
3670 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

A Simple Congestion-Aware Algorithm for Load
Balancing in Datacenter Networks

Mehrnoosh Shafiee, Student Member, IEEE, and Javad Ghaderi, Member, IEEE

Abstract— We study the problem of load balancing in
datacenter networks, namely, assigning the end-to-end data flows
among the available paths in order to efficiently balance the
load in the network. The solutions used today rely typically on
an equal-cost multi path (ECMP) mechanism, which essentially
attempts to balance the load in the network by hashing the
flows to the available shortest paths. However, it is well-known
that the ECMP performs poorly when there is asymmetry either
in the network topology or the flow sizes, and thus, there has
been much interest recently in alternative mechanisms to address
these shortcomings. In this paper, we consider a general network
topology where each link has a cost, which is a convex function of
the link congestions. Flows among the various source–destination
pairs are generated dynamically over time, each with a size
(bandwidth requirement) and a duration. Once a flow is assigned
to a path in the network, it consumes bandwidth equal to its size
from all the links along its path for its duration. We consider
low-complexity congestion-aware algorithms that assign the flows
to the available paths in an online fashion and without splitting.
Specifically, we propose a myopic algorithm that assigns every
arriving flow to an available path with the minimum marginal
cost (i.e., the path which yields the minimum increase in the
network cost after assignment) and prove that it asymptotically
minimizes the total network cost. Extensive simulation results
are presented to verify the performance of the myopic algorithm
under a wide range of traffic conditions and under different
datacenter architectures. Furthermore, we propose randomized
versions of our myopic algorithm, which have much lower
complexity and empirically show that they can still perform very
well in symmetric network topologies.

Index Terms— Markov chains, load balancing, online
algorithms, routing algorithms, datacenter network.

I. INTRODUCTION

THERE has been a dramatic shift over the recent decades
with search, storage, and computing moving into large-

scale datacenters. Today’s datacenters can contain thousands
of servers and typically use a multi-tier switch network to
provide connectivity among the servers. To maintain efficiency
and quality of service, it is essential that the data flows among
the servers are mapped to the available paths in the network
properly in order to balance the load and minimize the cost
(e.g., delay, congestion, etc.). For example when a large flow

Manuscript received December 2, 2016; revised July 15, 2017; accepted
September 3, 2017; approved by IEEE/ACM TRANSACTIONSON NETWORK-
ING Editor A. Ferragut. Date of publication September 27, 2017; date of
current version December 15, 2017. This work was supported by the NSF
under Grant CNS-1652115 and Grant CNS-1565774. An earlier version of
this paper appeared in the INFOCOM 2016 conference [1]. (Corresponding
author: Mehrnoosh Shafiee.)
The authors are with the Department of Electrical Engineering, Columbia

University, New York, NY 10027 USA (e-mail: s.mehrnoosh@columbia.edu;
jghaderi@ee.columbia.edu).
Digital Object Identifier 10.1109/TNET.2017.2751251

is routed poorly, collision with the other flows can cause some
links to become congested, while other less utilized paths are
available.
The datacenter networks rely on path multiplicity to pro-

vide scalability, flexibility, and cost efficiency. Consequently,
there has been much research on flow scheduling algorithms
that make better use of the path multiplicity (e.g., [2]–[6])
or designing new networks with better topological features
(e.g., FatTree [2], VL2 [7], hypercube [8], hypergrid [9],
random graphs such as JellyFish [10], etc.).
In this paper, we consider a general network topology

where each link is associated with a cost which is a convex
function of the link utilization (e.g., this could be a latency
function). The network cost is defined as the sum of the link
costs. Flows among the various source-destination pairs are
generated dynamically over time where each flow is associated
with a size (rate) and a duration. Once a flow is assigned to a
path in the network, it consumes resource (bandwidth) equal to
its size (rate) from all the links along its path for its duration.
The main question that we ask is the following. Is it possible
to design a low-complexity algorithm, that assigns the flows to
the available paths in an online fashion and without splitting,
so as to minimize the average network cost?
In general, multi flow routing in networks has been exten-

sively studied from both networking systems and theoretical
perspective, however multi flow routing considered in this
paper has two key distinguishing objectives:
1) it does not allow flow splitting because splitting the
flow is undesirable due to TCP reordering effect [11].
Resolving packet reordering requires modification of
protocol stack [12], which might be costly. Without split-
ting, many versions of multi flow routing in networks
become hard combinatorial problems [13], [14]. In fact,
the static version of the problem considered in this paper
(i.e., given a static list of flows, assigning flows to paths
without splitting so as to balance the load in the network)
is known to be NP-hard, through its connection to the
Partition problem [15].1

2) it allows dynamic routing because it considers the cur-
rent utilization of links in the network when making the
routing decisions for newly arrived flows unlike static
solutions where the mapping of flows to the paths is
fixed and requires the knowledge of the traffic matrix.

1In the Partition problem, given a set of numbers, we are asked to divide
them into two subsets such that the maximum of the sum of the numbers in
the sets is minimized. This can be reformulated as the load balancing in a
simple two-node network with two parallel edges.

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

SHAFIEE AND GHADERI: SIMPLE CONGESTION-AWARE ALGORITHM FOR LOAD BALANCING 3671

A. Related Work

Seminal solutions for flow routing in datacenters
(e.g. [7], [16]) rely on Equal Cost Multi Path (ECMP)
load balancing which statically splits the traffic among
available shortest paths (via flow hashing). However, it is well
known [3]–[6], [17] that ECMP can balance load poorly
since it may map large long-lived flows to the same path,
thus causing significant load imbalance. Further, ECMP
is suited for symmetric architectures such as FatTree and
performs poorly in presence of asymmetry either due
to link failures [18] or in recently proposed datacenter
architectures [10]. Theoretical performance of ECMP in Clos
networks under a static flow model has been studied in [19].
There have been recent efforts to address the shortcomings
of ECMP. The proposed algorithms range from centralized
solutions (e.g., [3], [4]), where a centralized scheduler makes
routing decisions based on global view of the network,
to distributed solutions (e.g., [6], [20]) where routing
decisions are made in a distributed manner by the switches.
There are also host-based protocols based on Multi Path TCP
(e.g., [5]) where the routing decisions are made by the end-
host transport protocol rather than by the network operator;
however, they require significant changes to Transport layer
which might not be feasible in public cloud platforms [12].
Authors in [21] investigated a more general problem based on
a Gibbs sampling technique and proposed a plausible heuristic
that requires re-routing and interruption of flows (which is
operationally expensive). There are also algorithms that
allow flow splitting and try to resolve the packet reordering
effect in symmetric network topologies [12], [20], [22].
As explained, dealing with packet reordering involves
overhead and modification of protocol stack.
Our work is also related to a large body of literature on

traffic engineering and congestion control. For brevity, we only
highlight the most relevant work. The first line of work,
e.g. [23]–[25], studies the problem of minimizing the cost
of carrying traffic in a static multi-commodity flow model
and under a convex cost function for the link rates. Given
the knowledge of the traffic matrix (commodities) among the
nodes, routing algorithms are proposed that iteratively update
the fraction of traffic of each flow that should be sent on each
outgoing link in the network. They rely on splitting flows
among the least weighted paths where the weight of each link
is defined by its marginal link cost.
The second line of work is atomic and non-atomic con-

gestion games in game theory [26]–[29]. In the context of
routing, players are the commodities, strategy sets are the
set of directed source-destination paths for the commodities,
the edge cost ce(fe) is a function of the amount of congestion
fe over edge e, and the path cost cp(f) is the sum of the
cost of the links along the path p. A player i incurs a
cost cp(f)f (i)

p for sending f
(i)
p amount of traffic over the

path p. In the atomic games, each player must choose a
single path to route its commodity, while in non-atomic games,
player can distribute its commodity fractionally over the set
of paths. The two versions are fundamentally different. While
the atomic game in general does not admit a Nash equilib-
rium, the nonatomic game always has a Nash equilibrium

(Wardrop equilibrium) [30]. In Wardrop equilibrium, all the
paths used by a given commodity have equal cost. Moreover,
it’s known in non-atomic games that selfish best response
moves (selfish routing) by the players iteratively converge
to the Wardrop equilibrium, which is a local minimum of a
potential function (network cost)

∑
e

∫ fe

0
ce(x)dx.

The third line of work is oblivious routing [31]–[33] in
which routes are computed to optimize the worst-case per-
formance over the set of traffic matrices. This ensures that the
computed routes are prepared for changes in traffic demands
without the need to update the routes, however this is a
pessimistic point of view and may be far from optimal in
relatively stable periods of traffic or stable networks [32].
While the proposed myopic algorithm in this paper is

reminiscent of prior algorithms under flow splitting and non-
atomic games (e.g. [23]–[25], [28]–[30]), the results in this
paper are not trivially drawn from these prior work. First,
unlike [23]–[25], [28]–[30] that rely on splitting flows in
any granularity and rerouting them continuously to find the
optimal routing, we do not allow flow splitting and migrations.
Second, unlike [23]–[25], [28]–[30] that consider a static set
of flows with known traffic demand, we are dealing with a
dynamic version of the problem when flows arrive and depart
dynamically over time and the traffic demand is not known.
Such constraints arise in practice due to the varying nature of
the traffic over time and space in datacenters as well as unde-
sirability of packet reordering in flow splitting. Our technical
approach relies on a careful analysis of the fluid limits of the
system under the myopic policy (without flow splitting) and
proof of convergence to an invariant set which is the set of
optimal flow assignments in steady state. Under unsplittable
flows, the fluid limits are not continuously differentiable which
poses a significant technical challenge. Intuitively, as the
number of flows in the system grows, the difference between
the optimal expected network cost under unsplittable flow
assignment and that under splittable flow assignment should
vanish in the performance ratio. We rigorously establish this
intuition, and further, present deterministic and randomized
algorithms with low complexity which perform very well in
practice.
Finally, Software Defined Networking (SDN) has enabled

network control with quicker and more flexible adaptation
to changes in the network topology or the traffic pattern
and can be leveraged to implement centralized or hybrid
algorithms in datacenters [2], [34]–[36]. The weight construct
in the algorithms proposed in this paper can provide an
approach to optimally accommodate dynamic variations in
datacenter network traffic in centralized control platforms such
as OpenFlow [34].

B. Contributions

The main contributions of this paper can be summarized as
follows.

• Asymptotic optimality of a myopic algorithm. We pro-
pose and analyze a simple flow scheduling algorithm to
minimize the average network cost (the sum of convex
functions of link utilizations). Specifically, we propose
a myopic algorithm that assigns every arriving flow

3672 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

to an available path with the minimum marginal cost
(i.e., the path which yields the minimum increase in
the network cost after assignment). We prove that this
simple myopic algorithm is asymptotically optimal in
any network topology, in the sense that the performance
ratio between the average network cost under the myopic
algorithm and the optimal cost approaches 1 as the
mean number of flows in the system increases. The
myopic algorithm does not rely on flow splitting, hence
packets of the same flow will travel along the same
path without reordering. Further, it does not require
migration/rerouting of the flows or the knowledge of the
traffic pattern.

• A low complexity randomized algorithm. We also
propose randomized versions of our myopic algorithm
which have much lower complexity. In the randomized
algorithm with parameter k ≥ 2, instead of considering
all the available paths upon arriving of a flow, k paths are
chosen at random and then the flow is assigned to the path
with the minimum marginal cost among these k paths.
Similar to the myopic algorithm, randomized versions do
not rely on flow splitting, flow migration/rerouting, or the
knowledge of the traffic pattern. We empirically inves-
tigate the effect of parameter k on the algorithm
performance.

• Empirical evaluation of the algorithms. We evaluate
our myopic algorithm and its randomized versions under
various workload and network topologies. For the flow
generation, we consider two traffic models: (i) Poisson
arrival of flows with exponentially distributed durations,
and (ii) based on data from empirical studies of dat-
acenter traffic. For the network topology, we consider
FatTree (a highly structured topology), and JellyFish
(a random topology). Our empirical results show that the
myopic algorithm in fact performs very well under a wide
range of traffic conditions in both datacenter topologies.
Further, the randomized algorithms can perform very
well by choosing the proper parameter k (the number
of randomly chosen paths), in particular in symmetric
network topologies (like FatTree) small values of k will
suffice.

C. Notations

Given a sequence of random variables {Xn}, Xn ⇒ X
indicates convergence in distribution, and Xn → X indicates
the almost sure convergence. Given a Markov process {X(t)},
X(∞) denotes a random variable whose distribution is the
same as the steady-state distribution of X(t) (when it exists).
‖ · ‖ is the Euclidian norm in Rn. d(x, S) = mins∈S ‖s− x‖
is the distance of x from the set S. ‘u.o.c.’ means uniformly
over compact sets.

II. MODEL AND PROBLEM STATEMENT

A. Datacenter Network Model

We consider a datacenter (DC) consisting of a set of servers
(host machines) connected by a collection of switches and
links. Depending on the DC network topology, all or a subset

Fig. 1. FatTree connecting 16 servers (rectangles) using 4-port switches
(circles).

Fig. 2. JellyFish (random graph) connecting 16 servers (rectangles) using
4-port switches (circles).

of the switches are directly connected to servers; for example,
in FatTree [2] (Figure 1) only the edge (top-of-the-rack)
switches are connected to servers, while in JellyFish [10]
(Figure 2) all the switches have some ports connected to
servers. Nevertheless, we can model any general DC network
topology (FatTree, JellyFish, etc.) by a graph G(V, E) where
V is the set of switches and E is the set of communication
links. A path between two switches is defined as a set of links
that connects the switches and does not intersect itself. The
paths between the same pair of source-destination switches
may intersect with each other or with other paths in DC.

B. Traffic Model

Each server can generate a flow destined to some other
server. We assume that each flow belongs to a set of flow
types J . A flow of type j ∈ J is a triple (aj, dj , sj) where
aj ∈ V is its source switch (i.e., the switch connected to
the source server), dj ∈ V is its destination switch (i.e., the
switch connected to its destination server), and sj is its size
(bandwidth requirement). Note that based on this definition,
we only need to find the routing of flows in the switch network
G(V, E) since the routing from the source server to the source
switch or from the destination switch to the destination server
is trivial (follows the direct link from the server to the switch).
Further, two switches can have more than one flow type with
different sizes. We assume that type-j flows are generated
according to a Poisson process with rate λj , and each flow
remains in the system for an exponentially distributed amount
of time with mean 1/μj . It is possible to extend our results
to a more general model of flow arrival and service time,
e.g., when the arrival process is a “renewal” process and
service time distribution has lower bounded “hazard rate”,
using a similar approach as in [37]. We will also report
simulation results in Section V that show that our myopic
algorithm indeed performs very well under much more general
arrival and service time processes.
For any j ∈ J , let Rj denote the set of available paths

from aj to dj , then each type-j flow must be accommodated

SHAFIEE AND GHADERI: SIMPLE CONGESTION-AWARE ALGORITHM FOR LOAD BALANCING 3673

by using only one of the paths from Rj (i.e., the flow cannot be
split among multiple paths). Note that Rj could be the set of
all possible paths from aj to dj or a subset of them as desired
by the network operator. We assume that Rj is nonempty for
each j ∈ J . Define Y

(j)
i (t) to be the number of type-j flows

routed along the path i ∈ Rj at time t. The network state is
defined as

Y (t) =
(
Y

(j)
i (t); i ∈ Rj , j ∈ J

)
. (1)

The online (Markov) scheduling algorithm determines the path
where an arriving flow at time t is placed, as a function of the
current network state Y (t).
We also define X(j)(t) =

∑
i∈Rj

Y
(j)
i (t) which is the total

number of type-j flows in the network at time t. Let Zl(t) be
the total amount of traffic (congestion) over link l ∈ E. Based
on our notations,

Zl(t) =
∑
j∈J

∑
i:i∈Rj ,l∈i

sjY
(j)
i (t), (2)

where by l ∈ i we mean that link l belongs to path i. We also
define ρj = λj/μj which is the mean offered load by type-j
flows.
Note that under any Markov scheduling algorithm, the net-

work state {Y (t)}t≥0 is a continuous-time, irreducible
Markov chain. It is also positive recurrent, because the
total number of type-j flows X(j)(t) in the system is a
Markov chain independent of the scheduling algorithm, and
its stationary distribution is Poisson with mean ρj . Therefore,
the process {Y (t)}t≥0 has a unique stationary distribution as
t → ∞.

C. Problem Formulation

For the purpose of load balancing, the network can attempt
to optimize different objectives [38] such as minimizing the
maximum link congestion in the network or minimizing the
sum of link costs where each link cost is a convex function
of the link congestion (e.g. this could be a link latency
measure [39]). Under both objectives, the traffic needs to
be distributed and balanced among the feasible paths in the
network, which is essential for maintaining low end-to-end
delay for different flows. In this paper, we use the latter
objective but by choosing proper cost functions, an optimal
solution to the later objective can be used to also approximate
the former objective as we see below.
We define g(Zl) to be the cost of link l when its congestion

is Zl. Our goal is to find a flow scheduling algorithm that
assigns each flow to a single path in the network so as to
minimize the mean network cost in the long run, specifically,

minimize lim
t→∞ E [F (Y (t))]

subject to: serving each flow using one path,
(3)

where, F (Y (t)) =
∑

l∈E g(Zl(t)). We consider polynomial
cost functions of the form

g(x) =
x1+α

1 + α
, α > 0, (4)

where α > 0 is a constant. Thus g is increasing and strictly
convex in x. As α → ∞, the optimal solution to (3)
approaches the optimal solution of the optimization problem
whose objective is to minimize the maximum link congestion
in the network.2

III. ALGORITHM DESCRIPTION

In this section, we describe our myopic algorithm for
flow assignment where each flow is assigned to one path in
the network (no splitting) without interrupting/migrating the

ongoing flows in the network. Recall that Y (t) = (Y (j)
i (t))

is the network state, Y
(j)
i (t) is the number of type-j flows

on path i ∈ Rj , and Zl(t) is the total traffic on link l given
by (2).

Algorithm 1 Myopic Flow Scheduling Algorithm
Suppose a type-j flow arrives at time t when the system is in
state Y(t). Then,
1: Compute the path marginal costs w

(j)
i (Y (t)), i ∈ Rj ,

in either of the forms below:

• Integral form:

w
(j)
i (Y (t)) =

∑
l∈i

Δ(j)
l (Y (t)), (5)

• Differential form:

w
(j)
i (Y (t)) =

∑
l∈i

δ
(j)
l (Y (t)). (6)

2: Place the flow on a path i such that

i = arg min
k∈Rj

w
(j)
k (Y (t)). (7)

Break ties in (7) uniformly at random.

First, we define two forms of link marginal cost that
measure the increase in the link cost if an arriving type-j flow
at time t is routed using a path that uses link l.

Definition 1 (Link marginal cost): For each link l and flow-
type j, the link marginal cost is defined in either of the forms
below.

• Integral form:

Δ(j)
l (Y (t)) = g

(
Zl(t) + sj

)
− g

(
Zl(t)

)
. (8)

• Differential form:

δ
(j)
l (Y (t)) = sjg

′(Zl(t)
)
. (9)

Based on the link marginal costs, we can characterize
the increase in the network cost if an arriving type-j flow
at time t is routed using path i ∈ Rj . Specifically, let
Y (t+) = Y (t) + e

(j)
i , where e

(j)
i denotes a vector whose

corresponding entity to path i and flow type j is one, and
its other entities are zero. Then F (Y (t)) is the network cost

2Here we have considered identical links for simplicity but the analysis is
easily extendable to the case that g(·) is a function of x/cl where cl is the link
capacity, or the case that each link has a weight and the goal is to minimize
the weighted summation of the link costs.

3674 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

before the type-j flow arrival, and F (Y (t+)) is the network
cost after assigning the type-j flow to path i. Then, it is easy
to see that

F (Y (t+)) − F (Y (t)) =
∑
l∈i

[
g
(
Zl(t) + sj

) − g
(
Zl(t)

)]

=
∑
l∈i

Δ(j)
l (Y (t)). (10)

Similarly, based on the differential marginal costs, we have

∂F (Y (t))

∂Y
(j)
i (t)

=
∑
l∈i

sjg
′(Zl(t)

)
=

∑
l∈i

δ
(j)
l (Y (t)). (11)

Algorithm 1 describes our myopic flow assignment algo-
rithm that places the newly generated flow on a path that
minimizes the increase in the network cost based on either
forms (10) or (11). Upon arrival of a flow, Algorithm 1 takes
the corresponding feasible paths and their link congestions into
the account for computing the path marginal costs w

(j)
i (t)

but it does not require to know any information about the
other links in the network. The two forms (5) and (6) are
essentially identical in our asymptotic performance analysis
in the next section, however it seems slightly easier to work
with the differential form (6). Algorithm 1 can be implemented
either centrally or in a distributed manner using a distributed
shortest path algorithm that uses the link marginal costs,
Δ(j)

l (t) or δ
(j)
l (t), as link weights.

Remark 1: Note that in Algorithm 1 the flow is assigned to
a path with the minimum path marginal cost. The path with
the minimum path marginal cost is not necessarily the same
as the path with the minimum end-to-end congestion (sum of
link congestions in the path).

IV. PERFORMANCE ANALYSIS VIA FLUID LIMITS

The system state {Y (t)}t≥0 is a stochastic process which
is not easy to analyze, therefore we analyze the fluid limits
of the system instead. Fluid limits can be interpreted as the
first order approximation to the original process {Y (t)}t≥0

and provide valuable qualitative insight into the operation of
Algorithm 1. In this section, we introduce the fluid limits of the
process {Y (t)}t≥0 and present our main result regarding the
convergence of Algorithm 1 to the optimal cost. We deliber-
ately defer the rigorous claims and proofs about the fluid limits
to Section VII and for now mainly focus on the convergence
analysis to the optimal cost, which is the main contribution of
this paper.

A. Informal Description of Fluid Limit Process

In order to obtain the fluid limits, we scale the process in
rate and space. Specifically, consider a sequence of systems
{Y r(t)}t≥0 indexed by a sequence of positive numbers r, each
governed by the same statistical laws as the original system
with the flow arrival rates rλj , j ∈ J (therefore, a system with
a larger r would experience heavier traffic), and initial state
Y r(0) such that Y r(0)/r → y(0) as r → ∞ for some fixed
y(0). The fluid-scale process is defined as yr(t) = Y r(t)/r,
t ≥ 0. We also define yr(∞) = Y r(∞)/r, the random state
of the fluid-scale process in steady state. If the sequence

of processes {yr(t)}t≥0 converges to a process {y(t)}t≥0

(uniformly over compact time intervals, with probability 1 as
r → ∞), the process {y(t)}t≥0 is called the fluid limit. Then,
y
(j)
i (t) is the fluid limit number of type-j flows routed through
path i. Accordingly, we define zr

l (t) = Zr
l (t)/r and x(j)r

(t) =
X(j)r

(t)/r and their corresponding limits as zl(t) and x(j)(t)
as r → ∞. The fluid limits under Algorithm 1 follow
possibly random trajectories, and might not be continuously
differentiable; nevertheless, they satisfy the following set of
differential equations. We state the result as the following
lemma whose proof can be found in Section VII.

Lemma 1 (Fluid Equations): Any fluid limit y(t) satisfies
the following equations. For any j ∈ J , and i ∈ Rj ,

d
dt

y
(j)
i (t) = λjp

(j)
i (y(t)) − μjy

(j)
i (t) (12a)

p
(j)
i (y(t)) = 0 if i /∈ arg min

k∈Rj

w
(j)
k (y(t)) (12b)

p
(j)
i (y(t)) ≥ 0,

∑
i∈Rj

p
(j)
i (y(t)) = 1 (12c)

w
(j)
i (y(t)) =

∑
l∈i

sjg
′(zl(t)). (12d)

Equation (12a) is simply an accounting identity for y
(j)
i (t)

stating that, on the fluid-scale, the number of type-j flows
over path i ∈ Rj increases at rate λjp

(j)
i (y(t)), and decreases

at rate y
(j)
i μj due to departures of type-j flows on path i.

p
(j)
i (y(t)) is the fraction of type-j flow arrivals placed on
path i. w

(j)
i (y(t)) is the fluid-limit marginal cost of routing

type-j flows in path i when the system is in state y(t).
Equation (12b) follows from (7) and states that the flows can
only be placed on the paths which have the minimum marginal
cost mink∈Rj w

(j)
k (y(t)).

It follows from (12a) and (12c) that the total number of
type-j flows in the system, i.e., x(j)(t) =

∑
i∈Rj

y
(j)
i (t),

follows a deterministic trajectory described by the following
equation,

d
dt

x(j)(t) = λj − μjx
(j)(t), ∀j ∈ J , (13)

which clearly implies that

x(j)(t) = ρj + (x(j)(0) − ρj)e−μjt ∀j ∈ J . (14)

Consequently at steady state,

x(j)(∞) = ρj , ∀j ∈ J , (15)

which means that, in steady state, there is a total of ρj type-j
flows on the fluid scale.

B. Main Result and Asymptotic Optimality

In this section, we state our main result regarding the
asymptotic optimality of our myopic algorithm. First note that
by (15), the values of y(∞) are confined to a convex compact
set Υ defined below

Υ ≡ {y = (y(j)
i) : y

(j)
i ≥ 0,

∑
i∈Rj

y
(j)
i = ρj , ∀j ∈ J }. (16)

SHAFIEE AND GHADERI: SIMPLE CONGESTION-AWARE ALGORITHM FOR LOAD BALANCING 3675

Consider the problem of minimizing the network cost in steady
state on the fluid scale (the counterpart of optimization (3)),

min F (y)
s. t. y ∈ Υ (17)

Denote by Υ� ⊆ Υ the set of optimal solutions to the
optimization (17). The following proposition states that the
fluid limits of Algorithm 1 indeed converge to an optimal
solution of the optimization (17).

Proposition 1: Consider the fluid limits of the system under
Algorithm 1 with initial condition y(0), then as t → ∞

d(y(t), Υ�) → 0. (18)

Convergence is uniform over initial conditions chosen from a
compact set.
The theorem below makes the connection between the fluid
limits and the original optimization problem (3). It states the
main result of this paper which is the asymptotic optimality
of Algorithm 1.

Theorem 1: Let Y r(t) and Y r
opt(t) be respectively the sys-

tem trajectories under Algorithm 1 and any optimal algorithm
for the optimization (3). Then in steady state,

lim
r→∞

E

[
F (Y r(∞))

]

E

[
F (Y r

opt(∞))
] = 1. (19)

For example, one optimal algorithm that solves (3) is the
one that every time a flow arrives or departs, it re-routes the
existing flows in the network in order to minimize the network
cost at all times. Of course this requires solving a complex
combinatorial problem every time a flow arrives/departs and
further it interrupts/migrates the existing flows. Under any
algorithm (including our myopic algorithm and the optimal
one), the mean number of flows in the system in steady state
is O(r). Thus by Theorem 1, Algorithm 1 has roughly the
same cost as the optimal cost when the number of flows in
the system is large, but at much lower complexity and with
no migrations/interruptions.
The rest of this section is devoted to the proof of

Proposition 1. The proof of Theorem 1 relies on Proposition 1
and is provided in Section VII.

C. Proof of Proposition 1

We first characterize the set of optimal solutions Υ� using
KKT conditions in the lemma below.

Lemma 2: Let Γj = {i ∈ Rj : y
(j)
i > 0} ⊆ Rj , j ∈ J . A

vector y ∈ Υ� iff y ∈ Υ and there exists a vector η ≥ 0 such
that

w
(j)
i (y) = ηj , ∀i ∈ Γj , (20a)

w
(j)
i (y) ≥ ηj , ∀i ∈ Rj \ Γj, (20b)

where w
(j)
i (·) defined in (12d).

Proof of Lemma 2: Consider the following optimization
problem,

min F (y) (21a)

s.t.
∑
i∈Rj

y
(j)
i ≥ ρj , ∀j ∈ J (21b)

y
(j)
i ≥ 0, ∀j ∈ J , ∀i ∈ Rj . (21c)

Since F (y) is an strictly increasing function with respect to
y
(j)
i , for all j ∈ J , i ∈ Rj , it is easy to check that the
optimization (17) has the same set of optimal solutions as the
optimization (21). Moreover, both optimizations have the same
optimal value. Hence we can use the Lagrange multipliers
ηj ≥ 0 and ν

(j)
i ≥ 0 to characterize the Lagrangian as follows.

L(η, ν, y) = F (y) +
∑
j∈J

ηj(ρj −
∑

i;i∈Rj

y
(j)
i)

−
∑
j∈J

∑
i;i∈Rj

ν
(j)
i y

(j)
i . (22)

From KKT conditions [40], y ∈ Υ�, if and only if there exist
vectors η and ν such that the following holds. Feasibility:

y ∈ Υ, (23a)

ηj ≥ 0, ν
(j)
i ≥ 0 ∀j ∈ J , i ∈ Rj , (23b)

Complementary slackness:

ηj(ρj −
∑

i;i∈Rj

y
(j)
i) = 0, ∀j ∈ J , (24a)

ν
(j)
i y

(j)
i = 0, ∀j ∈ J , i ∈ Rj , (24b)

Stationarity:

∂L(η, ν, y)

∂y
(j)
i

= 0. ∀j ∈ J , i ∈ Rj . (25a)

Note that (23a) implies (24a). It follows from (25a) that

∂F (y)

∂y
(j)
i

= ηj + ν
(j)
i , ∀j ∈ J , i ∈ Rj . (26)

Define Γj as in the statement of the lemma. Note that
Γj is nonempty for all j ∈ J by (23a). Then combin-
ing (24b) and (26), ∀j ∈ J , and noting that ∂F (y)

∂y
(j)
i

= w
(j)
i (y)

by definition, yields (20a)-(20b). �
Next, we show that the set of optimal solutions Υ� is

an invariant set of the fluid limits, using the fluid limit
equations (12a)-(12d), and Lemma 2.

Lemma 3: Υ� is an invariant set for the fluid limits,
i.e., starting from any initial condition y(0) ∈ Υ�, y(t) ∈ Υ�

for all t ≥ 0.
Proof of Lemma 3: Consider a type-j flow and let I(j)(t) =

argmini∈Rj
w

(j)
i (y(t)) be the set of paths with the minimum

path marginal cost. Note that
∑

i∈I(j)(t) p
(j)
i (t) = 1, t ≥ 0,

by (12b), therefore

d
dt

(∑
i∈I

(j)
i (t)

y
(j)
i (t)

)
= λj −

(∑
i∈I(j)(t)

y
(j)
i (t)

)
μj . (27)

Since y(0) ∈ Υ�, it follows from Lemma 2 that
∑

i∈I(j)(0)

y
(j)
i (0) = ρj . Hence, Equation (27) has a unique solution for∑

i∈I(j)(t) y
(j)
i (t) which is

∑
i∈I(j)(t)

y
(j)
i (t) = ρj , t ≥ 0. (28)

On the other hand, since x(j)(0) = ρj , by (14),

x(j)(t) =
∑
i∈Rj

y
(j)
i (t) = ρj , t ≥ 0. (29)

3676 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Equations (28) and 29 imply that, at any time t ≥ 0, y(j)
i (t) =

0 for i /∈ I(j)(t), and y
(j)
i (t) ≥ 0 for i ∈ I(j)(t) such that∑

i∈I(j)(t) y
(j)
i (t) = ρj . Hence, y(t) =

(
y
(j)
i (t)

)
∈ Υ� by

using ηj(t) = mink∈Rj w
(j)
k (y(t)) in Lemma 2. �

Next, we show that the fluid limits indeed converge to the
invariant set Υ� starting from an initial condition in Υ.

Lemma 4 (Convergence to the Invariant Set): Consider
the fluid limits of the system under Algorithm 1 with initial
condition y(0) ∈ Υ, then

d(y(t), Υ�) → 0. (30)

Also convergence is uniform over the set of initial
conditions Υ.

Proof of Lemma 4: Starting from y(0) ∈ Υ, (14) implies
that

x(j)(t) =
∑
i∈Rj

y
(j)
i (t) = ρj ∀j ∈ J , (31)

at any time t ≥ 0. To show convergence of y(t) to the set Υ�,
we use a Lyapunov argument. Specifically, we choose F (.) as
the Lyapunov function and show that (d/dt)F (y(t)) < 0 if
y(t) /∈ Υ�. Let ηj(y(t)) = mink∈Rj w

(j)
k (y(t)). Then

(d/dt)F (y(t))

=
∑
j∈J

∑
i∈Rj

∂F (y)

∂y
(j)
i

dy
(j)
i (t)
dt

=
∑
j∈J

μj

[
ρj

∑
i∈Rj

w
(j)
i (y(t))p(j)

i (t)−
∑
i∈Rj

w
(j)
i (y(t))y(j)

i (t)
]

(a)
=

∑
j∈J

μj

[
ρjηj(y(t)−

∑
i∈Rj

w
(j)
i (y(t))y(j)

i (t)
]

(b)
<

∑
j∈J

μj

[
ρjηj(y(t)) − ηj(y(t))

∑
i∈Rj

y
(j)
i (t)

] (c)
= 0. (32)

Equality (a) follows from the fact that p(j)
i (t) = 0 if w(j)

i (t) >

ηj(t), and
∑

i∈I(j)(t) p
(j)
i (t) = 1, t ≥ 0, by (12b) and (12c).

Inequality (b) follows from the fact that y(t) /∈ Υ�, so by
Lemma 2, there exists an i ∈ Rj such that y

(j)
i (t) > 0

but w
(j)
i (y(t)) > ηj(y(t)). Equality (c) holds because

of (31). �
Now we are ready to complete the proof of Proposition 1,

i.e., to show that starting from any initial condition in a
compact set, uniform convergence to the invariant set Υ�

holds.
Proof of Proposition 1: First note that (d/dt)F (y(t))

(as given by (32)) is a continuous function with respect to
y(t) = (y(j)

i (t) ≥ 0). This is because the path marginal costs
w

(j)
i (y(t)) are continuous functions of y(t) and so is their
minimum ηj(y(t)) = mini∈Rj w

(j)
i (y(t)).

Next, note that by Lemma 4, for any ε1 > 0, and a ∈ Υ,
there exists an ε2 > 0 such that if F (a) − F (Υ�) ≥ ε1 then,

(d/dt)F (y(t))
∣∣
y(t)=a

≤ −ε2 (33)

By the continuity of (d/dt)F (y(t)) in y(t), there exists a
δ > 0 such that ‖y(t) − a‖ ≤ δ implies,

|(d/dt)F (y(t)) − (d/dt)F (a)| ≤ ε2/2 (34)

Combining (33) and (34), for all y(t) such that ‖y(t)−a‖ ≤ δ,

(d/dt)F (y(t)) ≤ −ε2/2.

By (14), for any δ > 0, we can find tδ large enough such that
for all t > tδ , ‖y(t) − a‖ ≤ δ for some a ∈ Υ.
Putting everything together, for any ε1 > 0, there exists

ε2 > 0 such that if F (y(t)) − F (Υ�) ≥ ε1 then
(d/dt)F (y(t)) ≤ −ε2/2 < 0. Applying Lyapunov argu-
ment with F (.) as Lyapunov function completes the proof
of Proposition 1. �

V. SIMULATION RESULTS

In this section, we provide simulation results and evaluate
the performance of Algorithm 1 under a wide range of traffic
conditions in the following datacenter architectures:

• FatTree which consists of a collection of edge, aggre-
gation, and core switches and offers equal length path
between the edge switches. Figure 1 shows a FatTree with
16 servers and 8 4-port edge switches. For simulations,
we consider a FatTree with 128 servers and 32 8-port
edge switches.

• JellyFish which is a random graph in which each switch i
has ki ports out of which ri ports are used for connection
to other switches and the remaining ki−ri ports are used
for connection to servers. Figure 2 shows a JellyFish with
4-port switches, and ki = 4, ri = 2 for all the switches.
For simulations, we consider a JellyFish constructed
using 20 8-port switches and 100 servers. Each 8-port
switch is connected to 5 servers and 3 remaining links are
randomly connected to other switches (this corresponds
to ki = 8, ri = 3 for all the switches).

For the 128-server FatTree, when source and destination
switches are located in different (same) racks, our myopic
algorithm considers 16 (4) equal length candidate paths. For
the case of d-regular random graphs (where each node has
d edges), the number of paths between 2 switches can be
very large which could significantly increase the computa-
tional complexity of the algorithm. To reduce the computation
overhead, we can neglect the long paths since such paths
will naturally have large marginal costs and will not be used
by Algorithm 1. In our simulations, for the case of JellyFish,
we consider (at most) the first 20 shortest paths (in terms of
the number of links) for each pairs of switches.
Our rationale for selecting these architectures stems from

the fact that they are on two opposing sides of the spectrum
of topologies: while FatTree is a highly structured topology,
JellyFish is a random topology; hence they should provide a
good estimate for the robustness of Algorithm 1 to different
network topologies and possible link failures.
We generate the flows under two different traffic models to

which we refer to as exponential model and empirical model:
• Exponential model: Flows are generated per Poisson
processes and exponentially distributed durations. The
parameters of duration distribution is chosen uniformly
at random from 0.5 to 1.5 for different flows to simulate
a more dynamic range of flow durations. The flow sizes
are chosen according to a log-normal distribution.

SHAFIEE AND GHADERI: SIMPLE CONGESTION-AWARE ALGORITHM FOR LOAD BALANCING 3677

Fig. 3. Experimental Results for FatTree. (a): Convergence of the network cost under Algorithm 1, normalized with the lower-bound on the optimal
solution (CVX), to 1. The scaling parameter r is 100 here. (b) and (c): Performance ratio of Algorithm 1 and ECMP in FatTree, normalized with the
lower-bound (CVX) for exponential and empirical traffic models.

• Empirical model: Flows are generated based on recent
empirical studies on characterization of datacenter traf-
fic. As suggested by these studies, we consider log-
normal inter-arrival times [41], service times based on the
empirical result in [11], and log-normal flow sizes [41].
Particularly, the most periods of congestion tend to be
short lived, namely, more than 90% of the flows that
are more than 1 second long, are no longer than 2
seconds [11].

In both models, the flow sizes are log-normal with mean 1.2
and standard deviation 0.4. This generates flow sizes ranging
from 1% to 40% of link capacity with high probability to cap-
ture the nature of flow sizes in terms of “mice” and “elephant”
flows. Furthermore, we consider a random traffic pattern,
i.e., source and destination of flows are chosen uniformly at
random. The link cost parameter α is chosen to be 1 in these
simulations.
Under both models, to change the traffic intensity, we keep

the other parameters fixed and scale the arrival rates (with
parameter r).
We report the simulation results in terms of the performance

ratio between Algorithm 1 and a benchmark algorithm (similar
to (19)). Since the optimal algorithm (e.g. the one that every
time a flow arrives or departs, it re-routes the existing flows in
the network in order to minimize the network cost at all times)
is hard to implement (and even unknown), instead we use a
convex relaxation method to find a lower-bound on the optimal
cost at each time. We note that, for FatTree topology, equal
splitting of every flow among its candidate paths is optimal.
For JellyFish topology, every time a flow arrives or departs,
we use CVX [42], to minimize F (Y (t)), by relaxing the com-
binatorial constraints, i.e., allowing splitting of flows among
multiple paths and re-routing the existing flows. We compare
the network cost under Algorithm 1 and traditional ECMP
(which statically assigns flows to the shortest paths (in number
of links) via flow hashing.), normalized by the lower-bound on
the optimal solution (to which we refer to as CVX in the plots).

A. Experimental Results for FatTree

Figure 3a shows that the aggregate cost under Algorithm 1
indeed converges to the optimal solution (normalized cost ratio

goes to 1) which verifies Theorem 1. Figures 3b and 3c show
the cost performance under Algorithm1 and ECMP, normal-
ized by the CVX lower-bound, under the exponential and the
empirical traffic models respectively. The traffic intensity is
measured in terms of the ratio between the steady state offered
load and the bisection bandwidth. For FatTree, the bisection
bandwidth depends on the number of core switches and their
number of ports. As we can see, our myopic algorithm is
very close to the lower-bound on the optimal value (CVX)
for light, medium, and high traffic intensities. As it is shown,
the performance improves at higher traffic intensities which
correspond to larger values of r in Theorem 1. They also
suggest that Theorem 1 holds under more general arrival
and service time processes. In this simulations, Algorithm 1
gave a performance improvement ranging form 50% to more
than 100%, compared to ECMP, depending on the traffic
intensity, under the empirical traffic model. The standard
deviation (SD) of performance ratio for 30 different runs
ranges from 0.14 to 0.01 for Algorithm 1, and from 0.3 to 0.03
for ECMP as traffic intensity grows.

B. Experimental Results for JellyFish

Figure 4a shows that the aggregate cost under Algorithm 1
indeed converges to the optimal solution which again verifies
Theorem 1. Figures 4b and 4c compare the performance of
Algorithm 1 and ECMP, normalized with the lower-boud
on the optimal solution (CVX), under both the exponential
and empirical traffic models. As before, the traffic intensity
is measured by the ratio between the steady state offered
load and the bisection bandwidth. To determine the bisection
bandwidth, we have used the bounds reported in [43] and [44]
for regular random graphs. Again we see that our myopic
algorithm performs very well in all light, medium, and high
traffics. In JellyFish, Algorithm 1 yields performance gains
ranging from 60% to 70%, compared to ECMP, under the
empirical traffic model. Corresponding SD for 30 different
runs ranges from 0.04 to 0.01 for Algorithm 1, and from 0.1
to 0.05 for ECMP as traffic intensity grows.

VI. RANDOMIZED MYOPIC ALGORITHMS

Algorithm 1 needs to consider all the available paths for
an arriving flow and finds the shortest path based on the

3678 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 4. Experimental Results for JellyFish. (a): Convergence of the network cost under Algorithm 1 in JellyFish, normalized with the lower-bound on the
optimal solution (CVX), to 1. The scaling parameter r is 100 here. (b) and (c): Performance ratio of Algorithm 1 and ECMP in JellyFish, normalized with
the lower-bound (CVX) for exponential and empirical traffic models.

(integral (5) or differential (6)) marginal cost of paths. In this
section, we describe and empirically evaluate randomized ver-
sions of our myopic algorithm which have less complexity than
Algorithm 1, while can effectively provide a large fraction of
the performance gain obtained by Algorithm 1. Our approach
is motivated by the literature on randomized load balancing
for scheduling jobs in servers, where a widely used idea is
that, instead of considering all the servers and assigning the
arriving job to the least-loaded server, k servers are first chosen
at random (for some k ≥ 2) and then the job is assigned to
the least-loaded server among them. This idea was originally
proposed in [45], where it was shown that having k = 2 leads
to exponential improvement in the expected time a job spends
in the system over k = 1 which is basically the totally random
assignment.
In our setting, a counterpart of this approach can be used

for scheduling of flows in paths as follows. Fix k, when a
flow is generated, the algorithm chooses k paths at random
out of the available paths for the flow, then calculates the
marginal costs of these k paths according to the integral or the
differential form formulas, and assigns the flow to the path
with the minimum path marginal cost among these k paths.
See Algorithm 2 for the full description.
We notice that ECMP in structured topologies like FatTree,

where all candidate paths for an arriving flow have the
same number of links (same length), is basically the random
assignment of flows to the paths which is identical to setting
k = 1 in Algorithm 2.
Next, we empirically evaluate the performance of

Algorithm 2 for different values of k. We present the results for
two different topologies and two traffic model as in Section V.
For JellyFish, we consider (at most) the first 20 shortest paths
(in terms of the number of links) for each pairs of switches
to be consistent with Section V.

A. Experimental Results for FatTree

Figures 5 and 6 show the cost performance under
Algorithm 2 with different values of k, normalized by the
cost of Algorithm 1, under the exponential and the empirical
traffic models respectively. Note that Algorithm 2 with k = 16
is equivalent to Algorithm 1, as there are at most 16 available

Algorithm 2 Randomized Myopic Algorithm with
Parameter k
Suppose a type-j flow arrives at time t when the system is in
state Y(t). Then,
1: Choose k paths from the set |Rj |, uniformly at random, let

R
(k)
j denotes this subset of paths.

2: Compute the path marginal costs w
(j)
i (Y (t)), i ∈ R

(k)
j ,

in either of the forms below:

• Integral form:

w
(j)
i (Y (t)) =

∑
l∈i

Δ(j)
l (Y (t)), (35)

• Differential form:

w
(j)
i (Y (t)) =

∑
l∈i

δ
(j)
l (Y (t)). (36)

3: Place the flow on a path i such that

i = arg min
k∈R

(k)
j

w
(j)
k (Y (t)). (37)

Break ties in (37) uniformly at random.

paths for an arriving flow in the FatTree topology we described
in Section V. Error bars in all plots correspond to standard
deviation of normalized mean network cost computed from
results of 30 runs.
In these two plots, we can see that the maximum improve-
ment in network cost we get by increasing k happens at
k = 2 compared with random assignment of flows, k = 1.
Furthermore, as we increase value of k we get smaller
improvement in performance. For instance, normalized cost
improves about 0.4 by increasing k from 1 to 2, while the
improvement from k = 2 to k = 4 is about 0.1, for traffic
intensity equal to 0.3 under exponential model (Figure 5).
This behavior is seen in both figures, and is more profound
for higher traffic intensity.

B. Experimental Results for JellyFish

Figures 7 and 8 show the network cost under Algorithm 2
with different values of k, normalized by the cost

SHAFIEE AND GHADERI: SIMPLE CONGESTION-AWARE ALGORITHM FOR LOAD BALANCING 3679

Fig. 5. Performance of Algorithm 2 with diffrent values of k, in FatTree
under the exponential traffic model, normalized with the Algorithm 1.

Fig. 6. Performance of Algorithm 2 with different values of k, in FatTree
under the empirical traffic model, normalized with the Algorithm 1.

Fig. 7. Performance of Algorithm 2 with different values of k in JellyFish
under the exponential traffic model, normalized with the Algorithm 1.

of Algorithm 1, under the exponential and the empirical traffic
models respectively. Note that Algorithm 2 with k = 20 is
equivalent to Algorithm 1, as there are at most 20 available
paths considered between any two switches in the JellyFish
topology we described in Section V.
In these figures, we observe the same behavior as what

discussed for FatTree: the performance improvement obtained
by increasing k by one is larger for smaller k. Also, com-
paring Figures 7 and 8 with Figures 4b and 4c, in order for
Algorithm 2 to beat ECMP–which only considers shortest
paths (in the terms of the number of links)–we need to choose
k ≥ 12.

Fig. 8. Performance of Algorithm 2 with different values of k in JellyFish
under the empirical traffic model, normalized with the Algorithm 1.

We also note that in JellyFish, for small k (e.g., k = 1, 2),
the normalized cost under the randomized algorithm increases
as traffic intensity grows, unlike the results for FatTree. This
can be justified by noting that the symmetric structure of
FatTree allows random assignment of flows to balance the load
better as traffic intensity increases (higher flow arrival rates)
because the number of flow-to-path assignment decisions
increases. However, in JellyFish the structure is asymmetric
and long paths are used more frequently by the randomized
algorithm as traffic intensity increases. As a result, the con-
vexity of the link cost function, and the fact that the network
cost is the summation of all links’ costs, will cause a larger
network cost in higher traffic intensities.
Based on the simulations, we conclude that to get a

reasonably good performance, we need smaller values of k
in FatTree compared to JellyFish. This can be attributed
to the fact that all the candidate paths for a flow in the
FatTree topology have the same number of links, while
in the JellyFish topology, paths can be very different in
terms of their number of links. So selection of k paths
completely at random, as used in Algorithm 2, might lead to
using long paths which contribute more to the network cost.
Thus, uniform sampling seems more suitable for symmetric
topologies like FatTree. We postpone the exact analysis of
the randomized myopic policy to a future work.

VII. FORMAL PROOFS OF FLUID LIMITS AND THEOREM 1

A. Proof of Fluid Limits

We prove the existence of fluid limits under Algorithm 1
and derive the corresponding fluid equations (12a)-(12d).
Arguments in this section are quite standard [37], [46], [47].
Recall that Y r(t) is the system state with the flow arrival rate
rλj , j ∈ J , and initial state Y r(0). The fluid-scale process is
yr(t) = Y r(t)/r, t ∈ [0,∞). Similarly, zr

l (t) = Zr
l (t)/r and

x(j)r
(t) = X(j)r

(t)/r are defined. We assume that yr(0) →
y(0) as r → ∞ for some fixed y(0).
We first show that, under Algorithm 1, the limit of the

process {yr(t)}t≥0 exists along a subsequence of r as we
show next. The process Y r(t) can be constructed as follows

Y
(j)
i

r
(t) = Y

(j)
i

r
(0) + Πa

i,j(
∫ t

0

P
(j)
i (Y r(s))rλjds)

−Πd
i,j(

∫ t

0

μjY
(j)
i

r
(s)ds), ∀j∈J , i∈Rj (38)

3680 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

where Πa
i,j(.) and Πd

i,j(.) are independent unit-rate Poisson
processes, and P

(j)
i (Y r(t)) is the probability of assigning a

type-j flow to path i when the system state is Y r(t). Note
that by the Functional Strong Law of Large Numbers [48],
almost surely,

1
r
Πa

i,j(rt) → t, u.o.c.;
1
r
Πd

i,j(rt) → t, u.o.c. (39)

where u.o.c. means uniformly over compact time intervals.
Define the fluid-scale arrival and departure processes as

ar
i,j(t) =

1
r
Πa

i,j(
∫ t

0

P
(j)
i (Y r(s))rλjds),

dr
i,j(t) =

1
r
Πd

i,j(
∫ t

0

μjY
(j)
i

r
(s)ds). (40)

Lemma 5 (Convergence to Fluid Limit Sample Paths):
If yr(0) → y(0), then almost surely, every subsequence
(yrn , arn , drn) has a further subsequence (yrnk , arnk , drnk)
such that (yrnk , arnk , drnk) → (y, a, d). The sample paths y,
a, d are Lipschitz continuous and the convergence is u.o.c.

Proof of Lemma 5: The proof is standard and follows from
the fact that ar

i,j(.) and dr
i,j(.) are asymptotically Lipschitz

continuous (see e.g., [37], [46], [49] for similar arguments),
namely, there exists a constant C > 0 such that for 0 ≤ t1 ≤
t2 < ∞,

lim sup
r

(ar
i,j(t2) − ar

i,j(t1)) ≤ C(t2 − t1), (41)

and similarly for dr
i,j(.). More precisely, for arrival process

ar
i,j(.), we argue that,

lim sup
r

(ar
i,j(t2) − ar

i,j(t1))

= lim sup
r

1
r
Πa

i,j(
∫ t2

t1

P
(j)
i (Y r(s))rλjds)

(a)

≤ lim sup
r

1
r
Πa

i,j

(∫ t2

t1

rλjds
)

= lim sup
r

(
1
r
Πa

i,j(rλj(t2 − t1)))

where inequality (a) follows from the fact that P (j)
i (Y r(s))≤1.

Using (39), we obtain (41). The argument is similar for dr
i,j(.),

noting that (yr(.)) is uniformly bounded over any finite time
interval for large r. So the limit (y, a, d) exists along the
subsequence. �

Proof of Lemma 1: It follows from (38), (40), (39), and the
existence of the fluid limits (Lemma 5), that

y
(j)
i (t) = y

(j)
i (0) + a

(j)
i (t) − d

(j)
i (t),

where d
(j)
i (t) =

∫ t

0 y
(j)
i (s)μjds, and

∑
i∈Rj

a
(j)
i (t) =

λjt, a
(j)
i (t) is nondecreasing. The fluid equations (12a) and

(12c) are the diffrential form of these equations (the fluid
sample paths are Lipschitz continuous so the derivatives exist
almost everywhere), where

p
(j)
i (t) :=

1
λj

da
(j)
i (t)
dt

. (42)

For any type j, and for w
(j)
i (y(t)) defined in (12d), let

w�
j (y(t)) = min

i∈Rj

w
(j)
i (y(t)).

Consider any regular time t and a path i /∈
argmini∈Rj

w
(j)
i (y(t)). By the continuity of w

(j)
i (y(t)),

there must exist a small time interval (t1, t2) containing t
such that

w
(j)
i (y(τ)) > w�

j (τ) ∀τ ∈ (t1, t2).

Consequently, for all r large enough along the subsequence,

w
(j)
i (yr(τ)) > w�

j (yr(τ)) ∀τ ∈ (t1, t2).

Multiplying both sides by rα, it follows that

w
(j)
i (Y r(τ)) > w�

j (Y r(τ)), ∀τ ∈ (t1, t2).

Hence P
(j)
i (Y r(τ)) = 0, τ ∈ (t1, t2), and a

r(j)
i (t1, t2) = 0,

for all r large enough along the subsequence. Therefore
a
(j)
i (t1, t2) = 0 which shows that (d/dt)a(j)

i (t) = 0 at
t ∈ (t1, t2). This establishes (12b). �

B. Proof of Theorem 1

We first show that

F (yr(∞)) =⇒ F �, (43)

where F � = F (Υ�) is the optimal cost. By Proposition 1
and the continuity of F (·), for any fluid sample path y(t)
with initial condition y(0), we can choose tε1 large enough
such that given any small ε1 > 0, |F (y(tε1)) − F �| ≤ ε1.
With probability 1, every subsequence yrn has a further sub-
sequence yrnk such that yrnk (t) → y(t) u.o.c. (see Lemma 5),
hence, by the continuous mapping theorem [48], we also have
F (yrnk (t)) → F (y(t)), u.o.c. For any ε2 > 0, for rnk

large
enough, we can choose an ε3 > 0 such that, uniformly over
all initial states yrnk (0) such that ‖yrnk (0) − y(0)‖ ≤ ε3,

P{|F (yrnk (tε1) − F (y(tε1))| < ε1} > 1 − ε2 (44)

This claim is true, since otherwise for a sequence of initial
states yrnk (0) → y(0) we have

P{|F (yrnk (tε1) − F (y(tε1))| < ε1} ≤ 1 − ε2,

which is impossible because, almost surely, we can choose
a subsequence of rnk

along which uniform convergence
F (yrnk (t)) → F (y(t)), with initial condition y(0) holds.
Hence,

P{|F (yrnk (tε1)) − F �| < 2ε1}
≥ P{|F (yrnk (tε1) − F (y(tε1))| + |F (y(tε1)) − F �| < 2ε1}
≥ P{|F (yrnk (tε1) − F (y(tε1))| < ε1} > 1 − ε2

which in particular implies

F (yrnk (∞)) =⇒ F �,

because ε1 and ε2 can be made arbitrarily small. Hence,
we have shown that every sequence F (yrn(∞)) has a further
subsequence F (yrnk (∞)) that converges to the same limit F �

SHAFIEE AND GHADERI: SIMPLE CONGESTION-AWARE ALGORITHM FOR LOAD BALANCING 3681

(the unique optimal cost). Therefore in view of [48, Th. 2.6],
we can conclude that F (yr(∞)) =⇒ F �.
Next, we show (19). Under any algorithm (including

Algorithm 1 and the optimal one),∑
i∈Rj

Y
(j)
i

r
(∞)/r = X(j)r

(∞)/r,

where X(j)r
(∞) has Poisson distribution with mean rρj , and

X(j)r
(∞), j ∈ J , are independent. Let,

s̄ = max
j∈J

sj < ∞.

The traffic over each link l is clearly bounded as

Zr
l /r < s̄

∑
j

X(j)r
(∞)/r = s̄Xr(∞)/r,

where Xr(∞) has Poisson distribution with mean
r
∑

j ρj . Hence, F (yr(∞)) is stochastically dominated
by |E|g(

s̄Xr(∞)/r
)
, and g is polynomial. It then follows

that the sequence of random variables {F (yr(∞))} (and
also {yr(∞)}) are uniformly integrable under any algorithm.
Then, in view of (43), by [48, Th. 3.5], under our Algorithm 1.

E

[
F (Y r(∞)/r)

]
→ F �. (45)

Now consider any optimal algorithm for the optimization (3).
It holds that

F (E
[
yr
opt(∞)

]
) ≤ E

[
F (yr

opt(∞))
]
≤ E

[
F (yr(∞))

]
,

where the first inequality is by Jensen’s inequality, and the
second follows from definition of optimality. Taking the limit
as r → ∞, it follows by an squeeze argument that

E

[
F (Y r

opt(∞)/r)
]
→ F �. (46)

Finally, (45) and (46) will imply (19) in view of the polynomial
structure of F .

VIII. CONCLUDING REMARKS

This paper presents a simple myopic algorithm that dynam-
ically adjusts the link weights as a function of the link
congestions and places any newly generated flow on a least
weight path in the network, with no splitting/migration of
existing flows. We demonstrate both theoretically and experi-
mentally that this myopic algorithm has a good load balanc-
ing performance. In particular, we prove that the algorithm
asymptotically minimizes a network cost and establish the
relationship between the network cost and the corresponding
weight construct. Although our theoretical result is an asymp-
totic result, our experimental results show that the algorithm in
fact performs very well under a wide range of traffic conditions
and different datacenter networks.
While the algorithm has low complexity, the real implemen-

tation depends on how fast the weight updates and least weight
paths can be computed in practical datacenters (e.g., based
on SDN). One possible way to improve the computation
time-scale is to perform the computation periodically or only
for long flows, while using the previously computed least
weight paths for short flows or between the periodic updates.

Another possibility is to use the randomized versions of our
myopic algorithm with an optimized parameter k which only
takes a small random subset of available paths into account
and finds the shortest path among them. While this algorithm
has much lower complexity, it performs very well in structured
topologies such as FatTree for small k. We leave theoretical
analysis of the randomized versions as an open problem for
future work. Finally, we would like to note that our myopic
algorithm and its randomized versions can be directly applied
to scheduling flowlets instead of scheduling flows, which can
give higher rate/granularity of flows [6], [36].

REFERENCES

[1] M. Shafiee and J. Ghaderi, “A simple congestion-aware algorithm for
load balancing in datacenter networks,” in Proc. 35th Annu. IEEE Int.
Conf. Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

[3] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. 7th Conf. Emerg. Netw.
Experim. Technol., 2011, Art. no. 8.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
NSDI, vol. 10. 2010, p. 19.

[5] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 4,
pp. 266–277, Aug. 2011.

[6] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load bal-
ancing without packet reordering,” ACM SIGCOMM Comput. Commun.
Rev., vol. 37, no. 2, pp. 51–62, 2007.

[7] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 51–62,
2009.

[8] C. Guo et al., “BCube: A high performance, server-centric network
architecture for modular data centers,” ACM SIGCOMM Comput.
Commun. Rev., vol. 39, no. 4, pp. 63–74, 2009.

[9] M. Bradonjić, I. Saniee, and I. Widjaja, “Scaling of capacity and
reliability in data center networks,” ACM SIGMETRICS Perform. Eval.
Rev., vol. 42, no. 2, pp. 46–48, 2014.

[10] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers, randomly,” in Proc. NSDI, vol. 12. 2012, p. 17.

[11] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements & analysis,” in Proc. 9th
ACM SIGCOMM Conf. Internet Meas. Conf., 2009, pp. 202–208.

[12] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact
of packet spraying in data center networks,” in Proc. IEEE INFOCOM,
Apr. 2013, pp. 2130–2138.

[13] S. Even, A. Itai, and A. Shamir, “On the complexity of time table and
multi-commodity flow problems,” in Proc. 16th Annu. Symp. Found.
Comput. Sci., Oct. 1975, pp. 184–193.

[14] G. M. Guisewite and P. M. Pardalos, “Minimum concave-cost network
flow problems: Applications, complexity, and algorithms,” Ann. Oper.
Res., vol. 25, no. 1, pp. 75–99, 1990.

[15] Y. Dinitz, N. Garg, and M. X. Goemans, “On the single-source unsplit-
table flow problem,” in Proc. 39th Annu. Symp. Found. Comput. Sci.,
1998, pp. 290–299.

[16] R. N. Mysore et al., “PortLand: A scalable fault-tolerant layer 2
data center network fabric,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 39, no. 4, pp. 39–50, 2009.

[17] J. Cao et al., “Per-packet load-balanced, low-latency routing for clos-
based data center networks,” in Proc. 9th ACM Conf. Emerg. Netw.
Experim. Technol., 2013, pp. 49–60.

[18] P. Gill, N. Jain, and N. Nagappan, “Understanding network fail-
ures in data centers: Measurement, analysis, and implications,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 350–361,
Aug. 2011.

[19] M. Chiesa, G. Kindler, and M. Schapira, “Traffic engineering with
Equal-Cost-MultiPath: An algorithmic perspective,” IEEE/ACM Trans.
Netw., vol. 25, no. 2, pp. 779–792, Apr. 2017.

3682 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

[20] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, “Scalable, optimal flow
routing in datacenters via local link balancing,” in Proc. 9th ACM Conf.
Emerg. Netw. Experim. Technol., 2013, pp. 151–162.

[21] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM
placement and routing for data center traffic engineering,” in Proc. IEEE
INFOCOM, Mar. 2012, pp. 2876–2880.

[22] K. He et al., “Presto: Edge-based load balancing for fast datacenter
networks,” in Proc. ACM Conf. Special Interest Group Data Commun.,
2015, pp. 465–478.

[23] R. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE Trans. Commun., vol. COM-25, no. 1, pp. 73–85,
Jan. 1977.

[24] N. Michael and A. Tang, “HALO: Hop-by-hop adaptive link-state opti-
mal routing,” IEEE/ACM Trans. Netw., vol. 23, no. 6, pp. 1862–1875,
Dec. 2015.

[25] D. Xu, M. Chiang, and J. Rexford, “Link-state routing with hop-by-hop
forwarding can achieve optimal traffic engineering,” IEEE/ACM Trans.
Netw., vol. 19, no. 6, pp. 1717–1730, Dec. 2011.

[26] R. W. Rosenthal, “A class of games possessing pure-strategy Nash
equilibria,” Int. J. Game Theory, vol. 2, no. 1, pp. 65–67, 1973.

[27] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic
Game Theory, vol. 1. Cambridge, U.K.: Cambridge Univ. Press, 2007.

[28] T. Roughgarden, Selfish Routing and the Price of Anarchy, vol. 174.
Cambridge, MA, USA: MIT Press, 2005.

[29] P. Key, L. Massoulié, and D. Towsley, “Path selection and multipath
congestion control,” in Proc. IEEE 26th IEEE Int. Conf. Comput.
Commun. (INFOCOM), May 2007, pp. 143–151.

[30] J. G. Wardrop, “Road paper. Some theoretical aspects of road traffic
research,” Proc. Inst. Civil Eng., vol. 1, no. 3, pp. 325–362, 1952.

[31] D. Applegate and E. Cohen, “Making intra-domain routing robust to
changing and uncertain traffic demands: Understanding fundamental
tradeoffs,” in Proc. Conf. Appl., Technol., Architectures, Protocols
Comput. Commun., 2003, pp. 313–324.

[32] H. Wang et al., “COPE: Traffic engineering in dynamic networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 36, no. 4, pp. 99–110, 2006.

[33] M. Bienkowski, M. Korzeniowski, and H. Räcke, “A practical algorithm
for constructing oblivious routing schemes,” in Proc. 15th Annu. ACM
Symp. Parallel Algorithms Architectures, 2003, pp. 24–33.

[34] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[35] M. Casado et al., “Rethinking enterprise network control,” IEEE/ACM
Trans. Netw., vol. 17, no. 4, pp. 1270–1283, Aug. 2009.

[36] M. Alizadeh et al., “CONGA: Distributed congestion-aware load balanc-
ing for datacenters,” in Proc. ACM Conf. SIGCOMM, 2014, pp. 503–514.

[37] A. L. Stolyar, “An infinite server system with general packing con-
straints,” Oper. Res., vol. 61, no. 5, pp. 1200–1217, 2013.

[38] M. Chiesa, G. Kindler, and M. Schapira, “Traffic engineering with
Equal-Cost-MultiPath: An algorithmic perspective,” in Proc. IEEE
INFOCOM, Apr. 2014, pp. 1590–1598.

[39] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in Proc. 19th Annu. Joint Conf. IEEE Comput. Commun.
Soc. (INFOCOM), vol. 2. Mar. 2000, pp. 519–528.

[40] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[41] D. Ersoz, M. S. Yousif, and C. R. Das, “Characterizing network traffic in
a cluster-based, multi-tier data center,” in Proc. 27th Int. Conf. Distrib.
Comput. Syst. (ICDCS), 2007, p. 59.

[42] M. Grant and S. Boyd. (Mar. 2014). CVX: MATLAB Software for
Disciplined Convex Programming, Version 2.1. [Online]. Available:
http://cvxr.com/cvx

[43] J. Díaz, M. J. Serna, and N. C. Wormald, “Bounds on the bisection
width for random d-regular graphs,” Theor. Comput. Sci., vol. 382, no. 2,
pp. 120–130, 2007.

[44] B. Bollobás, “Random graphs,” in Modern Graph Theory. New York,
NY, USA: Springer, 1998, pp. 215–252.

[45] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10,
pp. 1094–1104, Oct. 2001.

[46] A. L. Stolyar and Y. Zhong, “Asymptotic optimality of a greedy
randomized algorithm in a large-scale service system with general
packing constraints,” Queueing Syst., vol. 79, no. 2, pp. 117–143, 2015.

[47] J. Ghaderi, Y. Zhong, and R. Srikant, “Asymptotic optimality of BestFit
for stochastic bin packing,” ACM SIGMETRICS Perform. Eval. Rev.,
vol. 42, no. 2, pp. 64–66, 2014.

[48] P. Billingsley, Convergence of Probability Measures, 2nd ed. New York,
NY, USA: Wiley, 1999.

[49] S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and
Convergence, vol. 282. Hoboken, NJ, USA: Wiley, 2009.

Mehrnoosh Shafiee received the B.Sc. degree from
the EE Department, Sharif University of Technol-
ogy, Tehran, Iran. She is currently pursuing the
joint M.Sc. and Ph.D. degrees with the Depart-
ment of Electrical Engineering, Columbia Univer-
sity, since 2014. She is interested in the analysis and
design of resource allocation algorithms for large-
scale distributed systems.

Javad Ghaderi received the B.Sc. degree from
the University of Tehran, Iran, in 2006, the M.Sc.
degree from the University of Waterloo, Canada,
in 2008, and the Ph.D. degree from the University of
Illinois at Urbana–Champaign (UIUC) in 2013, all
in electrical and computer engineering. He spent a
one-year Simons Postdoctoral Fellowship with The
University of Texas at Austin. He joined the Depart-
ment of Electrical Engineering, Columbia Univer-
sity, in 2014. His research interests include network
algorithms and network control and optimization.

He was recipient of the Mac Van Valkenburg Graduate Research Award,
UIUC, the Best Student Paper Finalist at the 2013 American Control Con-
ference, the Best Paper Award at the CoNEXT 2016, and the NSF CAREER
award in 2017.

