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Abstract—Concurrent programs are difficult to test due to their inherent non-determinism. To address this problem, testing often
requires the exploration of thread schedules of a program; this can be time-consuming when applied to real-world programs. Software
defect prediction has been used to help developers find faults and prioritize their testing efforts. Prior studies have used machine
learning to build such predicting models based on designed features that encode the characteristics of programs. However, research
has focused on sequential programs; to date, no work has considered defect prediction for concurrent programs, with program
characteristics distinguished from sequential programs. In this paper, we present ConPredictor, an approach to predict defects specific
to concurrent programs by combining both static and dynamic program metrics. Specifically, we propose a set of novel static code
metrics based on the unique properties of concurrent programs. We also leverage additional guidance from dynamic metrics
constructed based on mutation analysis. Our evaluation on four large open source projects shows that ConPredictor improved both
within-project defect prediction and cross-project defect prediction compared to traditional features.

Index Terms—Concurrency, defect prediction, software quality, software metrics

1 INTRODUCTION

OFTWARE quality assurance is an expensive activity: it re-
S quires time and resources to be performed properly, and it
delays a product’s delivery to market. This high-cost issue is more
challenging in many of today’s concurrent software systems due
to their complicated behaviors. For example, assuring the quality
of concurrent programs is difficult primarily because testing faces
this challenge: concurrency faults are sensitive to execution inter-
leavings that are imposed by various concurrency constructs (e.g.,
synchronization operations). Testing usually requires exploring as
many interleavings as possible to amplify the chance of exposing
faults. Recent work [21] reports that testing concurrent programs
can introduce a 10x-100x slowdown for each test run. Such
overhead increases as test suite size increases. Therefore, it is
desirable to determine which code regions are more likely to
contain concurrency faults as this can guide developers to focus
the testing efforts on the identified code, thus reducing the time
and resources required for testing and leading to reduced quality
assurance costs.

For this reason, defect prediction has been an active research
area in software engineering [48], [57], [58]. Defect prediction
techniques build models from software data and use the models
to predict whether new instances of code regions, e.g., files,
changes, and methods, contain defects. These techniques first
design features or combinations of features and then use machine
learning algorithms to build prediction models. Based on the
prediction results, developers can allocate limited testing efforts
more effectively to focus on the defect-prone modules. In par-
ticular, source code metrics have been used widely and shown
effectiveness in prediction. There has been much research on
software defect prediction by combining static code metrics to
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identify defect-prone source code artifacts [101]. A variety of
statistical and machine learning techniques have been used to build
defect prediction models [14].

However, all existing defect prediction research has focused on
sequential software. To date, no work has considered concurrent
software systems for which adapting existing prediction models
may not be effective. Unlike defect prediction for sequential
programs, that often relies on a set of well-defined and traditional
code metrics (e.g., lines of code, cyclomatic complexity), pre-
dicting concurrency defects in concurrent programs must consider
the unique concurrency properties in its fault models: threads,
shared variable accesses between threads, and synchronization
operations.

Another challenge is that most existing research has focused
on designing features from static code analysis. However, the
performance of defect prediction can also rely on the quality of
the test suite [10]. This is because the performance of a defect
prediction model should be measured as its ability to predict faults
that ultimately lead to test failures. Although recent work [10]
has proposed using mutation analysis to guide defect detection,
it focuses on sequential programs. None of the existing research
has considered using either static or dynamic metrics to predict
defects for concurrent programs.

In this paper, we propose ConPredictor, a defect prediction
framework for predicting functions that are likely to contain
concurrency defects in real-world applications. Specifically, we
propose six novel code metrics specific to concurrent programs
by taking unique features related to concurrency properties into
account. We adapt the concurrency control flow graph (CCFG) to
generate code metrics involving: (i) concurrent cyclomatic com-
plexity, (ii) number of shared variables, (iii) number of conditional
basic blocks that contain concurrency constructs, (iv) number of
communication edges in CCFG, (v) number of synchronization
operations, and (vi) access distance between shared variables in
a local thread. We then define 18 mutation metrics computed by
applying a variety of mutation operators specific to concurrent pro-



grams. These metrics include six static metrics (e.g., the number
of times a mutation operator is applied) and 12 dynamic metrics
from dynamic mutation analysis. The ConPredictor prediction
model is built upon all 24 static and dynamic concurrency metrics.
Then, we empirically compare the performance of ConPredictor
to those of prediction models built using traditional metrics that
have been widely used in previous fault prediction work [57]. We
also investigate whether the combined use of mutation metrics
and source code metrics improves the accuracy of the resulting
prediction model. Moreover, we examine the extent to which
different machine learning techniques benefit from the metrics in
ConPredictor. We also determine the best combination of metrics
for predicting testability.

To evaluate our approach, we apply it to four large real-word
systems. Our primary finding is that ConPredictor can significantly
improve the prediction performance, with large effect sizes, when
comparing to the traditional metrics for sequential programs.
The dynamic concurrency metrics are even more effective than
the static concurrency metrics. Our paper makes the following
contributions:

1) The first approach to effectively predict concurrency
faults,

2) A set of novel source code metrics specific to concurrent
programs,

3) The introduction of dynamic concurrency metrics for
fault prediction, and

4) An empirical study showing the effectiveness of our
approach.

This article draws on our previously published conference
paper [98], in which we propose a set of novel static code metrics
to predict testability of concurrent programs. The testability is
calculated based on mutation analysis. We have extended this
work substantially by introducing a new static metric and a set
of dynamic concurrency metrics. We then use both static and
dynamic metrics to predict concurrency faults. All concurrency
faults considered in this work are real. We have performed an
empirical study that is different from our previous work in terms
of research questions, study design, results, and analysis.

The remainder of the paper is organized as follows. Section
2 presents background and definitions. Our approach and concur-
rency code metrics are introduced in Section 3. Section 4 discusses
the empirical study. Results are presented in Section 5 followed
by discussion in Section 6. Prior work is presented in Section 7
and Section 8 concludes.

2 BACKGROUND AND DEFINITIONS

In this section, we provide background information on defection
prediction and mutation analysis. Related work is discussed fur-
ther in Section 7.

2.1 Software Defect Prediction

A software defect prediction model generally exploits historical
data to classify software modules as either faulty or non-faulty. A
prediction model infers a single aspect of the data (i.e., dependent
variable) from a combination of other aspects of the data (e.g.,
independent variables). In the software fault prediction context,
the dependent variable is the label indicating whether a software
module contains a fault or not while the independent variables can
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Fig. 1: Process of Predicting Software Faults

be related to different aspects of the software such as source code
metrics. Figure 1 illustrates the process of defect prediction.

The performance of the fault prediction model depends both
on the modeling technique and the independent variables (i.e.,
metrics) used. Classification techniques (e.g., Decision Trees,
Logistic Regression, and Naive Bayes) have been widely used to
build fault predication models [35], [56], [69]. However, according
to recent systematic literature reviews [32], [79], the choice of a
modeling technique seems to have less impact on the classification
accuracy of a model than the choice of a metrics set.

Feature selection has been used to select a set of most relevant
independent variables contained in the original dataset to eliminate
variables that do not contribute to the performance of prediction,
and can thus improve learning efficiency and increase prediction
accuracy [34]. Feature selection is usually performed by leverag-
ing a machine learning algorithm that can evaluate the usefulness
of the feature set (i.e., wrappers [53]). This can also be done by
ranking methods (i.e., filters) that evaluate the features according
to heuristics based on general characteristics of the data.

The performance of a classification model is typically eval-
uated based on the confusion matrix. The matrix contains four
instances: True Positive (TP) — faulty components correctly classi-
fied as faulty; False Negative (FN) — faulty components incorrectly
classified as non-faulty; False Positive (FP) — non-faulty com-
ponents incorrectly classified as faulty; and True Negative (TN)
— non-faulty components correctly classified as non-faulty. The
confusion matrix values are used to calculate a set of evaluation
measures, including precision (measuring the proportion of the
components classified as faulty which are actually faulty), recall
(measuring the proportion of faulty components classified as
faulty), and F-Measure (which is the harmonic mean of precision
and recall).

2.2 Mutation Analysis

Mutation testing is an approach for evaluating test suites and
testing techniques using a large number of systematically seeded
program changes, allowing for statistical analysis of results [3],
[41]. Mutation testing typically involves three stages. (1) Mutant
generation — in this stage, a predefined set of mutation operators
are used to generate mutants from program source code or byte-
code. A mutation operator is a rule that is applied to a program
to create mutants, such as arithmetic operator replacement (AOR)
[92]. (2) Mutant execution — in this stage, the goal is execution of
test cases against both the original program and the mutants. (3)
Result analysis — in this stage, the goal is to check the mutation
score obtained by the test suite, where mutation score is defined
as the ratio of the number of killed mutants to the number of all
(non-equivalent) generated mutants.



TABLE 1: List of Sequential Mutation Operators

index | Operator | Description

1 ssdl statement deletion

2 swdd while replacement by do-while

3 oasn arithmetic operator by shift operator

4 oeba plain assignment by bitwise assignment
5 olng logical negation

6 orrn relational operator mutation

TABLE 2: List of Concurrency Mutation Operators

index | Operator | Description

1 rmlock Remove call to lock/unlock

2 rmwait Remove call to cond_wait/cond_timedwait
3 rmsig Remove call to cond_signal/cond_broadcast
4 rmjoinyld | Remove call to join/yield

5 shfecs Shift critical section

6 spltecs Split critical section

Mutants that contain a single fault are called first-order mu-
tants. First-order mutants have been widely used for mutation
analysis of sequential programs. Table 1 lists six commonly used
mutation operators for sequential programs [1], including operator
indexes, operator names, and descriptions. These operators are
used in our study.

There has been some work to generate first-order mutants for
concurrent programs [11], [25]. For example, Ghosh generates
concurrency-related mutants by removing single synchronization
keywords [25]. Bradbury et al. proposed a set of first-order muta-
tion operators for Java [11]. However, more recent work has shown
that first-order mutants are not sufficient to simulate subtle concur-
rency faults due to the complexity of thread synchronizations [29],
[46], [54]. Therefore, some research has investigated higher-order
mutants [33], [40] for concurrent mutation operators [46] by
inserting two or more faults. Higher-order mutants subsume first-
order mutants, as killing the former is a sufficient but not necessary
condition for killing the latter.

To generate higher order mutants for concurrent programs,
Kaiser et al. [46] propose a set of mutation operators for multi-
threaded Java programs based on concurrency bug patterns that in-
clude subtle concurrency faults (e.g., data races). Kusano et al. [54]
implemented CCmutator based on the Clang/LLVM compiler
framework to inject concurrency faults for multithreaded C/C++
applications. Their work considers both first-order and higher-
order mutants. In this work, we consider various concurrency-
related mutation operators from CCmutator. Table 2 summarizes
the mutation operators used in this paper.

These operators include mutex locks, condition variables,
atomic objects, semaphores, thread creation, and thread join.
For example, removing a lock-unlock pair can create potential
data races and atomicity violations, removing a conditional wait
can create order violations, shifting and splitting critical sections
can introduce potential data races and order violations as some
variables are no longer synchronized. Replacing a call to join with
a call to sleep can cause nondeterministic behavior.

We use the term location to indicate a place in a program where
a fault can occur. Although the techniques we propose can be used
at different granularities (e.g., statements), this paper concentrates
on locations that correspond to single program instructions.

3 CONCURRENCY-RELATED CODE METRICS

Figure 1 shows the process of fault prediction in this work.
First, we define instances as units of programs, these can be
files, classes, or functions. The instances that we consider are
at the function level. We label an instance as faulty if it has
any concurrency faults, or non-faulty otherwise. The next step
is to compute static and dynamic metrics. The static metrics
consist of static code metrics and static mutation metrics, and
the dynamic metrics consist of coverage metrics and dynamic
mutation metrics. To obtain static code metrics, we perform static
analysis on the concurrency control flow graph (CCFG). We obtain
the static mutation metrics by recording the number of times
each mutation operator is applied. We then execute test cases on
the instances to compute metrics based on code coverage. Next,
we apply concurrency mutation operators to the instances and
execute test cases to collect dynamic mutation metrics. Finally,
we train prediction models using machine learning algorithms
implemented in Weka [30]. The trained prediction models classify
instances as faulty or non-faulty.

In the following sections, we describe the approach to com-
puting the static and dynamic metrics for concurrency fault pre-
diction.

3.1 Concurrency Control Flow Graph

A concurrent program P consists of threads that communicate
with each other through shared variables and synchronization
operations. Given the program source code, we can construct a
concurrent control flow graph (CCFG) for a procedure p € P
based on a flow and context-sensitive pointer analysis, where p
can be accessed by multiple threads. The idea of building CCFGs
is not new and there has been research on using CCFGs to
achieve different objectives [24], [45]. For example, Kahlon et
al. [45] build a context-sensitive CCFG to perform staged data
race detection. Our CCFG is similar to those used in existing work
but is implemented to satisfy our goal of predicting concurrency
faults. First, p is constructed into a control flow graph (CFG),
denoted as (N(p), E(p)). A node N(p) is an instruction [
and an edge I; — I; € E(p) describes the control flow and
data flow between nodes in this CFG. In the CCFG, we add
additional edges to represent communications between procedures
potentially running on two different threads. Figure 2 illustrates
an example CCFG, where the solid lines reflect the local edges
and the dotted lines reflect the cross-threads’ edges, including
fork, join, and communication edges. The Main function
creates two threads, on which functions foo and bar are running,
respectively. The variables marked as bold are shared between
threads. For readability purposes, we use statements rather than
instructions to represent each node.

Specifically, a fork edge is added from the program location
where thread_create instruction is called to the entry node
of the procedure to be executed. In Figure 2, edges < 1, foo >
and < 1,bar > form two fork edges. If the thread on which
the procedure is to be executed is specified as in the thread pool
model, the procedure is duplicated on the other thread. A join
edge is added from the return of a procedure that is executed by
the fork to the node representing thread_join instruction. In
Figure 2, edges < 14,3 > and < 24, 3 > are considered to be join
edges. A communicate edge is added from a write of one shared
variable (SV) on one thread to the read of the same SV on the other



thread. For example, Figure 2 contains two communication edges
involving two shared variable pairs < 11,17 > and < 18,7 >.

3.2 Static Metrics

We introduce five code metrics and ten mutation metrics specific
to concurrent programs.

3.2.1 Static Code Metrics
Static code metrics are generated from the CCFG.

Synchronization point count (SPC). We define the synchroniza-
tion point count, SPC(f), as the number of nodes involving
synchronization operations (SOs) in a function f. The use of the
SPC metric is based on the intuition that the number of SOs
contributes to the complexity of concurrent programs. As the
number of SOs increase, the program is more likely to contain
more faults related to synchronization usage, such as deadlock
and atomicity violations. The SPC metric for a function is defined
as:

SPC(f) = num_of_syncs(f)

Here, we consider mutex, semaphore, conditional variables, and
barriers as synchronization operations. In the Figure 2 example,
SPC(main) = 2, SPC(foo) = 2, and SPC(bar) = 2, be-
cause each function contains two synchronization operations (e.g.,
mutex_lock).

Shared variable count (SVC). In this metric, we count the nodes
in the CCFG involving shared variable (SV) read/write in the
procedure p. The shared variables can affect data communication
between threads. The increasing complexity of SV usage is likely
to cause incorrect data state to propagate across threads. As such,
we define SVC for p as:

SVC(f) = num_of_SVs(f)

In Figure 2, SVC(foo) = 2 and SV C(bar) = 2. The variables
marked with bold are SVs. Note that we do not count SVs passed
as lock objects. SV C/(main) = 0, because there are no global
variables in the main function.

Conditional synchronization count (CSC). We define condi-
tional synchronization count, CSC(f), as the number of condi-
tional basic blocks (e.g., branches) within function f that contain
at least one shared variable or synchronization operation. The CSC
metric takes into account the local control flow of a procedure
in one thread that can potentially complicate the communication
with procedures running on other threads. The intuition is that
the conditional block containing concurrency elements increases
the complexity of a function in terms of multithreading com-
munication, affecting the sensitivity of inputs that reach such
synchronization points. The CSC metric for f is defined as:

CSC(f) = num_of_cond_syncs(f)

As Figure 2 shows, C'SC(foo) = 2, because there are two
conditional blocks in foo that contain SVs (i.e., while, if).
The shaded areas are irrelevant basic blocks that CSC does not
count. Note that C'SC(bar) = 0 and C'SC(main) = 0, because
the two functions contain no conditional basic blocks containing
SVs or synchronization points (the two shaded conditional basic
blocks in bar are irrelevant basic blocks).

Communication edge count (CEC). The communication edge
count metric, denoted by C EC( f), counts the number of commu-
nication edges involved across all shared variables in a function

f. Since communication edges indicate how different threads can
interleave, CEC reflects the complexity of interleaving space. In
this case, the CEC value may be proportional to the likelihood of
exposing concurrency faults.

CEC(f) = num_of_comm_edges(f)

In Figure 2, CEC(main) = 4, CEC(foo) = 4, and
CEC(bar) = 4. Each of the four functions contains four com-
munication edges.

Concurrency cyclomatic complexity (CCC). We extend the
traditional McCabe’s cyclomatic complexity [65] to measure com-
plexity of concurrent programs, denoted as concurrency cyclo-
matic complexity (CCC). To compute CCC, we first prune the
CCFG to transform it into CCFG’, which involves two steps:
1) remove each basic block b that is irrelevant to concurrency
properties (i.e., SVs and synchronizations) computed by the C.SC
metric, as well as remove their incoming and outgoing edges;
and 2) add an auxiliary edge from each predecessor of b to each
successor of b. Thus, the CCC(p) of a function is defined with
reference to its CCFG’:

CCO(f)=E' — N' +2

Here, E’ is the number of edges and N is the number of nodes
in the f of CCFG, where E’ includes both ingoing and outgoing
edges for f. In Figure 2, the shaded nodes are irrelevant and thus
removed. Auxiliary edges are added from node 8 to node 13, and
from node 19 to node 24. Thus, CCC(main) =8 -5+ 2 =5,
CCC(foo)=15-10+2=7,and CCC(bar) =10-7 + 2 =
5. Note that the sequential Cyclomatic Complexity of the three
functionsare 5-4+1=2,12-11+2=3,and 11 - 11 +2=2.

Shared variable access distance (SVD). The distance between
two shared variable (SV) accesses in one thread is also an
important factor for concurrency fault exposure [60]. For example,
if x is written at [ and later read at [ by the same thread 771,
and there exists a different thread 7’2 that updates the value of
x, the distance between [ and 5 can impact the chances of 72
interleaving between them. We consider access distance as the
instruction gap between two SV accesses (reads or writes) in the
same procedure p. To compute SV D(f), we first identify all SV
pairs (SV P) in p. For each SV pair < svl, sv2 >, we calculate
all instruction gaps by traversing all path segments! between svl
and sv2. Note that one SV P can associate with multiple distance
values due to possible control flow edges. To consider all path
segements, we calculate the mean distance over all path segments.
Specifically, we average all distance values if they are normally
distributed, otherwise we use their trimmed mean. Thus, SV D(f)
is defined as:

N M
SVD(f) = 3. 3. Dis(SVP.)
i=1i=j
Here, IV is the number of shared variable pairs and M is the
number of path segments for an SV P. In the function foo of
Figure 2, there are two path segments: (7,8,10,11) and (11,12, 13,
6,7) for SV Ps <7, 11> and <11, 7>, respectively. Suppose each
node counts for 2 instructions, then SV D(foo) = (8 + 10) /2 =
9.

1. A path segment is a path slice for which every node is visited at most
once.
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3.3 Mutation Metrics

Most previous fault prediction studies have used static code met-
rics for this prediction task. Dynamic information resulting from
test executions can also be leveraged for guiding fault prediction.
In this paper, we use mutation testing to produce both static and
dynamic metrics. We choose mutation testing for two reasons.
First, the quality of the test suite is a considerable factor for finding
faults: mutation testing has been used to assess the quality of a test
suite [20], [52]. Second, empirical study [4], [44] has shown that
test cases that are good at killing mutants are good at detecting
real faults. Therefore, it has been validated that mutants can be a
legitimate substitute for real faults in testing.

We consider three metric suites: one static metric suite and two
dynamic metric suites.

3.3.1

The concurrency static mutation metric suite consists of a list
of mutation metrics that simply record the number of times
a particular mutation operator can be applied. They are static
metrics because the metric data can be obtained statically without
executing the code. Therefore, these metrics are independent of
any test suites. Each mutation operator is associated with a metric.
For instance, the six concurrency mutation metrics listed in Table 2
yield six static mutation metrics.

Static Mutation Metrics

3.3.2 Dynamic Mutation Metrics

The dynamic mutation metrics take into account the test suite as
well as the potential faults that can be seeded. For each type of
concurrency mutation operator defined in Section 2.2, we compute
two corresponding dynamic metrics: the percentage of mutants
(with respect to a mutation operator) that are executed (MuDuE),
and the percentage of mutants (with respect to a mutation operator)

that are killed (MuDuK). This results in 12 (2 X 6) dynamic
metrics, each of which contributes to an independent variable of
the prediction model. Each metric can also assess the quality of
the test suite regarding whether or not the test suite can exercise
a particular simulated fault (covered mutant), and whether the test
suite can detect this simulated fault (killed mutant).

3.4

Our metrics are implemented using the popular Clang/LLVM
compiler platform [55] using the LLVM opt pass [59] to collect
program information. Clang’s CFG provides a directed graph for
each function, where the nodes are the basic blocks and the
directed edges represent how the control flows. As noted above,
our CCFG extends the basic CFG by adding edges describing
inter-thread communication. We apply shared variable analysis to
identify variables shared by two threads, such as heap objects
and data objects that are passed to a function (e.g., thread starter
function) called by another thread. Since our metrics implemented
by LLVM’s intermediate representation (IR) are based on single
static assignment (SSA) form, we can potentially leverage com-
piler front-ends to handle other languages. We leverage CCMu-
tator [54], a concurrency mutation tool, to generate mutants of
concurrent programs.

Implementation

4 EMPIRICAL STUDY

In this section, our goal is to evaluate the effectiveness of Con-
Predictor. We use four metric suites consisting of 48 metrics in
this evaluation, shown in Table 3. The CStaMc and CDyMc are
static and dynamic metric sets used in ConPredictor. In addition
to ConPredictor, we use SPM, a baseline defect predictor built
using 24 metrics, where SStaMc indicates the static metric set and



TABLE 3: List of Static Code Metrics

Predictor Metric Suite
Concurrency Code Metrics (CCM) Description
ConcurrencyComplexity(CCC) Concurrent program complexity
CountSharedVaraible (CSV) # of shared variables
CountConditionalBasicBlock (CBB) | # of conditional basic blocks
CountSynchronizations(CSO) # of synchronization operations
CountComEdges(CCE) # of communication edges
CStaMe CountDistance(CCD) average distance between shared variables
Con. Stat. Mut. Met. (CSMM) Description
MuS,niock # of generated mutants on rmlock
MuS,mwait # of generated mutants on rmwasit
MuS;msig # of generated mutants on rmsig
. MuS, 1 ivinuld # of generated mutants on rmjoinyld
ConPredictor MuS,, ;ec s - # of generated mutants on sh f? ecs .
MuSspitees # of generated mutants on spltecs
Con. Dyn. Mut. Met. (CDMM) Description
MuDuE, . 0ck % of mutants executed on rmlock
MuDuE, 1, wait % of mutants executed on rmwait
MuDuE;psig % of mutants executed on rmsig
MuDUuE; 5 0inyld % of mutants executed on rmjoinyld
MuDuEgp fecs % of mutants executed on sh fecs
CDyMe ﬁuDuEspltECS % of mutants e).(ecuted on spltecs
uDuK,n10ck % of mutants killed on rmlock
MuDuK, 1w ait % of mutants killed on rmwait
MuDuK;msig % of mutants killed on rmsig
MuDuK ;1 j0ingyid % of mutants killed on rmjoinyld
MuDuKsp fecs % of mutants killed on sh fecs
MuDuKpitecs % of mutants killed on spltecs
Sequential Code Metrics (SCM) Description
CountFunctionIn (CN) # of functions that call a given function
CountFunctionCall(CM) # of functions called by a given function
CountLocalVar (CL) # of local variables in the body of a method
CountParameters (CPA) # of parameters for a function
ComToCo (CTC) the ratio of comments to source code
CountPath (CP) the ratio of possible paths in the body of a function
CyclomaticComplexity (CC) Mcabe’s cyclomatic complexity
ExecStmt (ES) # of executable source code statements
SStaMc MaxNesting (MN) maximum nested depth of all control structures
Seq. Stat. Mut. Met. (SSMM) Description
MuS 41 # of generated mutants on ssdl
MuSwdd # of generated mutants on swdd
MuSoasn # of generated mutants on oasn
SPM MuS,epa # of generated mutants on oeba
MuS,ing # of generated mutants on olng
MuSorrn # of generated mutants on orrn
Seq. Dyn. Mut. Met. (SDMM) Description
MuSsa; # of mutants executed on ssdl
MuS;.pdd # of mutants executed on swdd
MuS,asn # of mutants executed on oasn
MuS,epa # of mutants executed on oeba
MuS,ing # of mutants executed on olng
SDyMec ﬁusorm # of mutants ex;cuted on orrn
uDuK 41 % of mutants killed ssdl
MuDuK.,q4 % of mutants killed swdd
MuDuK,qsn % of mutants killed oasn
MuDuKepq % of mutants killed oeba
MuDuKng % of mutants killed olng
MuDuKyrn % of mutants killed orrn

SDyMc indicates the dynamic metric set. We next consider three
research questions.

RQ1: Can ConPredictor improve defect prediction perfor-
mance compared to the metrics used for sequential programs?

RQ2: What metrics are particularly effective contributors to
concurrency defect prediction improvement?

RQ3: Can a combination of concurrent program metrics
be used to predict concurrency faults of new instances (i.e.,
functions) in a new project?

RQ1 lets us evaluate the defect prediction performance of
ConPredictor, compared to the baseline approach in which code

and mutation metrics for sequential programs are used. We also
split this overall question into three sub questions, which ask
about the effects of static metrics, dynamic metrics, and machine
learning on defect prediction performance.

RQ1.1: Can applying feature selection improve the perfor-
mance of defect prediction?

RQ1.2: How effective are the static metrics at predicting
concurrency faults?

RQ1.3: How effective are the dynamic metrics at predicting
concurrency faults?

RQ1.4: How can different machine learners affect the perfor-



TABLE 4:

Object Program Characteristics

Program NLOC versions Total inst. | Selected insts. | Faulty insts. | Increase | Faults. | mutants | tests | mutants. | mutantsy,
APACHE 128K - 201K 10 (v2.0 - v2.2) | 35,761 2,164 70 3000% |51 2,644 12,972 62% 39%
MyYsQL 199K - 438K 10 (v5.0 - v5.6) | 71,665 2,478 230 1000% | 184 2267 | 1,813 71% 33%
MOZILLA 1,120K - 1,268k | 10 (v4 - v34) 144,382 | 4,988 142 3500% | 103 4,908 2,972 55% 31%
OPENOFFICE | 3,033K - 4,138K | 10 (v1.0 - v4.1) | 110,509 | 6,835 116 5800% |82 5,097 3,846 | 62% 32%

mance of ConPredictor?

RQ2 investigates the contribution of different metrics for fault pre-
diction because choosing a different machine learner can produce
different performance results. RQ3 lets us evaluate whether the
proposed technique is effective when applied to a new project.

4.1 Objects of Analysis

We study four large concurrent software projects: Apache,
MySQL, Mozilla, and OpenOffice. We selected these subjects
because with millions of lines of publicly accessible code and
well maintained bug repositories, they have been widely used by
existing bug characteristic studies [43], [96], [99] and concurrency
fault detection and testing techniques [21], [60]. In addition,
comparing to medium and small projects, they contain a number of
concurrency bugs that are more appropriate for training datasets.
All four projects started in the early 2000’s and each has over
ten years of bug reports. The subject programs cover various
application spectrums - the world’s most used HTTP server, the
world’s most popular database engine, a leading web browser
suite, and a popular office suite. Server applications mostly use
concurrency to handle concurrent client requests. They can have
hundreds or thousands of threads running at the same time. Client
and office applications mostly use concurrency to synchronize
multiple GUI sessions and background working threads. Table 4
lists our object versions along with some of their characteristics.
Column 2 lists the number of lines of non-comment code (NLOC).
Other columns are described later.

There are not enough concurrency bugs in a single application
version to build classification models (usually 2-5 concurrency
bugs per version). Therefore, we collected data from multiple
versions of each application.

We randomly selected 10 versions for each application re-
leased between 2000 and 2014. Column 3 of Table 4 lists the
number of versions and release period of each subject. Column 4
lists the number of all function instances in all 10 versions of
each application. Since ConPredictor targets concurrent programs,
we selected function instances that can be executed by multiple
threads. We then removed redundant instances across multiple
versions. As a result, a total of 16,465 functions (Column 5 in
Table 4) were identified for use.

We labeled a function as buggy if it contains at least one
concurrency bug that was reported in bug reports or release
notes (that contain bug IDs). We searched bug reports for the
studied application versions using a set of concurrency-related
keywords (e.g., “race(s),” “deadlock,” “atomic,” “concurrency,”’
“synchronization(s),” “mutex(es)”). These keywords have been
used by existing concurrency bug detection techniques [61], [97].
We filtered out unconfirmed reports. We then manually identified
functions containing at least one reported bug.

Column 6 in Table 4 lists the number of faulty function
instances. Column 7 lists the number of concurrency bugs. While
having a larger number of bugs may yield better evaluation, the
cost of the manual process is quite high: the understanding and
preparation of the object used in the study and the conduct of

the study required between 150 and 180 hours of researcher time.
Other columns are described later.

The imbalanced datasets may affect the accuracy of defect
prediction [87]. Table 4 shows that only 3.4% of the instances are
buggy and thus the data is imbalanced. To address this problem
and improve defect prediction models, we perform the re-sampling
technique used in existing work [87], i.e., SMOTE [15], on our
training data for both concurrency and sequential code metric sets.
Column 7 of Table 4 shows the percentage of increase of the
minority class by the SMOTE filter.

4.2 Data collection

To compute mutation scores, we required mutants of our object
programs. To seed sequential faults, we use Clang [55] to imple-
ment a mutation generation tool applying the mutation operators
described in Figure 1. For concurrency mutants, we extended
CCMUTATOR [54] to create concurrency mutants of the classes
described in Section 2. This process left us with the numbers of
mutants reported in Column 9 of Table 4. A total of 36 mutation
metrics, including both static and dynamic metrics, are collected
as shown in Table 3.

Test oracles are needed when evaluating whether a mutant is
killed. These programs are released with existing test suites and
with built-in oracles provided, and we used those. We also checked
program outputs, including messages printed on the console and
files generated and written by the programs.

We executed our test cases on all of the mutants of each object
program. Column 10 of Table 4 lists the number of test cases. To
control for variance due to randomization of thread interleavings,
we ran each mutant 100 times. A mutant is marked as being
executed or propagated if it does this at least once. We used a
Linux cluster to perform the executions, distributing each job on a
distinct node. The mutation score was computed by following the
process described in Section 2.2. Columns 11-12 of Table 4 report
the percentage of mutants executed and killed.

To gather static code metric data, for each function we first
computed six concurrency-related code metrics. The method of
computing concurrency metrics is described in Section 3.

We next computed sequential code metrics (SCM) used as
the baseline approach. There are two traditional suites of code
metrics: The Chidember-Kemmerer (CK) metrics [16] and metrics
that are directly calculated at the method level [7], [86]. The CK
metrics measure the size and complexity of various aspects of
object-oriented source code and are calculated at the class level.
CK metrics have been successfully applied for bug prediction
in prior work [27]. The method level metrics are not limited to
object-oriented source code, but include measures such as lines
of code. When applying these metrics to source files, they are
typically averaged or summed up over all methods that belong to
a file [57], [76], [102]. Since our goal is to build fault prediction
models for C/C++ programs at the function level, we do not
use the CK metrics because they are not directly applicable to
functions, e.g., depth of the inheritance tree. We choose instead the
nine metrics used previoiusly [27], a method-level fault prediction



technique (SCM). The nine sequential metrics include the number
of functions that call a given function (funIN), the number of
functions called by a given function (funOut), the number of
local variables in the body of a method (localVar), the number of
parameters in the declaration (parameters), the ratio of comments
to source code (comToCo), the number of possible paths in the
body of a function (countPath), McCabe Cyclomatic complexity
of a function (complexity), the number of executable source code
statements (execStmt), and the maximum nested depth of all
control structures (maxNesting).

Table 5 summarizes all concurrency metrics and sequential
metrics. The static metric set of ConPredictor (i.e., CStaMc)
consists of a static code metric set, denoted by CCM, and a static
mutation metric set, denoted by CSMM. The dynamic metric set of
ConPredictor (i.e., CDyMc) is equal to the dynamic mutation set,
denoted by CDMM. On SPM, the static metric set (i.e., SStaMc)
consists of a code metric set (SCM) and a mutation metric set
(SSMM) specific to sequential programs. SPM’s dynamic metric
set uses a set of dynamic mutation metrics for sequential programs,
denoted by SDMM. The sequential code metric set SCM is
proposed in prior work [27] and used as a baseline approach in
our study.

4.3 Techniques for Comparison

The ConPredictor basically combines all proposed static and
dynamic concurrency metrics, i.e., CCM + CSMM + CDMM.
To answer RQ1, we compare ConPredictor to SPM (i.e., SCM
+ SSMM + SDMM). The subquestion RQ1.1 isolates CStaMC
from ConPredictor and compares it to ConPredictor, SStaMC, and
CDyMC. The subquestion RQ1.2 compares CDyMc to ConPredic-
tor, and SDyMC. To answer the subquestion RQ1.3, we compare
the results of prediction models using four different classification
algorithms widely adopted in defect prediction studies, including
Decision Tree, Logistic Regression, Naive Bayesian, and Random
Forest. To answer RQ2, we calculate the importance of each indi-
vidual metric used in ConPredictor and examine their contribution
in concurrency defect prediction. To answer RQ3, we apply the
model learned from each dataset to predict concurrency faults in
each of the other three datasets. We then evaluate the prediction
performance of both ConPredictor and SPM on all nine pairs of
comparison.

4.4 Prediction Models

We first performed feature selection to select effective met-
rics for use in constructing prediction models. To do this, we
used the WEKA Wrapper Subset Selection Filter [31], [53]
(WrapperSubsetEval), which performs a best first search
algorithm to identify the subset of attributes that generalize
best on the training set. The SS algorithm can resolve the
multicollinearity problem between correlated features [2] and
thereby avoid the model construction overfitting problem. The
WrapperSubsetEval evaluates the power of a subset of met-
rics by considering the individual predictive ability of each metric
along with the degree of redundancy between them. Metrics that
are highly correlated with the faulty class while having a low
inter-correlation are preferred.

Next, a classification algorithm was required to build the pre-
diction model for each subject. In ConPredictor, we consider four
classification techniques: Bayesian Network, J48 Decision Tree,
Logistic Regression, and Random Forest in Weka [30]. We chose

TABLE 5: Metrics selected in each metric suite for all subjects

Concurrency Metric Suite |Selected metrics

ConPredictor CSV, CCC, CCD, CCE, CSO, MuS,mniocks
MuDuEspitecss  MuDuE;p,si9,  MuDuEswptw,
MuDuEwait, MuDuKswptw, MuDuKimsig,
MUDUkrmlock

CStaMc CSM, CCC, CCD, MuS,iock: MuSswptw,
MuSTmSig.

CDyMc MuDuE;nsig,  MuDuE,,10ck,  MuDuEswptw,
MuDuEwaits MUDUEspliecsa MUDUszptw7
MuDuK ;1,514

Sequential Metric Suite  |Selected metrics

SPM CI, CP, CC, MuSssq;, MuSoasn, MuSorrn,
MuDuEg .44, MuDuE,q sn, MuDuK, 41,
MuDuKepq

SStaMc CI, CP, CC, CV, MuS,4;, MuSolng, MuS;wdd

SDyMc MuDuE; .44, MuDuE,qsn, MuDuE;g4;,
MuDuK 41, MuDuKepas MuDuK 4 g

them because they are popular and have been shown to be effective
at predicting defects in a recent study [26]. Naive Bayes (NB) [91]
is a statistical technique which uses the combined probabilities of
the different attributes to predict faultiness. Logistic Regression
(LR) [18] is a regression technique which identifies the best set
of weights for each attribute to predict the faulty or non-faulty
class. J48 is a Java implementation of the C4.5 [78] decision
tree algorithm which uses entropy information to determine which
attribute to use as decision nodes. Random Forest (RF) [12] is an
ensemble technique which aggregates the predictions made by a
collection of decision trees (each with a subset of the original set
of attributes). To examine our research questions, we applied the
four models to different metric sets. The random forest algorithm
was primarily used in our experiments because its performance
was good, as noted in Section 5.1.4.

To evaluate our prediction models, we again used 10-fold cross
validation, widely used to evaluate prediction models [56], [70].

In 10-fold cross validation we randomly divide the dataset
into ten folds. Of these ten folds, nine folds are used to train the
classifier, while the remaining one fold is used to evaluate the
performance (Section 4.5). The feature selection is performed on
the training set. Specifically, the WrapperSubsetEval selected
the best features (metrics) in a fold. Next, only the metrics that
were nominated were adopted in the model construction. This
selection and model construction process was iterated for each of
the ten folds. Table 5 shows the selected metrics for each metrics
suite in all subjects.

Since 10-fold cross validation randomly samples instances and
puts them in ten folds [2], we repeated this process 100 times for
each prediction model to avoid sampling bias [56]. Note that we
use Weka’s SMOTE filter to increase the instances of the minority
class. The filter is applied only to the training folds of the cross
validation instead of the whole dataset in advance. This is because
the latter approach is likely to provide over optimistic results [82].

4.5 Performance Metrics

We chose performance metrics allowing us to answer each of our
three research questions. Specifically, we employ precision, recall,
F1-measure, area under the curve (AUC), and cost-effectiveness
metric. An instance can be classified as: buggy when it is truly
buggy (true positive, TP); it can be classified as buggy when it
is actually not (false positive, FP); it can be classified as non-
buggy when it is actually buggy (false negative, FN); or it can be
correctly classified as non-buggy (true negative, TN).




Precision, Recall, and F1-measure.
e Precision: the number of instances correctly classified as
buggy over the number of all instances classified as buggy.

__TP
P=1pirp

o Recall: the number of instances correctly classified as
buggy over the total number of buggy instances.

_ TP
R= TP+FN

o F-measure: a composite measure of precision and recall
for buggy instances.

F(b) = 555

AUC (area under the curve). We use the AUC of the receiver
operating characteristics (ROC) [57] as an additional measure to
evaluate the performance of the prediction models. The range of
AUC is [0, 1]. A larger AUC score indicates better prediction
performance. A prediction model achieving AUC above 0.5 is
considered more effective than the random predictor and 0.7 is
reasonably good [38]. As a scalar value, AUC is well suited to
compare the performance of different classifiers, and is often used
for that purpose [66].

Cost Effectiveness. The cost effectiveness metric, which evaluates
prediction performance given a cost limit, has been used widely in
existing defect prediction techniques [47], [57], [94], [95]. In our
context, the cost is the amount of function instances to inspect,
and the benefit is the number of bugs that can be discovered. If
developers inspect all predicted buggy instances, the percentage
of bugs that can be detected is equivalent to the recall. In some
circumstances (e.g., meeting a deadline), developers can only
inspect certain amount of functions. Therefore, it is useful to
maximize the bugs to be detected while minimizing the number
of instances to inspect. In this case, the cost effectiveness metric
is appropriate. We use the cost effectiveness metric, PofB20, used
by Jiang et al. [42]. They measure the percentage of bugs that a
developer can identify by inspecting the top 20 percent of lines of
code. In our context, we measure the percentage of concurrency
faults that a developer can identify by inspecting the top 20 percent
of function instances.

To compute PofB20, we sort instances by their probability
(provided by WEKA) of buggy [80] We then simulate a developer
that inspects these potentially buggy instances one at a time. As
the instances are inspected one at a time, we count the number
of lines of code that have been inspected and the number of bugs
that have been identified. We stop the inspection process when
20 percent of the lines of code have been inspected and compute
the percentage of bugs that are identified. This percentage is the
PofB20 cost effectiveness score. A higher cost effectiveness score
represents that a developer can detect more bugs when inspecting
a limited number of lines of code.

PofB20 metric uses 20 percent of all effort as the cut-off
value. However, a different cut-off value might lead to different
results. As an additional metric, we use P,,; [66] to evaluate
the prediction performance of models. P, is defined as the area
Aopt between the optimal model and the prediction model. In
the optimal model, all instances are ordered by decreasing fault
density, and in the predicted model, all instances are ordered
by decreasing predicted value (i.e., probability of being buggy).
The equation of computing P,,; is shown below, where a larger

P,y value means a smaller difference between the optimal and
predicted model:

Popt =1- Aopt

The range of P, is [0, 1] and any predictor achieving the P,
above 0.5 is more effective than the random predictor.

Statistical significance analysis. To assess whether prediction
performance of different metric sets were statistically significant,
we applied the Wilcoxon test [90] to the data sets, comparing
each pair of metric sets within each model. We did not use t-
test because F-measure outcomes from cross validation did not
follow a Normal distribution. We checked if the mean of F-
measure values of one predictor P; was greater than the mean
of F-measures of another predictor P; at the 95% confidence level
(p — value < 0.05).

Specifically, the null and alternative hypotheses for the t-test
are:

o HO: F-measure mean of P; is equal to the F-measure mean
of P, j-

o HI1: F-measure mean of P; is greater to the F-measure
mean of P;. (i.e., P; has better performance if the mean
value is higher).

We rejected the null hypothesis HO and accepted the alternative
hypothesis H1 if the p-value was smaller than 0.05 (at the 95%
confidence level).

Effect size. The effect size uses Cliff’s delta [17] that quantifies
the amount of difference between two non-parametric variables
beyond the p-value interpretation. The Cliff’s delta is computed by
d = 2W/mn — 1, where W is the statistic of the Wilcoxon rank-
sum test, and m and n are the sizes of two compared distributions.
Here W = R — n(n + 1)/2, where R is the sum of the rank in
the sample and n is the sample size. The magnitude of effect size
is usually assessed using the thresholds [83], where |d| < 0.147
is negligible, 0.147 > |d| < 0.33 is small, 0.33 > |d| < 0.474
is medium, and otherwise large. For example, suppose the effect
size between two metric suites A and B is —0.75. The sign is
negative because the mean of A is greater than the mean of B and
the magnitude of the effect size is regarded as large.

4.6

To study the most influential metrics, we compute Breiman’s
variable importance score [12] for each feature. The larger the
score, the greater the influence of the metric on our models. We
use the option —attribute—importance provided by Weka
to compute the variable importance scores. For each run of the
10-fold cross validation we obtain an importance score for each
feature. In order to determine the features that are most influential
for the whole dataset, we apply the Scott-Knott test [39] on the
values from all 10 runs. The Scott-Knott test will cluster the
metrics according to statistically significant differences in their
mean variable importance scores (p - value = 0.05). We use the
implementation of the Scott-Knott test provided by the ScottKnott
R package. The Scott-Knott test ranks each metric exactly once,
however several metrics may appear within one rank.

Next, to assess how each factor is related to buggy instances,
we compare the values of each feature between buggy instances
and non-buggy instances. We first analyze the statistical signifi-
cance of the difference between the two classes (buggy and non-
buggy) by applying the Mann-Whitney U test at p - value = 0.01.

Importance of Features



To show the effect size of the difference between the two features
in two groups, we calculate Cliff’s Delta.

4.7 Threats to Validity

The primary threat to external validity for this study involves the
representativeness of our programs, mutants, coverage criteria,
and test cases. Other systems may exhibit different behaviors,
as may other forms of test cases. However, the programs we
investigated are popular open source programs. Furthermore, the
test cases are those provided with the programs: they are rep-
resentative of test cases that could be used in practice to test
these programs. Most of the test subjects we used had relatively
good test suites (i.e., of the covered mutants, the mutation scores
were above 80%). Mutants can be influenced by external factors
such as mutation operators. We used only concurrency mutation
operators. However, concurrency faults can also be introduced by
sequential glitches. In addition, other interleaving criteria (e.g.,
synchronization coverage) may lead to different coverage results.
We controlled for these threats by using well studied concurrency
mutation operators and popular interleaving criteria.

The data collected for defect prediction may contain noise,
such as false positives (identifying non-buggy changes/files as
buggy), random sampling, and imbalanced data [8], [50]. For
example, Bird et al. [8] discovered that data collected via auto-
mated mining software repositories (MSR) often contain noise.
To mitigate this threat, we manually and carefully selected high
quality datasets. The bugs we selected are confirmed and fixed in
the subsequent versions. While it is possible that some functions
contain concurrency bugs but were mislabeled as clean, we se-
lected program versions between 2000 and 2014, so the functions
labeled as clean are unlikely to contain concurrency bugs because
no such bugs have been reported since 2014. We used SMOTE to
handle the class imbalance problem.

The primary threats to internal validity for this study are
possible faults in the implementation of our approach and in the
tools that we used to perform evaluation. We controlled for this
threat by extensively testing our tools and verifying their results
against smaller programs for which we could manually determine
the correct results. We also chose to use popular and established
tools (e.g., LLVM, Weka) for implementing the various stages of
our approach.

Where construct validity is concerned, our measurements
involve using metrics extracted from source code and mutation
analysis to predict defects in concurrent programs. Other static
metrics and dynamic metrics (e.g., test suite metrics) are also
of interest. Furthermore, other machine learning performance
measures can be used to measure effectiveness and accuracy.
To control for this threat, we chose commonly used F-measures.
Other metrics, such as the Matthews Correlation Coefficient [85]
(MCC), can be used to handle unbalanced data.

Conclusion validity concerns the statistical significance of the
result. We applied 10-fold cross validation, and did so 100 times,
as is common in experiments of this type. We also undertook
statistical analysis to test our hypotheses. To further reduce threats
to conclusion validity, we were careful to check the assumptions
of the statistical tests that were used.

5 RESULTS AND ANALYSIS

In this section, we present results related to the three research

questions 2.

5.1 RAQ1: Effectiveness of ConPredictor vs. SPM vs.
SCM

To examine RQ1, we compare the performance of ConPredictor
to that of SPM and SCM. Columns 3-5 and 7-9 of Table 6 show
the performance of each set of metrics in different subjects in
terms of precision, recall, F-measure, AUC, PofB20, and P,
from 100 times ten-fold cross validations. The numbers marked
in boldface indicate that the performance of ConPredictor is
significantly different from that of SPM and SCM. Columns 6
reports the F-measure values of the techniques without applying
feature selection.

Although the performance values varied, there was a clear
trend in which ConPredictor outperformed SPM and SCM for
every subject. For example, comparing to SPM, the improvement
of F-measure ranged from 29.7% to 34%. Comparing to SCM, the
improvement of F-measure ranged from 37.7% to 50%. The most
improvement occurred on Apache while the least improvement
was seen with OpenOffice. In other words, metrics considering
concurrency characteristics improved the prediction performance.

Table 7 shows the effect size when comparing different metric
suites in terms of their F-measure values. The numbers marked
as bold indicate that the Wilcoxon rank-sum test rejected the null
hypothesis of RQ1 (p-value < 0.05). For example, on Apache,
the effect size between ConPredictor and SPM is —0.675 and they
are statistically significantly different. Comparing ConPredictor to
SPM, the largest effect size occurred with OpenOffice and smallest
effect size occurred for Mozilla.

Among all 558 buggy instances, 368 and 270 are predicted
as buggy by ConPredictor and SPM, respectively. All 270 faults
predicted by SPM are also predicted by ConPredictor. SPM has
a lower precision because the missing buggy instances typically
have lower sequential metric scores but higher concurrency metric
scores. For example, a function that does not contain any branches
(CyclomaticComplexity is 2) but has several unprotected shared
variables involves an atomicity violation bug but is falsely classi-
fied as non-buggy by SPM.

In all four subjects, the AUC values of ConPredictor are
above 0.7 and significantly better than SPM and SCM. This
result confirms the impact of our proposed concurrency metrics
on concurrency fault prediction.

PofB20 represents the number of bugs that can be discovered
by examining the top 20% LOC. For example, ConPredictor can
help the developers identify 24 bugs for Apache by inspecting
20% LOC. SCM can help identify 12 bugs by inspecting 20%
LOC, which is 12 less bugs than those of ConPredictor. Overall,
ConPredictor improved PofB20 over SPM by amounts raninge
from 5.8% to 23.4% and over SCM by amounts ranging from
30.8% to 53.8%.

Overall, these results suggest that ConPredictor outperforms
the traditional sequential metrics.

5.1.1 RQI1.1: Feature Selection

As Column 6 of Table 6 shows, feature selection improves per-
formance of the defect prediction in terms of F-measure in all

2. All data we used in our experiments are publicly available at http://cs.uky.edu/~tyu/
research/ConPredictor



TABLE 6: Results of evaluated metrics

[ Project | Technique [ P [ R [ FI [ Flay | AUC [ PofB20 | Py |
ConPredictor 0.68 0.64 0.66 0.62] 0.72 0.52 0.67
CStaMc 0.65 0.51 0.57 0.51) 0.68 0.51 0.61
Apache CDyMc 0.64 0.56 0.60 0.55] 0.52 0.54 0.50
SPM 0.52 041 0.46 0.42] 0.48 0.49 0.44
SStaMc 0.43 0.31 0.33 0.31 0.44 0.38 0.42
SDyMc 0.46 0.32 0.35 0.29] 0.47 0.34 0.44
SCM 0.43 0.34 0.33 0.31 0.45 0.36 0.41
ConPredictor 0.65 0.63 0.64 0.55) 0.74 0.42 0.69
CStaMc 0.59 0.57 0.58 0.52] 0.64 0.40 0.58
MySQL CDyMc 0.61 0.63 0.62 0.56] 0.66 0.42 0.60
SPM 0.52 0.40 0.45 0.41 0.51 0.35 0.51
SStaMc 0.35 0.38 0.41 0.35] 0.48 0.31 0.50
SDyMc 0.38 0.33 0.39 0.32] 0.48 0.28 0.45
SCM 0.32 0.32 0.36 0.32) 0.47 0.25 0.42
ConPredictor 0.60 0.54 0.57 0.52] 0.75 0.47 0.70
CStaMc 0.55 0.48 0.51 0.45] 0.55 0.39 0.52
Mozilla CDyMc 0.57 0.48 0.52 0.47] 0.58 0.42 0.55
SPM 0.54 0.29 0.38 0.35 0.44 0.36 0.54
SStaMc 041 0.34 0.37 0.35 0.40 0.36 0.38
SDyMc 0.42 0.30 0.35 0.32 0.44 0.34 0.40
SCM 0.41 0.31 0.35 0.33] 0.42 0.32 0.42
ConPredictor 0.59 0.48 0.53 0.504 0.77 0.52 0.68
CStaMc 0.57 041 0.48 0.46] 0.56 0.50 0.52
OpenOffice CDyMc 0.60 0.47 0.53 0.51]) 0.58 0.51 0.53
SPM 0.48 0.28 0.35 0.33] 0.46 0.40 0.42
SStaMc 0.35 0.25 0.29 0.28 0.44 0.36 0.42
SDyMc 0.39 0.27 0.32 0.29] 0.46 0.24 0.41
SCM 0.37 0.30 0.33 0.31 0.42 0.24 0.39
TABLE 7: Effect Sizes for each metric set in different subjects.
Prog. CONFPREDICTOR CSTAMC
CStaMc | CDyMc | SPM | SStaMc | SDyMc | SCM CStaMc | CDyMc | SPM | SStaMc | SDyMc | SCM
Apache -0.223 -0.142 | -0.675 | -0.734 -0.539 | -0.777 - 0.133 -0.424 | -0.498 -0.432 | -0.501
MySQL -0.374 -0.258 | -0.842 | -0.577 -0.699 | -0.850 - 0.241 -0.692 | -0.701 -0.522 | -0.725
Mozilla -0.331 -0.251 | -0.603 | -0.658 -0.694 | -0.709 - 0.231 -0.498 | -0.572 -0.451 | -0.533
OpenOffice -0.402 -0.333 | -0.862 | -0.801 -0.792 | -0.877 - 0312 | -0.398 | -0.402 -0.257 | -0.429
Prog. CDYMCcC
CStaMc | CDyMc | SPM | SStaMc | SDyMc | SCM
Apache - - -0.563 | -0.852 -0.771 | -0.642
MySQL - - -0.701 | -0.721 -0.814 | -0.759
Mozilla - - -0.423 | -0.499 -0.367 | -0.598
OpenOffice - - -0.598 | -0.744 -0.725 | -0.415

TABLE 8: Performance comparison of prediction models by
different machine learners.

[ Learner [BN [DT. [LR [RE ]
ConPredictor | 0.57 | 0.61 0.53 | 0.65
CStaMc 0.48 | 047 | 047 | 0.57
CDyMc 0.53 | 0.55 | 049 | 0.62
SPM 0.39 | 040 | 0.37 | 045
SStaMc 0.34 | 0.33 | 0.32 | 0.38
SDyMc 0.37 | 0.36 | 0.34 | 0.40
SCM 0.32 | 0.31 | 0.32 | 0.35

28 metric sets across all four subjects. The | symbol indicates
that the improvement is statistically significant. The significant
improvement occurs to 20 out of 28 metric sets across all four
subjects by amounts ranging from 5.7% to 25.7%. The lowest
level of improvement occurred on SPM for OpenOffice, while
the highest levels of improvement occurred on ConPredictor for

MySQL. Overall, these results suggest that the use of feature selec-
tion improves the performance of the concurrency fault prediction.

5.1.2 RQ1.2: Effectiveness of Static Metrics

As Table 6 shows, comparing the static concurrency metric set
(CStaMC) to the static sequential metric set (SStaMC), when av-
eraging the F-measures, CStaMC improved over SStaMC ranging
from 23.8% to 64.2% on all four subjects. The best improvement
is for Apache and the worst improvement is for OpenOffice. Ta-
ble 7 (columns under the SStaMC) shows the improvements were
statistically significant. The results indicate that when choosing
static metrics for predicting concurrency faults, CStaMC is better
than SStaMC.

When comparing CStaMC to ConPredictor, ConPredictor was
more effective for all four subjects. Their F-measures are sta-
tistically significant. In other words, adding dynamic metrics to
CStaMC improved the prediction performance of static metrics.
The effectiveness improvement achieved by ConPredictor with




TABLE 9: Effect sizes for each machine learner in different subjects.

Learner CONFPREDICTOR CSTAMC CDYMc

B.N. D.T. L.R. B.N. D.T. L.R. B.N. D.T. L.R.
B.N. - 0.122 | -0.358 - -0.025 | -0.152 0.231 | -0.101 | -0. 132
D.T. -0.544 - 0.205 -0.332 - 0.108 0.098 - 0.133
L.R. 0.198 | 0.330 - 0.182 | 0.258 - 0.209 | 0.298 -
R.E -0.499 | 0.223 | -0.532 || -0.392 | -0.254 | -0.338 || -0.292 | -1.163 | -0.083

TABLE 10: Scott-Knott test results.

[ Group [ Metric [ RanKomcan | RanKpighes: | RanKjowest |

CCC 1 1 1
Gl  [MuDuE. iiccs | 1.6 T 2
MuDuS,niock | 1.8 1 3
MuDuKTmlock 3.1 2 5
G2 CSV 4.9 3 6
MuDuK;wpiw | 5.8 4 7
G3 MuDuE it | 6.2 5 7
MuDuE;wptw | 7.5 6 9
G4 CCE 9.1 8 10
MuDuK,,sig | 10.6 9 11
G5 CCD 10.9 10 12
G6 CSO 11.5 10 13
G7 MuDuE; 1, 5ig 12.2 11 13
TABLE 11: Effects of different metrics
[ Metric set | Metric [ Rel. [ d-value ]
CCC + 0.341 (medium)
CStaMc CSV + 0.225 (small)
MuDuS - miock + 0.204 (small)
MuDuE; i0ck + 0.325 (medium)
MUDUEspliecs + 0.212 (small)
CDyMe MuDUWK, mioe, |+ 0.308 (medium)
MUDUKsu)ptw + 0.187 (small)

Rel.= relationship. “+” indicates faulty instances have significantly
higher value on this metric.

respect to CStaMC ranged from 10.8% (MySQL) to 16.2%
(Apache). These results indicate that the combination of static
and dynamic metric sets is more effective than the static metric set
alone. The results also implies that the use of the dynamic metric
sets amplifies the effectiveness of the defect prediction.

When comparing CStaMC to CDyMC, CDyMC performs
better than CStaMC, ranging from 2% (Mozilla) to 7.2% (OpenOf-
fice). However, such differences were statistically significant on
only MySQL and OpenOffice. The results imply that dynamic met-
rics have the potential to improve the performance of prediction
over static metrics on certain programs.

5.1.3 RQ1.3: Effectiveness of Dynamic Metrics

As shown in Table 6 and Table 7 (columns under CDyMC),
ConPredictor was more effective than CDyMC on all four sub-
jects. The improvements, ranging from 3.9% (MySQL) to 9.9%
(Apache), were statistically significant. These results indicate that
the combination of static metrics and dynamic metrics has better
performance than the dynamic metrics alone, and the use of the
static metrics validates the prediction performance of ConPredic-
tor.

When comparing CDyMC and SDyMC, CDyMC could con-
sistently improve the performance of SDyMC on all subjects rang-
ing from 14.3% (Mozilla) to 66.7% (Apache). The improvements

were still statistically significant. These results imply that when
choosing dynamic metrics for defect prediction on concurrent
programs, CDYMC is better than SStaMC.

5.1.4 RQ1.4: Different Machine Learners

Table 8 shows the performance of each set of metrics in different
machine learners in terms of the F-measure distributions from 100
times 10-fold cross validations. As the table shows, the F-measure
distributions from different machine learners did vary. However,
the trend indicates that ConPredictor performs better than the
other metric sets over all learners. Table 9 shows the comparisons
among different learners across ConPredictor and the two metric
sets used in ConPredictor. The numbers are the effect sizes and
those marked as bold indicate that the differences are statistically
significant different.

Among the mean values, Random Forest was significantly
better than two other learners over all the metric sets. Only on
ConPredictor was Random Forest not significantly different from
Decision Tree. Therefore, we employed Random Forest in the
other experiments mentioned in Section 4.4. In contrast, Logistic
Regression was the worst choice for model construction in our
experiment.

If these results generalize to other real subjects, we then
conclude that when constructing machine learning models to
predict concurrency faults, Random Forest is the best choice,
whereas Logistic Regression is inferior.

5.2 RQ2: Metrics Effectiveness Analysis

Table 10 shows the Scott-Knott test results. The importance values
of metrics in one group are statistically significantly different from
those of metrics in other groups. The results show that CCC (con-
currency code complexity), MuDuE;ccs, and MuDuS,., 0ck are
the top three most important features that influence our random
forest model. The best predictor was CCC. For code quality
prediction, this metric resembles McCabe complexity for sequen-
tial programs. A previous study [69] has shown that McCabe is
effective at predicting defects in sequential programs. Moreover,
lock operations are commonly used in concurrent programming to
synchronize shared resource accesses. These results suggest sub-
jects in our dataset that have higher concurrency code complexity,
with more locks are more likely to discriminate faulty instances
from non-faulty instances.

We next use Wilcoxon rank-sum and Cliff’s delta to evaluate
the effects of feature importance. Table 11 shows the factors that
have p - value < 0.01 and d > 0.147 (i.e., statistically significant
difference with at least a small effect size). We find that the faulty
and non-faulty instances have statistically significant differences
with at least a small effect size in 7 out of the 17 selected
features. The effect sizes are small for most of the 17 factors,
except for CCC, MuDuE;secs, and MuDuS,..,10ck. The results
are consistent with feature ranking in Table 10.



TABLE 12: F-measures on across project prediction using ConPredictor and SPM.

Prog. CONFPREDICTOR SPM

Apache | MySQL | Mozilla | OpenOffice || Apache | MySQL | Mozilla | OpenOffice
Apache - 0.546 0.566 0.496 - 0.421 0.443 0.402
MySQL 0.311 - 0.399 0.475 0.294 - 0.315 0.358
Mozilla 0.502 0.387 - 0.375 0.394 0.302 - 0.331
OpenOffice | 0.451 0.325 0.364 - 0.425 0.308 0.341 -

For the static metric set, three out of six metrics can differen-
tiate faulty instances from non-faulty instances. Typically, when a
program has more complex code, shared variables, and locks, it
becomes more difficult to maintain the program and thus is more
likely to cause field failures. For the dynamic metric set, four out
of seven metrics can differentiate faulty instances from non-faulty
instances. These metrics are all related to lock operations, which
again suggest that faulty instances are more likely to misuse locks.

5.3 RQa3: Across Projects Prediction

RQ3 investigates whether a predictor for one application group
(dataset) can be used for other applications. We applied classifica-
tion model built by ConPredictor from each dataset to the instances
of each of the other four datasets. We then checked how accurate
the prediction is by assessing the performance of each model.
The prediction results are shown in columns 2-5 of Table 12.
For example, columns 3-5 show the performance values of using
models learned from MYSQL, MozziLA and OPENOFFICE to
predict APACHE.

As the results show, the F-measure values for three out of
12 models were greater than 0.5, and six out of 12 models were
greater than 0.4. Two out three models that are greater than 0.5
happen between M0OZZILA and APACHE. The two projects have
certain similarities because they involve web applications (i.e., in
the case when Mozilla is used to predict Apache and in the case
when Apache is used to predict Mozilla).

We next compare the across project prediction performance
of ConPredictor to that of SPM. Columns 6-9 of Table 12 show
the F-measures using SPM. The results indicate that ConPredictor
is more effective than SPM on all 12 program pairs. The num-
bers marked as bold indicate that the differences are statistically
significant.

Overall, these results suggest that ConPredictor is moderately
effective at predicting concurrency faults across projects, and is
more effective when predicting across similar projects. When com-
paring ConPredictor to SPM, ConPredictor is more effective at
predicting concurrency faults across projects. For future work, we
intend to improve ConPredictor on cross-project defect prediction
by applying Transfer Component Analysis+ (TCA+) analysis [74].

6 SUMMARY AND DISCUSSION

As presented in the previous section, we were able to demonstrate
that ConPredictor is useful for predicting defects of concurrent
programs. Specifically, we showed (subject to stated threats to va-
lidity) that 1) the metrics used in ConPredictor are more effective
at predicting concurrency faults than sequential metrics, 2) the
combination of static and dynamic metrics has better performance
than either the static metric set or the dynamic metric set, 3)
ConPredictor’s dynamic concurrency metrics are more effective
contributors than static metrics based on the information ratios,
4) the concurrency code complexity metric (CCC) is the most
effective code metric, and 5) the models built on three datasets

can be used to predict concurrency faults for the fourth dataset
with good effectiveness.

One of our primary findings is that mutation metrics can
significantly improve predictive performance and with large effect
sizes. This is the first time any kind of concurrency mutation
has been used to support fault prediction. Naturally, subsequent
studies can further investigate/exploit this predictive improvement,
perhaps in combination with other sets of metrics (e.g., process
metrics). In this first study we present the empirical evidence that
concurrency mutation metrics’ effect size on prediction outcomes
can be large, thereby motivating and opening up this avenue of
research.

Our results have implications for practitioners and researchers,
discussed below.

6.1 Implications for Practitioners

Results indicate that concurrency-related program metrics can
be effective and are more effective than predictors learned from
sequential program attributes. Practitioners can apply this finding
by building a CCFG, obtaining the concurrency metrics (we plan
to provide a tool in the future to simplify this), and substituting
their metrics into our learned model in order to predict defect-
prone functions. In addition, our results showed that several static
code metrics (e.g., CCC, CSV) were good predictors. For example,
industry practitioners can use the CCFG to calculate CCC and
examine its distribution for their project. Functions that have
higher values of CCC should be examined and possibly subjected
to additional code review and/or unit testing to lower the risk
of concurrency faults. Also, functions that share communication
edges with defect-prone functions warrant additional attention
during software assurance activities.

6.2 Implications for Researchers

The use of CCFG. Our study shows that code and mutation met-
rics can be used to predict faults specific to concurrent programs.
Researchers should consider adding the CCFG to their arsenal
of program representations. The ConPredictor metrics may have
other applications, such as for predicting testability of concurrent
programs, predicting change prone components in concurrent
programs, and predicting the number of tests that are needed to
achieve coverage of concurrent programs.

Lowering the recall. We inspected a few cases where an instance
(i.e., function) is mislabeled as non-faulty. This is because a
concurrency fault may involve more than one function because
the conflicting shared variables may exist in different functions.
A function labeled as non-faulty may have conflicting accesses
with other functions that are labeled as faulty. To address this
problem, we could employ the following heuristic: if one function
f is labeled as faulty, other functions that can be reached through
a communication edge from f should also be flagged as possible



faulty. Identification and test of functions that can reach defect-
prone functions may hold promise for improving the recall of
concurrency fault prediction and could be the focus of future work.

Incorporating test suite metrics. Our results suggest that dy-
namic metrics are more important than static metrics in concur-
rency fault detection. This implies that the quality of the test suite
is also a considerable factor in building effective predictors. In
this work, the dynamic metric set includes only mutation metrics.
More dynamic metrics are worth being studied to improve the
performance of ConPredictor. One direction is to develop test
suite metrics by which their executions provide various observable
attributes. For example, coverage metrics are commonly used as
they directly measure the relationship between the test suite and
source code. Thus, predictors can be built by incorporating the
coverage metrics of the program under test.

Additionally, the finding on communication edges implies
that researchers should examine concurrent edge coverage more
carefully as an important test criterion. The interleaving coverage
criteria has been widely used to measure test suite quality for
concurrent programs [13], [37], [60]. An interleaving criterion
is a pattern of inter-thread dependencies through SV accesses
that helps select representative interleavings to effectively expose
concurrency faults. An interleaving criterion is satisfied if all
feasible interleavings of SV defined in the criteria are covered.
As part of the future work, we can employ a Def-Use criterion,
which is satisfied if and only if a write w in one thread happens
before a read r in another thread and there is no other write to the
variable read by r between them. In fact, the Def-Use criterion
is equivalent to communication edge coverage in the context of
CCFG.

7 RELATED WORK

There has been much research on developing various software
metrics and prediction algorithms to assess software quality [7],
[14], [23], [49], [56], [57], [58], [68], [69], [70]. For example,
Lee et al. [56] proposed a set of micro-interaction metrics (MIMs)
that leverage developers’ interaction information combined with
source code metrics to predict defects. Meneely [67] et al. examine
structure of developer collaboration and use developer network
derived from code information to predict defects. Basili et al. [7]
used Chidamber and Kemerer metrics, and Ohlsson et al. [77]
used McCabe’s cyclomatic complexity for defect prediction. Koru
and Liu utilized static software measures along with defect data at
the class level to predict bugs using machine learning. Menzies et
al. [68] conclude that static code metrics are useful in predicting
defects under specific learning methods. These techniques, how-
ever, focus on sequential programs while ignoring code attributes
and testability for concurrent programs.

Besides code metrics, other metrics can be obtained from
different software artifacts. For example, Ohlsson et al. [77] study
metrics derived from design documents that are used to predict
fault-prone modules. Metrics collecting from version control sys-
tems (e.g., number of commits) have also been used to predict
faults [36], [51], [71]. Nagappan et al. [72] build fault prediction
models by considering the organizational metrics. However, none
of these techniques consider metrics or faults in concurrent pro-
grams. In addition, they do not consider dynamic metrics related
to test executions.

The only related work found is the work by Mathews et al. [64]
based on Ada programs. This work considers only the number of

synchronizations and conditional branches that contain synchro-
nization points without utilizing them to perform defect prediction.
However, this work does not aim to predict concurrency faults. In
addition, this work does not consider dynamic metrics.

There have been many approaches to improving performance
of cross-project defect prediction [62], [73], [74], [81], [88], [89],
[100]. For example, Nam et al. [74] adapted a state-of-the-art
transfer learning technique called Transfer Component Analysis
(TCA) and proposed TCA+. Turhan et al. proposed the nearest-
neighbor (NN) filter to improve the performance of cross-project
defect prediction [88]. The basic idea of the NN filter is that
prediction models are built by source instances that are nearest-
neighbors of target instances. In the future, we intend to leverage
these techniques to improve the performance of ConPredictor in
cross-project concurrency fault prediction.

Various data quality issues can arise when constructing defect
prediction datasets. a variety of methods have been proposed
for dealing with class imbalance problems. Chawla et al. [15]
proposed an over-sampling approach in which the minority class
is over-sampled by creating “synthetic” instances rather than
by over-sampling with replacement. Estabrooks et al. [22] and
Barandela et al. [6] both suggested that a combination of over-
sampling and under-sampling might be more effective to solve the
class imbalance problem. ConPredictor employs an over-sampling
technique [87], i.e., SMOTE.

Studies have also shown that the presence of systematic
data noise and bias in several open source data sets affect the
performance of defect prediction models [5], [8], [75]. Therefore,
research on improving mappings between bug reports and code has
been proposed. For example, Bird et al. [9] develop a technique
to manually annotate bug reports and code changes to reduce
the overhead of manual data point inspection. Wu et al. [93]
propose an automatic link recovery algorithm to recover missing
links between bug reports and code changes. Kim et al. [50]
propose guidelines about acceptable noise levels and propose a
noise detection and elimination algorithm. In the future, we will
leverage the above techniques to speed up the construction of
datasets.

There has been a great deal of research on mutation testing
for sequential programs [19], [63], [84]. Jia and Harman [41]
provide a recent survey. In this work, we focus on techniques that
share similarities with ours. There has also been some work on
mutation testing for concurrent programs [11], [29], [46], which
has been discussed in Section 2. Other tools such as MuTMuT [28]
have been used to optimize the execution of mutants by reducing
interleaving space that has to be explored. None of the techniques,
however, attempt to predict defects using software metrics.

Recent work by Bowes et al. [10] propose a mutation-aware
fault prediction technique, which leverages guidance from muta-
tion analysis to construct dynamic metrics. Both their work and
ConPredictor use mutants and the test cases that cover and detect
them for building additional metrics. However, their technique
focuses on sequential programs. As shown in our results, either
static or dynamic sequential metrics are significantly less effective
than ConPredictor’s metrics.

8 CONCLUSIONS

This paper presents an approach to predict defects of concurrent
programs at the function level. We proposed six novel static code
metrics, six static mutation metrics, 12 dynamic mutation metrics,



and combined them with a dynamic test suite metric to learn
four prediction models. We applied the models to four large-scale
real-world programs. We found that ConPredictor can outperform
traditional defect prediction using sequential metrics. In all cases,
both dynamic and static metrics feature prominently in the top 10
most influential metrics across all subjects, providing consistent
evidence that they are beneficial to the performance of prediction
models. In addition, ConPredictor showed good effectiveness
when applied to different software projects. Our study extended
existing knowledge in the field of software quality metrics by
proposing novel metrics specific to concurrent programs. In the
future, we will consider other code metrics and test suite attributes
and investigate their effectiveness as discussed in Section 6.
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