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Abstract—Database-driven Dynamic Spectrum Sharing (DSS)
is the de-facto technical paradigm adopted by Federal Commu-
nications Commission (FCC) for increasing spectrum efficiency.
In such a system, a geo-location database administrator (DBA)
maintains spectrum availability information over its service re-
gion whereby to determines whether a secondary user can access
a licensed spectrum band at his desired location and time. To
maintain spectrum availability in its service region, it is desirable
for the DBA to periodically collect spectrum measurements
whereby to construct and maintain a Radio Environment Map
(REM), where the received signal strength at every location
of interest is either directly measured or estimated via proper
statistical spatial interpolation techniques. Crowdsourcing-based
spectrum sensing is a promising approach for periodically collect-
ing spectrum measurements over a large geographic area, which
is, unfortunately, vulnerable to false spectrum measurements.
How to construct an accurate REM in the presence of false
measurements remains an open challenge. This paper introduces
SecREM, a novel scheme for securely constructing a REM in
the presence of false spectrum measurements. SecREM relies on
a small number of trusted spectrum measurements whereby to
evaluate the trustworthiness of the measurements from mobile
users and gradually incorporate the most trustworthy ones to
construct an accurate REM. Extensive simulation studies based
on a real spectrum measurement dataset confirm the efficacy and
efficiency of SecREM.

I. INTRODUCTION

Database-driven Dynamic Spectrum Sharing (DSS) [1], [2]
is the de-facto technical paradigm adopted by Federal Com-
munications Commission (FCC) for enhancing spectrum effi-
ciency. In such a system, a geo-location database administrator
(DBA) maintains the spectrum availability information in its
service region, and secondary users (SUs) are required to in-
quire the DBA about the availability of any interested spectrum
before using it. Current DBAs estimate spectrum availability
based on the registered locations and transmission schedules
of primary users (PUs) in combination with radio propagation
modeling, e.g., FCC Curves [3] based on the Longley-Rice
model [4]. Recent measurement studies [5]-[8], however, have
shown that such estimations are often inaccurate and tend to
be overly conservative for ignoring local environmental factors
(e.g., trees and high-rise buildings), resulting in a considerable
waste of valuable spectrum opportunities.
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Spectrum sensing can effectively improve the spectrum-
estimation accuracy in database-driven DSS systems and is
demanded in FCC’s 2016 call for proposals for the 3.5 GHz
band [9]. In this approach, the DBAs explore a network
of spectrum sensors to determine spectrum availability by
detecting radio activities on licensed spectrum bands. Large-
scale sensor networks, however, are notoriously difficult and
expensive to deploy, operate, and maintain, especially in
urban areas where DSS is expected to have great potential.
Therefore, it has been widely advocated that the DBA only
needs to deploy a small number of dedicated spectrum sensors
at strategic locations [5], [6] and outsource the majority of
spectrum-sensing tasks to ubiquitous mobile users [10], [11].
The feasibility of this approach lies in the deep penetration
of mobile devices into everyday life and the wide expectation
that future mobile devices can perform spectrum sensing via
either internal spectrum sensors or external ones acquired from
other parties like the DBA [12]-[18]. With real-time spectrum
measurements from dedicated sensors and mobile users, the
DBA can construct and maintain a Radio Environmental Map
(REM) [19], [20] whereby to determine whether SUs can
transmit or not on specific bands at given times and locations.

Crowdsourcing-based REM construction is, unfortunately,
vulnerable to false spectrum measurements. In particular,
mobile users cannot be fully trusted and may submit false
spectrum measurements for various reasons such as faulty
spectrum sensors and malicious intents. Since most existing
techniques for constructing REM to date [10], [21]-[24] rely
on statistical interpolation techniques such as Ordinary Kriging
(OK) [25] that are known to be sensitive to outliers [26],
even a small number of false measurements can heavily distort
the REM, leading to either missed spectrum opportunities or
interference to PUs.

Despite the large body of work on secure cooperative
spectrum sensing against false spectrum measurements [12]—
[14], [27]-[32], how to combine possibly forged spectrum
measurements to construct an accurate REM poses unique
challenges and remains untouched. In particular, cooperative
sensing aims to decide whether a PU at a known location is
transmitting or not, whereas secure REM construction intends
to estimate the received signal strength (RSS) at every location



of interest from possibly forged local spectrum measurements
when the PUs’ locations and transmission activities are known.
The unique challenges brought by REM construction render
prior solutions [12]-[14], [27]-[32] inapplicable. These situa-
tions call for sound solutions to construct REM with sufficient
accuracy in the presence of false spectrum measurements.

This paper introduces the design and evaluation of SecREM,
a novel framework for secure crowdsourced REM construction
in the presence of false spectrum measurements. Inspired by
the self-labeled techniques [33] proposed for semi-supervised
learning, SecREM constructs highly accurate REMs from a
small number of trusted measurements and many more untrust-
ed measurements via iterative statistical spatial interpolation.
Specifically, an initial REM is constructed using only the
trusted measurements, and the resulting REM is then used to
evaluate the trustworthiness of the untrusted measurements by
comparing predicted RSSs and reported RSSs. In each subse-
quent iteration, a certain number of remaining measurements
deemed most trustworthy are incorporated to refine the REM.
This process is repeated until certain terminal condition is
met, at which point all remaining untrusted measurements are
discarded and the final REM is produced. Our contributions
in this paper can be summarized as follows.

o To the best of our knowledge, we are the first to study
secure crowdsourced REM construction in the presence
of false spectrum measurements.

o We propose SecREM, a novel framework for constructing
REM from a small number of trusted measurements and
many more untrusted spectrum measurements.

o We confirm the efficacy and efficiency of SecREM via
extensive simulation studies using a real spectrum mea-
surement dataset. For example, our simulation results
show that even when twenty percent of the measurements
are false, SecREM can produce an REM with mean
absolute error (MAE) of 2.92 dB which is only 3.62%
higher than that of the ideal case as if all the false
measurements are known in advance and excluded by the
DBA. In contrast, using only trusted measurements and
blindly using all spectrum measurements result in MAEs
of 3.99 dB and 4.85 dB or 41.6% and 72.1% higher than
that of the ideal case, respectively.

The rest of this paper is structured as follows. Related work
is discussed in Section II. The system and adversary models
along with our design goals are introduced in Section III
The detail design of SecREM is presented in Section IV.
We evaluate the performance of SecREM in Section V and
conclude this paper in Section VI.

II. RELATED WORK
In this section, we discuss the work most germane to the
proposed research.
A. Augmenting Geo-location Database with Spectrum Sensing

Several recent studies [5]-[8] have shown that spectrum
availability determined by radio propagation modeling are
inaccurate and tend to be overly conservative. Several efforts

have been made to augment geo-location database with spec-
trum sensing. The first line of research is to construct Radio
Environmental Map or detailed PU coverage map from local
spectrum measurements, where received PU signal strength at
every location of interest is either directly measured or esti-
mated via spatial interpolation techniques. Various statistical
interpolation methods have been proposed to construct REM
for which a recent survey can be found at [34]. Commonly
used spatial interpolation techniques include Ordinary Kriging
[10], [21]-[24], Universal Kriging [35], Delaunay triangulation
[36], spatial simulated annealing [37], and their combination
[38]. In [24], [39], [40], Kriging is used to determine the
coverage of wireless networks. All these work assume that
all the measurements are trusted, while it is well known that
these statistical spatial interpolation techniques are sensitive to
outliers due to the well-known masking and swamping effects.
For example, it was shown in [26] that even a small number of
false measurements could significantly affect the predictions
at unobserved locations.

B. Secure Cooperative Spectrum Sensing

Tremendous efforts have been made to secure cooperative
spectrum sensing, which aims at determining PU activity
based on potentially forged spectrum measurements. Proposed
approaches include identifying false spectrum measurements
via statistical anomaly detection [12], [14], [27]-[29], differ-
entiating malicious spectrum sensors from legitimate ones by
tracking their long term behaviors using reputation systems
[271, [30], or relying on some trusted nodes [13], [31], [32].
As we discussed in Section I, none of these solutions can be
applied to the problem of secure REM construction, in which
the PU’s location and transmission activity are known, but
its signal strength needs to be estimated at every location of
interest.

III. SYSTEM AND ADVERSARY MODELS AND DESIGNED
GOALS

In this section, we introduce our system and adversary
models as well as our design goals.

A. System Model

We consider a DSS system shown in Fig. 1, in which a
DBA provides spectrum service to SUs in its service region
D. The service region D is divided into N non-overlapping
cells of equal size. We assume that there is one PU in D whose
location and transmission schedule are known to the DBA.

The DBA estimates spectrum availability through spectrum
sensing by constructing and periodically updating an REM
over D. As in [13], [32], we assume that the DBA deploys
a small number of stationary spectrum sensors at strategic
locations, referred to as anchor sensors hereafter. Anchor
sensors can be remotely attested by the DBA and excluded
if they are detected as compromised. Due to cost constraints,
the DBA cannot afford to deploy too many anchor sensors to
cover the entire service region and still relies on the spectrum
measurements from the majority of mobile users to ensure the
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Fig. 1. An exemplary database-driven DSS system.

accuracy of the REM. We hereafter denote by O, the set of
anchor sensors and ©,,, the set of mobile sensors.

We assume that the time is divided into epochs of equal
length. During each epoch, each sensor i € ©, | ©,,, submits
a spectrum measurement R; = (Z;,x;), where Z; is the
measured RSS (in dBm) at location x;. Some cells may not
have any measurement taken, and some measurements may be
taken at locations other than the center of any cell. Given the
set of spectrum measurements R = {R;|i € O, O, }, the
DBA intends to build an REM by estimating the RSS at the
center of every cell.

B. Adversary Model

We assume that the DBA is trusted to perform all system
operations faithfully and that the spectrum measurements
submitted by anchor sensors are trusted. In contrast, mobile
sensors may submit false spectrum measurements due to faulty
spectrum sensors, intentionally forging spectrum measure-
ments to claim the reward at the DBA without actual sensing,
or being hired by the DBA’s business competitor to damage its
reputation. We assume that false spectrum measurements may
be arbitrarily different from the true ones and that the number
of false measurements is unknown to the DBA in advance. We
do not consider spectrum measurements with forged locations
because such measurements are equivalent to the ones with
false RSSs at the claimed locations.

Our subsequent discussion focuses on REM construction in
the presence of false spectrum measurements. We assume that
communications between anchor/mobile sensors and the DBA
are properly secured via standard cryptographic techniques
such as TLS [41]. Moreover, we do not consider other attacks
targeting DSS systems such as primary user emulation attack
for which we resort to existing rich literature, e.g., [42].

C. Designed Goals
We design SecREM with the following goals in mind.

e Resilience to false measurements: SecREM should pro-
duce an REM in the presence of a unknown number

of false spectrum measurements with sufficient accuracy.
Specifically, SecREM should be able to produce an REM
close to the one constructed from all good measurements
with an accuracy much higher than either using only trust-
ed spectrum measurements or blindly using all spectrum
measurements.

e Low cost: SecREM should only need a small number of
anchor sensors to achieve high accuracy of the resulting
REM.

IV. SECREM DESIGN

In this section, we first give an overview of SecREM and
then detail its design.

A. Overview

SecREM is inspired by the self-labeled techniques develope-
d for semi-supervised classification, for which a recent survey
can be found at [33]. Self-labeled techniques are proposed to
explore a small amount of labeled data with a large amount
of unlabeled data for classification. In self-labeled techniques,
a classifier is trained based on the labeled data only, which
is then applied to the unlabeled data to generate more labeled
samples as additional input to refine the classifier. Self-labeled
techniques have been shown to surpass the classification
performance obtained either by supervised learning with the
unlabeled data discarded or by unsupervised learning with the
label information discarded.

As an analog to the self-labeled techniques, SecREM con-
structs an REM by building an initial REM with only trusted
measurements. The initial REM is then used to evaluate the
trustworthiness of other measurements according to the differ-
ences between the estimated RSSs and corresponding reported
RSSs. The smaller the difference is, the more trustworthy of
the measurement, and vice versa. The DBA then incorporate
a fixed number of measurements deemed most trustworthy to
refine the initial REM. This process continues until a certain
terminal condition is met, and the remaining measurements are
discarded. The DBA then uses all the remaining measurements
to construct a final REM by predicting the RSS at every other
unmeasured location of interest.

SecREM is a general framework that can be integrated with
different statistical interpolation techniques. In what follows,
we first briefly introduce the background of Ordinary Kriging
(OK) [25] and then detail the design of SecREM by taking OK
as an example for its overwhelming popularity and satisfactory
performance in REM construction [10], [21]-[24], [39], [40].

B. Background on Ordinary Kriging

Kringing [25] refers to a class of geo-statistical spatial in-
terpolation techniques that are originally developed for mining
but have been increasingly being used for radio mapping.
Under Kringing, the RSS at any location x is modeled as
as a Gaussian random field in the form

Z(x) = p(x) +0(x),

where (x) is the mean capturing path loss and shadowing,
and §(x) represents possible sampling error.



In OK [25], Z(x) is further assumed to be intrinsic station-
ary in the sense that

E[Z(x)] = n(x) = 1.
E[(Z(x1) — Z(x2))2] = 29(h)

for all x € D, where E(-) denotes expectation, p is an
unknown constant, h = ||x; —Xz|| is the distance lag between
two locations, and ~(-) is the semivariogram function that
models the variance between two locations as a function of
their distance. This assumption may not hold for original
spectrum measurements but has been found acceptable in the
literature [10], [21], [22], [24], [39], [40], especially after
removing any source of nonlinear trend from measurements
through detrending process [23].

(D

C. Detailed Design

On receiving all the measurements R, the DBA first per-
forms detrending on the measurements and then constructs an
REM from the detrended measurements in an iterative fashion.

1) Detrending: Detrending original spectrum measurement
is usually preferred to make the measurements a better fit
for the OK model. SecREM does not rely on any specific
detrending procedure but assumes the existence of a suitable
one for the received measurements. Below we briefly introduce
the detrending procedure proposed in [23] as an example for
completeness, which is not our contribution.

In [23], Carrier-to-Interference and Noise Ratio (CINR)
measurements are detrended by subtracting the predicted path
loss at the measured locations from the original measurements.
Specifically, the path loss at any location x is estimated using
the following empirical log-distance model

P(x) = al0log,,(d) + 201og,o(f) +32.45+€, (2)

where d is the distance between the x and the PU, f is the
PU’s transmitting frequency, 32.45 represents free-space path
loss, and « and € are parameters obtained via experimental
fitting. For each original measurement R, = (Z;,x;), the
corresponding detrended measurement is then R, = (S;,x;),
where

Si = Z; — P(x;)

is the residue at x;.

2) Iterative REM Construction Semivariogram: The DBA
then constructs an REM in an iterative fashion from {S;|i €
04 J©.} using OK. Specifically, the DBA maintains a trusted
sensor set ©; and a candidate sensor set O, at all time, where
O, = 0, and ©. = O,, initially. In each iteration, the DBA
does the following in sequel.

The DBA first builds an empirical semivariogram %(h) from
the trusted measurement {R}|i € ©;}. Specifically, the DBA
first computes

R 1
= a2

(xi;x;)€P(h)

(Si - Sj)27

where P(h) = {(x;,x;)|i,j € Oy, ||x; — x;|| = h} is the set
of location pairs with distance h. The DBA then fits §(h) with

a suitable parametric model. For example, the commonly used
exponential model is given by

v(h; o1, a2) = ai (1 — eXP(OTZ)) ;

where «; is related to the variance of the signal strength
measurements, and «s scales the correlation distance of the
model. Other popular models include Gaussian, Cauchy, and
Spherical models [43]. These parameters can be obtained from
the estimated semivariogram through least squares estimator.
The DBA then evaluates the trustworthiness of the measure-
ments based the empirical semivarogram model (-) obtained
above to estimate the residues at the locations {x;[j € ©.} at
which candidate measurements have been submitted. Specifi-
cally, given the set of trusted measurements {R}|i € ©,}, the
DBA predicts the residue at each location x,(j € O.) as

€0 €0y
where ) ;o w; = 1 are normalized weights. The estimation
error is given by
e(xj) = 5(x;) — S(x;)

= [w17...,w|@t‘7—1] . [Sl,...,S‘@t‘,S(Xj)] s

where S(x;) is the true residue at x; that may be different
from the reported residue \S;. It is easy to see that the estimator
is unbiased as E(e(x;)) = > ;co, wip — p = 0. Let h; ; =
|[x; —x,|| for all ¢,j € ©;. Since minimizing the prediction
variance of an unbiased predictor is equivalent to minimizing
the mean squared error, we have

Var(e(x;)) = E(S(x;) — S(x;))?
= E(Z w; S; — S(x;))?

€O,
- Z Z wiwgY (i g) + 2 Z wiA(hi ;)
1€EO; k€O, ico,

To find the optimal {w; };co,, the DBA solves the following
optimization problem

min  — Z Z wwgY(hi ) +2 Z wif(hij)

1€0, k€O, €O
subject to E w; = 1.
1€,

The solution to the above optimization problem is given by

w1 ’Y(hm) V(hl,\et\) 1 7(h1,j)
wye,| Y(Mey 1) v(he,je.) 1 v(he,,5)
v 1 1 0 1

3)

where v is a Lagrange multiplier used in the minimization to
honor the unbiasedness condition.

The DBA proceeds to evaluate the trustworthiness of each
candidate measurement R; (j € ©,) based on the difference
between predicted and reported residue values. Specifically,



we define the inconsistency of a candidate measurement R;» =

(S;.%;) as
=] w— S, )

1€,

where S; is the reported residue. The smaller I;, the more
trustworthy measurement R;, and vice versa.

The DBA then finds the ¢ candidate sensors whose mea-
surements are deemed most trustworthy, denoted by ©,, where
q is a system parameter that represents the tradeoff between
the computation overhead and accuracy of the final REM.
The DBA then moves O, to the trusted sensor set, i.e.,
©;=0,JO, and O, = O, \ O,.

The DBA repeats the above process, i.e., refitting the
empirical semivarogram model 4(-) using the updated trusted
measurements {R;|i € ©;}, predicting the residues at each
location x; for all © € ©, evaluating the inconsistency of each
measurement Rg for all i € ©., and moving the ¢ candidate
sensors with the most trustworthy measurements from O, to
O;.

The DBA terminates the process upon certain condition is
met. In this paper, we investigate three terminal conditions as
follows.

o Condition I: The ratio between the number of the trusted
sensors and the total number of sensors reaches a prede-
termined threshold 7, i.e.,

10:/18a | JOm| = m

where 77 is a system parameter.
o Condition 2: The number of trusted measurements reach-
es a predefined threshold, i.e.,

|®t| Z 2,

where 75 is a system parameter.
o Condition 3: At least one of the g most trustworthy
measurement has inconsistency (i.e., I;) higher than 3.

The three terminal conditions correspond to different assump-
tions about the false spectrum measurements. Specifically,
the first terminal condition assumes that the ratio of false
measurements is small, and the DBA intends to defend against
up to 1 —n; ratio of false measurements. The second terminal
condition assumes that there are sufficient good measurements,
while the ratio of false measurements could be potentially
large. Using Terminal Condition 2, the DBA intends to con-
struct a sufficiently accurate REM despite that there might
be additional truthful measurements that can be explored.
The third terminal condition assumes that false measurements
exhibit high inconsistency, i.e., large I;. Note that the last
iteration may add less than ¢ candidate sensors to the trust
sensor set. After the above process is terminated, all the
measurements from remaining candidate sensors are discarded.

The DBA finally constructs the REM based on the measure-
ments from the trusted sensors. In particular, the DBA refits
the empirical semivarogram model using {R}|¢ € ©,}. For
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Fig. 2. Measurement/PU locations of cu/wimax dataset.

every cell center x., the DBA predicts it residue S (x.) using
Eq. (3) and outputs its estimated RSS as

Z(x.) = S(x.) + P(x.) ,

where P(x.) is the predicted path loss given in Eq. (2).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of SecREM via
simulation using a real spectrum measurement dataset.

A. Dataset

We use the CRAWDAD cu/wimax dataset [44] for
our simulation studies, which was also used in [23]. The
cu/wimax dataset was collected at the University of Col-
orado Boulder (UC) and contains the CINR measurements
of the WiMax network consisting of 5 base stations serving
the UC campus taken by a portable spectrum analyzer. The
measurements were taken on a 100m equilateral triangular
lattice and additional measurements taken at random and
optimized points. For our purpose, we chose the measurements
for channel 308 and BSID 3674210305, which includes 145
measurements at different locations. Fig. 2 shows the locations
of the measurements and the PU.

We follow the detrending procedure in [23] to remove
the nonlinear trend in the measurements. First, we calculate
the distance between the measurement location and the base
station at longitude -105.26333 and latitude 40.00722. We then
use the predictive model in Eq. 2 to estimate the path loss
based on the calculated distance with frequency f = 2578
MHz and fitted parameters (path loss exponent o« = 1.22
and offset ¢ = 28.81). We finally obtain the residue values
after deducting the estimated path loss from collected CINR
measurements. Since the difference between CINR and actual
RSS value is a constant depending on noise floor (e.g., 95
dBm), PU’s transmission power, and receiver’s antenna gain,
we hereafter ignore such constant factors and construct REMs
in terms of the CINR values.
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B. Simulation Settings

We divide the 145 measurements into two sets: a testing
dataset R; with 100 measurements and a validating set R,
with 45 measurements as the ground truth. For 100 testing
measurements, we randomly choose ten measurements as the
trusted ones and another 20 measurements as the false ones.
Moreover, we call a false measurement R; with an attack
strength T' (dB) if it reports a Z; + 1" where Z; is the true
RSS values [28]. Table 1 summarizes our default simulation
settings unless mentioned otherwise.

We mainly use Mean Absolute Error (MAE) to evaluate the
performance of RecREM. Specifically, for each measurement
R, € Ry, let Z; and Zi be the reported RSSs and estimated
RSSs, respectively. The MAE is defined as

ZRiERv IZ'L - Z7f|
R

Since SecREM is the first proposal for secure REM con-
struction against false spectrum measurements, we compare
the performance of SecREM with three other strategies.

o Trusted measurements only (TMO): the REM con-
structed using the trusted measurements submitted by
anchor sensors only.

o All measurements (AM): the REM constructed using all
measurements, including false ones.

o All but false measurements (ABFM): the REM con-
structed using all but false measurements. Note that
since the DBA does not know which measurements are
false in advance, the accuracy achieved by all but false
measurements is the upper bound of any mechanism that
can achieve.

MAE =

The simulation is done using MATLAB, and every point
represents the average of 100 runs each with a distinct seed.

TABLE I
DEFAULT SIMULATION SETTINGS
Para. Val. Description.
(6] 10 The number of trusted measurements
O] 90 The number of candidate measurements

20 The number of false measurements

T 20 dB | Attack strength

q 10 Step length

m 80 Terminal condition 1
72 80% Terminal condition 2
n3 10 dB | Terminal condition 3

.-
> 40
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Exemplary REMs (in terms of CINR) constructed by SecREM, TMO, AM, and ABFM with 10 trusted and 20 false measurements.

C. Simulation Results

We now report our simulation results.

1) Comparison of REMs Constructed by ABFM, TMO, AM,
and SecREM: Fig. 3 compares the REMs in terms of CINR
constructed by ABFM, TMO, AM, and SecREM, which have
a constant offset from the actual RSS values. Fig. 3(a) shows
the ideal REM constructed by all good measurements, which
can serve as the baseline for other mechanisms. Generally
speaking, the closer the REM produced by a mechanism to
the ideal REM, the more resilient the mechanism against false
spectrum measurements. Fig. 3(b) shows the REM constructed
only using ten known trusted measurements from anchor sen-
sors, which is very different from the ideal REM constructed
by ABFM and shows that the REM constructed using only
a small number of known trusted measurements is highly
inaccurate. On the other hand, Fig. 3(c) shows that the REM
constructed from all the measurements is highly distorted by
the 20 false measurements, which highlights the detrimental
impact from even a small number of false measurements.
Finally, Fig. 3(d) shows the REM constructing by SecREM.
As we can see, the REM is very close to the ideal REM shown
in Fig. 3(a), indicating the high resilience of SecREM to false
measurements. These exemplary REMs indicate that SecREM
outperforms both TMO and AM.

Fig. 4 shows the CDFs of the estimation errors at the
locations where validating measurements are taken under
ABFM, TMO, AM, and SecREM and the default simulation
settings, where SecREM-1, SecREM-2, and SecREM-3 refer
to SecREM with terminal condition 1, 2, and 3, respectively.
In addition, SecREM-1 and SecREM-2 share the same perfor-
mance as they are equivalent under the default settings. As we
can see, the estimation error is smaller than 4 dB for 70.64%
and 70.53% of the measured locations under SecREM-1&2
and SecREM-3, respectively, both of which are very close
to 71.82% under ABFM and much superior to 59.03% and
51.91% under TMO and AM, respectively. Moreover, less than
10% of the measured locations have estimation error over 7 dB
under both ABFM, SecREM-1&2 and SecREM-3. In contrast,
more than 10% of the measured locations have estimation error
over 10 dB and 12 dB under TMO and AM, respectively.

Fig. 5 shows the boxplots of the MAEs of ABFM, TMO,
AM, SecREM-1&2, and SecREM-3 over 100 runs. The me-
dian MAEs under AM, TMO, ABFM, SecREM-1&2, and
SecREM-3 are 4.78 dB, 4.03 dB, 2.80 dB, 2.86 dB, and 2.86
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dB, respectively. We can see that overall SecREM achieves
smaller MAE than AM and TMO. For the five strategies,
the distances between two “whiskers” above and below the
box are 1.82 dB, 4.26 dB, 0.53 dB, 1.179 dB, and 0.92 dB,
respectively. TMO has the largest distance, indicating that the
MAE by TMO highly depends on the locations of the trusted
measurements. In contrast, although both SecREM-1&2 and
SecREM-3 have several outliers, the distances between first
and third quartiles are only 0.41 dB and 0.31 dB, respectively,
which are quite small in comparison with 0.56 dB and 1.36
dB in AM and TMO, respectively. These results show that the
accuracy of the REMs produced by SecREM is much more
stable.

2) Impact of Attack Strength: Fig. 6 shows the MAEs vary-
ing with attack strength for ABFM, TMO, AM, and SecREM,
where the MAEs of AM and ABFM are not affected by the
change in attack strength and are plotted for reference only. As
we can see, the MAE of ABFM, i.e., the ideal case, is 2.82 dB,
which represents the limit of OK-based REM construction and
coincides with the results obtained in the recent measurement
study [22]. In addition, the MAE of TMO is larger than 4dB,
which again shows that the REM constructed from only a
small number of trusted measurements is highly inaccurate.
Moreover, the MAE of AM increases close linearly as the
attack strength increases and is unbounded. In contrast, as
the attack strength increases from 0 to 30 dB, the MAE
of SecREM-1 and SecREM-2 initially increases and then
gradually decreases until reaches that of ABFM, i.e., the ideal
case, and the maximum MAE appears when the attack strength
is 6 dB. In addition, SecREM-3 exhibits the similar trend with

slightly worse performance than SecREM-1 and SecREM-2
but still outperforms AM and TMO. These trends suggest that
SecREM-1, 2 and 3 can effectively bound the impact of false
measurements and exclude all the false measurements if the
attack strength is too large.

3) Impact of the Number of False Measurements: Fig. 7
shows the MAEs of TMO and SecREM with the number of
false measurements varying from 0 to 50, where the MAE of
TMO stays at 3.99 dB and is plotted for reference only. We can
see that the MAE of AM is the same as that of ABFM when
there is no false measurement and increases almost linearly as
the number of false measurements increases, which surpasses
that of TMO when the number of false measurements exceeds
10. This is anticipated, as the negative impact from false mea-
surements grows as their number increases. On the other hand,
the MAE of ABFM slightly increases as the number of false
measurements increases, which is due to the corresponding
decrease in the number of good measurements. In addition,
the MAE of SecREM-1&2 initially declines as the number
of false measurements increases. The reason for the initial
decline is that SecREM-1&2 may terminate too early when
there are only few false measurements, meaning some good
measurements are excluded from being used to improve the
accuracy of the REM. As the number of false measurements
increases, fewer good measurements are discarded, and the
MAE of SecREM-1&2 approaches that of ABFM when the
number of false measurements reaches 20. As the number
of false measurements further increases from 20, the MAE
of SecREM-1&2 deteriorates and surpasses that of TMO
when the number of false measurements reaches 30. This is
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also expected, as SecREM-1&2 always include some false
measurements in the final REM under such situations. Finally,
the MAE of SecREM-3 increases slowly as the number of
false measurements increases and stays below than that of
TMO even when half of the measurements are false. The
reason is that with the terminal condition parameter properly
set, e.g., 73 = 10 dB in this case, SecREM-3 can terminate at a
more proper time and exclude most of the false measurements,
resulting in higher accuracy of the REM even when the false
measurements constitute the majority.

4) Impact of the Number of Trusted Measurements: Fig. 8
shows the MAEs of ABFM, AM, and SecREM with the
number of trusted measurements, i.e., anchor sensors, varying
from 5 to 80, where the total number of good measurements
is fixed, and the MAEs of AM and ABFM are not affected
and are plotted for reference only. As we can see, the MAEs
of AM and ABFM are 4.84 dB and 2.81 dB, respectively. As
the number of trusted measurements increases from 5 to 80,
the MAE of TMO decreases from 5.07 dB to 2.81 dB, which
is anticipated as the more good measurements being used, the
higher the accuracy of the resulting REM. Moreover, while we
can see that the MAEs of both SecREM-1&2 and SecREM-3
decrease as the number of trusted measurements increases, the
gain by having more trusted measurements is relatively small.
For example, with only five trusted measurements, the MAEs
of SecREM-1&2 and SecREM-3 are 2.96 dB and 2.95 dB,

# of all measurements
(b) SecREM-2

100 110 120 80 90 100 110

# of all measurements
(c) SecREM-3

120

MAE:s of SecREM-1, 2, and 3 vs. the total number of measurements, where half of the measurements are false.

respectively, which decrease to 2.92 dB and 2.88 dB with
additional 15 trusted measurements. These results indicate
that SecREM-1/2/3 only require a small number of trusted
measurements to ensure the high accuracy of resulting REMs.

5) Impact of Step Length q: Fig. 9 shows the MAEs of
SecREM-1&2 and SecREM-3 varying with step length g,
where AM, TMO, and ABFM are not affected by the change in
step length and their MAEs are plotted for reference only. As
we can see, the MAEs of SecREM-1&2 and SecREM-3 both
slightly increase as the step length increases at the beginning.
The reason is that the initial REM constructed from the trusted
measurements is relatively coarse, and using the initial REM to
estimate the trustworthiness of other measurements and select
too many at once may have some false measurement included.
This will lead to higher MAE for the final REM. As the step
length further increases from 20, the MAE of the final REM
slightly fluctuate. Overall, the change in step length has limited
impact on the accuracy of the resulting REM under our default
settings.

6) Impact of Terminal Conditions: We now evaluate the
impact of different terminal conditions on the accuracy of the
REMs produced by SecREM. We can see from Fig. 10(a) that
the MAE of SecREM-1 first decreases as 7); increases and then
increases after 1 —n; exceeds the ratio of false measurements.
This is anticipated, as more good measurements are included
with a larger 7;. As long as 1 — 7; is smaller than the ratio
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of false measurement, SecREM-1 can produce an REM with
sufficient accuracy. Similarly, we can see from Fig. 10(b) that
the MAE of SecREM-2 first decreases as 7, increases and then
increases after 72 surpasses the number of good measurements.
Finally, Fig. 10(c) shows that the MAE of SecREM-3 first
decreases and then increases as 73 increases. The reason is
that when 73 is set too small, some good measurements would
be excluded, leading to higher MAE. On the other hand, if 73
is set too large, some false measurements will be included into
the final REM, leading to higher MAE.

7) Impact of the Total Number of Measurements: We now
study the impact of the total number of measurements. Given
the limited size of our dataset, we choose 25 measurements
as the validating set and randomly choose 70 to 120 mea-
surements as the testing dataset. For each testing dataset,
we randomly choose half of the measurements as the false
measurements with attack strength 20 dB and then randomly
choose another 10 measurements as the trusted measurements.
Figs. 11(a) to 11(c) compare the MAEs of SecREM-1, 2, and
3 with ABFM with the total number of measurements varying
from 70 to 120.

We can see from Figs. 11(a) to 11(c) that ABFM has the
smallest MAE, which is expected. In addition, Fig. 11(a)
shows that the MAE of SecREM-1 is relatively insensitive
to the change in the total number of measurements. This is
expected, as SecREM-1 can produce an REM with sufficient
accuracy if the ratio of false measurements is lower than 1—7;.
On the other hand, we can see from Fig. 11(b) that the MAE
of the REM produced by SecREM-2 decreases as the total
number of measurements increases. This is anticipated, as the
number of good measurements increases as the total number
of measurements increases, if the ratio of false measurements
remains the same. As long as there are more than 75 good mea-
surements, SecREM-2 can produce an REM with sufficient
accuracy. Finally, Fig. 11(c) shows that the MAE of SecREM-
3 is relatively insensitive to the change in the total number of
measurements. The reason is that when the parameter 73 is
small, SecREM-3 can effectively exclude false measurements.

8) Impact of Anchor Sensor Placement: We now study the
impact of the locations of anchor sensors. We consider the
following four strategies for placing anchor sensors.

e 1/4-Grid-Random: Divided the area into four square grids

of equal size and randomly select 2 or 3 measurements
in each zone to form the 10 trusted measurements.
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Fig. 13.  MAEs of SecREM-1&2 and 3 vs. locations of false measurements.

o Random: Randomly select 10 measurements as the trusted
measurements.

e PU-300m: Randomly select 10 measurements within 300
meters of the PU.

e PU-150m: Randomly select 10 measurements within 150
meters of the PU.

Generally speaking, the anchor sensors are distributed most
evenly under 1/4-Grid-Random, followed by Random, PU-
300m, and PU-150m.

Fig.12 compares the MAEs under the four anchor sensor
placement strategies for SecREM-1&2. The median MAEs
under 1/4-Grid-Random, Random, PU-300m, and PU-150m
over 100 runs are 2.84 dB, 2.84 dB, 3.02 dB, and 3.09
dB, respectively, and the MAEs of PU-300m and PU-150m
exhibit larger variance. Generally speaking, the more unevenly
distributed the anchor sensors, the higher the MAE, and vice
versa, which also holds for SecREM-3 as shown in Fig. 12(b).
However, the differences among the MAEs under the four
placement strategies are relatively small. Given the limited
size of our dataset, we leave the further investigation of the
optimal anchor sensor placement as our future work.

9) Impact of the Locations of False Measurements: We
consider the same four strategies for the attacker to place false
measurements. Fig. 13(a) compares the MAEs under the four
strategies for SecREM-1&2. The median MAEs under 1/4-
Grid-Random, Random, PU- 300m, and PU-150m over 100
runs are 3.01 dB, 2.83 dB, 3.13 dB, and 3.15 dB, respectively.
We can see that placing false measurements close to the PU
may result in higher MAE for SecREM-1&2. However, no
clear conclusion can be drawn from Fig.13(b) for SecREM-
3. We leave further investigation of the optimal placement of
false measurements as our future work.

VI. CONCLUSION

In this paper, we present the design and evaluation of
SecREM, a novel framework for secure crowdsourced REM
construction in the presence of false spectrum measure-
ments. Inspired by self-labeled techniques developed for semi-
supervised learning, SecREM constructs an initial REM from
only trusted measurements and gradually refines it by adding
more measurements deemed most trustworthy until certain
terminal conditions are met. Extensive simulation studies
based on a real spectrum measurement dataset confirms that
SecREM can produce an REM with sufficient accuracy in the



presence of false measurements. As our future work, we plan
to investigate the optimal placement for anchor sensors as well
as the optimal attack strategy against SecREM.
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