

Analysis of Isomeric Opioids in Urine using LC-TIMS-TOF MS

Kendra J. Adams¹; Cesar E. Ramirez¹; Natalie F. Smith¹; Ana Celia Muñoz-Muñoz²; Lawrence Andrade²;

Francisco Fernandez-Lima^{1,3*}

¹ Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199

²*Dominion Diagnostics, North Kingstown, Rhode Island 02852*

³ Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199

Abstract

In the present work, a fast separation, identification and quantification workflow based on liquid chromatography coupled to trapped ion mobility in tandem with mass spectrometry (LC-TIMS-MS) is described for the analysis of common isomeric drugs of abuse and their metabolites in human urine. In particular, the analytical performance of LC-TIMS-MS is shown for identification based on retention time, collision cross section and accurate mass for three sets of common isomeric opioids and their deuterated analogs in urine. The LC-TIMS-MS analysis provided limits of detection of 1.4 - 35.2 ng/mL with demonstrated linearity up to 500 ng/mL, enabling discovery and targeted monitoring (DTM) of opioids in urine, with high precision in retention times (RT) (<0.3%), collision cross sections (CCS) (<0.6%) and mass accuracy (<1 ppm) across multiple measurements using external calibration. A good agreement was observed between theoretical and experimental CCS from candidate structures optimized at the DFT/B3LYP level. The need for complementary liquid and mobility separations prior to mass analysis is shown for the analysis of complex mixtures, with mobility resolving power of 80-130. The reproducibility and high speed of LC-TIMS-MS analysis provides a powerful platform for drug and metabolite screening in biological matrices with higher precision and confidence than traditional LC-multiple reaction monitoring (MRM) approaches.

25 **Keywords:** liquid chromatography; trapped ion mobility spectrometry; mass spectrometry, drugs of abuse;
26 isomeric separation; opioids.

27 **Introduction**

28 An opioid epidemic has existed in the United States for almost twenty years; however, the rate of
29 ongoing drug abuse continues to increase. Since 2000, deaths from drug overdose have virtually tripled and
30 deaths involving opioids (including opioid painkillers and heroin) have increased nearly 200% [1]. In 2015
31 ~62% of the ca. 50000 deaths related to drug overdose are associated to opioid use, involving both illicit
32 and legally prescribed drugs [2-5]. This ever-increasing incidence of drug-related mortalities translates into
33 a clear and present need for more sensitive techniques for drug detection and identification [6, 7]. Low
34 therapeutic and abuse concentrations pose a challenge for screening and quantification of illicit drugs,
35 analytical methods with high selectivity and sensitivity are need as monitoring tools for opioids to aid health
36 care providers in their assessment for addiction treatment compliance and misuse [8, 9].

37 Urine testing is a common first step when caring for opioid addicts or individuals using drugs for
38 pain management purposes [10-13]. Preliminary drug testing in urine typically includes the use of
39 immunoassays, which provide qualitative results allowing the analyst to confirm the presence of broad drug
40 classes [14-17]. Although immunoassays provide rapid results, they typically fail to identify specific drugs
41 types and lack sensitivity (cut-off concentrations ~300 ng/mL) and are also prone to cross-reactivity,
42 increasing the possibility of false results [14-17]. In comparison, liquid chromatography coupled to tandem
43 mass spectrometry (LC-MS/MS) provides specific drug identifications based on retention time, intact mass
44 and fragmentation patterns, and is becoming the gold standard for the detection of drugs of abuse and their
45 metabolites in human fluids [14, 18-21]. The use of LC-MS/MS significantly decreases the rate of false
46 results and is traditionally employed following a positive immunoassay test as a confirmatory tool [14, 16,
47 22, 23]. Identification, confirmation, and quantification of opioids in biological fluids, including urine and
48 plasma, have been accomplished with LC-MS/MS, typically using triple-quadrupole instruments operating
49 under multiple reaction monitoring (MRM) scan mode [9, 14-16]. Chromatography methods range from 6-

50 35 minutes in length and report cut-off concentrations, or limits of detection (LODs) significantly lower
51 than those of immunoassays ranging from 0.1 to 126 ng/mL in urine [14].

52 Ion mobility spectrometry coupled to mass spectrometry (IMS-MS) has been used for detection
53 and separation of opioid compounds [18, 24-32]. Previous studies have reported mobility values for
54 codeine, morphine, normorphine, norcodeine, acetylcodeine, O⁶-monoacetylmorphine, heroin and several
55 other drugs using drift tube ion mobility spectrometers (DT-IMS) [18, 25, 30, 32]. In a more recent opioid
56 analysis using high-field asymmetric wave-form ion mobility spectrometry (FAIMS), the separation of
57 various isomeric opioids was shown with limits of detection (LODs) in urine for morphine and codeine of
58 60 ng/mL and 20 ng/mL, respectively [26, 28, 29, 31]. With the recent advent of higher resolving powers
59 (R up to 400 [33]) and more sensitive ion mobility analyzers (e.g., Trapped Ion Mobility Spectrometers
60 [34-36]) there is a need to further develop complementary separations based on mass spectrometry for the
61 study and characterization of complex biological samples [37-39]. In particular, liquid chromatography and
62 trapped ion mobility separation techniques have proven useful for the analysis of single components in
63 biological matrices [37].

64 In the present study, for the first time, LC is coupled to TIMS in tandem with high resolution MS
65 to provide a cohesive, multidimensional method to achieve high throughput analysis of isomeric opioids in
66 urine. As a proof of concept, three sets of common isomeric opioids and their corresponding deuterated
67 analogs are detected at trace levels in human urine after a “dilute-and-shoot” strategy. The compounds are
68 identified based on their retention time, collisional cross section (CCS) and accurate mass, providing
69 detection levels similar to those obtained with LC-MS/MS applications. With the additional selectivity
70 provided by the TIMS separation much higher selectivity is afforded (decreased false positives). In this
71 method, because detection is not limited to a few MRM transitions the discovery of new targets or
72 metabolites and/or data back-interrogation is enabled.

73 **Experimental Methods**

74 **Materials and Reagents**

75 All solvents were purchased from Fisher Scientific (Pittsburg, PA) and were of LC-MS quality or
76 better. Opioid compounds and deuterated standards were purchased from Cerilliant (Round Rock, TX).
77 Eight opioid compounds and their deuterated analogs were analyzed: 6-acetylmorphine (A-009), 6-
78 acetylmorphine-D₃ (A-006), naloxone (N-004), naloxone-D₅ (N-063), codeine (C-006), codeine-D₆ (C-
79 040), hydrocodone (H-003), hydrocodone-D₃ (H-005), morphine (M-005), morphine-D₃ (M-003),
80 hydromorphone (H-004), hydromorphone-D₃ (H-006), norcodeine (N-005), norcodeine-D₃ (N-082),
81 norhydrocodone (N-053) and norhydrocodone-D₃ (N-054). Human urine was purchased from Innovative
82 Research (Novi, MI, USA) and supplied by opioid-free volunteers.

83 **Human Urine “dilute-and-shoot” Sample Preparation**

84 Calibration curves were prepared by adding a known amount of a mixture of the Cerilliant standards
85 in human urine or water and spiking with 50 uL of deuterated internal standard (IS) mix. The curves
86 consisted of seven calibration points ranging from 0.1 - 500 ng/mL with a constant 50 ng/mL of deuterated
87 IS mix. The spiked samples were diluted with water with 10% methanol for a final sample volume of
88 300 uL. No further extraction or preparation procedures were performed prior to analysis. Limits of
89 detection (LODs) were determined using the linear regression method, where the lowest detectable signal
90 is calculated from the intercept and standard error of the regression line calculated; limits of quantification
91 (LOQs) are reported as 5-times the LOD. Matrix effect experiments were performed using ten opioid-free
92 urine samples spiked at low (75 ng/mL) and high (400 ng/mL) concentrations with 50 ng/mL of IS. Matrix
93 effects were calculated by comparing the ratios of the spiked matrix samples to the average of six matrix -
94 free water samples to obtain a matrix factor (MF).

96 **LC- TIMS-MS Analysis**

97 The LC-TIMS-TOF MS analysis was performed using a custom-built TIMS-TOF MS based on the
98 maXis impact Q-ToF MS (Bruker Daltonics Inc, Billerica, MA). Sample injection (50 μ L) and LC
99 separation was performed on a Shimadzu Prominence HPLC system consisting of two 20AD pumps, a SIL-
100 20AC auto-sampler and a CTO 20-A column oven held at 40° C (Kyoto, Japan). An Onyx Monolithic C18
101 HPLC column (100 x 4.6 mm) was used protected by an Onyx guard column (5 x 4.6 mm), both from
102 Phenomenex (Torrance, CA, USA). The mobile phase A composition consisted of 50 mM ammonium
103 acetate in water and the mobile phase B consisted of 50 mM ammonium acetate in 96:4 methanol:water
104 v:v. Mobile phase composition was changed as follows: sample injection at 0% B and hold for 1.5 minutes.
105 From 1.5 to 2.5 minutes increase to 99% B and hold until 4.25 minutes. Decrease to 0% B at 4.5 minutes
106 and hold until 6 minutes for column re-equilibration at a flow rate of 2 mL/min.

107 Samples were ionized using an ionBooster ESI source (Bruker Daltonics Inc, Billerica, MA) in
108 positive ion mode. Typical ionBooster operating conditions were 1000 V capillary voltage, 400 V end plate
109 offset, 300 V charging voltage, 4.1 bar nebulizer pressure, 3.0 L/min dry gas, 250 °C dry heater, and 375 °C
110 vaporizer.

111 A detailed overview of the TIMS analyzer and its operation can be found elsewhere [34-36]. The nitrogen
112 bath gas flow is defined by the pressure difference between entrance funnel P_1 = 3.0 mbar and the exit
113 funnel P_2 = 0.9 mbar at *ca.* 300 K (see Figure S1). The TIMS separation depends on the gas flow velocity
114 (v_g), ramp voltage (V_{ramp}), base voltage (V_{out}) and ramp time (t_{ramp} = number of steps x TOF time). The scan
115 rate ($Sr = \Delta V_{ramp}/t_{ramp}$) is directly related to the resolving power of the TIMS analyzer.

116 Each isomer emerges at a characteristic voltage ($V_{elution}$):

117
$$K_0 = v_g/E \approx A/(V_{elution} - V_{out}) \quad (1)$$

118 where A is a calibration constant that can be determined using standards of known mobilities (*i.e.*, Tuning
119 Mix calibration standard m/z 322, $K_0 = 1.376 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ and m/z 622, $K_0 = 1.013 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$) [36]. The

120 TIMS cell was operated using a fill/ramp sequence of 10ms/100ms for ~10% duty cycle and the TOF
121 analyzer was operated at 10 kHz (*m/z* 100-2500). Typical values were $V_{\text{deflector}} = 180$, $V_{\text{capillary}} = 150$, V_{funnel}
122 $_{\text{1 in}} = 90\text{V}$, $V_{\text{ramp}} = -175 - 20$, $V_{\text{out}} = 60\text{V}$, and a 250 Vpp at 880 kHz rf. A typical scan rate of $S_r = 1.95\text{ V/ms}$
123 was used, or lower as needed to increase the mobility resolution. All voltages were controlled using custom
124 software in LabView (National Instruments) synchronized with the MS platform controls. The data was
125 segmented in LC frames over 10 analysis cycles yielding an LC-TIMS-TOF MS step size of ~2 s. The
126 TIMS operation was controlled using in-house software, written in National Instruments LabVIEW, and
127 synchronized with the maXis Impact Q-ToF acquisition program [34].

128 Reduced mobility values (K_0) were correlated with collisional cross section (Ω) using the equation:

$$129 \Omega = \frac{(18\pi)^{1/2}}{16} \frac{z}{(k_B T)^{1/2}} \left[\frac{1}{m_i} + \frac{1}{m_b} \right]^{1/2} \frac{1}{K_0} \frac{1}{N^*} \quad (2)$$

130 where z is the charge of the ion, k_B is the Boltzmann constant, N^* is the number density of the bath gas, and
131 m_i and m_b refer to the masses of the ion and bath gas, respectively [40]. LC-TIMS-TOF MS data were
132 processed using Data Analysis software v. 5.0 (Bruker Daltonics Inc, Billerica, MA).

133 Theoretical calculations

134 A pool of candidate structures was proposed for all molecules of interest. Final structures were
135 optimized at the DFT/B3LYP/6-311G(d,p) level using Gaussian software [41]. Vibrational frequencies
136 were calculated to guarantee that the optimized structures correspond to actual minima in the energy space,
137 and zero-point energy corrections were applied to calculate the relative stability between the structures.
138 Theoretical ion-neutral collision cross sections were calculated using MOBCAL [42, 43] software for
139 nitrogen as a bath gas at ca. 300K. Partial atomic charges were calculated using the Merz-Singh-Kollman
140 scheme constrained to the molecular dipole moment [44, 45].

141 **Results and Discussion**

142 Ion mobility profiles of isomeric opioid compounds (6-acetylmorphine (6-AM) and naloxone;
143 codeine and hydrocodone; morphine, hydromorphone, norcodeine and norhydrocodone; and their
144 respective deuterated analogs) show a single band for each of the protonated molecules $[M+H]^+$ (Figure 1)
145 with small differences in ion-neutral collision cross section values in nitrogen ($^{TMS}CCS_{N_2}$): 6-AM and
146 naloxone (176.7 and 171.1 \AA^2 , ~3%), codeine and hydrocodone (168.2 and 167.8 \AA^2 , <1%) and morphine,
147 hydromorphone, norcodeine, and norhydrocodone (162.9, 163.2, 167.9 and 167.4 \AA^2 , <1-3%) (see Table
148 1). These CCS values agree (Table 1) with theoretically calculated CCS (<5%) and previous studies that
149 measured reduced mobilities using drift tube ion mobility spectrometry (DT-IMS) [18, 24, 25, 27, 32, 46].
150 Upon review of the proposed candidate structures, visual similarities and differences in the size and shape,
151 and, therefore, the theoretical CCS, are observed between opioid isomers (Figure 2). For example, major
152 differences in the orientation of the nitrogen group as well as the methyl group on the oxygen atom are
153 observed between 6-AM and naloxone (as highlighted in Figure 2). These differences are also observed in
154 the measured experimental and theoretical CCS, which allow isomer separation, even at fast scanning rates
155 (Table 1 and Figure 1). The candidate structures of codeine and hydrocodone, vary by the presence or
156 absence of a carbonyl group on a six-membered ring. This difference results in minimal changes in size;
157 that is, the CCS values only slightly differ from each other (Figure 2). Morphine, hydromorphone,
158 norcodeine and norhydrocodone differ in structure at the nitrogen, depending on whether a secondary
159 (norcodeine and norhydrocodone) or tertiary amine (morphine and hydromorphone) is present in the
160 compound. The difference in orientation of the amine group alters the theoretically calculated and
161 experimentally measured CCS (Figure 2). Specifically, the similar amine group orientations of morphine
162 and hydromorphone mean that the compounds cannot be separated based on CCS. Conversely,
163 morphine/norcodeine and hydromorphone/norhydrocodone have different amine orientations can be
164 baseline separated in their mobility profiles (see Figures 2 and 3).

165 While mobility separation was observed using fast scan rates ($S_r = 0.5\text{-}1.5 \text{ V/ms}$); it is noteworthy
166 that baseline mobility separations are observed between 6-AM and naloxone, hydromorphone and
167 norhydrocodone and morphine and norcodeine using slower scan rates ($S_r = 0.2 \text{ V/ms}$) with resolving
168 power in excess of 100 (see Figure 3). The ability to obtain baseline separation between these isomeric
169 opioids can be attributed to the size and shape of the individual compounds, based the reported candidate
170 structures (Figure 2). Previous mobility analyses using drift tube IMS report resolving powers of about 70
171 for codeine and morphine, which are not isomers [30]. Despite the high resolving power of the TIMS
172 analyzer, complete separation for all the isomers considered was not obtained (e.g., codeine and
173 hydrocodone, morphine and hydromorphone, nor norcodeine and norhydrocodone), due to the marginal
174 structural differences leading to minimal variations in CCS between these isomers ($<1 \text{ \AA}^2$). Isomeric opioids
175 that have previously separated include: hydromorphone, morphine and norhydrocodone, via field
176 asymmetric ion mobility spectrometry (FAIMS) MRM-MS [28] and codeine and hydrocodone using a
177 modified differential mobility spectrometry (DMS) cell [47].

178 The influence of matrix effects on the “dilute and shoot” LC-TIMS-MS workflow was studied by
179 comparing the separation of opioid standards in water and in human urine. Inspection of the 2D-IMS-MS
180 plots show a single trendline, containing the opioids as well as other potential interferences from the urine
181 sample. Closer inspection of the opioid region reveals the separation of the opioid signals; however,
182 potential molecular interferences from the urine may lead to higher limits of detection when compared to
183 other IMS-MS-based DTM methods where the compounds of interest fall in a different trendline (data not
184 shown) [37]. Moreover, the added advantage of liquid chromatography as a third dimension of separation
185 allows for a clear separation of the potential matrix interferants as well as the separation of isomeric analytes
186 that were not possible by TIMS-MS alone (Figure 4). The chromatographic program in this research had a
187 final separation time of 12 min which is comparable to the reported LC-MRM times (e.g., 6-35 min) for
188 opioid analysis [14]. Notice that the IS can be easily identified since they share the same retention time and
189 CCS as their corresponding analyte. For example, naloxone and 6-AM can be separated by TIMS and by

190 LC (retention times of 6.85 and 7.00 min, respectively). For quantification purposes, while the potential
191 targets for naloxone and 6-AM isomers will have the same mass value, the IS of choice have different levels
192 of deuteration so that they can be easily separated in the MS domain. That is, naloxone shows peaks at *m/z*
193 328.1542 and 333.1857 corresponding to the $[M+H]^+$ of the analyte and the IS $[M(D_5)+H]^+$ containing five
194 deuterium atoms. The mass spectrum for 6-AM contains two main peaks at *m/z* 328.1542 and 331.1730,
195 corresponding to the analyte $[M+H]^+$ and the IS $[M(D_3)+H]^+$ with three deuterium atoms (Figure 4a).
196 Codeine and hydrocodone are not separated in the mobility domain, yet there is near-baseline separation in
197 the LC (6.8 and 7.0 minutes, respectively) (Figure 4b). Analogous to the naloxone and 6-AM quantification,
198 the IS for codeine and hydrocodone are chosen with different amounts of deuterium so that they can be
199 easily separated in the MS domain. Norcodeine and norhydrocodone are not separated in the mobility
200 domain, yet there is near-baseline separation in the LC (6.9 and 7.0 min, respectively) (Figure 4c).

201 Limits of detection (LODs) were compared between traditional two-dimensional separation (e.g.,
202 LC-TOF MS) and the currently proposed three-dimensional separation (e.g., LC-TIMS-TOF MS) for rapid
203 and robust analysis of drugs of abuse and their metabolites. The LC-TOF MS and LC-TIMS-TOF MS
204 results are summarized in Table 2; noteworthy are the LC-TIMS-TOF MS LODs for the common opioids
205 in human urine: 1.4-31.2 ng/mL using a DTM method. These results compare to reported LODs of
206 0.6-2.5 ng/mL with 4-160 ng/mL linearity range using various extraction methods with MRM [14, 48-50].
207 An increase in the LODs was generally observed in the presence of human urine which is consistent with
208 increased background levels and/or decreased ionization yields associated with matrix effects. The limits
209 of quantitation (LOQs) range from 30.2-156 ng/mL which are in agreement with reported LOQs of 0.1-126
210 ng/mL from single reaction monitoring (SRM) and MRM approaches [14, 48-50].

211 Evaluation of reproducibility and effect of chemical environment for three identification parameters
212 (CCS, RT and *m/z*) is illustrated across the calibration levels analyzed (Figure 5). In the CCS domain,
213 marginal deviations were observed between samples with and without urine (relative percent deviation,
214 RPD, <0.5%). Additionally, CCS values did not change across calibration levels, suggesting that CCS is a

215 valid parameter for analyte identification in the tested range and that this parameter could be a valuable
216 addition to the traditionally used for qualitative analysis such as retention time (RT) and, when possible,
217 accurate mass. In this case, RTs were minimally affected in the presence of urine (RPD of samples analyzed
218 in urine compared to water were below 0.5%) and a high mass accuracy (<1 ppm) was observed for all
219 analytes across calibration levels in the presence of urine. In addition, intra-day reproducibility is shown by
220 small (<0.25%) percent relative standard (%RSD) for individual analytes in water and human urine across
221 the seven calibration points (Table 3). These results demonstrate the reliability of this methodology for
222 identifications in multiple dimensions using LC-TIMS-MS for quantitative analyses at the low ng/mL
223 levels. During the performance of the matrix effect experiments, no significant differences in the matrix
224 factor (MF) of ten individual urine samples were observed for morphine, norhydromorphone, norcodeine,
225 norhydrocodone, codeine and hydrocodone spiked at high (400 ng/mL) and low (75 ng/mL) concentrations
226 (coefficient of variance, CV>15%) (See Figure S2).

227 **Conclusions**

228 For the first time, liquid chromatography, trapped ion mobility spectrometry and mass spectrometry were
229 combined for fast separation, identification and quantitation of opioids and their metabolites in human urine
230 using a “dilute and shoot” approach. The proposed workflow provides analytical separation in the mobility
231 and chromatographic domains within a 12 min analysis time, with LODs of 1.4 - 35.2 ng/mL with 0.5-
232 500 ng/mL linearity range using DTM of opioids in urine. A good agreement was observed between the
233 previously reported ^{DTIMS}CCS, measured ^{TIMS}CCS, and the theoretical CCS of the candidate structures for
234 the familiar opioids optimized at the DFT/B3LYP level. Beside the higher confidence during LC-TIMS-
235 TOF MS analyses, similar LODs and LOQs are reported to those obtained using traditional LC-MRM
236 measurements, with small relative percent deviations in retention times (<0.3%), and collision cross
237 sections (<0.6%) and high mass accuracy (<1ppm). The need for complementary liquid and mobility
238 separations prior to mass analysis is shown for the analysis of complex mixtures, with a two-fold increase
239 in mobility resolving power (R~ 80-130) compared to previous reports using DT-IMS (R~50-70).

240 **Corresponding Author Information**

241 Department of Chemistry and Biochemistry

242 Florida International University

243 11200 SW 8th Str., AHC4-233

244 Miami, Florida, 33199

245 *Phone: 305-348-2037. Fax: 305-348-3772. E-mail: fernandf@fiu.edu.

246 **Acknowledgements**

247 This work was supported by a National Science Foundation Division of Chemistry, under CAREER award
248 CHE-1654274, with co-funding from the Division of Molecular and Cellular Biosciences to F.F.-L. The
249 authors would also like to acknowledge the helpful discussions and technical support from Dr. Mark E.
250 Ridgeway and Dr. Melvin A. Park from Bruker Daltonics Inc. during the development and installation of
251 the custom-built TIMS-TOF MS instrument. KJA would like to thank the financial support from an FIU
252 Dissertation Year Fellowship.

253

254 **References**

255 [1] R.A. Rudd, N. Aleshire, J.E. Zibbell, R. Matthew Gladden, Increases in drug and opioid
256 overdose deaths—United States, 2000–2014, *American Journal of Transplantation*, 16 (2016)
257 1323-1327.

258 [2] R.A. Rudd, Increases in drug and opioid-involved overdose deaths—United States, 2010–2015,
259 *MMWR. Morbidity and mortality weekly report*, 65 (2016).

260 [3] N.D. Volkow, A.T. McLellan, Opioid abuse in chronic pain—misconceptions and mitigation
261 strategies, *New England Journal of Medicine*, 374 (2016) 1253-1263.

262 [4] R.M. Gladden, Fentanyl law enforcement submissions and increases in synthetic opioid-
263 involved overdose deaths—27 states, 2013–2014, *MMWR. Morbidity and mortality weekly
264 report*, 65 (2016).

265 [5] L.H. Chen, H. Hedegaard, M. Warner, Drug-poisoning deaths involving opioid analgesics:
266 United States, 1999-2011, NCHS data brief, (2014) 1-8.

267 [6] S.H.Y. Wong, I. Sunshine, Handbook of analytical therapeutic drug monitoring and toxicology,
268 CRC Press, 1996.

269 [7] S. Okie, A flood of opioids, a rising tide of deaths, *New England Journal of Medicine*, 363
270 (2010) 1981-1985.

271 [8] M.L. Smith, R.O. Hughes, B. Levine, S. Dickerson, W.D. Darwin, E.J. Cone, Forensic drug
272 testing for opiates. VI. Urine testing for hydromorphone, hydrocodone, oxymorphone, and
273 oxycodone with commercial opiate immunoassays and gas chromatography-mass spectrometry,
274 *Journal of Analytical Toxicology*, 19 (1995) 18-26.

275 [9] M. Gergov, P. Nokua, E. Vuori, I. Ojanperä, Simultaneous screening and quantification of 25
276 opioid drugs in post-mortem blood and urine by liquid chromatography-tandem mass
277 spectrometry, *Forensic Science International*, 186 (2009) 36-43.

278 [10] A. Yang, C.L. Arfken, C.E. Johanson, Steps physicians report taking to reduce diversion of
279 buprenorphine, *The American journal on addictions*, 22 (2013) 184-187.

280 [11] L.A. Marsch, M.A.C. Stephens, T. Mudric, E.C. Strain, G.E. Bigelow, R.E. Johnson,
281 Predictors of outcome in LAAM, buprenorphine, and methadone treatment for opioid dependence,
282 *Experimental and clinical psychopharmacology*, 13 (2005) 293.

283 [12] L. Manchikanti, R. Manchukonda, V. Pampati, K.S. Damron, D. Brandon, K. Cash, C.
284 McManus, Does random urine drug testing reduce illicit drug use in chronic pain patients receiving
285 opioids?, *Pain Physician*, 9 (2006) 123.

286 [13] N. Katz, G.J. Fanciullo, Role of urine toxicology testing in the management of chronic opioid
287 therapy, *The Clinical journal of pain*, 18 (2002) S76-S82.

288 [14] D. French, The challenges of LC-MS/MS analysis of opiates and opioids in urine,
289 *Bioanalysis*, 5 (2013) 2803-2820.

290 [15] L. Manchikanti, Y. Malla, B.W. Wargo, B. Fellows, Comparative evaluation of the accuracy
291 of immunoassay with liquid chromatography tandem mass spectrometry (LC/MS/MS) of urine
292 drug testing (UDT) opioids and illicit drugs in chronic pain patients, *Pain Physician*, 14 (2011)
293 175-187.

294 [16] A. Pesce, M. Rosenthal, R. West, C. West, B. BCrews, C. Mikel, P. Almazan, S. Latyshev,
295 An evaluation of the diagnostic accuracy of liquid chromatography-tandem mass spectrometry
296 versus immunoassay drug testing in pain patients, *Pain Physician*, 13 (2010) 273-281.

297 [17] A.H. Wu, C. McKay, L.A. Broussard, R.S. Hoffman, T.C. Kwong, T.P. Moyer, E.M. Otten,
298 S.L. Welch, P. Wax, National academy of clinical biochemistry laboratory medicine practice
299 guidelines: recommendations for the use of laboratory tests to support poisoned patients who
300 present to the emergency department, *Clinical Chemistry*, 49 (2003) 357-379.

301 [18] L.M. Matz, H.H. Hill, Evaluation of opiate separation by high-resolution electrospray
302 ionization-ion mobility spectrometry/mass spectrometry, *Analytical chemistry*, 73 (2001) 1664-
303 1669.

304 [19] A. Dienes-Nagy, L. Rivier, C. Giroud, M. Augsburger, P. Mangin, Method for quantification
305 of morphine and its 3-and 6-glucuronides, codeine, codeine glucuronide and 6-
306 monoacetylmorphine in human blood by liquid chromatography-electrospray mass spectrometry
307 for routine analysis in forensic toxicology, *Journal of chromatography A*, 854 (1999) 109-118.

308 [20] M. Blanchet, G. Bru, M. Guerret, M. Bromet-Petit, N. Bromet, Routine determination of
309 morphine, morphine 3- β -d-glucuronide and morphine 6- β -d-glucuronide in human serum by liquid
310 chromatography coupled to electrospray mass spectrometry, *Journal of Chromatography A*, 854
311 (1999) 93-108.

312 [21] A.C. Muñoz-Muñoz, T. Pekol, D. Schubring, C. Johnson, L. Andrade, Identification of Novel
313 Opioid Interferences using High-Resolution Mass Spectrometry, *Journal of Analytical
314 Toxicology*, (2017) 1-11.

315 [22] L.J. Langman, E. Korman, M.E. Stauble, M.V. Boswell, R.N. Baumgartner, S.A. Jortani,
316 Therapeutic monitoring of opioids: a sensitive LC-MS/MS method for quantitation of several
317 opioids including hydrocodone and its metabolites, *Therapeutic drug monitoring*, 35 (2013) 352-
318 359.

319 [23] H.S. Yang, A.H. Wu, K.L. Lynch, Development and validation of a novel LC-MS/MS opioid
320 confirmation assay: Evaluation of β -glucuronidase enzymes and sample cleanup methods, *Journal
321 of analytical toxicology*, 40 (2016) 323-329.

322 [24] R. Eatherton, M. Morrissey, H.H. Hill, Comparison of ion mobility constants of selected drugs
323 after capillary gas chromatography and capillary supercritical fluid chromatography, *Analytical
324 chemistry*, 60 (1988) 2240-2243.

325 [25] A. Lawrence, Ion mobility spectrometry/mass spectrometry of some prescription and illicit
326 drugs, *Analytical chemistry*, 58 (1986) 1269-1272.

327 [26] C. Liu, G.A. Gómez-Ríos, B.B. Schneider, J.Y. Le Blanc, N. Reyes-Garcés, D.W. Arnold,
328 T.R. Covey, J. Pawliszyn, Fast quantitation of opioid isomers in human plasma by differential
329 mobility spectrometry/mass spectrometry via SPME/open-port probe sampling interface,
330 *Analytica chimica acta*, 991 (2017) 89.

331 [27] P. Liuni, V. Romanov, M.-J.e. Binette, H. Zagnoun, M. Tam, P. Pilon, J. Hendrikse, D.J.
332 Wilson, Unambiguous Characterization of Analytical Markers in Complex, Seized Opiate Samples
333 Using an Enhanced Ion Mobility Trace Detector-Mass Spectrometer, *Analytical chemistry*, 86
334 (2014) 10772-10779.

335 [28] N.E. Manicke, M. Belford, Separation of opiate isomers using electrospray ionization and
336 paper spray coupled to high-field asymmetric waveform ion mobility spectrometry, *Journal of the
337 American Society for Mass Spectrometry*, 26 (2015) 701-705.

338 [29] M.A. McCooeye, B. Ells, D.A. Barnett, R.W. Purves, R. Guevremont, Quantitation of
339 morphine and codeine in human urine using high-field asymmetric waveform ion mobility
340 spectrometry (FAIMS) with mass spectrometric detection, *Journal of analytical toxicology*, 25
341 (2001) 81-87.

342 [30] A.J. Midey, A. Patel, C. Moraff, C.A. Krueger, C. Wu, Improved detection of drugs of abuse
343 using high-performance ion mobility spectrometry with electrospray ionization (ESI-HPIMS) for
344 urine matrices, *Talanta*, 116 (2013) 77-83.

345 [31] R.M. O'Donnell, X. Sun, P.d.B. Harrington, Pharmaceutical applications of ion mobility
346 spectrometry, *TrAC Trends in Analytical Chemistry*, 27 (2008) 44-53.

347 [32] C. Wu, W.F. Siems, H.H. Hill, Secondary electrospray ionization ion mobility
348 spectrometry/mass spectrometry of illicit drugs, *Analytical chemistry*, 72 (2000) 396-403.

349 [33] K.J. Adams, D. Montero, D. Aga, F. Fernandez-Lima, Isomer separation of polybrominated
350 diphenyl ether metabolites using nanoESI-TIMS-MS, *International Journal for Ion Mobility
351 Spectrometry*, 19 (2016) 69-76.

352 [34] F.A. Fernandez-Lima, D.A. Kaplan, J. Suetering, M.A. Park, Gas-phase separation using a
353 Trapped Ion Mobility Spectrometer, *International Journal for Ion Mobility Spectrometry*, 14
354 (2011) 93-98.

355 [35] F.A. Fernandez-Lima, D.A. Kaplan, M.A. Park, Note: Integration of trapped ion mobility
356 spectrometry with mass spectrometry, *Rev. Sci. Instr.*, 82 (2011) 126106.

357 [36] D.R. Hernandez, J.D. DeBord, M.E. Ridgeway, D.A. Kaplan, M.A. Park, F.A. Fernandez-
358 Lima, Ion dynamics in a trapped ion mobility spectrometer, *The Analyst*, 139 (2014) 1913-1921.

359 [37] K.J. Adams, N.F. Smith, C.E. Ramirez, F. Fernandez-Lima, Discovery and targeted
360 monitoring of polychlorinated biphenyl metabolites in blood plasma using LC-TIMS-TOF MS,
361 *International Journal of Mass Spectrometry*, (2017).

362 [38] P. Benigni, C.J. Thompson, M.E. Ridgeway, M.A. Park, F.A. Fernandez-Lima, Targeted
363 High-Resolution Ion Mobility Separation Coupled to Ultrahigh-Resolution Mass Spectrometry of
364 Endocrine Disruptors in Complex Mixtures, *Analytical Chemistry*, 87 (2015) 4321-4325.

365 [39] A. Castellanos, P. Benigni, D.R. Hernandez, J.D. DeBord, M.E. Ridgeway, M.A. Park, F.A.
366 Fernandez-Lima, Fast Screening of Polycyclic Aromatic Hydrocarbons using Trapped Ion
367 Mobility Spectrometry – Mass Spectrometry, *Anal. Meth.*, 6 (2014) 9328-9332.

368 [40] E.W. McDaniel, E.A. Mason, *Mobility and diffusion of ions in gases*, John Wiley and Sons,
369 Inc., New York, New York, 1973.

370 [41] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.
371 Montgomery, J. A., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V.
372 Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada,
373 M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
374 Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
375 R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.
376 Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich,
377 A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B.
378 Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.
379 Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng,
380 A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez,
381 J.A. Pople, *Gaussian 03*, Revision C.02, in: Gaussian, Inc., Wallingford CT, 2004.

382 [42] I. Campuzano, M.F. Bush, C.V. Robinson, C. Beaumont, K. Richardson, H. Kim, H.I. Kim,
383 Structural characterization of drug-like compounds by ion mobility mass spectrometry:
384 comparison of theoretical and experimentally derived nitrogen collision cross sections, *Analytical
385 chemistry*, 84 (2011) 1026-1033.

386 [43] H.I. Kim, H. Kim, E.S. Pang, E.K. Ryu, L.W. Beegle, J.A. Loo, W.A. Goddard, I. Kanik,
387 Structural characterization of unsaturated phosphatidylcholines using traveling wave ion mobility
388 spectrometry, *Analytical chemistry*, 81 (2009) 8289-8297.

389 [44] U.C. Singh, P.A. Kollman, An approach to computing electrostatic charges for molecules,
390 *Journal of Computational Chemistry*, 5 (1984) 129-145.

391 [45] B.H. Besler, K.M. Merz, P.A. Kollman, Atomic charges derived from semiempirical methods,
392 *Journal of Computational Chemistry*, 11 (1990) 431-439.

393 [46] A.B. Kanu, A. Leal, Identity Efficiency for High-Performance Ambient Pressure Ion Mobility
394 Spectrometry, *Analytical chemistry*, 88 (2016) 3058-3066.

395 [47] C. Liu, G.A. Gómez-Ríos, B.B. Schneider, J.Y. Le Blanc, N. Reyes-Garcés, D.W. Arnold,
396 T.R. Covey, J. Pawliszyn, Fast quantitation of opioid isomers in human plasma by differential
397 mobility spectrometry/mass spectrometry via SPME/open-port probe sampling interface,
398 *Analytica Chimica Acta*, 991 (2017) 89-94.

399 [48] L.E. Edinboro, R.C. Backer, A. Poklis, Direct analysis of opiates in urine by liquid
400 chromatography-tandem mass spectrometry, *Journal of Analytical Toxicology*, 29 (2005) 704-
401 710.

402 [49] Z. Cao, E. Kaleta, P. Wang, Simultaneous quantitation of 78 drugs and metabolites in urine
403 with a dilute-and-shoot LC-MS-MS assay, *Journal of analytical toxicology*, 39 (2015) 335-346.

404 [50] N. Schaefer, B. Peters, P. Schmidt, A.H. Ewald, Development and validation of two LC-
405 MS/MS methods for the detection and quantification of amphetamines, designer amphetamines,
406 benzoylecgonine, benzodiazepines, opiates, and opioids in urine using turbulent flow
407 chromatography, *Analytical and bioanalytical chemistry*, 405 (2013) 247-258.

408 **Figure and Table Captions:**

409 Figure 1: Typical mobility profiles of analytes and their corresponding internal standards

410 Figure 2: Candidate structures optimized at the DFT/B3LYP/6-311G(d,p) of the opioids considered

411 Figure 3: Typical IMS separations of binary mixtures: top) 6-acetylmorphine and naloxone; middle)
412 hydromorphone and norhydrocodone; bottom) morphine and norcodeine

413 Figure 4: Typical LC-TIMS-TOF MS analysis of isomeric opioids. 2D-IMS-MS contour plots are shown
414 for the highlighted LC bands

415 Figure 5: Relative percent deviation of RT, CCS compared to non-matrix sample and δ m/z across
416 calibration levels (*= no change)

417 Table 1: Experimental and theoretical m/z and CCS values for the opioid analytes considered. Note: values
418 in parentheses refer to previously reported data from DT-IMS_{Air} [18, 24, 26, 44-46]
419
420 Table 2: Calibration results for analytes with (Matrix) and without urine (No Matrix) for LC-TIMS-qTOF
421 MS and LC-qTOF MS
422
423 Table 3: Intraday Variability of CCS and RT with and without urine represented by percent relative standard
424 deviation (%RSD)
425

426 Table 1: Experimental and theoretical m/z and CCS values for the opioid analytes considered. Note: values
 427 in parentheses refer to previously reported data from DT-IMS_{Air} [18, 24, 26, 44-46]

428
429

Name	Chemical Formula	Theoretical m/z [M+H] ⁺	Experimental m/z [M+H] ⁺	Error (ppm)	Theoretical CCS (Å ²)	Experimental ^{TIMS} CCS _{N₂} (Å ²)	Experimental K ₀ (cm ² V ⁻¹ s ⁻¹)
6-Acetylmorphine	C ₁₉ H ₂₁ NO ₄	328.1543	328.1545	0.609	166.2	176.7 (167-171.1)	1.182
6-Acetylmorphine-D3	C ₁₉ H ₁₈ D ₃ NO ₄	331.1732	331.1733	0.302	166.3	176.9	1.189
Naloxone	C ₁₉ H ₂₁ NO ₄	328.1543	328.1542	0.305	166.7	171.1	1.221
Naloxone-D5	C ₁₉ H ₁₆ D ₅ NO ₄	333.1857	333.1855	0.600	166.6	171.0	1.229
Codeine	C ₁₈ H ₂₁ NO ₃	300.1594	300.1596	0.600	171.6	168.2 (168.9-178.9)	1.268
Codeine-D6	C ₁₈ H ₁₈ D ₆ NO ₃	306.1971	306.1969	0.653	171.7	168.0	1.256
Hydrocodone	C ₁₈ H ₂₁ NO ₃	300.1594	300.1592	0.666	171.8	167.8	1.271
Hydrocodone-D3	C ₁₈ H ₁₈ D ₃ NO ₃	303.1782	303.1783	0.330	171.7	167.9	1.257
Morphine	C ₁₇ H ₁₉ NO ₃	286.1438	286.1437	0.349	162.6	162.9 (172.8-189.0)	1.290
Morphine-D3	C ₁₇ H ₁₆ D ₃ NO ₃	289.1626	289.1625	0.346	162.4	164.0	1.289
Hydromorphone	C ₁₇ H ₁₉ NO ₃	286.1438	286.1437	0.349	161.6	163.2 (160.3)	1.287
Hydromorphone-D3	C ₁₇ H ₁₆ D ₃ NO ₃	289.1626	289.1625	0.692	161.5	164.4	1.286
Norcodeine	C ₁₇ H ₁₉ NO ₃	286.1438	286.1440	0.699	168.8	167.9 (196.1)	1.252
Norcodeine-D3	C ₁₇ H ₁₆ D ₃ NO ₃	289.1626	289.1625	0.346	168.9	167.9	1.259
Norhydrocodone	C ₁₇ H ₁₉ NO ₃	286.1438	286.1438	0.000	168.9	167.4	1.256
Norhydrocodone-D3	C ₁₇ H ₁₆ D ₃ NO ₃	289.1626	289.1625	0.692	168.9	168.0	1.259

430
431
432

433

434

435 Table 2: Calibration results for analytes with (Matrix) and without urine (No Matrix) for LC-TIMS-qTOF
436 MS and LC-qTOF MS

437

Analyte	LC-TIMS-qTOF MS						LC-qTOF MS					
	Water			Urine			Water			Urine		
	LOD (ng/mL)	LOQ (ng/mL)	R ²	LOD (ng/mL)	LOQ (ng/mL)	R ²	LOD (ng/mL)	LOQ (ng/mL)	R ²	LOD (ng/mL)	LOQ (ng/mL)	R ²
Codeine	2.0	10.4	0.994	9.9	49.6	0.996	1.4	6.9	0.997	3.0	15.0	0.994
Hydrocodone	3.0	15.1	0.994	6.0	30.2	0.996	1.8	9.1	0.997	7.6	38.2	0.995
Morphine	7.9	39.5	0.996	27.9	138.6	0.993	7.9	39.5	0.996	31.9	159.4	0.999
Norcodeine	8.3	41.6	0.997	31.2	156.0	0.999	7.4	37.3	0.997	35.2	176.0	0.999
Norhydrocodone	8.1	40.4	0.995	29.1	145.8	0.996	8.1	40.7	0.996	20.7	103.5	0.996

438

439

440

441

442

443

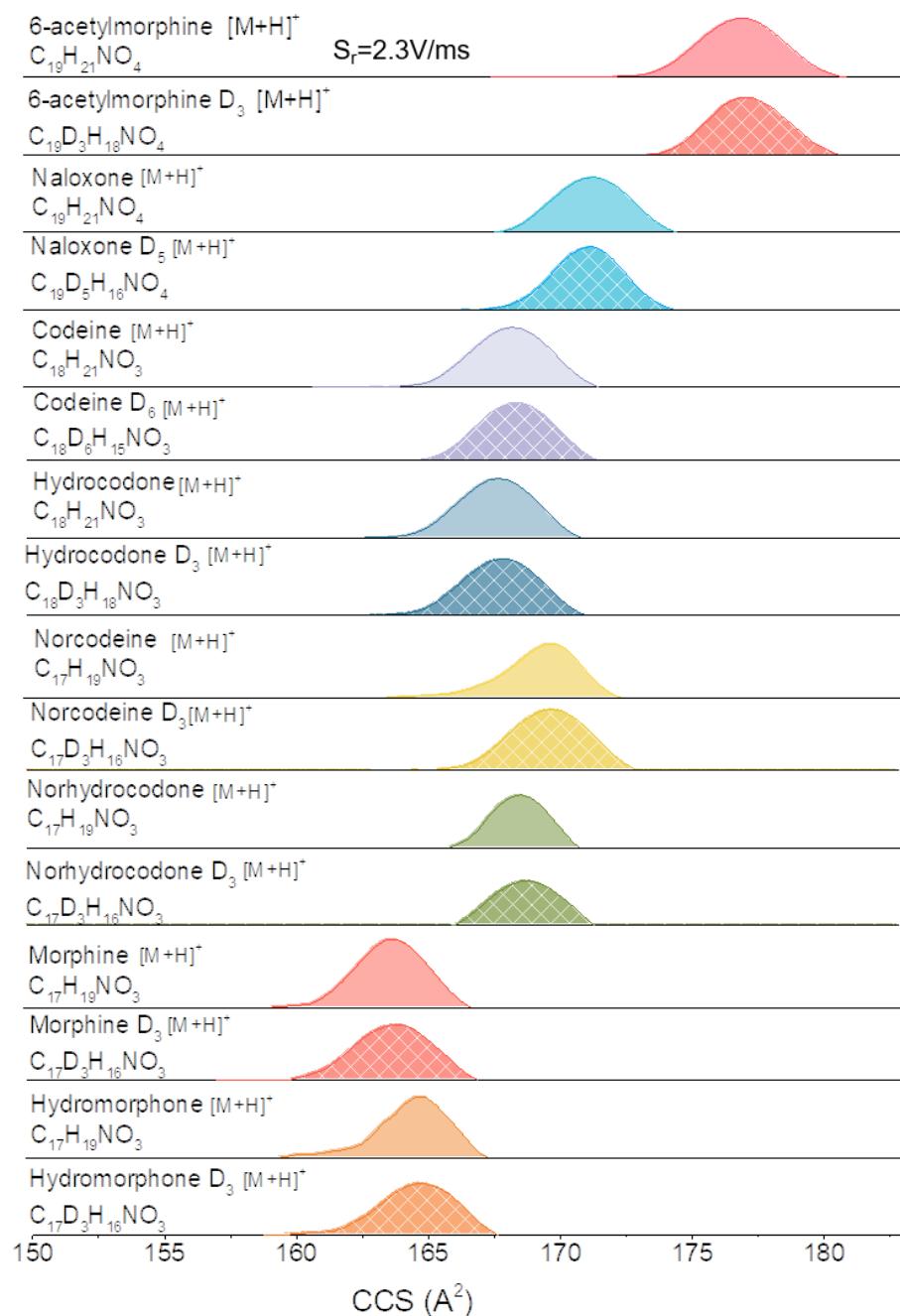
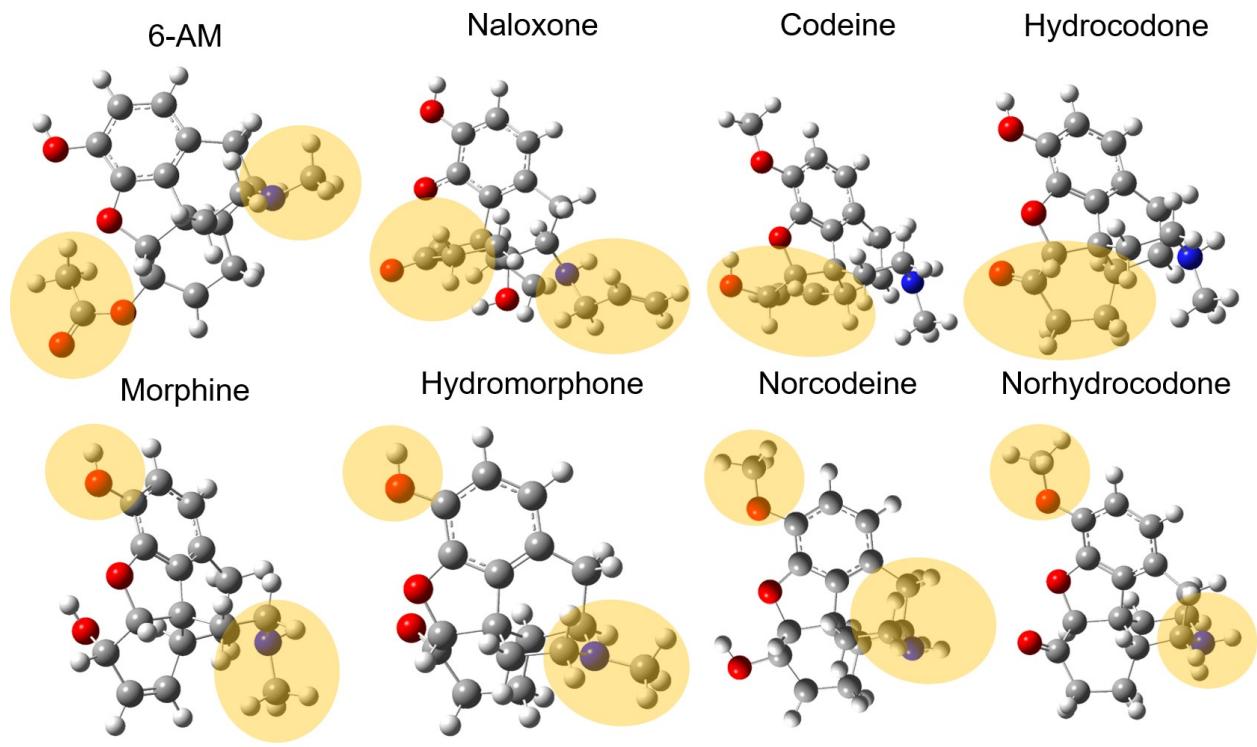

444
445
446
447
448

Table 3: Intraday Variability of CCS and RT with and without urine represented by percent relative standard deviation (%RSD)

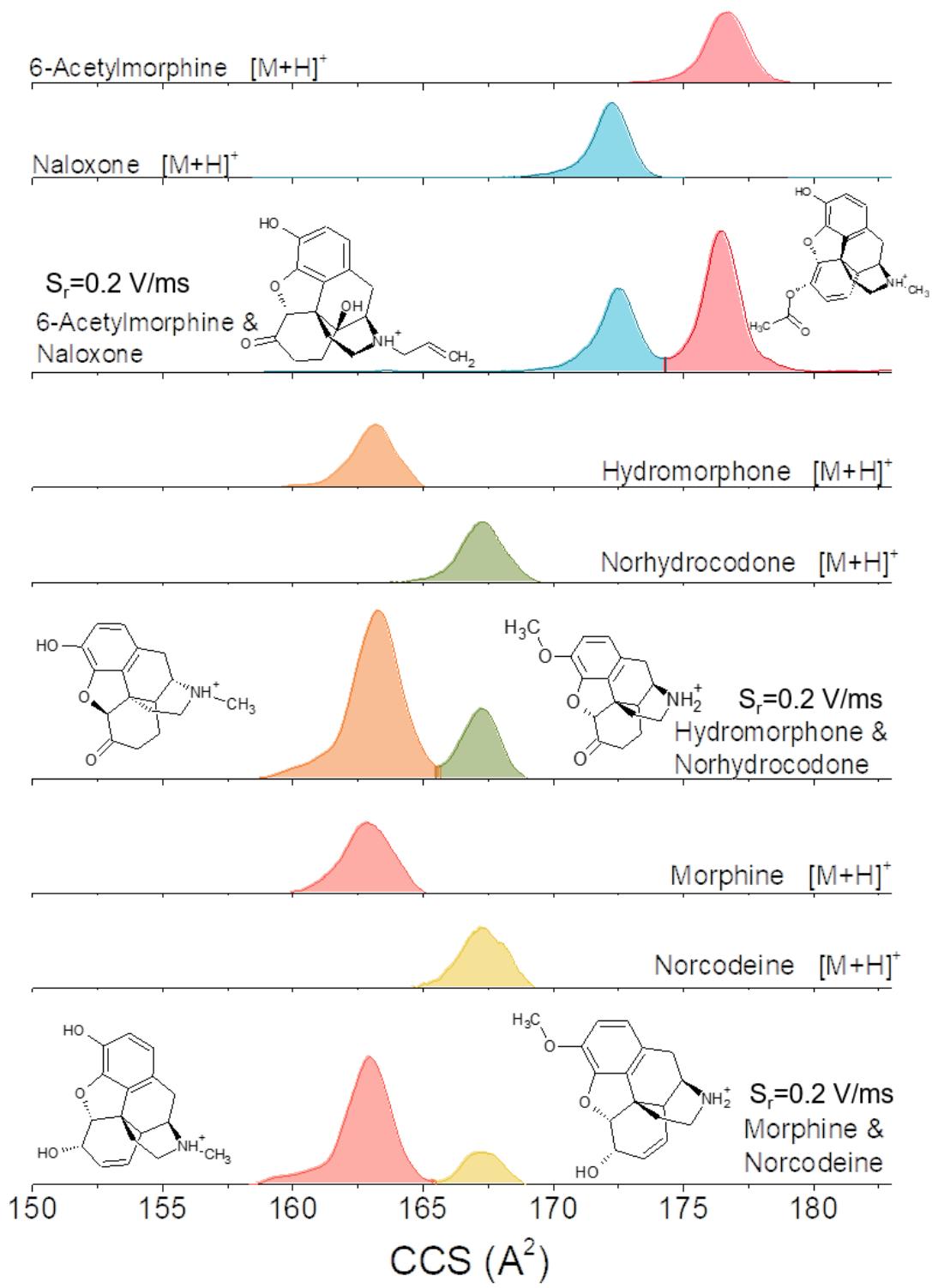
Intraday Variability	RT (% RSD)		CCS (% RSD)	
	Compound	Water	Urine	Water
6-Acetylmorphine	0.07	0.04	0.18	0.22
Naloxone	0.12	0.12	0.19	0.23
Codeine	0.08	0.10	0.19	0.18
Hydrocodone	0.08	0.10	0.22	0.27
Norcodeine	0.09	0.07	0.22	0.21
Norhydrocodone	0.05	0.07	0.20	0.22

449
450


451 Figure 1: Typical mobility profiles of analytes and their corresponding internal standards

452

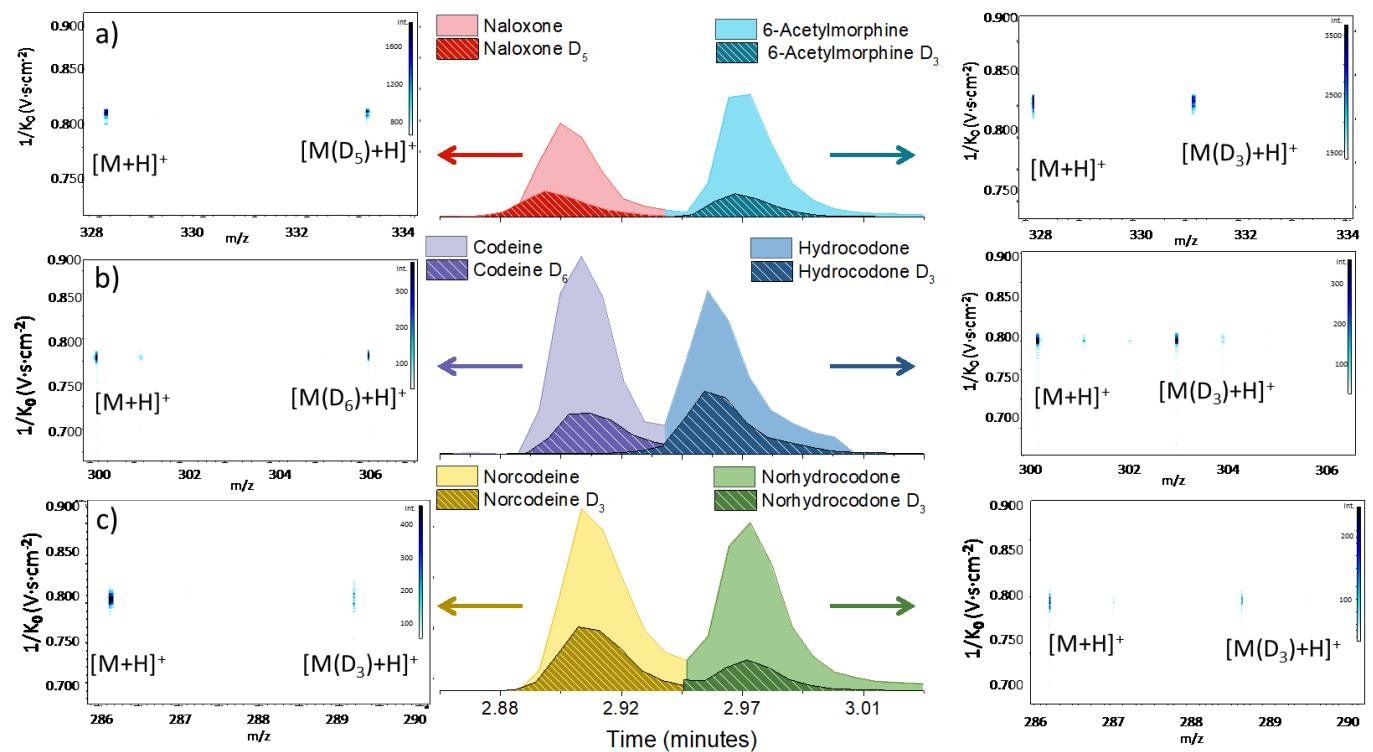
453


454 Figure 2: Candidate structures optimized at the DFT/B3LYP/6-311G(d,p) of the opioids considered

455

456

457 Figure 3: Typical IMS separations of binary mixtures: top) 6-acetylmorphine and naloxone;
 458 middle) hydromorphone and norhydrocodone; bottom) morphine and norcodeine



459

460

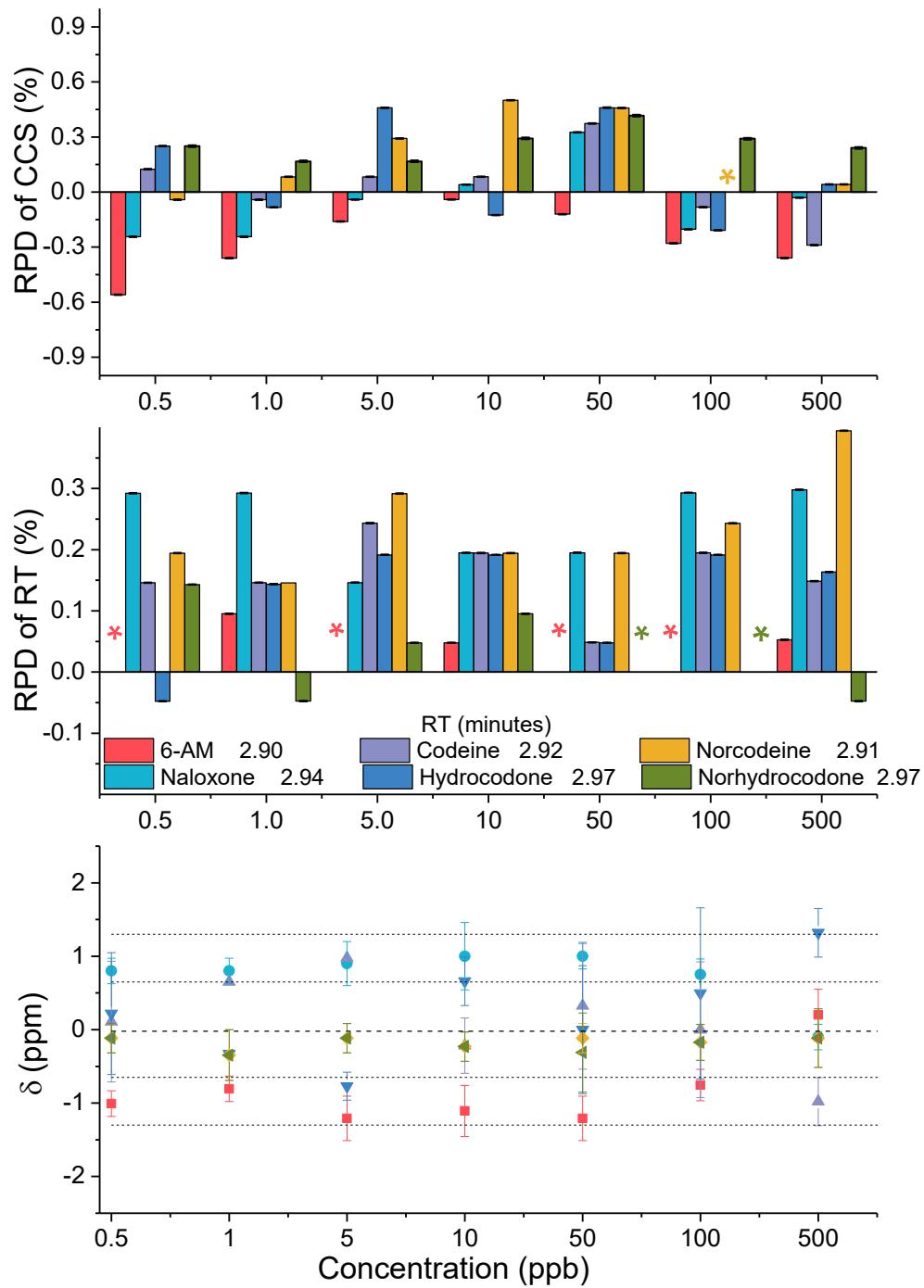
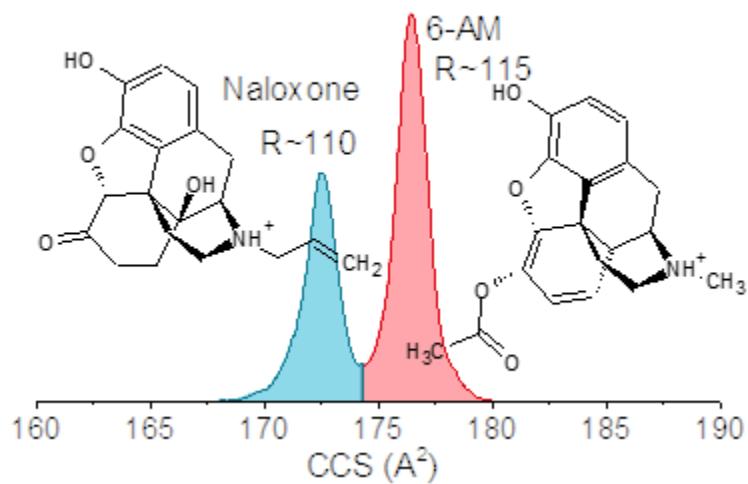

461
462

Figure 4: Typical LC-TIMS-TOF MS analysis of isomeric opioids. 2D-IMS-MS contour plots are shown for the highlighted LC bands


463
464

465 Figure 5: Relative percent deviation of RT, CCS compared to non-matrix sample and δ m/z across
 466 calibration levels (*= no change)

467
 468

469 TOC
470

