ[,Q(t)) > prf(k’,Q(t)) — By, for anyk’ € K¢ and at any time t in the
active period. Then given any € € (0,1), there exist constants Cs,Cq > 0 such that P(Ep, ¢) > 1 — € if
Bl > —C3 10g€ + C4.

ProoF. See Appendix A.3 for the proof. o

Equipped with the Lemmas and Propositions above, we analyze the drift of the Lyapunov function
in the following proposition.

PROPOSITION 4.5. Consider the Lyapunov function V(t) defined in (13). Given the workload p inside
the r fraction of the capacity region C, tr =ty + NT, and any § > 0,

Es(s,) [V(tf) - V(to)] <=5

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

On Non-Preemptive VM Scheduling in the Cloud 35:11
if
N > MC5’ ”Q(t())“ > C6(M’N’5)’ (16)

where Cs is a constant and Cy is a function of M, N, §.

ProoF. Let the initial system state be S(t;) with initial queue size vector qo and ¢ = t; + NT.
Then by application of Dynkin’s Theorem [28], applied to Lemma 4.3,

Es(,) [V(tf) - V(to)] = Es(y,) [f 7f AV(t)dt] <

Bs(r) ftf. (Z Qjt)ps = Y 1) D Qi (t)) + Bydt| .
= \"j ¢ J

Given a workload p inside the rf fraction of the capacity region, there exists an € such that
p <1 -erpY,x" forx’ in conv(K). We denote by E(4)(t) the event that all servers are active at
time ¢, by E()(t) the events that at least one is stalled and by k*C(t) = (k*f,- .- ,k*g) a max weight
configuration at time ¢, i.e f(k*¢(¢),Q(t)) = f(k,Q(t)), Yk’ € K. Note that by definition, k*¢(t) is
an r-max weight configuration for r = 1. Recall the definition of event Ep, , in Lemma 4.4. With a
minor abuse of notation, we use E(;g, ¢ to denote Ep, ¢ in the i-th active period during the interval
(to,tf), 1 =1,2,---. Then we can bound the second term of the expectation above as

| th(t)ZQj(t)i%f(odt] > By | [1) Y] Y 00k 0dr|
t=ty ~p j t=ty t j

tr .
P (Es(ey) 1. Esry) f LE@®) D D OOk (B)dt|Esiiann | =
1

(17)

IEs4)

t=ty

(1 - e)Es(y)

r
f 1(Ea)(1)) E P(Eq)B,,¢|Es(to),m,N)P(E2)B,, ¢ | Es(ty), M, N E(1)B,,) (18)
t=t, 7

(—31 + Z Qj(t)rﬁk*f(t)) dt|Es@pan | =9
J

tf
(1- &)Esq,) f (1 - 26)(1 = 36)1(Eq)(1)) (—LBl + D 0iOrpxf dt|Esinn | -
t=to 75

In the above, Inequality (a) holds because we ignore the sum of positive terms when some of the
servers are in active period. Inequality (b) follows from conditioning on the event Eg;,) y,n. In
Inequality (c), we have used the fact that IP(Es(;) a,n) > 1 — € under Lemma 4.2, and also the
result of Lemma 4.4 with k¢ replaced by the max weight configuration k*‘(t) at time t. Notice
that conditioned on the occurrence of event Es) ar,n, every server could be at most in two active
periods in the interval [t,% + NT], hence we only need to consider events E(;)p, » and Eg)g, ¢.
Finally Inequality (d) uses that P(Eq)g, ¢|Es(,),a,n) > (1 — 2€), which can be inferred from the
law of total probability and the fact that IP(Ep, ¢) > 1 — € (Lemma 4.4) and IP(Eg(s) m,n) > 1 — €
(Proposition 4.2). Similarly, IP(E),,¢|Ess,),m,N> E(1)B,,¢) > 1 — 3€. Thus using (17) and (18), the drift

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

35:12 Konstantinos Psychas, and Javad Ghaderi

can be bounded as follows
Esz) [V(to) - V(tf)] <

[f
Es(z,) f L(E o)1) Z Qj(1) (Pj —(1-e€)1—2e)(1-3e)rp Z Xf) dtIES(tg),M,N]
t=t, 3 7
ty
+ Eszy) ft:to T(E(1)) Z Qj(t)pjdt|Es)mN | + (LBy + By)NT < 19)

(N - LM)TES(tO)

Jmax 2,00 (pj (L=)1 - 26)(1 = 3e)rf) xf>]
T 3

+ LMTEg(,) | max ZQj(t)pj + (LB, + By)NT,

to<t<tp £
J

where in the the first inequality, we have used the fact that events E(4)(t) and E(,)(t) are comple-
mentary. As a result we break the integral into two depending on whether any of the servers is
stalled. In the case that E()(t) = 1, we ignore the departure rates completely. The last inequality
is immediate by noting that by Lemma 4.2, the accumulative time duration that E(t) = 1 is not
greater than MLT.

Letvj = pj — (1 —€)(1 - 2€)(1 - 3€)B X¢ xf, and vector v = (v, - - -,vj). Note that v has negative
entries for € small enough (since p was inside the capacity region), and p has positive entries, thus
the RHS (Right-Hand-Side) of (19) is bounded as follows

RHS (19) < (N — LM)T Z(Qj(to) - LKmaprj)vj) + LMT (Z(Qj(to) N NTAj)pj) +(LBy + By)NT.
7 7

Therefore the Lyapunov drift is bounded as
s [V(t0) = V(tr)] < > C(M,N)Q;(to) + Cy(M, N), (20)
J

where
Ci(M,N) = (N — LM)Tv; + LMTp;
Cy(M,N) = (N = LM)NT?LK Z p10; + LMNT? Z A;p; + (LBy + B,)NT. (21)
7 7

Since term Cy(M, N) is independent of queue sizes, by having C;(M, N) < 0 for all job types j, the
drift will be always negative for large enough queues. We can ensure all Cj(M,N) < 0 by choosing

N > LM max (—1—&). (22)
jeg Uj
Finally given any § > 0, we can ensure the Lyapunov drift (20) is less than -6, if
rnjian(M,N)Qj(to) < =6 — C4(M,N), (23)
which implies, max; Q;(ty) > %, or equivalently ||qo|| >]%
The proposition follows by choosing Cs = L max;c g (— - Z—j) and C¢(M, N,) = ﬁ%
O

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

On Non-Preemptive VM Scheduling in the Cloud 35:13

Therefore it follows that the Markov chain is positive recurrent by the continuous-time version
of Foster-Lyapunov theorem and further the stability in the mean sense (1) follows [26]. This
concludes the proof of Theorem 3.1.

5 GENERALIZING ARRIVAL AND SERVICE PROCESSES

In Section 2, we assumed Poisson arrivals and exponential service times. In this section, we show
that our results in fact hold under much more general processes.

5.1 Generalizing service time distribution

The assumption that service times follow exponential distribution is not always realistic. Empiri-
cal studies in many applications suggest that service times have heavy-tailed distributions [2, 30].
It is known that we can approximate a heavy-tailed distribution, such as Pareto or Weibull, by
using a hyper-exponential distribution, with high accuracy [9]. We show that Theorem 3.1 still
holds under hyper-exponential service time distributions. The probability density function of
hyper-exponential distribution is defined by f(x) = >\, pipti exp (—pix), x > 0, with 7, p; = 1.
This can be thought of as drawing a value from n possibly different exponential distributions and
choosing one of them with probability p;, i € [1,---,n]. The mean of the hyper-exponential is
2 pi ,ul._l, while its variance is

n 2 n n
(§:pm{) +§:§:ijﬁﬁl—ﬂf)é

i-1 i=1 j=1
By choosing proper values of p; and yi;, we can generate distributions that have the same mean as
an exponential distribution with mean p~?, but with variances much larger than =2 (variance of
exponential distribution with mean p~?).

Alternatively, we can view this as follows. Whenever a job is scheduled for service, it is assigned to
class i with probability p;, i € {1,---,n}. A job of type j that is in class ¢ will follow an exponentially
distributed service time with mean 4. By definition Y[, pip;, = pi;' (where p;" is the mean
service time for type-j jobs as in the exponential case before). We then modify the definition
of system state (6) to include the class of jobs in service. Specifically, let O;(t) be the set of all
jobs of type j being served at time ¢ in all the servers, O; ¢(¢) be those being served by server ¢,
and c(i) € {1,---,n} denote the class of job i € O;(t). We modify the Lyapunov function (13) by
considering that a scheduled job of type j that is assigned to class ¢ will add a term w;j . to the
queue size Q;. The modified Lyapunov function is as follows

2
V(t) = Z (Qj(t) + 2icoy(t) wj,c(i)) .

(24)
5 201
Next we state the equivalent of Lemma 4.3 for the modified Lyapunov function.
LEMMA 5.1. By choosing
wie = L1, (25)
Hj.c
the following bound holds at any time t:
~ Ch
YVOEWIG) (pj = DLk @) + > (1 - w»;)] + By, (26)
Jj 3 ¢ J

where Cy, and By, are some constants.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

35:14 Konstantinos Psychas, and Javad Ghaderi

Proor. See Appendix A.4 for the proof.]

Using Lemma 5.1, and redefining A,,,4x, fimax and T to include all types of jobs and all classes
that a job can take, the proof of Theorem 3.1 can be extended to the hyper-exponential distribution.
We omit repeating the same arguments and mention the result as the following corollary.

COROLLARY 5.2. Theorem 3.1 still holds if the service time distribution of jobs of type j follows a
hyper-exponential distribution with mean ,uj_l,j €edJ.

Proor. See Appendix A.5 for the proof.]

5.2 Batch arrivals

The Poisson assumption on the arrivals does not allow batch arrivals at arrival events (only one
job is added at any time). In practice, however, a user may request multiple VMs simultaneously, or
a Map job in a data-parallel cluster brings a set of tasks. To adapt our model to such batch arrivals,
we can consider a process where the requests arrive at rate A and each arrival brings a vector of
VMs v = (vy,---,vy) (i.e., v; VMs of type 1, - - -, v; VMs of type J) with probability py, such that
v € V, for some bounded set V C]Ng and }ycq py = 1. Theorem 3.1 can be extended to this
setting. We state the extension as the following corollary.

COROLLARY 5.3. Suppose requests arrive as a Poisson process with rate A, and each request brings a
vector v = (vy,- - -,vy) € V with probability py. Define the workload of jobs of type j as
_ A2vev Uity i
g
Under this new definition, Theorem 3.1 still holds.

eJ. (27)

Pj

Proor. See Appendix A.6 for the proof.]

Finally, it is also easy to verify that the arguments in Sections 5.1 and 5.2 can be combined, to
establish Theorem 3.1 under both batch arrivals and hyper-exponential service distributions.

6 IMPLEMENTATION COMPLEXITY AND CUSTOMIZATIONS

Algorithm 1 described the basic non-permeative scheduling algorithm. In this section, we propose a
few ways to customize the basic algorithm that might be more useful depending on the settings. For
each suggestion, we briefly explain the advantages and discuss the implications in computational
cost, as well as any possible modifications in the proof of the main theorem.

6.1 Computing r-max weight configuration

Algorithm 1 assumes that there is a subroutine to compute an r-max weight configuration when a
job departs. In the case of r = 1, the problem of finding the max weight configurations is a hard
combinatorial problem since it is an instance of Knapsack problem [10]; nevertheless there are
approaches to solve this problem in pseudo-polynomial time, or provide r-approximations (r < 1)
in polynomial time [19, 37]. Any r-approximation algorithm can be used in Algorithm 1 in a black
box fashion. Below, we briefly overview a few algorithms. The options discussed are not exhaustive
and are only suggestive.

1. Finding max weight configuration (r = 1)

There are two approaches that are practically useful in this case:

(i) Each server can simply compute the set of its maximal configurations initially, i.e configura-
tions in which no other extra job can fit. This set has the same convex hull as K¢ introduced

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

On Non-Preemptive VM Scheduling in the Cloud 35:15

in Section 2 but it has significantly smaller number of elements. Every time, the max weight
configuration is needed, server can search only over the maximal configurations.

(ii) If the size of the server is large compared to the job sizes, a dynamic programming approach
is better. Assuming the maximum values of the R resource types of a server are U;, Uy, - - -, U,
the complexity of the algorithm is O(J X U; X - - - Ug) which is pseudopolynomial, but is
still tractable assuming the number of resource types is usually small (CPU, memory, disc,
etc). The dynamic programming approach requires to keep track of G[u] which is defined
as the weight of the max weight configuration that uses up to u = (uy,- - -,ug) resources
(0 < u < U). Suppose w; = (wj1,- - - wjR) is the resource requirement of job j € J, then the
dynamic programming recursion is as follows

Glu] = max{Glu —w;] + Q;()},

with all values of G being initially 0.

2. Finding r-max weight configuration (r < 1)
There are several approximate algorithms to solve Knapsack, e.g., see [19, 37]. Below, we describe a
simple greedy method.

LEMMA 6.1. Consider a server € with R resource types. Suppose for every job type j € J we can fit
at least Ny > 1 jobs of that type in the server. If we only consider configurations that use one type of
Jjob and return the one that gives the maximum weight, then the returned configuration will be r-max

N,
weight configuration withr = R(N—ff_ﬂ).
Proor. See Appendix A.7 for the proof. |
Let w; = (wj1,wj2,- - -, wjr) be the vector of resource requirements of job type j, normalized

with the the server capacity. Then, the simple greedy algorithm in Lemma 6.1 orders the job types
according to their relative value, Q;(t)/(max, wj,), and fills the server with the job that has the
maximum relative value. We can improve this greedy algorithm by iteratively scanning the job
types with lower relative value and fitting the residual capacity of the server with these jobs, this
should improve the performance in practice, however it does not change the theoretical result in
Lemma 6.1 (which is a worst-case guarantee).

We notice thatif R > 2 and Ny = 1, the worst-case fraction of the capacity region that Algorithm 1
provides, by using this greedy method as a subroutine, is small (at most r? fraction of the capacity
region, due to requirement f < r in Theorem 3.1). However, we can improve Theorem 3.1, as the
the requirement f§ < r can be relaxed to f < 1 in some cases, and Algorithm 1 can still achieve rf
fraction of the capacity region, as stated in Corollary 6.2 below.

COROLLARY 6.2. Consider a subset of configurations K¢ c K and a subroutine that finds a max
weight configuration out of this subset, i.e.

K*‘(t) = arg max f(k’,Q(t)).
kleKt

Then Algorithm 1 that uses this subroutine to find an r-max weight configuration and has parameter
B, can support any workload vector p in the interior of Cs which is the B fraction of set

C={xeR/ :x= Z x/, xl e Conv(’kf),f e L} (28)
tel
foro < g <1.

Proor. The proof exactly follows the proof of Theorem 3.1, the only difference is that now the
capacity region is defined by a subset of all feasible configurations as in (28). O

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

35:16 Konstantinos Psychas, and Javad Ghaderi

The implication of Corollary 6.2 is that if C > C, then C s O Crp and the algorithm can support
any workload vector p in the interior of C,g with < 1. This is indeed the case for the greedy
algorithm of Lemma 6.1 as it uses a subset of all the configurations (i.e., those with only one type

of jobs).

6.2 Customization of j

As explained, f controls the trade off between throughput and delay. Higher makes a server stall
more often, which increases the overall delay of jobs waiting to get service, however it can achieve
a higher long-run throughput. We notice that f doesn’t have to be constant, but can adapt to the
queue size. Small queues can be a surrogate for low workload while large queues can indicate a
high workload, thus by having f automatically adapt to the queue sizes, we can avoid unnecessary
stalling and achieve the best throughput-delay tradeoff. In this section, we consider § as a function
of Q, as long as it converges to a desired value f, when ||Q|| goes to infinity. The following lemma
states the main result.

COROLLARY 6.3. Suppose f = h(||Q||,) is an increasing function of ||Q||; = X.; Q; which satisfies
the following: h(0) = Pmin and lim”Q”l_N><J h(||Qll,) = B with B < r. Then Algorithm 1 with this

queue-dependent 8 can achieve r3 fraction of the maximal throughput region C.
Proor. See Appendix A.8 for the proof.]

As an example, a function that satisfies the requirements is

h(Q) = f(p + (1 - p)tanh(z - > Q))), (29)
J

where

e fis the maximum value of the function and corresponds to the fraction of capacity region that is
achievable.

e z is the slope of sigmoid function at 0 when p = 0 which controls how fast the function converges
to the maximum value.

o p € (—00,1] is a constant that indicated how much constant value is weighted compared to
sigmoid function. p = 1 makes function constant and equal to j3.

In simulations, we choose p to be slightly less than 0, and z generally less th§n 0.01, to avoid
frequent configuration changes when the queue sizes are small. The value of § depends on the
long-run throughput (fraction of the capacity region) that we want to achieve.

6.3 Reducing stalled period duration

One way to reduce the stalled period duration further is to have a stalled server transition to an active
period, whenever the remaining jobs in the server are a subset of the r-max weight configuration
at that time (in addition to transition at empty stalled times as before). Then, the server can become
active faster and renew its configuration according to the r-max weight configuration without any
Jjob preemptions. The drawback is that more computation is needed, but this is not a significant
overhead given that servers will be most of the time active.

6.4 Reducing configuration changes

An important problem with the proposed algorithm is that configuration changes may happen very
often and, approximately at the same time across the servers, even with the suggested modification
based on the queue-dependent 5 (Section 6.2). The reason is that servers with the same configuration
will observe a similar queue vector, if any of their jobs finish around the same time. This will make

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

On Non-Preemptive VM Scheduling in the Cloud 35:17

the condition (5) either true or false for all of these servers and will make most of them stalled
before any of them becomes active again. This behavior will continue if there is no mechanism
to stop it. To avoid this issue we can simply use the information of what fraction of servers is
stalled to decide whether to stall a server or not. The modification that we suggest is to change
the queue-dependent f to be h(Q(t)) - q(s(t)), where s(t) € [0,1] is the fraction of servers which are
stalled at time ¢ and q is a decreasing function with g(0) = 1. To avoid having many servers getting
stalled at the same time we need the function g to be very close to 0 as s approaches 1. For example,
it could be of the form g(x) = 1(x < p) to impose a hard limit of at most p on the fraction of servers
that can be stalled at any time.

The proof arguments of Theorem 3.1 can be extended to this case. The constant By of Lemma 4.4
can be modified to include the change in the queue sizes when other servers are stalled. For this,
one needs the estimate of M in Proposition 4.2. Another observation that simplifies the analysis is
that our original proof treats all the servers as stalled anyway when at least one of them is stalled
so most of the arguments of the original proof remains the same. We omit the detailed proof for
brevity.

7 SIMULATION RESULTS

In this section, we verify our theoretical results and also compare the performance of our algorithm
with two other algorithms, the randomized sampling algorithm [11] and the MaxWeight at local
refresh times [22], which will refer to them as G16 and M14 respectively (these algorithms were
described in Section 1.1). We provide three sets of simulations using synthetic and real traffic traces:
(i) synthetic examples that our algorithm can handle effectively, while other algorithms fail, (ii)
performance evaluation of algorithms with respect to the scaling of the number of servers and
scaling of traffic intensity, under both Poisson process and Log-normal inter-arrival times for the
arrival process, and (iii) performance evaluation of algorithms using a real traffic trace from a large
Google cluster.

Unless otherwise stated, our algorithm will have the following settings: r = 1, f = h(Q(t))q(s(2)),
for the h function defined in (29) with p = —0.05, z = 0.005, # = 0.9, g(s) = (1 — s)1(s < 0.1) where s
is the fraction of the stalled servers at any time, as in Section 6.4. Also the suggestion of Section 6.3
is enabled.

Unless otherwise stated, the jobs arrive as a Poisson process and service times are exponentially
distributed as described in Section 2, with the service times being independent from job type and
server. In case distributions of arrivals and service times are different, we extend the definitions
of A; and p; from Section 2 to be the mean number of arrivals and the inverse of mean service
time respectively, for each job type j. For each experiment we will also specify the traffic intensity
¢ € (0,1) of the workload. This parameter controls how close the workload is to boundary of
capacity region C. A workload p that has traffic intensity { will therefore be on the boundary of
the {-fraction of the capacity region C.

7.1 Inefficiency of other algorithms

In this section we show handpicked examples where the other algorithms are either unstable
or practically unusable, yet our algorithm performs very well. For simplicity, we consider one
dimensional case where there is one type of resource.

Example 1 (Instability of M14: MaxWeight based on local refresh times). Consider one
server with capacity 6 units and two job types, type-1 jobs require 4 units and type-2 jobs require
1 units. Service rates are the same for both jobs and arrival rate of the small job type is 8 times
higher than the large job type. The traffic intensity is chosen to be 0.89 so the workload vector
is 0.89 X (0.5,4), which is clearly supportable because it is less than the average of two maximal

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

35:18 Konstantinos Psychas, and Javad Ghaderi

o —— Algorithm 1 @ 2000 1 : gllggrithm 1
N — -
‘% 1500+ M14 1500 |
v o
B 2
3 10007 5 1000 A
. o
g 5001 £ 500
= [

01 ‘ : : : : 01

0 5000 10000 15000 20000 25000 0 50000 100000 150000 200000

time (s) time (s)

Fig. 3. M14 fails in Example 1 while Algorithm 1 Fig. 4. G16 performs poorly in Example 2 although it the-
still stabilizes the queues. oretically converges. Algorithm 1 performs much better.

configurations (1,2) and (0, 6). When the server starts scheduling according to configuration (1,2),
the arrival rate of small jobs will be higher than their service rate. That will result in the queue
of small jobs to grow to infinity and configuration never resets with a non-zero probability. This
will inevitably happen, since this probability exists every time the server schedules according
to configuration (1,2). Figure 3 depicts the total queue size (sum of the queue sizes) under our
algorithm and M14. As it is seen, the queue sizes under M14 [22] go to infinity while Algorithm 1
keeps the queues stable. The sawtooth behavior under our algorithm in Figure 3 indicates the
configuration reset times.

Example 2 (Large queue size under G16: Randomized sampling). In the second example
we show that although G16 [11] guarantees stability it is possible that could yield very large queue
sizes. Consider a relatively simple server setting as follows. There are 4 different types of servers
with 1, 2, 4, 8 resource units and 4 types of jobs with resource requirements 1, 2, 4, 8 (thus each one
can completely fill one of the servers). Arrival and service rates are the same for all jobs and traffic
load is 0.89. Figure 4 depicts the total queue size under the aggorithms. Intuitively one can see that
this example is hard for G16, since it can discover the best assignment to servers after 4 sampling
events (one per queue) with probability 1/4* = 1/256. If there is a mistaken assignment, it is likely
that it will lead to longer waiting times for larger jobs that cannot fit in small servers.

7.2 Scaling experiments

In this section, we use the VM types originally used in [11, 22, 23], as indicated in Table 1. In
experiments, servers are homogeneous with the capacities shown in Table 1. All simulations were
repeated 5 times and the results reported are the average of the 5 runs. For each run, we compute
the time average of the total queue size which we refer to as the mean queue size in the graphs.
All algorithms were simulated for 200000 events except for G16 which was simulated for 400000
events. Events include arrivals and job completions, and in the case of G16, they also include the
sampling events of the queues. In all cases we discarded the first 1/4 fraction of the simulation
traces before computing the mean queue size of a run.

We perform all the simulations under two choices of inter-arrival time distributions: Exponential
(Poisson process) and Log-normal. The latter was used as empirical studies have shown that it is a
good model for the incoming traffic in datacenters [7].

Scaling the number of servers. We increase the number of servers to examine how well the
algorithms scale. The number of servers ranges from 20 to 200. The arrival rates were proportional
to [2/3,11/3,2/3] and scaled by the number of servers. Service time distributions have the same
mean for all job types and are scaled such that the traffic intensity is 0.89.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

On Non-Preemptive VM Scheduling in the Cloud 35:19

Table 1. VM types and server types

Memory | CPU Storage

Standard Instance 15 GB 8EC2 | 1,690 GB
High-Memory Instance | 17.1 GB | 6.5EC2 | 420 GB
High-CPU Instance 7GB 20 EC2 | 1,690 GB

| Server 90 GB | 90 EC2 | 5000 GB

Log-normal Process Log-normal Process

(] (V]

N N

» —¥~ Algorithm1 w 4004 ¥ Algorithm1

210001 —— G16 g —— G16

g —4— M14 g —— M14

o o

T 500 T 2001

o]

2 2

= =

3] o g ol

s 05 ‘ : : : : ‘ s 0% ‘ : ‘ ‘ ‘ ‘

50 75 100 125 150 175 200 0.800 0.825 0.850 0.875 0.900 0.925 0.950

servers Traffic intensity

o Poisson Process o Poisson Process

N N

« —¥~ Algorithm1 « —¥~ Algorithm1

¢ 10001 —— G16 210001 —+ G16

‘é’_ —4— M14 ‘é’_ —— M14

£ 5001 T 5001

] 2

5 5

g o x g o

50 75 100 125 150 175 200 0.800 0.825 0.850 0.875 0.900 0.925 0.950

servers Traffic intensity

Fig. 5. Algorithm 1 is about as good as M14 and Fig. 6. Algorithm 1 has the most consistent perfor-
much better than G16 when it comes to scaling clus- mance. M14 deteriorates at higher traffic and G16
ter to more servers. deteriorates at lower traffic.

Figure 5 shows the results of this experiment. The behavior of Algorithm 1 and M14 is similar
and they both perform better as the number of servers increases, unlike G16. As we can also see,
the results are robust to the arrival process (Poisson vs Log-normal).

Scaling the traffic intensity. In the next experiment, we use the same server settings as before
but now fix the number of servers to 20 and change the traffic intensity from 0.8 to 0.95. To be
consistent with our theoretical results, we choose f = 0.98 in our algorithm so that it is higher than
all the traffic intensities tested. Arrival rates and departure rates are the same as before.

The results of this experiment are depicted in Figure 6. We notice that our algorithm performs
very well in the whole range of workloads. The performance is also robust to the arrival process
(Poisson vs Log-normal). We can also see that M14 seems to become unstable in high traffic loads
while G16 and Algorithm 1 are still stable.

7.3 Experiment with Google trace dataset

In this experiment, we use a real traffic trace from a large Google cluster, to compare the
performance in a more realistic setting. From the original dataset [39], we extracted the arrival
times of tasks and their service times by taking the difference of the deployment time and the
completion time. The trace characteristics are as follows:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

35:20 Konstantinos Psychas, and Javad Ghaderi

led 20000 1
9] —>%— Algorithm 1

2.59 E —*— G16
2 g 15000 —— M14
= 2.0]
© [S2
G 1.5 = 10000 4
g °
‘g 1.0 ‘;
Z 45 g 5000 A

0.01 T T T T T

0 20 40 60 80 100 800 900 1000 1100 1200
Index of 20 min window Number of servers

Fig. 7. Number of arrivals over time in the Google

. . . Fig. 8. The performance of different algorithms under
trace, computed over 20-minute time windows.

the Google trace, for different number of servers.

e Trace includes two types of workload. One comes from batch tasks that are scheduled regularly
and are not time critical and another comes from deployed user products that are serviced by
long-running jobs [38]. In our experiments, we extract only tasks that were completed without
any interruptions, with their priority values being ignored.

e Resource requirements involve two resources (CPU and memory) and are collected once a job
is submitted. The resources are not treated as discrete; their range in the original dataset is
normalized to have a minimum of 0 and a maximum of 1 so they cannot be mapped directly into
types. To map the jobs to a tractable number of types, we took the maximum out of the two
resources and rounded it up to the closest integer power of 1/2. All tasks that are mapped to the
same power of two are considered to belong to the same type and will wait in the same queue.
The highest power of 1/2 considered was 7, since lower valued jobs are very few and account for
less than 1% of requests. The total number of queues is consequently 8.

e A total of about 18 million jobs were extracted from trace after the above filtering. The duration
of the whole trace is 29 days and the average job duration is about half an hour. All findings about
the trace are consistent with those reported in [29] although there are some minor differences
because of the assumptions we made and the different way that the trace was processed.

e In actual trace the number of servers changes dynamically with servers being added, removed or
modified. To keep things simpler we assumed that the sizes of all servers are all 1 which is the
maximum possible and their number is fixed throughout a run.

In the following simulations, we work with a window of 1 million arrivals which corresponds to
approximately one and a half day. The traffic intensity for that part of trace is depicted in Figure 7,
in terms of number of arrivals over 20-minute time intervals. The traffic intensity is variable and
we suspect that the arrivals are correlated and do not really follow Poisson.

We evaluate the performance of all the algorithms using the above trace and for different number
of servers that ranges from 800 to 1250. Note that since the trace is fixed and we have no control
over it, the change in the number of servers implicitly controls the traffic intensity. All runs were
repeated 3 times and the reported results which appear in Figure 8 is the average of these runs.
Our algorithm had the default configuration, with z = 0.002 and g(s) = 1 — s if s < 0.015 otherwise
q(s) = 0. As we can see, our algorithm has the best overall performance in the whole range of the
number of servers. The performance of G16 deteriorates as the number of servers scales up, while
the performance of M14 deteriorates as the number of servers scales down, all consistent with our
synthetic simulations.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

On Non-Preemptive VM Scheduling in the Cloud 35:21

8 CONCLUSIONS

In this paper, we introduced a new approach to non-preemptive VM scheduling in the cloud, with
heterogeneous resources, and characterized the fraction of the maximum throughput that it can
achieve. The algorithm can be tuned to provide a natural tradeoff between throughput, delay, and
complexity. The evaluation results, using synthetic and real traffic traces, show that the algorithm
outperforms the other methods, when the number of servers or the traffic intensity scales. In
general, given an approximation algorithm to Knapsack with approximation ratio r, our algorithm
can provide fr fraction of the throughput region for § < r. One natural question is under which
cases it is possible to relax this condition to § < 1 (we saw it is indeed possible in the case of a
greedy approximation algorithm). Other questions are related to how to incorporate preemptions
(through proper preemption cost models), or provide deadline (strict delay) and fairness guarantees,
which we postpone to future research.

REFERENCES

[1] AWS Pipeline 2017. AWS Data Pipeline. (2017). https://aws.amazon.com/datapipeline/.

[2] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic characteristics of data centers in the wild.
In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement. ACM, 267-280.

[3] Thomas Bonald and Davide Cuda. 2012. Rate-Optimal scheduling schemes for asynchronous Input-Queued packet
switches. ACM SIGMETRICS Performance Evaluation Review 40, 3 (2012), 95-97.

[4] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt, and Andrew
Warfield. 2005. Live migration of virtual machines. In Proceedings of the 2nd Conference on Symposium on Networked
Systems Design & Implementation-Volume 2. USENIX Association, 273-286.

[5] Waltenegus Dargie. 2014. Estimation of the cost of VM migration. Proceedings - International Conference on Computer
Communications and Networks, ICCCN (2014). DOI:http://dx.doi.org/10.1109/ICCCN.2014.6911756

[6] EC2 2017. Elastic Compute Cloud (EC2) Cloud Server and Hosting - AWS. (2017). https://aws.amazon.com/ec2/

[7] Deniz Ersoz, Mazin S. Yousif, and Chita R. Das. 2007. Characterizing network traffic in a cluster-based, multi-tier data
center. Proceedings - International Conference on Distributed Computing Systems 1 (2007). DOI: http://dx.doi.org/10.
1109/ICDCS.2007.90

[8] Expedia. 2017. http://www.expedia.com. (2017).

[9] Anja Feldmann and Ward Whitt. 1998. Fitting mixtures of exponentials to long-tail distributions to analyze network
performance models. Performance Evaluation 31, 3-4 (1998), 245-279. DOI: http://dx.doi.org/10.1016/S0166-5316(97)
00003-5

[10] MR Garey and D S Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness (Series of
Books in the Mathematical Sciences). Computers and Intractability (1979), 340. DOI :http://dx.doi.org/10.1137/1024022

[11] Javad Ghaderi. 2016. Randomized algorithms for scheduling VMs in the cloud. In IEEE INFOCOM 2016 - The 35th Annual
IEEE International Conference on Computer Communications. IEEE, 1-9. DOI :http://dx.doi.org/10.1109/INFOCOM.2016.
7524536

[12] Javad Ghaderi, Sanjay Shakkottai, and R Srikant. 2016. Scheduling Storms and Streams in the Cloud. ACM Transactions
on Modeling and Performance Evaluation of Computing Systems 1, 4 (2016), 1-28. DOI : http://dx.doi.org/10.1145/2904080

[13] Javad Ghaderi, Yuan Zhong, and R Srikant. 2014. Asymptotic optimality of BestFit for stochastic bin packing. ACM
SIGMETRICS Performance Evaluation Review 42, 2 (2014), 64—66.

[14] James Glanz. 2012. Power, pollution and the internet. The New York Times 22 (2012).

[15] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and Aditya Akella. 2014. Multi-resource
packing for cluster schedulers. In ACM SIGCOMM Computer Communication Review, Vol. 44. ACM, 455-466.

[16] Joe Wenjie Jiang, Tian Lan, Sangtae Ha, Minghua Chen, and Mung Chiang. 2012. Joint VM placement and routing for
data center traffic engineering. In Proceedings of IEEE INFOCOM. 2876-2880.

[17] Wolfgang John, Kostas Pentikousis, George Agapiou, Eduardo Jacob, Mario Kind, Antonio Manzalini, Fulvio Risso,
Dimitri Staessens, Rebecca Steinert, and Catalin Meirosu. 2013. Research directions in network service chaining. In
Future Networks and Services (SDN4FNS), 2013 IEEE SDN for. IEEE, 1-7.

[18] Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Introduction to NP-Completeness of knapsack problems.
Springer.

[19] Edward Yu-Hsien Lin. 1998. A Bibliographical Survey on Some Well-Known Non-Standard Knapsack Problems. Infor
36, 4 (1998), 274-317.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

35:22 Konstantinos Psychas, and Javad Ghaderi

[20] Minghong Lin, Adam Wierman, Lachlan L H Andrew, and Eno Thereska. 2013. Dynamic right-sizing for power-
proportional data centers. IEEE/ACM Transactions on Networking 21, 5 (2013), 1378-1391. DOI:http://dx.doi.org/10.
1109/TNET.2012.2226216

[21] Siva Theja Maguluri and R Srikant. 2013. Scheduling jobs with unknown duration in clouds. In Proceedings 2013 IEEE
INFOCOM. 1887-1895.

[22] Siva Theja Maguluri and R Srikant. 2014. Scheduling jobs with unknown duration in clouds. IEEE/ACM Transactions
on Networking 22, 6 (2014), 1938-1951.

[23] Siva Theja Maguluri, R. Srikant, and Lei Ying. 2012. Stochastic models of load balancing and scheduling in cloud
computing clusters. Proceedings - IEEE INFOCOM (2012), 702-710. DOI :http://dx.doi.org/10.1109/INFCOM.2012.
6195815

[24] Marco Ajmone Marsan, Andrea Bianco, Paolo Giaccone, Emilio Leonardi, and Fabio Neri. 2002. Packet-mode scheduling
in input-queued cell-based switches. IEEE/ACM Transactions on Networking (TON) 10, 5 (2002), 666-678.

[25] Xiaogiao Meng, Vasileios Pappas, and Li Zhang. 2010. Improving the scalability of data center networks with traffic-
aware virtual machine placement. In 2010 Proceedings of IEEE INFOCOM. 1-9.

[26] Sean P Meyn and Richard L Tweedie. 1993. Stability of markovian processes II: continuous-time processes and sampled
chains. Advances in Applied Probability (1993), 487-517.

[27] Paul Nash. 2015. Introducing Preemptible VMs. https://cloudplatform.googleblog.com/2015/05/Introducing-
Preemptible-VMs-a-new-class-of-compute-available-at-70-off- standard-pricing.html. (2015).

[28] Bernt K. Oksendal. 2003. Stochastic Differential Equations: An Introduction with Applications (Sixth ed.). Springer.

[29] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and Michael a. Kozuch. 2012. Heterogeneity and
dynamicity of clouds at scale : Google Trace Analysis. Proceedings of the Third ACM Symposium on Cloud Computing -
SoCC °12(2012), 1-13. DOI:http://dx.doi.org/10.1145/2391229.2391236

[30] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A Kozuch. 2012. Heterogeneity and

dynamicity of clouds at scale: Google trace analysis. In Proceedings of the Third ACM Symposium on Cloud Computing.

ACM, 7.

Devavrat Shah and Jinwoo Shin. 2012. Randomized scheduling algorithm for queueing networks. The Annals of Applied

Probability 22, 1 (2012), 128-171.

[32] Mark Stillwell, Frédéric Vivien, and Henri Casanova. 2012. Virtual machine resource allocation for service hosting
on heterogeneous distributed platforms. In Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th
International. IEEE, 786-797.

[33] Alexander Stolyar and Yuan Zhong. 2013. Asymptotic optimality of a greedy randomized algorithm in a large-scale
service system with general packing constraints. arXiv preprint arXiv:1306.4991 (2013).

[34] Alexander L Stolyar. 2013. An infinite server system with general packing constraints. Operations Research 61, 5 (2013),
1200-1217.

[35] Alexander L Stolyar and Yuan Zhong. 2013. A large-scale service system with packing constraints: Minimizing the
number of occupied servers. In Proceedings of the ACM SIGMETRICS/international conference on Measurement and
modeling of computer systems. ACM, 41-52.

[36] Leandros Tassiulas and Anthony Ephremides. 1992. Stability properties of constrained queueing systems and scheduling
policies for maximum throughput in multihop radio networks. Automatic Control, IEEE Transactions on 37, 12 (1992),
1936-1948.

[37] Vijay V Vazirani. 2013. Approximation algorithms. Springer Science & Business Media.

[38] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, and John Wilkes. 2015. Large-scale
cluster management at Google with Borg. Proceedings of the Tenth European Conference on Computer Systems - EuroSys
’15 (2015), 1-17. DOI:http://dx.doi.org/10.1145/2741948.2741964

[39] John Wilkes. 2011. Google Cluster Data. https://github.com/google/cluster-data. (2011).

[40] Jing Xu and Jose AB Fortes. 2010. Multi-objective virtual machine placement in virtualized data center environments.
In 2010 IEEE/ACM Int’l Conference on Green Computing and Communications (GreenCom), & Int’l Conference on Cyber,
Physical and Social Computing (CPSCom). 179-188.

[41] Yagiz Onat Yazir, Chris Matthews, Roozbeh Farahbod, Stephen Neville, Adel Guitouni, Sudhakar Ganti, and Yvonne
Coady. 2010. Dynamic resource allocation in computing clouds using distributed multiple criteria decision analysis. In
IEEE Conference on Cloud Computing (CLOUD). 91-98.

[42] Shunyuan Ye, Yanming Shen, and Shivendra Panwar. 2010. An O(1) scheduling algorithm for variable-size packet
switching systems. In Annual Allerton Conference on Communication, Control, and Computing. 1683-1690.

(31

—

Received August 2017; revised October 2017; accepted December 2017.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

On Non-Preemptive VM Scheduling in the Cloud 35:23

A PROOFS
A.1 Proof of Proposition 4.2

Let 7; be the random variable denoting the service times of type-j jobs. In the proof, we use
additionally the following notations: the time when the state of server ¢ changes to active: t(‘;), the
duration that server remains active: At([a), and the respective values when it changes to stalled state:
t(i) and At(‘;).

Let Kjpax < oo denote the maximum number of jobs that can fit in any server, then at any time
there are at most LK 4, jobs in all the servers. A lower bound on the probability IP(Es(;), ar,n) is
then as follows

P (ES(tO),M,N) 2(a) 1—[l_[P (Tj < MT)maX(kf(tO)J;;(tO)) P (At({l) S NT|S(t0))
[(30)
>0) (1— e M) TP (At > NTIS(10)) -
4

In the above, Inequality (a) bounds IP(Es,) s, n) by the probability that if a server becomes stalled
at a time in the interval [ty,ty + NT], it becomes empty within MT amount of time, and once the
server becomes active, it remains active for at least NT amount of time. This ensures that a server
will become stalled at most once in the interval [¢y,t, + NT] and for at most MT time duration, as
illustrated in Figure 2.

Inequality (b) uses the fact that P(r; < MT) > P(r; < M/p;) = (1 - e™M), since service time is
exponentially distributed, and by bounding the maximum number of jobs in system by LK 4.

To bound]P(At(‘;) > NT|S(ty)) in (30), we use Lemma 4.1. Let A; and D; denote the arrival and
departure vectors respectively between the initial reference time ¢, and the first time server changes
to active, t([a), while A, and D, denote the same quantities between times t([a) and t(fa) + NT. For
notational compactness, let Q(%y) = qo, Q(t(i)) = qi, S(tg) = Sg. Then

P (At > NTISg) > P (J|Aslleo + [ID2lles < Co ||

> P (||at]| = Ce llaoll) P (I1A2llc + ID2lles < C [|a

|So)

la&]| = Ce laoll o) (31)

> P (||a%|| = Ce llaoll) P (1Azlleo + 1Dzl < CoCe llgoll 1S0) »
where C, is any arbitrary positive constant less than 1 . In the above, Inequality (a) uses Lemma 4.1
with C = Cp, and Inequality (b) is due to the law of total probability, for the event ‘ 4’|l = C. lqoll

and its complement.
For notational compactness, let €€ ~ ¢4 and =5 = C,. Then the above probabilities can be

2 N

further bounded as follows:

P (12l + D2l < CoCe |lqoll 1S0) =@
P (I1A2]le0 < Ca llqol 1S0) P (IID2]ls < Ca llqoll ISo) =

l_[P (Az,j < Callqoll1S0) P (Dz,j < Callqoll IS0) = (32)
J
l—[(_ AjNT) (1 _ Kmax,ujNT) S (@) (1 _ AmaxNT)] (1 _ KmaxllmaxNT)]

Ca llqoll Callgoll / ~ Ca llqoll Ca llqoll ’

J

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

35:24 Konstantinos Psychas, and Javad Ghaderi

and
P (|l4]| = e ligoll) = P (llqoll - [|a’]| < (1 = Co) llqoll) =

P (||ao - 44| < (1 = Co)llaoll) = P (1A, = Dyll < (1 - Co) [lqol)) =1

1-C,
P (Al + Dyl < (1 = Ce) llqoll) z<9>1P<||A1||m+||D1||m< 7 IIqoll) > (33)

Ce [|qoll Ce [lqoll
In the above, (a) is due to the property p(X+Y < C) > p(X < C/2)p(Y < C/2); (b) is due to definition
of infinity norm; (c) is due to Markov’s inequality with arrival rates A; independent of state S, and
departure rates upper-bounded by K, maxujfl, also independent of state; (d) uses that A,,,,, > 4; and
T > 1/p;; (e) and (f) are due to triangle inequality; (g) is due to ratio bound between infinity and
2-norm; and finally (h) is similar to (d).
Combining Equations (30), (31), (32), (33), we have

(1 AmaxNT)] (_KmaxNTz)f

IP(Es(s,),a1,n) > Factory X Factor; X Factor, x Factors x Factory,

where
LJ LJ
N\ LKmax A NT K NT
Factorq = (1 - e_M) , Factor; = [1- 22— | | Factor, = [1 - —= "% Hmax ,
Ca lqoll Ca llaol]
A NT L K. NT Ly
Factors = (1 — &) ., Factory = (1 _ Smax ﬂmax)
Ce lqoll Ce |lqoll

(34)
Hence, to ensure IP(Es,), ar,n) > 1 — €, it suffices that each of the 5 factors, Factory, Factor;, Factor,,
Factors, Factory, to be greater than (1 — 6)1/ 5,
Using the inequality (1 — ¢)* > 1 — cx for x > 1, it is sufficient to have
5LK max) . SLINT max(Amax, KmaxT)
€ ’ e min(Cy,C,)

Finally the Proposition follows if C; = log (5LK 4x) and Cy = 5LJT max(Amax, KmaxT)/min(Cq, Ce).

M > log 9ol >

A.2 Proof of Lemma 4.3

Note that what we want to bound is the following expression and then take its limit as u goes to 0.

Esi[V(E+uw] - V() Z Es[Q)(t + u)* - 0;(t)°]

u 2upt;j

J
By definition,
Qj(t +u) = Qj(t) + Aj(t,t +u) — Dj(t,t +u),
where A;(t,t + u) and Dj(t,t + u) are respectively the number of arrivals and departures of type j
from Q; during (t,t + u). By squaring the both sides, it is straightforward to see that

Qjt +u)® < Qi(t)* + Aj(t,t +u)® + Dj(t,t +u)* + 2Q;(t)A;(t, t +u) — Dj(t,t + u)).

Recall that number of arrivals is a Poisson process with rate A; and each job j already in a server
leaves after an exponentially distributed amount of time with rate ;. Hence, it is easy to see that

Esy[Aj(t,t + u)’] = Aju + o(u), (35)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

On Non-Preemptive VM Scheduling in the Cloud 35:25

and similarly for D;(t,t + u),

Bs[Dy(t,t +)] <)" Lk (Opju+ Y (1= 1e(0) D RGOy K gt + ()
7 t J (36)
<LKmaxpju + LK?naxllmaxu +0(u).

In the above bound, we used the fact that a job j may depart from queue either when a job j
completes service in an active server or when any job departs from a stalled server and makes the
server empty, in which case up to K;,,,x jobs can be scheduled in that server. We also used that
DN, kf < LKpmax and that j1j < pipqy for any job type j.

Assuming Q;(t) > 0, if server ¢ is in an active period then Ef(t) = l;f(t) (i.e., there are no empty
slots for type-j jobs). and the above inequality also clearly holds if Q;(t) = 0. Using the the indicator
function I,(t), we can write the following inequality that holds for any state of servers.

Es)[Qj(t + u)2 - Qj(t)z] < Aju + LK piju + LK?nax,umaxu +2Q;(t) (4 — Z Ig(t)l%f(t),uj)u +o(u).
l

(37)
Notice that in the above upper bound, we have ignored the queue departures when the server is in
a stalled period.
Thus at any time t, taking the limit as u — 0,

AV() < [Z Q;(1) (pj = > Ik (t)) + By, (38)
J 14

for a constant B, = 3}(pj + LK, 1, 2% + LK pax).

max)uj

A.3 Proof of Lemma 4.4

Define Ry(k’) as the set of queue size vectors Q for which f(lE[,Q) > prf(k’,Q) for any k¢ € K¢.
Similarly define R, (IN(K) as the set of queue size vectors not in Ro(fc[) for which f (IN(K ,Q) > prik’,Q)-
B, for any k! € K¢ and finally Rz(f([) as the set of the queue size vectors not in R0(1~(€) or Rl(l}f).
We want to show that, with high probability, the queue size vector does not take a value in Ry(k?)
during an active period.

Note that at the beginning of an active period, the queue size vector is in the set Ro(k’) and the
active period of server ¢ ends when at the time of a job departure from server €, the queue size vector
is either in R; (k?) or Ry(k?). Let t; be the i-th time that the queue size vector transitions from set
RO(IE[) to R1(1~(€) while still in the active period. Then there are three possible cases after ¢;:

1. the queue size vector transitions back to Ro (k) before a job departs from server ¢,

2. the queue size vector remains in Ry(k’) until a job departs from server ¢,

3. the queue size vector reaches Ry(k") before next job departure from server ¢.

We denote the respective probabilities that each the events above occurs by po(t;), p1(t;) and
pa(ti). ;

The event Eg, ¢, which according to description is the event that f(k’,Q(t)) > Brf(k’,Q(t)) - By,
for any k¢ € K¢ and at any time ¢ in the active period, does not occur with probability

0 i—1
1=P(Eg,,0) = > palts) | | polty), (39)
i=0 j=0

which we want to show it is less than ¢ for B; large enough.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

35:26 Konstantinos Psychas, and Javad Ghaderi

First note that py(t;) is strictly less than 1, i.e., po(t;) < 1 — Cr for some positive constant Cy.
To see that, note that the second case will occur, if the next event after time ¢; is a job departure
from server ¢. Arrival and service processes are all Poisson and the rate of both is at most r; =
JAmax + LKmaxfimax - The rate of job departures from server ¢ is also Poisson and has a rate of at
least r, = minjc g y; . The probability that departure from server £ happens before any other event

is therefore at least Cr = rlrf — and hence p1(t;) =2 Cr and consequently

r2
r1+r2

Next we find an upper bound on ps(t;). At every arrival or departure each of the queue sizes can
change by at most K,,,,x. Considering ¢ is the time that the queue change occurs, and ¢~ the time
right before the change, the change in the weight of the server configuration can be bounded as

FOQ1) = £I,Q) = >\ KHQi(1) = Qi) < Kmax) kL < Kl
Jj Jj

pot:) <1-pi(t;)) <1-Cr, Cr= (40)

The difference between configuration weights of any two queue size vectors, with one in the set
Ro(k’) and the other in Ry(k?), is at least B; by definition. Therefore the number of events (arrivals
or departures) needed to transition from one set to the other is at least N, = [Kf 17 and they
should occur before any departure from server €. The probability that this happens is (1 — Cf)NBl -1
for the choice of Cr in (40). The time ¢; is the time that the first of these events happens, which

makes the queue size vector transition to set Ry (k%), hence

pa(ti) < (1= Cp)Nmt, (41)
Lastly using Inequalities (40) and (41) in (39), we get
1—Cp)Nei~1
1o P(Es.0 < LD
Cr

We can ensure that this expression is less than € by choosing B; > —Csloge + Cy4, where the
constants C3 and C4 are
Krznax Kfﬂax IOg Cf
log (1 -Cy)’ 7 log(1 - Cr)’

Cs =

A.4 Proof of Lemma 5.1

Following the steps of Lemma 4.3 we will first find a bound for the change in the nominator of
the Lyapunov function in an interval [¢,t + u], for a particular job type j. State S(t) is defined as in
Section 4 but now it also includes the classes of the scheduled jobs O;(t) for every j € J . Throughout
the proof we will use that values w; . are bounded or more specifically that W = max; c|wj c|< co.

Using the definition of Equation (24) we get

2 2
Es(r)[(Qj(t+u)+ > W;:c(i)) —(Q,-(t)+ > Wj,c(i))]S

i€O;(t+u) i€0;(1)

2 2
(Z Wj’c(,')) —(Z Wj,c(i))]+ (42)

i€O;(t+u) i€0;(1)

Es(r) [Qj(t +u)’ - Qj(t)z] + Esr)

ZES(t)[Qj(t"’u) Z Wje(i) — Qj(t) Z Wj,c<i>]~

i€0;(t+u) i€0;(t)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

On Non-Preemptive VM Scheduling in the Cloud 35:27

Now we will give bounds for each one of the above terms and we will combine them later.

The first one can be bounded with the same approach as the one that gave the bound of Equa-
tion (37). The only difference here is that each job has different service rate that depends on its
state and fi;mqx is now equal to max; . yi; .. The bound we get is then

Es)[Qj(t + u)* — Q;(t)*] <

(43)
Aju + LK g prju + LK,Snax/lmaxu +20Q;(t) (/11- - Z Ip() Z /ijc(i)) u + o(u).
7 i€0;(1)

2
For the second one we rely on the fact that the expression (Z ic0;(t) wj,c(i)) is between 0 and

(LK nax W)? and that is the largest change that can take place. Of course we also need to use the
rate at which this change occurs in an interval of length u, which is at most A; + LK,;ax fimax- The
result will be the following inequality:

2 2
(Z Wj,c(i)) _(Z Wj,c(i))] < (LKmaxW)z(Aj+LKmaxﬂmax)u~ (44)

i€0;(t+u) i€0j(t)

Es(s)

Lastly we can break the last expectation term in two parts using the fact that Q;(t + u) =
Qj(t) + Aj(t,t +u) — Dj(t,t + u). The first part is proportional to Q;(t) and the latter is bounded since
expected arrivals and departures are bounded. Notice that the expected value of weight of newly
scheduled jobs is Zle pewj,c = 0, so only the jobs that depart are considered in first term. Again
the result is the following:

ZEs(t)[Qj(Hu) Z Wje() — Qj(£) Z WLc(i)] =

i€O0;(t+u) i€0;(t)
2Is(r) [Qj(t) (Z Wi (i) — Z Wj,c(i))] +
i€0;(t+u)\0;(t) i€0;(t)\Oj(t+u) (45)
2E5[<A(tt+u) Dtt+u Z w]C,)]
i€0j(t+u)
sz(t) - Z Hj,c(i)Wj,c(i) | U +LKmaxW(/1j +LKmax,umax)u~
iEOj(t)
Putting together Equations (43), (44) and (45) we get:
2
[Qjt+uy+ D wie(t+ u)) Qi+ Y wj,cwm)]
i€0;(t+u) i€0;(2) (46)
< Buu+ 20,00 = D 1e(t) > (14 Wyewyeq — Z(l “L(®) Y e ®),

¢ i€0!(1) i€0L(1)
where By = A+ LKpmaxptj + LK, o fimax + (LK max W)*(A; + LK max ftmax) + LKmax W(Aj + LK nax fimax)-
Finally by applying the definition of AV(t) from equation (14) to (46) and substituting (1 +
W), o(i))Hj,c(i) With p1; — as implied by definition (25) — and X, o¢) Hj,c(i)Wj,c(i)(£) by its upper bound
J
KmaxW pimax, we get the result of the lemma, for Cj, = Kppox Wtimax-

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

35:28 Konstantinos Psychas, and Javad Ghaderi

A.5 Proof of Corollary 5.2

Essentially Lemma 5.1 shows that the infinitesimal generator can be bounded similar to (4.3) for
exponential distribution, with only one extra term: 3’; Q;(t) >.,(1 - I[(l’))%, which is nonzero only
if there is at least one stalled server at time t. However we know, the total cumulative time duration
that there are any stalled servers, is at most LMT by Proposition 4.2 (the same arguments hold). As
a result, in the proof of Proposition 4.5, we only need to change the second term of Equation (19) to

LC
LMTTEgy,) mtaxz Q;(®) (pj + ,u_h)
j J

LCy,
Pit
and ultimately constant Cs of final result to Cs = L max;e g (—1 AT) .

Yj

A.6 Proof of Corollary 5.3

There are three parts in the original proof that need to change if we redefine the arrival rate of a
job type j as
A=2) vipy (47)
veV
and the workload of a job type j as in Equation (27).

The first change to the previous proof (under Poisson assumption) is to modify the bound of
Equations (32) and (33) since they relied on the assumption that arrivals are independent, whereas
under the batch arrivals, the arrivals of various job types are no longer independent. We can still
compute a new bound as follows

E[ZjAZ,j] . NT }; A;

>1- , (48)
Cr llqoll Cr [lqol

P (”AZ”oo <Cy ||CI0||) > P ZAZ,j <Crllgll] =1~
J

by the application of Markov’s inequality for the random variable }’; Az ;. Then we also change
Equation (35). It is easy to see that under the batch arrival model

Es[Aj(t.t +] = 1)" opyu + o(w) (49)
veV

Eventually this last result will change the expression of B, in equation 38, with p; being replaced
by AXvev UJZ'PV

Hj
Lastly we will have to update the constants of Lemma 4.4 to consider that the maximum change
in number of jobs can be more than K,,,,, but is again bounded, since arrivals in each arrival event
were assumed bounded.

A.7 Proof of Lemma 6.1
Let us first denote the normalized vector of resources of job type j as w; = (wj1, wj2,- - -, Wjgr) Which
means that the values are normalized with the capacity of the server. Let j* be the job type which

has the resource with the highest relative value, i.e., j* = arg max;e g (Qj(t)/ (max,, wjn)). We show
that the maximal configuration that included only jobs of type j’ is r-max weight with r = R(;\]V—fﬂl).
This implies the configuration of job type j = j* that maximizes Q;(t) [1 /maxp-1,...R anJ should
also be r-max weight since its weight is greater than or equal to that of j’.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

On Non-Preemptive VM Scheduling in the Cloud 35:29

Using the job type j’, the total number of jobs that can fit in the server is ll/maxnzl,m,R wj/nJ
jobs and the corresponding weight will be:
£ (.00 = Q5 (0) {1/ max Wj’nJ > iQj/(l‘)/max Wjrn
n=1,---R Nf+1 n

= LQ-/(t)R/max Wi = Lmaxf(k[Q1)
(Nf+1)RJ n J"_(Nf+1)R K¢ ’ '

where the last inequality follows because Q(t)R/max, wj, is equivalent with filling all R resources
with the maximum relative value job j” without leaving residual capacity, which is an upper bound
of the max weight value maxc f(k,Q(t)).

A.8 Proof of Corollary 6.3

The term f first appears in the proof of Theorem 3.1 in Equation (18) and is treated as constant. By
focusing on one term of that integral we will show how the bound will change if § is a function as
defined in the previous description. As a reminder

f PLICEE

rEsizo) [tofsntigf ﬁ(Q(t))] Es(z)

Esiz,) > Bg(zy)

f ZQJ@)rﬁ(Q(t»k*‘(t)]
[Sl

tOJ

It then suffices to find a lower bound of IEg(;,)[min S(Q(t))] for which we will prove that for large
enough queues it is higher than (1 — €)(1 —)8 + e_ﬁmin for any € > 0 and € > 0. Let value Q be
such that, for any Q with ||Q||;, > O, h(Q) > (1 — &) for some € > 0. Then

Esy | min, FQU| > P min 100, > Q18] (1= 5+ P min, 1O, < Q1) i

The result follows if we can have P(min ||Q(¢)||, > QIS(ty)) > 1—e. Using the shorthand Q(t,) = qo
we have

P(min [Q()[l; > QIS(t0)) > P(min |Q()ll; > C lqoll; IS(t0)) - LIqolly > Q/C) =

P(min Q)| > VIC llqoll 18(t0)) - 1(llgoll > Q/C).

Finally assuming ||qo|| > Q/C and process of Equation (33) we have
AmaxNT)J (1 KinaxNT) .

- ¢, (50)
VIClloll VICllqoll
with the last inequality being true when
2LJNT max(Amax, KmaxT)
lIqoll > -
3 \/7 c
The last derivation follows the same steps as the one that led to formula (A.1). The condition (50)
is satisfied for all initial queue sizes except possibly for those for which

2LJNT max(Amax, KmaxT) Q)

e+JjC C

P(min]|Q)| > VIC llasl) > (1 :

llqoll < maX(

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 35. Publication date: December 2017.

