
ConPredictor: Concurrency Defect Prediction in
Real-World Applications

Tingting Yu, Member, IEEE, Wei Wen, Xue Han, Jane Huffman Hayes Member, IEEE

Abstract—Concurrent programs are difficult to test due to their inherent non-determinism. To address this problem, testing often

requires the exploration of thread schedules of a program; this can be time-consuming when applied to real-world programs. Software

defect prediction has been used to help developers find faults and prioritize their testing efforts. Prior studies have used machine

learning to build such predicting models based on designed features that encode the characteristics of programs. However, research

has focused on sequential programs; to date, no work has considered defect prediction for concurrent programs, with program

characteristics distinguished from sequential programs. In this paper, we present ConPredictor, an approach to predict defects specific

to concurrent programs by combining both static and dynamic program metrics. Specifically, we propose a set of novel static code

metrics based on the unique properties of concurrent programs. We also leverage additional guidance from dynamic metrics

constructed based on mutation analysis. Our evaluation on four large open source projects shows that ConPredictor improved both

within-project defect prediction and cross-project defect prediction compared to traditional features.

Index Terms—Concurrency, defect prediction, software quality, software metrics

F

1 INTRODUCTION

S
OFTWARE quality assurance is an expensive activity: it re-

quires time and resources to be performed properly, and it

delays a product’s delivery to market. This high-cost issue is more

challenging in many of today’s concurrent software systems due

to their complicated behaviors. For example, assuring the quality

of concurrent programs is difficult primarily because testing faces

this challenge: concurrency faults are sensitive to execution inter-

leavings that are imposed by various concurrency constructs (e.g.,

synchronization operations). Testing usually requires exploring as

many interleavings as possible to amplify the chance of exposing

faults. Recent work [21] reports that testing concurrent programs

can introduce a 10x-100x slowdown for each test run. Such

overhead increases as test suite size increases. Therefore, it is

desirable to determine which code regions are more likely to

contain concurrency faults as this can guide developers to focus

the testing efforts on the identified code, thus reducing the time

and resources required for testing and leading to reduced quality

assurance costs.

For this reason, defect prediction has been an active research

area in software engineering [48], [57], [58]. Defect prediction

techniques build models from software data and use the models

to predict whether new instances of code regions, e.g., files,

changes, and methods, contain defects. These techniques first

design features or combinations of features and then use machine

learning algorithms to build prediction models. Based on the

prediction results, developers can allocate limited testing efforts

more effectively to focus on the defect-prone modules. In par-

ticular, source code metrics have been used widely and shown

effectiveness in prediction. There has been much research on

software defect prediction by combining static code metrics to

• All authors are with the Department of Computer Science, University of

Kentucky, Lexington, Kentucky, USA, 40506.

E-mail: tyu@cs.uky.edu, wei.wen0@uky.edu, xha225@g.uky.edu,

hayes@cs.uky.edu

Manuscript received June 27, 2017; revised November 16, 2017.

identify defect-prone source code artifacts [101]. A variety of

statistical and machine learning techniques have been used to build

defect prediction models [14].

However, all existing defect prediction research has focused on

sequential software. To date, no work has considered concurrent

software systems for which adapting existing prediction models

may not be effective. Unlike defect prediction for sequential

programs, that often relies on a set of well-defined and traditional

code metrics (e.g., lines of code, cyclomatic complexity), pre-

dicting concurrency defects in concurrent programs must consider

the unique concurrency properties in its fault models: threads,

shared variable accesses between threads, and synchronization

operations.

Another challenge is that most existing research has focused

on designing features from static code analysis. However, the

performance of defect prediction can also rely on the quality of

the test suite [10]. This is because the performance of a defect

prediction model should be measured as its ability to predict faults

that ultimately lead to test failures. Although recent work [10]

has proposed using mutation analysis to guide defect detection,

it focuses on sequential programs. None of the existing research

has considered using either static or dynamic metrics to predict

defects for concurrent programs.

In this paper, we propose ConPredictor, a defect prediction

framework for predicting functions that are likely to contain

concurrency defects in real-world applications. Specifically, we

propose six novel code metrics specific to concurrent programs

by taking unique features related to concurrency properties into

account. We adapt the concurrency control flow graph (CCFG) to

generate code metrics involving: (i) concurrent cyclomatic com-

plexity, (ii) number of shared variables, (iii) number of conditional

basic blocks that contain concurrency constructs, (iv) number of

communication edges in CCFG, (v) number of synchronization

operations, and (vi) access distance between shared variables in

a local thread. We then define 18 mutation metrics computed by

applying a variety of mutation operators specific to concurrent pro-

TABLE 1: List of Sequential Mutation Operators

index Operator Description

1 ssdl statement deletion

2 swdd while replacement by do-while

3 oasn arithmetic operator by shift operator

4 oeba plain assignment by bitwise assignment

5 olng logical negation

6 orrn relational operator mutation

TABLE 2: List of Concurrency Mutation Operators

index Operator Description

1 rmlock Remove call to lock/unlock

2 rmwait Remove call to cond wait/cond timedwait

3 rmsig Remove call to cond signal/cond broadcast

4 rmjoinyld Remove call to join/yield

5 shfecs Shift critical section

6 spltecs Split critical section

Mutants that contain a single fault are called first-order mu-

tants. First-order mutants have been widely used for mutation

analysis of sequential programs. Table 1 lists six commonly used

mutation operators for sequential programs [1], including operator

indexes, operator names, and descriptions. These operators are

used in our study.

There has been some work to generate first-order mutants for

concurrent programs [11], [25]. For example, Ghosh generates

concurrency-related mutants by removing single synchronization

keywords [25]. Bradbury et al. proposed a set of first-order muta-

tion operators for Java [11]. However, more recent work has shown

that first-order mutants are not sufficient to simulate subtle concur-

rency faults due to the complexity of thread synchronizations [29],

[46], [54]. Therefore, some research has investigated higher-order

mutants [33], [40] for concurrent mutation operators [46] by

inserting two or more faults. Higher-order mutants subsume first-

order mutants, as killing the former is a sufficient but not necessary

condition for killing the latter.

To generate higher order mutants for concurrent programs,

Kaiser et al. [46] propose a set of mutation operators for multi-

threaded Java programs based on concurrency bug patterns that in-

clude subtle concurrency faults (e.g., data races). Kusano et al. [54]

implemented CCmutator based on the Clang/LLVM compiler

framework to inject concurrency faults for multithreaded C/C++

applications. Their work considers both first-order and higher-

order mutants. In this work, we consider various concurrency-

related mutation operators from CCmutator. Table 2 summarizes

the mutation operators used in this paper.

These operators include mutex locks, condition variables,

atomic objects, semaphores, thread creation, and thread join.

For example, removing a lock-unlock pair can create potential

data races and atomicity violations, removing a conditional wait

can create order violations, shifting and splitting critical sections

can introduce potential data races and order violations as some

variables are no longer synchronized. Replacing a call to join with

a call to sleep can cause nondeterministic behavior.

We use the term location to indicate a place in a program where

a fault can occur. Although the techniques we propose can be used

at different granularities (e.g., statements), this paper concentrates

on locations that correspond to single program instructions.

3 CONCURRENCY-RELATED CODE METRICS

Figure 1 shows the process of fault prediction in this work.

First, we define instances as units of programs, these can be

files, classes, or functions. The instances that we consider are

at the function level. We label an instance as faulty if it has

any concurrency faults, or non-faulty otherwise. The next step

is to compute static and dynamic metrics. The static metrics

consist of static code metrics and static mutation metrics, and

the dynamic metrics consist of coverage metrics and dynamic

mutation metrics. To obtain static code metrics, we perform static

analysis on the concurrency control flow graph (CCFG). We obtain

the static mutation metrics by recording the number of times

each mutation operator is applied. We then execute test cases on

the instances to compute metrics based on code coverage. Next,

we apply concurrency mutation operators to the instances and

execute test cases to collect dynamic mutation metrics. Finally,

we train prediction models using machine learning algorithms

implemented in Weka [30]. The trained prediction models classify

instances as faulty or non-faulty.

In the following sections, we describe the approach to com-

puting the static and dynamic metrics for concurrency fault pre-

diction.

3.1 Concurrency Control Flow Graph

A concurrent program P consists of threads that communicate

with each other through shared variables and synchronization

operations. Given the program source code, we can construct a

concurrent control flow graph (CCFG) for a procedure p ∈ P
based on a flow and context-sensitive pointer analysis, where p
can be accessed by multiple threads. The idea of building CCFGs

is not new and there has been research on using CCFGs to

achieve different objectives [24], [45]. For example, Kahlon et

al. [45] build a context-sensitive CCFG to perform staged data

race detection. Our CCFG is similar to those used in existing work

but is implemented to satisfy our goal of predicting concurrency

faults. First, p is constructed into a control flow graph (CFG),

denoted as (N(p), E(p)). A node N(p) is an instruction I
and an edge Ii → Ij ∈ E(p) describes the control flow and

data flow between nodes in this CFG. In the CCFG, we add

additional edges to represent communications between procedures

potentially running on two different threads. Figure 2 illustrates

an example CCFG, where the solid lines reflect the local edges

and the dotted lines reflect the cross-threads’ edges, including

fork, join, and communication edges. The Main function

creates two threads, on which functions foo and bar are running,

respectively. The variables marked as bold are shared between

threads. For readability purposes, we use statements rather than

instructions to represent each node.

Specifically, a fork edge is added from the program location

where thread_create instruction is called to the entry node

of the procedure to be executed. In Figure 2, edges < 1, foo >
and < 1, bar > form two fork edges. If the thread on which

the procedure is to be executed is specified as in the thread pool

model, the procedure is duplicated on the other thread. A join

edge is added from the return of a procedure that is executed by

the fork to the node representing thread_join instruction. In

Figure 2, edges < 14, 3 > and < 24, 3 > are considered to be join

edges. A communicate edge is added from a write of one shared

variable (SV) on one thread to the read of the same SV on the other

thread. For example, Figure 2 contains two communication edges

involving two shared variable pairs < 11, 17 > and < 18, 7 >.

3.2 Static Metrics

We introduce five code metrics and ten mutation metrics specific

to concurrent programs.

3.2.1 Static Code Metrics

Static code metrics are generated from the CCFG.

Synchronization point count (SPC). We define the synchroniza-

tion point count, SPC(f), as the number of nodes involving

synchronization operations (SOs) in a function f . The use of the

SPC metric is based on the intuition that the number of SOs

contributes to the complexity of concurrent programs. As the

number of SOs increase, the program is more likely to contain

more faults related to synchronization usage, such as deadlock

and atomicity violations. The SPC metric for a function is defined

as:

SPC(f) = num of syncs(f)

Here, we consider mutex, semaphore, conditional variables, and

barriers as synchronization operations. In the Figure 2 example,

SPC(main) = 2, SPC(foo) = 2, and SPC(bar) = 2, be-

cause each function contains two synchronization operations (e.g.,

mutex_lock).

Shared variable count (SVC). In this metric, we count the nodes

in the CCFG involving shared variable (SV) read/write in the

procedure p. The shared variables can affect data communication

between threads. The increasing complexity of SV usage is likely

to cause incorrect data state to propagate across threads. As such,

we define SVC for p as:

SV C(f) = num of SV s(f)

In Figure 2, SV C(foo) = 2 and SV C(bar) = 2. The variables

marked with bold are SVs. Note that we do not count SVs passed

as lock objects. SV C(main) = 0, because there are no global

variables in the main function.

Conditional synchronization count (CSC). We define condi-

tional synchronization count, CSC(f), as the number of condi-

tional basic blocks (e.g., branches) within function f that contain

at least one shared variable or synchronization operation. The CSC

metric takes into account the local control flow of a procedure

in one thread that can potentially complicate the communication

with procedures running on other threads. The intuition is that

the conditional block containing concurrency elements increases

the complexity of a function in terms of multithreading com-

munication, affecting the sensitivity of inputs that reach such

synchronization points. The CSC metric for f is defined as:

CSC(f) = num of cond syncs(f)

As Figure 2 shows, CSC(foo) = 2, because there are two

conditional blocks in foo that contain SVs (i.e., while, if).

The shaded areas are irrelevant basic blocks that CSC does not

count. Note that CSC(bar) = 0 and CSC(main) = 0, because

the two functions contain no conditional basic blocks containing

SVs or synchronization points (the two shaded conditional basic

blocks in bar are irrelevant basic blocks).

Communication edge count (CEC). The communication edge

count metric, denoted by CEC(f), counts the number of commu-

nication edges involved across all shared variables in a function

f . Since communication edges indicate how different threads can

interleave, CEC reflects the complexity of interleaving space. In

this case, the CEC value may be proportional to the likelihood of

exposing concurrency faults.

CEC(f) = num of comm edges(f)

In Figure 2, CEC(main) = 4, CEC(foo) = 4, and

CEC(bar) = 4. Each of the four functions contains four com-

munication edges.

Concurrency cyclomatic complexity (CCC). We extend the

traditional McCabe’s cyclomatic complexity [65] to measure com-

plexity of concurrent programs, denoted as concurrency cyclo-

matic complexity (CCC). To compute CCC, we first prune the

CCFG to transform it into CCFG’, which involves two steps:

1) remove each basic block b that is irrelevant to concurrency

properties (i.e., SVs and synchronizations) computed by the CSC
metric, as well as remove their incoming and outgoing edges;

and 2) add an auxiliary edge from each predecessor of b to each

successor of b. Thus, the CCC(p) of a function is defined with

reference to its CCFG’:

CCC(f) = E′ −N ′ + 2

Here, E′ is the number of edges and N ′ is the number of nodes

in the f of CCFG, where E′ includes both ingoing and outgoing

edges for f . In Figure 2, the shaded nodes are irrelevant and thus

removed. Auxiliary edges are added from node 8 to node 13, and

from node 19 to node 24. Thus, CCC(main) = 8 - 5 + 2 = 5,

CCC(foo) = 15 - 10 + 2 = 7, and CCC(bar) = 10 - 7 + 2 =

5. Note that the sequential Cyclomatic Complexity of the three

functions are 5 - 4 + 1 = 2, 12 - 11 + 2 = 3, and 11 - 11 + 2 = 2.

Shared variable access distance (SVD). The distance between

two shared variable (SV) accesses in one thread is also an

important factor for concurrency fault exposure [60]. For example,

if x is written at l1 and later read at l2 by the same thread T1,

and there exists a different thread T2 that updates the value of

x, the distance between l1 and l2 can impact the chances of T2
interleaving between them. We consider access distance as the

instruction gap between two SV accesses (reads or writes) in the

same procedure p. To compute SV D(f), we first identify all SV

pairs (SV P) in p. For each SV pair < sv1, sv2 >, we calculate

all instruction gaps by traversing all path segments1 between sv1
and sv2. Note that one SV P can associate with multiple distance

values due to possible control flow edges. To consider all path

segements, we calculate the mean distance over all path segments.

Specifically, we average all distance values if they are normally

distributed, otherwise we use their trimmed mean. Thus, SV D(f)
is defined as:

SV D(f) =
N∑

i=1

M∑

i=j

Dis(SV Pi,j)

Here, N is the number of shared variable pairs and M is the

number of path segments for an SV P . In the function foo of

Figure 2, there are two path segments: (7,8,10,11) and (11,12, 13,

6,7) for SV P s <7, 11> and <11, 7>, respectively. Suppose each

node counts for 2 instructions, then SV D(foo) = (8 + 10) / 2 =

9.

1. A path segment is a path slice for which every node is visited at most
once.

TABLE 3: List of Static Code Metrics

Predictor Metric Suite

ConPredictor

Concurrency Code Metrics (CCM) Description

CStaMc

ConcurrencyComplexity(CCC) Concurrent program complexity
CountSharedVaraible (CSV) # of shared variables
CountConditionalBasicBlock (CBB) # of conditional basic blocks
CountSynchronizations(CSO) # of synchronization operations
CountComEdges(CCE) # of communication edges
CountDistance(CCD) average distance between shared variables
Con. Stat. Mut. Met. (CSMM) Description

MuSrmlock # of generated mutants on rmlock
MuSrmwait # of generated mutants on rmwait
MuSrmsig # of generated mutants on rmsig
MuSrmjoinyld # of generated mutants on rmjoinyld
MuSshfecs # of generated mutants on shfecs
MuSspltecs # of generated mutants on spltecs
Con. Dyn. Mut. Met. (CDMM) Description

CDyMc

MuDuErmlock % of mutants executed on rmlock
MuDuErmwait % of mutants executed on rmwait
MuDuErmsig % of mutants executed on rmsig
MuDuErmjoinyld % of mutants executed on rmjoinyld
MuDuEshfecs % of mutants executed on shfecs
MuDuEspltecs % of mutants executed on spltecs
MuDuKrmlock % of mutants killed on rmlock
MuDuKrmwait % of mutants killed on rmwait
MuDuKrmsig % of mutants killed on rmsig
MuDuKrmjoinyld % of mutants killed on rmjoinyld
MuDuKshfecs % of mutants killed on shfecs
MuDuKspltecs % of mutants killed on spltecs

Sequential Code Metrics (SCM) Description

SPM

CountFunctionIn (CN) # of functions that call a given function

SStaMc

CountFunctionCall(CM) # of functions called by a given function
CountLocalVar (CL) # of local variables in the body of a method
CountParameters (CPA) # of parameters for a function
ComToCo (CTC) the ratio of comments to source code
CountPath (CP) the ratio of possible paths in the body of a function
CyclomaticComplexity (CC) Mcabe’s cyclomatic complexity
ExecStmt (ES) # of executable source code statements
MaxNesting (MN) maximum nested depth of all control structures
Seq. Stat. Mut. Met. (SSMM) Description

MuSssdl # of generated mutants on ssdl
MuSswdd # of generated mutants on swdd
MuSoasn # of generated mutants on oasn
MuSoeba # of generated mutants on oeba
MuSolng # of generated mutants on olng
MuSorrn # of generated mutants on orrn
Seq. Dyn. Mut. Met. (SDMM) Description

SDyMc

MuSssdl # of mutants executed on ssdl
MuSswdd # of mutants executed on swdd
MuSoasn # of mutants executed on oasn
MuSoeba # of mutants executed on oeba
MuSolng # of mutants executed on olng
MuSorrn # of mutants executed on orrn
MuDuKssdl % of mutants killed ssdl
MuDuKswdd % of mutants killed swdd
MuDuKoasn % of mutants killed oasn
MuDuKoeba % of mutants killed oeba
MuDuKolng % of mutants killed olng
MuDuKorrn % of mutants killed orrn

SDyMc indicates the dynamic metric set. We next consider three

research questions.

RQ1: Can ConPredictor improve defect prediction perfor-

mance compared to the metrics used for sequential programs?

RQ2: What metrics are particularly effective contributors to

concurrency defect prediction improvement?

RQ3: Can a combination of concurrent program metrics

be used to predict concurrency faults of new instances (i.e.,

functions) in a new project?

RQ1 lets us evaluate the defect prediction performance of

ConPredictor, compared to the baseline approach in which code

and mutation metrics for sequential programs are used. We also

split this overall question into three sub questions, which ask

about the effects of static metrics, dynamic metrics, and machine

learning on defect prediction performance.

RQ1.1: Can applying feature selection improve the perfor-

mance of defect prediction?

RQ1.2: How effective are the static metrics at predicting

concurrency faults?

RQ1.3: How effective are the dynamic metrics at predicting

concurrency faults?

RQ1.4: How can different machine learners affect the perfor-

TABLE 4: Object Program Characteristics

Program NLOC versions Total inst. Selected insts. Faulty insts. Increase Faults. mutants tests mutantse mutantsk
APACHE 128K - 201K 10 (v2.0 - v2.2) 35,761 2,164 70 3000% 51 2,644 2,972 62% 39%

MYSQL 199K - 438K 10 (v5.0 - v5.6) 71,665 2,478 230 1000% 184 2,267 1,813 71% 33%

MOZILLA 1,120K - 1,268k 10 (v4 - v34) 144,382 4,988 142 3500% 103 4,908 2,972 55% 31%

OPENOFFICE 3,033K - 4,138K 10 (v1.0 - v4.1) 110,509 6,835 116 5800% 82 5,097 3,846 62% 32%

mance of ConPredictor?

RQ2 investigates the contribution of different metrics for fault pre-

diction because choosing a different machine learner can produce

different performance results. RQ3 lets us evaluate whether the

proposed technique is effective when applied to a new project.

4.1 Objects of Analysis

We study four large concurrent software projects: Apache,

MySQL, Mozilla, and OpenOffice. We selected these subjects

because with millions of lines of publicly accessible code and

well maintained bug repositories, they have been widely used by

existing bug characteristic studies [43], [96], [99] and concurrency

fault detection and testing techniques [21], [60]. In addition,

comparing to medium and small projects, they contain a number of

concurrency bugs that are more appropriate for training datasets.

All four projects started in the early 2000’s and each has over

ten years of bug reports. The subject programs cover various

application spectrums - the world’s most used HTTP server, the

world’s most popular database engine, a leading web browser

suite, and a popular office suite. Server applications mostly use

concurrency to handle concurrent client requests. They can have

hundreds or thousands of threads running at the same time. Client

and office applications mostly use concurrency to synchronize

multiple GUI sessions and background working threads. Table 4

lists our object versions along with some of their characteristics.

Column 2 lists the number of lines of non-comment code (NLOC).

Other columns are described later.

There are not enough concurrency bugs in a single application

version to build classification models (usually 2-5 concurrency

bugs per version). Therefore, we collected data from multiple

versions of each application.

We randomly selected 10 versions for each application re-

leased between 2000 and 2014. Column 3 of Table 4 lists the

number of versions and release period of each subject. Column 4

lists the number of all function instances in all 10 versions of

each application. Since ConPredictor targets concurrent programs,

we selected function instances that can be executed by multiple

threads. We then removed redundant instances across multiple

versions. As a result, a total of 16,465 functions (Column 5 in

Table 4) were identified for use.

We labeled a function as buggy if it contains at least one

concurrency bug that was reported in bug reports or release

notes (that contain bug IDs). We searched bug reports for the

studied application versions using a set of concurrency-related

keywords (e.g., “race(s),” “deadlock,” “atomic,” “concurrency,”

“synchronization(s),” “mutex(es)”). These keywords have been

used by existing concurrency bug detection techniques [61], [97].

We filtered out unconfirmed reports. We then manually identified

functions containing at least one reported bug.

Column 6 in Table 4 lists the number of faulty function

instances. Column 7 lists the number of concurrency bugs. While

having a larger number of bugs may yield better evaluation, the

cost of the manual process is quite high: the understanding and

preparation of the object used in the study and the conduct of

the study required between 150 and 180 hours of researcher time.

Other columns are described later.

The imbalanced datasets may affect the accuracy of defect

prediction [87]. Table 4 shows that only 3.4% of the instances are

buggy and thus the data is imbalanced. To address this problem

and improve defect prediction models, we perform the re-sampling

technique used in existing work [87], i.e., SMOTE [15], on our

training data for both concurrency and sequential code metric sets.

Column 7 of Table 4 shows the percentage of increase of the

minority class by the SMOTE filter.

4.2 Data collection

To compute mutation scores, we required mutants of our object

programs. To seed sequential faults, we use Clang [55] to imple-

ment a mutation generation tool applying the mutation operators

described in Figure 1. For concurrency mutants, we extended

CCMUTATOR [54] to create concurrency mutants of the classes

described in Section 2. This process left us with the numbers of

mutants reported in Column 9 of Table 4. A total of 36 mutation

metrics, including both static and dynamic metrics, are collected

as shown in Table 3.

Test oracles are needed when evaluating whether a mutant is

killed. These programs are released with existing test suites and

with built-in oracles provided, and we used those. We also checked

program outputs, including messages printed on the console and

files generated and written by the programs.

We executed our test cases on all of the mutants of each object

program. Column 10 of Table 4 lists the number of test cases. To

control for variance due to randomization of thread interleavings,

we ran each mutant 100 times. A mutant is marked as being

executed or propagated if it does this at least once. We used a

Linux cluster to perform the executions, distributing each job on a

distinct node. The mutation score was computed by following the

process described in Section 2.2. Columns 11-12 of Table 4 report

the percentage of mutants executed and killed.

To gather static code metric data, for each function we first

computed six concurrency-related code metrics. The method of

computing concurrency metrics is described in Section 3.

We next computed sequential code metrics (SCM) used as

the baseline approach. There are two traditional suites of code

metrics: The Chidember-Kemmerer (CK) metrics [16] and metrics

that are directly calculated at the method level [7], [86]. The CK

metrics measure the size and complexity of various aspects of

object-oriented source code and are calculated at the class level.

CK metrics have been successfully applied for bug prediction

in prior work [27]. The method level metrics are not limited to

object-oriented source code, but include measures such as lines

of code. When applying these metrics to source files, they are

typically averaged or summed up over all methods that belong to

a file [57], [76], [102]. Since our goal is to build fault prediction

models for C/C++ programs at the function level, we do not

use the CK metrics because they are not directly applicable to

functions, e.g., depth of the inheritance tree. We choose instead the

nine metrics used previoiusly [27], a method-level fault prediction

technique (SCM). The nine sequential metrics include the number

of functions that call a given function (funIN), the number of

functions called by a given function (funOut), the number of

local variables in the body of a method (localVar), the number of

parameters in the declaration (parameters), the ratio of comments

to source code (comToCo), the number of possible paths in the

body of a function (countPath), McCabe Cyclomatic complexity

of a function (complexity), the number of executable source code

statements (execStmt), and the maximum nested depth of all

control structures (maxNesting).

Table 5 summarizes all concurrency metrics and sequential

metrics. The static metric set of ConPredictor (i.e., CStaMc)

consists of a static code metric set, denoted by CCM, and a static

mutation metric set, denoted by CSMM. The dynamic metric set of

ConPredictor (i.e., CDyMc) is equal to the dynamic mutation set,

denoted by CDMM. On SPM, the static metric set (i.e., SStaMc)

consists of a code metric set (SCM) and a mutation metric set

(SSMM) specific to sequential programs. SPM’s dynamic metric

set uses a set of dynamic mutation metrics for sequential programs,

denoted by SDMM. The sequential code metric set SCM is

proposed in prior work [27] and used as a baseline approach in

our study.

4.3 Techniques for Comparison

The ConPredictor basically combines all proposed static and

dynamic concurrency metrics, i.e., CCM + CSMM + CDMM.

To answer RQ1, we compare ConPredictor to SPM (i.e., SCM

+ SSMM + SDMM). The subquestion RQ1.1 isolates CStaMC

from ConPredictor and compares it to ConPredictor, SStaMC, and

CDyMC. The subquestion RQ1.2 compares CDyMc to ConPredic-

tor, and SDyMC. To answer the subquestion RQ1.3, we compare

the results of prediction models using four different classification

algorithms widely adopted in defect prediction studies, including

Decision Tree, Logistic Regression, Naive Bayesian, and Random

Forest. To answer RQ2, we calculate the importance of each indi-

vidual metric used in ConPredictor and examine their contribution

in concurrency defect prediction. To answer RQ3, we apply the

model learned from each dataset to predict concurrency faults in

each of the other three datasets. We then evaluate the prediction

performance of both ConPredictor and SPM on all nine pairs of

comparison.

4.4 Prediction Models

We first performed feature selection to select effective met-

rics for use in constructing prediction models. To do this, we

used the WEKA Wrapper Subset Selection Filter [31], [53]

(WrapperSubsetEval), which performs a best first search

algorithm to identify the subset of attributes that generalize

best on the training set. The SS algorithm can resolve the

multicollinearity problem between correlated features [2] and

thereby avoid the model construction overfitting problem. The

WrapperSubsetEval evaluates the power of a subset of met-

rics by considering the individual predictive ability of each metric

along with the degree of redundancy between them. Metrics that

are highly correlated with the faulty class while having a low

inter-correlation are preferred.

Next, a classification algorithm was required to build the pre-

diction model for each subject. In ConPredictor, we consider four

classification techniques: Bayesian Network, J48 Decision Tree,

Logistic Regression, and Random Forest in Weka [30]. We chose

TABLE 5: Metrics selected in each metric suite for all subjects

Concurrency Metric Suite Selected metrics

ConPredictor CSV, CCC, CCD, CCE, CSO, MuSrmlock ,
MuDuEspltecs, MuDuErmsig , MuDuEswptw ,
MuDuEmwait, MuDuKswptw , MuDuKrmsig ,
MuDukrmlock

CStaMc CSM, CCC, CCD, MuSrmlock , MuSswptw ,
MuSrmsig .

CDyMc MuDuErmsig , MuDuErmlock , MuDuEswptw ,
MuDuEmwait, MuDuEspltecs, MuDuKswptw ,
MuDuKrmsig

Sequential Metric Suite Selected metrics

SPM CI, CP, CC, MuSssdl, MuSoasn, MuSorrn,
MuDuEswdd, MuDuEoasn, MuDuKssdl,
MuDuKoeba

SStaMc CI, CP, CC, CV, MuSssdl, MuSolng , MuSswdd

SDyMc MuDuEswdd, MuDuEoasn, MuDuEssdl,
MuDuKssdl, MuDuKoeba, MuDuKolng

them because they are popular and have been shown to be effective

at predicting defects in a recent study [26]. Naive Bayes (NB) [91]

is a statistical technique which uses the combined probabilities of

the different attributes to predict faultiness. Logistic Regression

(LR) [18] is a regression technique which identifies the best set

of weights for each attribute to predict the faulty or non-faulty

class. J48 is a Java implementation of the C4.5 [78] decision

tree algorithm which uses entropy information to determine which

attribute to use as decision nodes. Random Forest (RF) [12] is an

ensemble technique which aggregates the predictions made by a

collection of decision trees (each with a subset of the original set

of attributes). To examine our research questions, we applied the

four models to different metric sets. The random forest algorithm

was primarily used in our experiments because its performance

was good, as noted in Section 5.1.4.

To evaluate our prediction models, we again used 10-fold cross

validation, widely used to evaluate prediction models [56], [70].

In 10-fold cross validation we randomly divide the dataset

into ten folds. Of these ten folds, nine folds are used to train the

classifier, while the remaining one fold is used to evaluate the

performance (Section 4.5). The feature selection is performed on

the training set. Specifically, the WrapperSubsetEval selected

the best features (metrics) in a fold. Next, only the metrics that

were nominated were adopted in the model construction. This

selection and model construction process was iterated for each of

the ten folds. Table 5 shows the selected metrics for each metrics

suite in all subjects.

Since 10-fold cross validation randomly samples instances and

puts them in ten folds [2], we repeated this process 100 times for

each prediction model to avoid sampling bias [56]. Note that we

use Weka’s SMOTE filter to increase the instances of the minority

class. The filter is applied only to the training folds of the cross

validation instead of the whole dataset in advance. This is because

the latter approach is likely to provide over optimistic results [82].

4.5 Performance Metrics

We chose performance metrics allowing us to answer each of our

three research questions. Specifically, we employ precision, recall,

F1-measure, area under the curve (AUC), and cost-effectiveness

metric. An instance can be classified as: buggy when it is truly

buggy (true positive, TP); it can be classified as buggy when it

is actually not (false positive, FP); it can be classified as non-

buggy when it is actually buggy (false negative, FN); or it can be

correctly classified as non-buggy (true negative, TN).

Precision, Recall, and F1-measure.

• Precision: the number of instances correctly classified as

buggy over the number of all instances classified as buggy.

P = TP
TP+FP

• Recall: the number of instances correctly classified as

buggy over the total number of buggy instances.

R = TP
TP+FN

• F-measure: a composite measure of precision and recall

for buggy instances.

F (b) = 2∗P∗R
P+R

AUC (area under the curve). We use the AUC of the receiver

operating characteristics (ROC) [57] as an additional measure to

evaluate the performance of the prediction models. The range of

AUC is [0, 1]. A larger AUC score indicates better prediction

performance. A prediction model achieving AUC above 0.5 is

considered more effective than the random predictor and 0.7 is

reasonably good [38]. As a scalar value, AUC is well suited to

compare the performance of different classifiers, and is often used

for that purpose [66].

Cost Effectiveness. The cost effectiveness metric, which evaluates

prediction performance given a cost limit, has been used widely in

existing defect prediction techniques [47], [57], [94], [95]. In our

context, the cost is the amount of function instances to inspect,

and the benefit is the number of bugs that can be discovered. If

developers inspect all predicted buggy instances, the percentage

of bugs that can be detected is equivalent to the recall. In some

circumstances (e.g., meeting a deadline), developers can only

inspect certain amount of functions. Therefore, it is useful to

maximize the bugs to be detected while minimizing the number

of instances to inspect. In this case, the cost effectiveness metric

is appropriate. We use the cost effectiveness metric, PofB20, used

by Jiang et al. [42]. They measure the percentage of bugs that a

developer can identify by inspecting the top 20 percent of lines of

code. In our context, we measure the percentage of concurrency

faults that a developer can identify by inspecting the top 20 percent

of function instances.

To compute PofB20, we sort instances by their probability

(provided by WEKA) of buggy [80] We then simulate a developer

that inspects these potentially buggy instances one at a time. As

the instances are inspected one at a time, we count the number

of lines of code that have been inspected and the number of bugs

that have been identified. We stop the inspection process when

20 percent of the lines of code have been inspected and compute

the percentage of bugs that are identified. This percentage is the

PofB20 cost effectiveness score. A higher cost effectiveness score

represents that a developer can detect more bugs when inspecting

a limited number of lines of code.

PofB20 metric uses 20 percent of all effort as the cut-off

value. However, a different cut-off value might lead to different

results. As an additional metric, we use Popt [66] to evaluate

the prediction performance of models. Popt is defined as the area

∆opt between the optimal model and the prediction model. In

the optimal model, all instances are ordered by decreasing fault

density, and in the predicted model, all instances are ordered

by decreasing predicted value (i.e., probability of being buggy).

The equation of computing Popt is shown below, where a larger

Popt value means a smaller difference between the optimal and

predicted model:

Popt = 1−∆opt

The range of Popt is [0, 1] and any predictor achieving the Popt

above 0.5 is more effective than the random predictor.

Statistical significance analysis. To assess whether prediction

performance of different metric sets were statistically significant,

we applied the Wilcoxon test [90] to the data sets, comparing

each pair of metric sets within each model. We did not use t-

test because F-measure outcomes from cross validation did not

follow a Normal distribution. We checked if the mean of F-

measure values of one predictor Pi was greater than the mean

of F-measures of another predictor Pj at the 95% confidence level

(p− value < 0.05).

Specifically, the null and alternative hypotheses for the t-test

are:

• H0: F-measure mean of Pi is equal to the F-measure mean

of Pj .

• H1: F-measure mean of Pi is greater to the F-measure

mean of Pj . (i.e., Pi has better performance if the mean

value is higher).

We rejected the null hypothesis H0 and accepted the alternative

hypothesis H1 if the p-value was smaller than 0.05 (at the 95%

confidence level).

Effect size. The effect size uses Cliff’s delta [17] that quantifies

the amount of difference between two non-parametric variables

beyond the p-value interpretation. The Cliff’s delta is computed by

d = 2W/mn− 1, where W is the statistic of the Wilcoxon rank-

sum test, and m and n are the sizes of two compared distributions.

Here W = R − n(n + 1)/2, where R is the sum of the rank in

the sample and n is the sample size. The magnitude of effect size

is usually assessed using the thresholds [83], where |d| < 0.147

is negligible, 0.147 ≥ |d| < 0.33 is small, 0.33 ≥ |d| < 0.474

is medium, and otherwise large. For example, suppose the effect

size between two metric suites A and B is −0.75. The sign is

negative because the mean of A is greater than the mean of B and

the magnitude of the effect size is regarded as large.

4.6 Importance of Features

To study the most influential metrics, we compute Breiman’s

variable importance score [12] for each feature. The larger the

score, the greater the influence of the metric on our models. We

use the option -attribute-importance provided by Weka

to compute the variable importance scores. For each run of the

10-fold cross validation we obtain an importance score for each

feature. In order to determine the features that are most influential

for the whole dataset, we apply the Scott-Knott test [39] on the

values from all 10 runs. The Scott-Knott test will cluster the

metrics according to statistically significant differences in their

mean variable importance scores (p - value = 0.05). We use the

implementation of the Scott-Knott test provided by the ScottKnott

R package. The Scott-Knott test ranks each metric exactly once,

however several metrics may appear within one rank.

Next, to assess how each factor is related to buggy instances,

we compare the values of each feature between buggy instances

and non-buggy instances. We first analyze the statistical signifi-

cance of the difference between the two classes (buggy and non-

buggy) by applying the Mann-Whitney U test at p - value = 0.01.

To show the effect size of the difference between the two features

in two groups, we calculate Cliff’s Delta.

4.7 Threats to Validity

The primary threat to external validity for this study involves the

representativeness of our programs, mutants, coverage criteria,

and test cases. Other systems may exhibit different behaviors,

as may other forms of test cases. However, the programs we

investigated are popular open source programs. Furthermore, the

test cases are those provided with the programs: they are rep-

resentative of test cases that could be used in practice to test

these programs. Most of the test subjects we used had relatively

good test suites (i.e., of the covered mutants, the mutation scores

were above 80%). Mutants can be influenced by external factors

such as mutation operators. We used only concurrency mutation

operators. However, concurrency faults can also be introduced by

sequential glitches. In addition, other interleaving criteria (e.g.,

synchronization coverage) may lead to different coverage results.

We controlled for these threats by using well studied concurrency

mutation operators and popular interleaving criteria.

The data collected for defect prediction may contain noise,

such as false positives (identifying non-buggy changes/files as

buggy), random sampling, and imbalanced data [8], [50]. For

example, Bird et al. [8] discovered that data collected via auto-

mated mining software repositories (MSR) often contain noise.

To mitigate this threat, we manually and carefully selected high

quality datasets. The bugs we selected are confirmed and fixed in

the subsequent versions. While it is possible that some functions

contain concurrency bugs but were mislabeled as clean, we se-

lected program versions between 2000 and 2014, so the functions

labeled as clean are unlikely to contain concurrency bugs because

no such bugs have been reported since 2014. We used SMOTE to

handle the class imbalance problem.

The primary threats to internal validity for this study are

possible faults in the implementation of our approach and in the

tools that we used to perform evaluation. We controlled for this

threat by extensively testing our tools and verifying their results

against smaller programs for which we could manually determine

the correct results. We also chose to use popular and established

tools (e.g., LLVM, Weka) for implementing the various stages of

our approach.

Where construct validity is concerned, our measurements

involve using metrics extracted from source code and mutation

analysis to predict defects in concurrent programs. Other static

metrics and dynamic metrics (e.g., test suite metrics) are also

of interest. Furthermore, other machine learning performance

measures can be used to measure effectiveness and accuracy.

To control for this threat, we chose commonly used F-measures.

Other metrics, such as the Matthews Correlation Coefficient [85]

(MCC), can be used to handle unbalanced data.

Conclusion validity concerns the statistical significance of the

result. We applied 10-fold cross validation, and did so 100 times,

as is common in experiments of this type. We also undertook

statistical analysis to test our hypotheses. To further reduce threats

to conclusion validity, we were careful to check the assumptions

of the statistical tests that were used.

5 RESULTS AND ANALYSIS

In this section, we present results related to the three research

questions 2.

5.1 RQ1: Effectiveness of ConPredictor vs. SPM vs.

SCM

To examine RQ1, we compare the performance of ConPredictor

to that of SPM and SCM. Columns 3-5 and 7-9 of Table 6 show

the performance of each set of metrics in different subjects in

terms of precision, recall, F-measure, AUC, PofB20, and Popt

from 100 times ten-fold cross validations. The numbers marked

in boldface indicate that the performance of ConPredictor is

significantly different from that of SPM and SCM. Columns 6

reports the F-measure values of the techniques without applying

feature selection.

Although the performance values varied, there was a clear

trend in which ConPredictor outperformed SPM and SCM for

every subject. For example, comparing to SPM, the improvement

of F-measure ranged from 29.7% to 34%. Comparing to SCM, the

improvement of F-measure ranged from 37.7% to 50%. The most

improvement occurred on Apache while the least improvement

was seen with OpenOffice. In other words, metrics considering

concurrency characteristics improved the prediction performance.

Table 7 shows the effect size when comparing different metric

suites in terms of their F-measure values. The numbers marked

as bold indicate that the Wilcoxon rank-sum test rejected the null

hypothesis of RQ1 (p-value < 0.05). For example, on Apache,

the effect size between ConPredictor and SPM is −0.675 and they

are statistically significantly different. Comparing ConPredictor to

SPM, the largest effect size occurred with OpenOffice and smallest

effect size occurred for Mozilla.

Among all 558 buggy instances, 368 and 270 are predicted

as buggy by ConPredictor and SPM, respectively. All 270 faults

predicted by SPM are also predicted by ConPredictor. SPM has

a lower precision because the missing buggy instances typically

have lower sequential metric scores but higher concurrency metric

scores. For example, a function that does not contain any branches

(CyclomaticComplexity is 2) but has several unprotected shared

variables involves an atomicity violation bug but is falsely classi-

fied as non-buggy by SPM.

In all four subjects, the AUC values of ConPredictor are

above 0.7 and significantly better than SPM and SCM. This

result confirms the impact of our proposed concurrency metrics

on concurrency fault prediction.

PofB20 represents the number of bugs that can be discovered

by examining the top 20% LOC. For example, ConPredictor can

help the developers identify 24 bugs for Apache by inspecting

20% LOC. SCM can help identify 12 bugs by inspecting 20%

LOC, which is 12 less bugs than those of ConPredictor. Overall,

ConPredictor improved PofB20 over SPM by amounts raninge

from 5.8% to 23.4% and over SCM by amounts ranging from

30.8% to 53.8%.

Overall, these results suggest that ConPredictor outperforms

the traditional sequential metrics.

5.1.1 RQ1.1: Feature Selection

As Column 6 of Table 6 shows, feature selection improves per-

formance of the defect prediction in terms of F-measure in all

2. All data we used in our experiments are publicly available at http://cs.uky.edu/∼tyu/

research/ConPredictor

TABLE 6: Results of evaluated metrics

Project Technique P R F1 F1nf AUC PofB20 Popt

Apache

ConPredictor 0.68 0.64 0.66 0.62↓ 0.72 0.52 0.67
CStaMc 0.65 0.51 0.57 0.51↓ 0.68 0.51 0.61
CDyMc 0.64 0.56 0.60 0.55↓ 0.52 0.54 0.50
SPM 0.52 0.41 0.46 0.42↓ 0.48 0.49 0.44
SStaMc 0.43 0.31 0.33 0.31 0.44 0.38 0.42
SDyMc 0.46 0.32 0.35 0.29↓ 0.47 0.34 0.44
SCM 0.43 0.34 0.33 0.31 0.45 0.36 0.41

MySQL

ConPredictor 0.65 0.63 0.64 0.55↓ 0.74 0.42 0.69
CStaMc 0.59 0.57 0.58 0.52↓ 0.64 0.40 0.58
CDyMc 0.61 0.63 0.62 0.56↓ 0.66 0.42 0.60
SPM 0.52 0.40 0.45 0.41 0.51 0.35 0.51
SStaMc 0.35 0.38 0.41 0.35↓ 0.48 0.31 0.50
SDyMc 0.38 0.33 0.39 0.32↓ 0.48 0.28 0.45
SCM 0.32 0.32 0.36 0.32↓ 0.47 0.25 0.42

Mozilla

ConPredictor 0.60 0.54 0.57 0.52↓ 0.75 0.47 0.70
CStaMc 0.55 0.48 0.51 0.45↓ 0.55 0.39 0.52
CDyMc 0.57 0.48 0.52 0.47↓ 0.58 0.42 0.55
SPM 0.54 0.29 0.38 0.35 0.44 0.36 0.54
SStaMc 0.41 0.34 0.37 0.35 0.40 0.36 0.38
SDyMc 0.42 0.30 0.35 0.32 0.44 0.34 0.40
SCM 0.41 0.31 0.35 0.33↓ 0.42 0.32 0.42

OpenOffice

ConPredictor 0.59 0.48 0.53 0.50↓ 0.77 0.52 0.68
CStaMc 0.57 0.41 0.48 0.46↓ 0.56 0.50 0.52
CDyMc 0.60 0.47 0.53 0.51↓ 0.58 0.51 0.53
SPM 0.48 0.28 0.35 0.33↓ 0.46 0.40 0.42
SStaMc 0.35 0.25 0.29 0.28 0.44 0.36 0.42
SDyMc 0.39 0.27 0.32 0.29↓ 0.46 0.24 0.41
SCM 0.37 0.30 0.33 0.31 0.42 0.24 0.39

TABLE 7: Effect Sizes for each metric set in different subjects.

Prog. CONFPREDICTOR CSTAMC

CStaMc CDyMc SPM SStaMc SDyMc SCM CStaMc CDyMc SPM SStaMc SDyMc SCM

Apache -0.223 -0.142 -0.675 -0.734 -0.539 -0.777 - 0.133 -0.424 -0.498 -0.432 -0.501

MySQL -0.374 -0.258 -0.842 -0.577 -0.699 -0.850 - 0.241 -0.692 -0.701 -0.522 -0.725

Mozilla -0.331 -0.251 -0.603 -0.658 -0.694 -0.709 - 0.231 -0.498 -0.572 -0.451 -0.533

OpenOffice -0.402 -0.333 -0.862 -0.801 -0.792 -0.877 - 0.312 -0.398 -0.402 -0.257 -0.429

Prog. CDYMC

CStaMc CDyMc SPM SStaMc SDyMc SCM

Apache - - -0.563 -0.852 -0.771 -0.642

MySQL - - -0.701 -0.721 -0.814 -0.759

Mozilla - - -0.423 -0.499 -0.367 -0.598

OpenOffice - - -0.598 -0.744 -0.725 -0.415

TABLE 8: Performance comparison of prediction models by

different machine learners.

Learner B.N D.T. L.R. R.F.

ConPredictor 0.57 0.61 0.53 0.65

CStaMc 0.48 0.47 0.47 0.57

CDyMc 0.53 0.55 0.49 0.62

SPM 0.39 0.40 0.37 0.45

SStaMc 0.34 0.33 0.32 0.38

SDyMc 0.37 0.36 0.34 0.40

SCM 0.32 0. 31 0.32 0.35

28 metric sets across all four subjects. The ↓ symbol indicates

that the improvement is statistically significant. The significant

improvement occurs to 20 out of 28 metric sets across all four

subjects by amounts ranging from 5.7% to 25.7%. The lowest

level of improvement occurred on SPM for OpenOffice, while

the highest levels of improvement occurred on ConPredictor for

MySQL. Overall, these results suggest that the use of feature selec-

tion improves the performance of the concurrency fault prediction.

5.1.2 RQ1.2: Effectiveness of Static Metrics

As Table 6 shows, comparing the static concurrency metric set

(CStaMC) to the static sequential metric set (SStaMC), when av-

eraging the F-measures, CStaMC improved over SStaMC ranging

from 23.8% to 64.2% on all four subjects. The best improvement

is for Apache and the worst improvement is for OpenOffice. Ta-

ble 7 (columns under the SStaMC) shows the improvements were

statistically significant. The results indicate that when choosing

static metrics for predicting concurrency faults, CStaMC is better

than SStaMC.

When comparing CStaMC to ConPredictor, ConPredictor was

more effective for all four subjects. Their F-measures are sta-

tistically significant. In other words, adding dynamic metrics to

CStaMC improved the prediction performance of static metrics.

The effectiveness improvement achieved by ConPredictor with

TABLE 9: Effect sizes for each machine learner in different subjects.

Learner CONFPREDICTOR CSTAMC CDYMC

B.N. D.T. L.R. B.N. D.T. L.R. B.N. D.T. L.R.

B.N. - 0.122 -0.358 - -0.025 -0.152 0.231 -0.101 -0. 132

D.T. -0.544 - 0.205 -0.332 - 0.108 0.098 - 0.133

L.R. 0.198 0.330 - 0.182 0.258 - 0.209 0.298 -

R.F. -0.499 0.223 -0.532 -0.392 -0.254 -0.338 -0.292 -1.163 -0.083

TABLE 10: Scott-Knott test results.

Group Metric Rankmean Rankhighest Ranklowest

G1
CCC 1 1 1
MuDuEspltecs 1.6 1 2
MuDuSrmlock 1.8 1 3

G2
MuDuKrmlock 3.1 2 5
CSV 4.9 3 6

G3
MuDuKswptw 5.8 4 7
MuDuEmwait 6.2 5 7
MuDuEswptw 7.5 6 9

G4
CCE 9.1 8 10
MuDuKrmsig 10.6 9 11

G5 CCD 10.9 10 12

G6 CSO 11.5 10 13

G7 MuDuErmsig 12.2 11 13

TABLE 11: Effects of different metrics

Metric set Metric Rel. d-value

CStaMc
CCC + 0.341 (medium)
CSV + 0.225 (small)
MuDuSrmlock + 0.204 (small)

CDyMc

MuDuErmlock + 0.325 (medium)
MuDuEspltecs + 0.212 (small)
MuDukrmlock + 0.308 (medium)
MuDuKswptw + 0.187 (small)

Rel.= relationship. “+” indicates faulty instances have significantly
higher value on this metric.

respect to CStaMC ranged from 10.8% (MySQL) to 16.2%

(Apache). These results indicate that the combination of static

and dynamic metric sets is more effective than the static metric set

alone. The results also implies that the use of the dynamic metric

sets amplifies the effectiveness of the defect prediction.

When comparing CStaMC to CDyMC, CDyMC performs

better than CStaMC, ranging from 2% (Mozilla) to 7.2% (OpenOf-

fice). However, such differences were statistically significant on

only MySQL and OpenOffice. The results imply that dynamic met-

rics have the potential to improve the performance of prediction

over static metrics on certain programs.

5.1.3 RQ1.3: Effectiveness of Dynamic Metrics

As shown in Table 6 and Table 7 (columns under CDyMC),

ConPredictor was more effective than CDyMC on all four sub-

jects. The improvements, ranging from 3.9% (MySQL) to 9.9%

(Apache), were statistically significant. These results indicate that

the combination of static metrics and dynamic metrics has better

performance than the dynamic metrics alone, and the use of the

static metrics validates the prediction performance of ConPredic-

tor.

When comparing CDyMC and SDyMC, CDyMC could con-

sistently improve the performance of SDyMC on all subjects rang-

ing from 14.3% (Mozilla) to 66.7% (Apache). The improvements

were still statistically significant. These results imply that when

choosing dynamic metrics for defect prediction on concurrent

programs, CDyMC is better than SStaMC.

5.1.4 RQ1.4: Different Machine Learners

Table 8 shows the performance of each set of metrics in different

machine learners in terms of the F-measure distributions from 100

times 10-fold cross validations. As the table shows, the F-measure

distributions from different machine learners did vary. However,

the trend indicates that ConPredictor performs better than the

other metric sets over all learners. Table 9 shows the comparisons

among different learners across ConPredictor and the two metric

sets used in ConPredictor. The numbers are the effect sizes and

those marked as bold indicate that the differences are statistically

significant different.

Among the mean values, Random Forest was significantly

better than two other learners over all the metric sets. Only on

ConPredictor was Random Forest not significantly different from

Decision Tree. Therefore, we employed Random Forest in the

other experiments mentioned in Section 4.4. In contrast, Logistic

Regression was the worst choice for model construction in our

experiment.

If these results generalize to other real subjects, we then

conclude that when constructing machine learning models to

predict concurrency faults, Random Forest is the best choice,

whereas Logistic Regression is inferior.

5.2 RQ2: Metrics Effectiveness Analysis

Table 10 shows the Scott-Knott test results. The importance values

of metrics in one group are statistically significantly different from

those of metrics in other groups. The results show that CCC (con-

currency code complexity), MuDuEspltecs, and MuDuSrmlock are

the top three most important features that influence our random

forest model. The best predictor was CCC. For code quality

prediction, this metric resembles McCabe complexity for sequen-

tial programs. A previous study [69] has shown that McCabe is

effective at predicting defects in sequential programs. Moreover,

lock operations are commonly used in concurrent programming to

synchronize shared resource accesses. These results suggest sub-

jects in our dataset that have higher concurrency code complexity,

with more locks are more likely to discriminate faulty instances

from non-faulty instances.

We next use Wilcoxon rank-sum and Cliff’s delta to evaluate

the effects of feature importance. Table 11 shows the factors that

have p - value < 0.01 and d > 0.147 (i.e., statistically significant

difference with at least a small effect size). We find that the faulty

and non-faulty instances have statistically significant differences

with at least a small effect size in 7 out of the 17 selected

features. The effect sizes are small for most of the 17 factors,

except for CCC, MuDuEspltecs, and MuDuSrmlock. The results

are consistent with feature ranking in Table 10.

TABLE 12: F-measures on across project prediction using ConPredictor and SPM.

Prog. CONFPREDICTOR SPM
Apache MySQL Mozilla OpenOffice Apache MySQL Mozilla OpenOffice

Apache - 0.546 0.566 0.496 - 0.421 0.443 0.402

MySQL 0.311 - 0.399 0.475 0.294 - 0.315 0.358

Mozilla 0.502 0.387 - 0.375 0.394 0.302 - 0.331

OpenOffice 0.451 0.325 0.364 - 0.425 0.308 0.341 -

For the static metric set, three out of six metrics can differen-

tiate faulty instances from non-faulty instances. Typically, when a

program has more complex code, shared variables, and locks, it

becomes more difficult to maintain the program and thus is more

likely to cause field failures. For the dynamic metric set, four out

of seven metrics can differentiate faulty instances from non-faulty

instances. These metrics are all related to lock operations, which

again suggest that faulty instances are more likely to misuse locks.

5.3 RQ3: Across Projects Prediction

RQ3 investigates whether a predictor for one application group

(dataset) can be used for other applications. We applied classifica-

tion model built by ConPredictor from each dataset to the instances

of each of the other four datasets. We then checked how accurate

the prediction is by assessing the performance of each model.

The prediction results are shown in columns 2-5 of Table 12.

For example, columns 3-5 show the performance values of using

models learned from MYSQL, MOZZILA and OPENOFFICE to

predict APACHE.

As the results show, the F-measure values for three out of

12 models were greater than 0.5, and six out of 12 models were

greater than 0.4. Two out three models that are greater than 0.5

happen between MOZZILA and APACHE. The two projects have

certain similarities because they involve web applications (i.e., in

the case when Mozilla is used to predict Apache and in the case

when Apache is used to predict Mozilla).

We next compare the across project prediction performance

of ConPredictor to that of SPM. Columns 6-9 of Table 12 show

the F-measures using SPM. The results indicate that ConPredictor

is more effective than SPM on all 12 program pairs. The num-

bers marked as bold indicate that the differences are statistically

significant.

Overall, these results suggest that ConPredictor is moderately

effective at predicting concurrency faults across projects, and is

more effective when predicting across similar projects. When com-

paring ConPredictor to SPM, ConPredictor is more effective at

predicting concurrency faults across projects. For future work, we

intend to improve ConPredictor on cross-project defect prediction

by applying Transfer Component Analysis+ (TCA+) analysis [74].

6 SUMMARY AND DISCUSSION

As presented in the previous section, we were able to demonstrate

that ConPredictor is useful for predicting defects of concurrent

programs. Specifically, we showed (subject to stated threats to va-

lidity) that 1) the metrics used in ConPredictor are more effective

at predicting concurrency faults than sequential metrics, 2) the

combination of static and dynamic metrics has better performance

than either the static metric set or the dynamic metric set, 3)

ConPredictor’s dynamic concurrency metrics are more effective

contributors than static metrics based on the information ratios,

4) the concurrency code complexity metric (CCC) is the most

effective code metric, and 5) the models built on three datasets

can be used to predict concurrency faults for the fourth dataset

with good effectiveness.

One of our primary findings is that mutation metrics can

significantly improve predictive performance and with large effect

sizes. This is the first time any kind of concurrency mutation

has been used to support fault prediction. Naturally, subsequent

studies can further investigate/exploit this predictive improvement,

perhaps in combination with other sets of metrics (e.g., process

metrics). In this first study we present the empirical evidence that

concurrency mutation metrics’ effect size on prediction outcomes

can be large, thereby motivating and opening up this avenue of

research.

Our results have implications for practitioners and researchers,

discussed below.

6.1 Implications for Practitioners

Results indicate that concurrency-related program metrics can

be effective and are more effective than predictors learned from

sequential program attributes. Practitioners can apply this finding

by building a CCFG, obtaining the concurrency metrics (we plan

to provide a tool in the future to simplify this), and substituting

their metrics into our learned model in order to predict defect-

prone functions. In addition, our results showed that several static

code metrics (e.g., CCC, CSV) were good predictors. For example,

industry practitioners can use the CCFG to calculate CCC and

examine its distribution for their project. Functions that have

higher values of CCC should be examined and possibly subjected

to additional code review and/or unit testing to lower the risk

of concurrency faults. Also, functions that share communication

edges with defect-prone functions warrant additional attention

during software assurance activities.

6.2 Implications for Researchers

The use of CCFG. Our study shows that code and mutation met-

rics can be used to predict faults specific to concurrent programs.

Researchers should consider adding the CCFG to their arsenal

of program representations. The ConPredictor metrics may have

other applications, such as for predicting testability of concurrent

programs, predicting change prone components in concurrent

programs, and predicting the number of tests that are needed to

achieve coverage of concurrent programs.

Lowering the recall. We inspected a few cases where an instance

(i.e., function) is mislabeled as non-faulty. This is because a

concurrency fault may involve more than one function because

the conflicting shared variables may exist in different functions.

A function labeled as non-faulty may have conflicting accesses

with other functions that are labeled as faulty. To address this

problem, we could employ the following heuristic: if one function

f is labeled as faulty, other functions that can be reached through

a communication edge from f should also be flagged as possible

faulty. Identification and test of functions that can reach defect-

prone functions may hold promise for improving the recall of

concurrency fault prediction and could be the focus of future work.

Incorporating test suite metrics. Our results suggest that dy-

namic metrics are more important than static metrics in concur-

rency fault detection. This implies that the quality of the test suite

is also a considerable factor in building effective predictors. In

this work, the dynamic metric set includes only mutation metrics.

More dynamic metrics are worth being studied to improve the

performance of ConPredictor. One direction is to develop test

suite metrics by which their executions provide various observable

attributes. For example, coverage metrics are commonly used as

they directly measure the relationship between the test suite and

source code. Thus, predictors can be built by incorporating the

coverage metrics of the program under test.

Additionally, the finding on communication edges implies

that researchers should examine concurrent edge coverage more

carefully as an important test criterion. The interleaving coverage

criteria has been widely used to measure test suite quality for

concurrent programs [13], [37], [60]. An interleaving criterion

is a pattern of inter-thread dependencies through SV accesses

that helps select representative interleavings to effectively expose

concurrency faults. An interleaving criterion is satisfied if all

feasible interleavings of SV defined in the criteria are covered.

As part of the future work, we can employ a Def-Use criterion,

which is satisfied if and only if a write w in one thread happens

before a read r in another thread and there is no other write to the

variable read by r between them. In fact, the Def-Use criterion

is equivalent to communication edge coverage in the context of

CCFG.

7 RELATED WORK

There has been much research on developing various software

metrics and prediction algorithms to assess software quality [7],

[14], [23], [49], [56], [57], [58], [68], [69], [70]. For example,

Lee et al. [56] proposed a set of micro-interaction metrics (MIMs)

that leverage developers’ interaction information combined with

source code metrics to predict defects. Meneely [67] et al. examine

structure of developer collaboration and use developer network

derived from code information to predict defects. Basili et al. [7]

used Chidamber and Kemerer metrics, and Ohlsson et al. [77]

used McCabe’s cyclomatic complexity for defect prediction. Koru

and Liu utilized static software measures along with defect data at

the class level to predict bugs using machine learning. Menzies et

al. [68] conclude that static code metrics are useful in predicting

defects under specific learning methods. These techniques, how-

ever, focus on sequential programs while ignoring code attributes

and testability for concurrent programs.

Besides code metrics, other metrics can be obtained from

different software artifacts. For example, Ohlsson et al. [77] study

metrics derived from design documents that are used to predict

fault-prone modules. Metrics collecting from version control sys-

tems (e.g., number of commits) have also been used to predict

faults [36], [51], [71]. Nagappan et al. [72] build fault prediction

models by considering the organizational metrics. However, none

of these techniques consider metrics or faults in concurrent pro-

grams. In addition, they do not consider dynamic metrics related

to test executions.

The only related work found is the work by Mathews et al. [64]

based on Ada programs. This work considers only the number of

synchronizations and conditional branches that contain synchro-

nization points without utilizing them to perform defect prediction.

However, this work does not aim to predict concurrency faults. In

addition, this work does not consider dynamic metrics.

There have been many approaches to improving performance

of cross-project defect prediction [62], [73], [74], [81], [88], [89],

[100]. For example, Nam et al. [74] adapted a state-of-the-art

transfer learning technique called Transfer Component Analysis

(TCA) and proposed TCA+. Turhan et al. proposed the nearest-

neighbor (NN) filter to improve the performance of cross-project

defect prediction [88]. The basic idea of the NN filter is that

prediction models are built by source instances that are nearest-

neighbors of target instances. In the future, we intend to leverage

these techniques to improve the performance of ConPredictor in

cross-project concurrency fault prediction.

Various data quality issues can arise when constructing defect

prediction datasets. a variety of methods have been proposed

for dealing with class imbalance problems. Chawla et al. [15]

proposed an over-sampling approach in which the minority class

is over-sampled by creating “synthetic” instances rather than

by over-sampling with replacement. Estabrooks et al. [22] and

Barandela et al. [6] both suggested that a combination of over-

sampling and under-sampling might be more effective to solve the

class imbalance problem. ConPredictor employs an over-sampling

technique [87], i.e., SMOTE.

Studies have also shown that the presence of systematic

data noise and bias in several open source data sets affect the

performance of defect prediction models [5], [8], [75]. Therefore,

research on improving mappings between bug reports and code has

been proposed. For example, Bird et al. [9] develop a technique

to manually annotate bug reports and code changes to reduce

the overhead of manual data point inspection. Wu et al. [93]

propose an automatic link recovery algorithm to recover missing

links between bug reports and code changes. Kim et al. [50]

propose guidelines about acceptable noise levels and propose a

noise detection and elimination algorithm. In the future, we will

leverage the above techniques to speed up the construction of

datasets.

There has been a great deal of research on mutation testing

for sequential programs [19], [63], [84]. Jia and Harman [41]

provide a recent survey. In this work, we focus on techniques that

share similarities with ours. There has also been some work on

mutation testing for concurrent programs [11], [29], [46], which

has been discussed in Section 2. Other tools such as MuTMuT [28]

have been used to optimize the execution of mutants by reducing

interleaving space that has to be explored. None of the techniques,

however, attempt to predict defects using software metrics.

Recent work by Bowes et al. [10] propose a mutation-aware

fault prediction technique, which leverages guidance from muta-

tion analysis to construct dynamic metrics. Both their work and

ConPredictor use mutants and the test cases that cover and detect

them for building additional metrics. However, their technique

focuses on sequential programs. As shown in our results, either

static or dynamic sequential metrics are significantly less effective

than ConPredictor’s metrics.

8 CONCLUSIONS

This paper presents an approach to predict defects of concurrent

programs at the function level. We proposed six novel static code

metrics, six static mutation metrics, 12 dynamic mutation metrics,

and combined them with a dynamic test suite metric to learn

four prediction models. We applied the models to four large-scale

real-world programs. We found that ConPredictor can outperform

traditional defect prediction using sequential metrics. In all cases,

both dynamic and static metrics feature prominently in the top 10

most influential metrics across all subjects, providing consistent

evidence that they are beneficial to the performance of prediction

models. In addition, ConPredictor showed good effectiveness

when applied to different software projects. Our study extended

existing knowledge in the field of software quality metrics by

proposing novel metrics specific to concurrent programs. In the

future, we will consider other code metrics and test suite attributes

and investigate their effectiveness as discussed in Section 6.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants CCF-1464032,

CCF-1652149, and CCF-1511117.

REFERENCES

[1] H. Agrawal, R. DeMillo, R. Hathaway, W. Hsu, W. Hsu, E. Krauser,
R. J. Martin, A. Mathur, and E. Spafford. Design of mutant operators
for the c programming language. Technical report, Technical Report
SERC-TR-41-P, Software Engineering Research Center, Department of
Computer Science, Purdue University, Indiana, 1989.

[2] E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2004.

[3] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, 2008.

[4] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In Proceedings of the

International Conference on Software Engineering, pages 402–411,
2005.

[5] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein. The
missing links: bugs and bug-fix commits. In Proceedings of the

eighteenth ACM SIGSOFT international symposium on Foundations of

software engineering, pages 97–106, 2010.

[6] R. Barandela, R. Valdovinos, J. Sanchez, and F. Ferri. The imbalanced
training sample problem: Under or over sampling? Structural,

syntactic, and statistical pattern recognition, pages 806–814, 2004.

[7] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators. IEEE Transactions

on Software Engineering, 22(10):751–761.

[8] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu. Fair and balanced?: bias in bug-fix datasets. In
Proceedings of the the 7th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering, pages 121–130, 2009.

[9] C. Bird, A. Bachmann, F. Rahman, and A. Bernstein. Linkster:
enabling efficient manual inspection and annotation of mined data. In
Proceedings of the eighteenth ACM SIGSOFT international symposium

on Foundations of software engineering, pages 369–370, 2010.

[10] D. Bowes, T. Hall, M. Harman, Y. Jia, F. Sarro, and F. Wu.
Mutation-aware fault prediction. In Proceedings of the 25th

International Symposium on Software Testing and Analysis, ISSTA
2016, pages 330–341, 2016.

[11] J. Bradbury, J. Cordy, and J. Dingel. Mutation operators for concurrent
java (j2se 5.0). In International Workshop on Mutation Analysis, pages
11–11, 2006.

[12] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[13] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications of
synchronization coverage. In Proceedings of the ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages
206–212, 2005.

[14] V. U. B. Challagulla, F. B. Bastani, I.-L. Yen, and R. A. Paul.
Empirical assessment of machine learning based software defect
prediction techniques. International Journal on Artificial Intelligence

Tools, 17(02):389–400.

[15] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of

artificial intelligence research, 16:321–357, 2002.

[16] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on software engineering, 20(6):476–493,
1994.

[17] N. Cliff. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological Bulletin, 114(3):494, 1993.

[18] D. R. Cox. The regression analysis of binary sequences. Journal of the

Royal Statistical Society. Series B (Methodological), pages 215–242,
1958.

[19] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Interface
mutation: An approach for integration testing. IEEE Transactions on

Software Engineering, 27(3):228–247.
[20] R. DeMillo, R. Lipton, and F. Sayward. Hints on test data selection:

Help for the practical programmer. 11 (4): 34–41, 1978.
[21] D. Deng, W. Zhang, and S. Lu. Efficient concurrency-bug detection

across inputs. In Proceedings of the 2013 ACM SIGPLAN

International Conference on Object Oriented Programming Systems

Languages & Applications, pages 785–802, 2013.
[22] A. Estabrooks, T. Jo, and N. Japkowicz. A multiple resampling method

for learning from imbalanced data sets. Computational intelligence,
20(1):18–36, 2004.

[23] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and

Practical Approach. CRC Press, 1998.
[24] M. K. Ganai and C. Wang. Interval analysis for concurrent trace

programs using transaction sequence graphs. In Proceedings of the

International Conference on Runtime Verification, pages 253–269,
2010.

[25] S. Ghosh. Towards measurement of testability of concurrent
object-oriented programs using fault insertion: A preliminary
investigation. In Proceedings of the IEEE International Workshop on

Source Code Analysis and Manipulation, pages 17–, 2002.
[26] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the impact of

classification techniques on the performance of defect prediction
models. In Proceedings of the International Conference on Software

Engineering - Volume 1, pages 789–800, 2015.
[27] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall. Method-level bug

prediction. In Proceedings of the ACM-IEEE international symposium

on Empirical software engineering and measurement, pages 171–180,
2012.

[28] M. Gligoric, V. Jagannath, and D. Marinov. Mutmut: Efficient
exploration for mutation testing of multithreaded code. In
International Conference on Software Testing, Verification and

Validation, pages 55–64, 2010.
[29] M. Gligoric, L. Zhang, C. Pereira, and G. Pokam. Selective mutation

testing for concurrent code. In Proceedings of the International

Symposium on Software Testing and Analysis, pages 224–234, 2013.
[30] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten. The weka data mining software: An update. Special Interest

Group on Knowledge Discovery and Data Mining Explorations

Newsletter, 11(1):10–18, Nov. 2009.
[31] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten. The weka data mining software: an update. ACM SIGKDD

explorations newsletter, 11(1):10–18, 2009.
[32] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A

systematic literature review on fault prediction performance in
software engineering. IEEE Transactions on Software Engineering,
38(6):1276–1304, 2012.

[33] M. Harman, Y. Jia, and W. B. Langdon. Strong higher order
mutation-based test data generation. In Proceedings of the ACM

SIGSOFT Symposium and the European Conference on Foundations of

Software Engineering, pages 212–222, 2011.
[34] M. Harman, Y. Jia, P. Reales Mateo, and M. Polo. Angels and

monsters: An empirical investigation of potential test effectiveness and
efficiency improvement from strongly subsuming higher order
mutation. In Proceedings of the 29th ACM/IEEE international

conference on Automated software engineering, pages 397–408, 2014.
[35] M. J. Harrold, D. Rosenblum, G. Rothermel, and E. Weyuker.

Empirical studies of a prediction model for regression test selection.
IEEE Transactions on Software Engineering, 27(3):248–263, March
2001.

[36] K. Herzig, S. Just, A. Rau, and A. Zeller. Predicting defects using
change genealogies. In IEEE 24th International Symposium on

Software Reliability Engineering, pages 118–127, 2013.
[37] S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold. Testing

concurrent programs to achieve high synchronization coverage. In
Proceedings of the International Symposium on Software Testing and

Analysis, pages 210–220, 2012.
[38] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant. Applied logistic

regression, volume 398. John Wiley & Sons, 2013.

[39] E. G. Jelihovschi, J. C. Faria, and I. B. Allaman. Scottknott: a package
for performing the scott-knott clustering algorithm in r. TEMA (São

Carlos), 15(1):3–17, 2014.

[40] Y. Jia and M. Harman. Higher order mutation testing. Information and

Software Technology Journal, 51(10):1379–1393.

[41] Y. Jia and M. Harman. An analysis and survey of the development of
mutation testing. IEEE Transactions on Software Engineering,
37(5):649–678, 2011.

[42] T. Jiang, L. Tan, and S. Kim. Personalized defect prediction. In
Proceedings of the 28th IEEE/ACM International Conference on

Automated Software Engineering, pages 279–289, 2013.

[43] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and
detecting real-world performance bugs. In PLDI, pages 77–88, 2012.

[44] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser. Are mutants a valid substitute for real faults in software
testing? In Proceedings of the ACM SIGSOFT International

Symposium on Foundations of Software Engineering, pages 654–665,
2014.

[45] V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang. Static data race
detection for concurrent programs with asynchronous calls. In
Proceedings of the Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering, pages 13–22, 2009.

[46] L. W. G. Kaiser. Constructing subtle concurrency bugs using
synchronization-centric second-order mutation operators. In
International Conference on Software Engineering and Knowledge

Engineering, pages 244–249, 2011.

[47] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi. A large-scale empirical study of just-in-time quality
assurance. IEEE Transactions on Software Engineering,
39(6):757–773, 2013.

[48] T. M. Khoshgoftaar, A. S. Pandya, and D. L. Lanning. Application of
neural networks for predicting program faults. Annals of Software

Engineering, 1(1):141–154, 1995.

[49] S. Kim, E. J. Whitehead, Jr., and Y. Zhang. Classifying software
changes: Clean or buggy? IEEE Transactions on Software

Engineering, 34(2):181–196.

[50] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with noise in defect
prediction. In Software Engineering (ICSE), 2011 33rd International

Conference on, pages 481–490, 2011.

[51] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller. Predicting
faults from cached history. In Proceedings of the 29th international

conference on Software Engineering, pages 489–498, 2007.

[52] K. N. King and A. J. Offutt. A fortran language system for
mutation-based software testing. Software: Practice and Experience,
21(7):685–718, 1991.

[53] R. Kohavi and G. H. John. Wrappers for feature subset selection.
Artificial intelligence, 97(1):273–324, 1997.

[54] M. Kusano and C. Wang. CCmutator: A mutation generator for
concurrency constructs in multithreaded C/C++ applications. In
IEEE/ACM International Conference on Automated Software

Engineering, pages 722–725, 2013.

[55] C. Lattner and V. Adve. Llvm: a compilation framework for lifelong
program analysis transformation. In International Symposium on Code

Generation and Optimization., pages 75–86, 2004.

[56] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In. Micro interaction
metrics for defect prediction. In Proceedings of the ACM SIGSOFT

Symposium and the European Conference on Foundations of Software

Engineering, pages 311–321, 2011.

[57] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings. IEEE Transactions on Software

Engineering, 34(4):485–496, 2008.

[58] P. L. Li, J. Herbsleb, M. Shaw, and B. Robinson. Experiences and
results from initiating field defect prediction and product test
prioritization efforts at abb inc. In Proceedings of the 28th

international conference on Software engineering, pages 413–422,
2006.

[59] LLVM Pass. Writing an LLVM Pass. Web page.
http://llvm.org/docs/WritingAnLLVMPass.html.

[60] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and
Y. Zhou. Muvi: Automatically inferring multi-variable access
correlations and detecting related semantic and concurrency bugs. In
ACM SIGOPS Operating Systems Review, pages 103–116, 2007.

[61] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics.
pages 329–339, 2008.

[62] Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer learning for
cross-company software defect prediction. Information and Software

Technology, 54(3):248–256, 2012.

[63] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. Mujava: A mutation system for
java. In Proceedings of the International Conference on Software

Engineering, pages 827–830, 2006.

[64] M. E. Mathews and S. Tu. Metrics measuring control flow complexity
in concurrent programs. In In Proceedings of the 13th Pacific

Northwest Software Quality Conference, page 5, 1995.

[65] T. J. McCabe. A complexity measure. IEEE Transactions on Software

Engineering, 2(4):308–320.

[66] T. Mende and R. Koschke. Revisiting the evaluation of defect
prediction models. In Proceedings of the 5th International Conference

on Predictor Models in Software Engineering, page 7, 2009.

[67] A. Meneely, L. Williams, W. Snipes, and J. Osborne. Predicting
failures with developer networks and social network analysis. In
Proceedings of the ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 13–23, 2008.

[68] T. Menzies, J. Greenwald, and A. Frank. Data mining static code
attributes to learn defect predictors. IEEE Transactions on Software

Engineering, 33(1):2–13.

[69] T. Menzies, O. Jalali, J. Hihn, D. Baker, and K. Lum. Stable rankings
for different effort models. Automated Software Engineering,
17(4):409–437, Dec. 2010.

[70] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the
efficiency of change metrics and static code attributes for defect
prediction. In ACM/IEEE International Conference on Software

Engineering., pages 181–190, 2008.

[71] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the
efficiency of change metrics and static code attributes for defect
prediction. In Proceedings of the 30th international conference on

Software engineering, pages 181–190, 2008.

[72] N. Nagappan, B. Murphy, and V. Basili. The influence of
organizational structure on software quality. In ACM/IEEE 30th

International Conference on Software Engineering, pages 521–530,
2008.

[73] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan. Heterogeneous defect
prediction. IEEE Transactions on Software Engineering, 2017.

[74] J. Nam, S. J. Pan, and S. Kim. Transfer defect learning. In
Proceedings of the 2013 International Conference on Software

Engineering, pages 382–391, 2013.

[75] T. H. Nguyen, B. Adams, and A. E. Hassan. A case study of bias in
bug-fix datasets. In 17th Working Conference on Reverse Engineering,
pages 259–268, 2010.

[76] T. H. Nguyen, B. Adams, and A. E. Hassan. Studying the impact of
dependency network measures on software quality. In IEEE

International Conference on Software Maintenance, pages 1–10, 2010.

[77] N. Ohlsson and H. Alberg. Predicting fault-prone software modules in
telephone switches. IEEE Transactions on Software Engineering,
22(12):886–894, 1996.

[78] J. R. Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[79] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič. Software fault
prediction metrics: A systematic literature review. Information and

Software Technology, 55(8):1397–1418, 2013.

[80] F. Rahman and P. Devanbu. How, and why, process metrics are better.
In Proceedings of the 2013 International Conference on Software

Engineering, pages 432–441, 2013.

[81] F. Rahman, D. Posnett, and P. Devanbu. Recalling the imprecision of
cross-project defect prediction. In Proceedings of the ACM SIGSOFT

20th International Symposium on the Foundations of Software

Engineering, page 61, 2012.

[82] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C. Riquelme.
Preliminary comparison of techniques for dealing with imbalance in
software defect prediction. In Proceedings of the 18th International

Conference on Evaluation and Assessment in Software Engineering,
page 43, 2014.

[83] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek.
Appropriate statistics for ordinal level data: Should we really be using
t-test and cohen’sd for evaluating group differences on the nsse and
other surveys. In annual meeting of the Florida Association of

Institutional Research, pages 1–33, 2006.

[84] D. Schuler, V. Dallmeier, and A. Zeller. Efficient mutation testing by
checking invariant violations. In Proceedings of the International

Symposium on Software Testing and Analysis, pages 69–80, 2009.

[85] M. Shepperd, D. Bowes, and T. Hall. Researcher bias: The use of
machine learning in software defect prediction. IEEE Transactions on

Software Engineering, 40(6):603–616, 2014.

	Introduction
	Background and Definitions
	Software Defect Prediction
	Mutation Analysis

	Concurrency-related Code Metrics
	Concurrency Control Flow Graph
	Static Metrics
	Static Code Metrics

	Mutation Metrics
	Static Mutation Metrics
	Dynamic Mutation Metrics

	Implementation

	Empirical Study
	Objects of Analysis
	Data collection
	Techniques for Comparison
	Prediction Models
	Performance Metrics
	Importance of Features
	Threats to Validity

	Results and Analysis
	RQ1: Effectiveness of ConPredictor vs. SPM vs. SCM
	RQ1.1: Feature Selection
	RQ1.2: Effectiveness of Static Metrics
	RQ1.3: Effectiveness of Dynamic Metrics
	RQ1.4: Different Machine Learners

	RQ2: Metrics Effectiveness Analysis
	RQ3: Across Projects Prediction

	Summary and Discussion
	Implications for Practitioners
	Implications for Researchers

	Related Work
	conclusions
	References
	Biographies
	Tingting Yu
	Wei Wen
	Xue Han
	Jane Huffman Hayes

