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Abstract—Quantitative dynamic MRI acquisitions have the
potential to diagnose diffuse diseases in conjunction with func-
tional abnormalities. However, their resolutions are limited due to
the long acquisition time. Such datasets are multi-dimensional,
exhibiting interactions between > 4 dimensions, which cannot
be easily identified using sparsity or low-rank matrix methods.
Hence, low-rank tensors are a natural fit to model such data.
But in the presence of multitude of different tissue types in the
field-of-view, it is difficult to find an appropriate value of tensor
rank, which avoids under- or over-regularization. In this work,
we propose a locally low-rank tensor regularization approach
to enable high-resolution quantitative dynamic MRI. We show
this approach successfully enables dynamic 77 mapping at high
spatio-temporal resolutions.

I. INTRODUCTION

Acquisition time in magnetic resonance imaging (MRI) still
remains a challenge, often necessitating trade-offs between
SNR, and spatial and temporal resolutions. Over the past
decades, several methods have been proposed to improve
resolution without sacrificing image quality or increasing
scan time. Parallel imaging is the clinical gold standard for
fast MRI, and relies on the redundancy among multiple-
coil sensor/receive-arrays [1], [2]. Compressed sensing is an
alternative technique that exploits the sparsity of the signal in
a transform domain for regularized reconstruction from sub-
sampled data [3], [4].

For scenarios where an image series is acquired, such
as in dynamic MRI, this regularization can be extended to
multi-way arrays to capture the multiple interactions between
dimensions by exploiting inter-dimensional redundancies. For
dynamic MRI, low-rank matrix regularization has been applied
to exploit temporal redundancies, by vectorizing each image
in the time-series [5], [6]. It has also been used in conjunction
with other regularizers [7], [8]. To reduce the spatial blur-
ring associated with the global low-rank processing, locally
low-rank matrix regularization was proposed [9], [10]. Such
regularized techniques have also been used for multiple-coil
arrays [11], [12] or as post-processing after parallel imaging
for reducing the effects of noise amplification [13], [14]. The
advantage of the latter is that it requires no modification to
existing clinical acquisition protocols, which typically acquire
a uniformly sub-sampled Fourier space.

Over the past decade, there has been a push towards
quantitative MRI, which provides characterization of the mag-
netization relaxation processes that are used to generate soft-
tissue contrast [15]. This improves robustness and repro-
ducibility, while enabling diagnosis of a broader class of
diseases. However, it requires imaging the same anatomy

with multiple different contrasts, leading to longer acquisition
times. This challenge is more pronounced in a dynamic setting
with moving structures (e.g. the beating heart). Such datasets
are multi-dimensional, including spatial, contrast and time
dimensions. Thus, they are better described with tensors than
matrices, as analysis based on the latter is limited to pairwise
interactions and may not show some hidden structures. The
use of tensor methods has been limited in MRI [16], [17], and
confined to global processing so far.

In this work, we sought to use low-rank tensor regular-
ization on local patches to enable high-resolution quantitative
dynamic cardiac MRI for joint evaluation of tissue viability
and function. The proposed method is compared to a global
tensor regularizaton approach, as well as parallel imaging.
The performance improvement is evaluated in dynamic in-vivo
myocardial parameter mapping, acquired at high spatial and
temporal resolutions.

II. METHODS
A. Data Acquisition Model

In this study, a recently proposed MRI sequence [18] was
used for dynamic (i.e., cardiac phase-resolved) quantification
of the longitudinal relaxation (7%) time, a biomarker with
proven clinical utility in numerous cardiomyopathies [15]. The
desired image data, m(x, y, t, ¢) is 4-dimensional, where (x, )
is the discrete 2D spatial location, ¢ is the cardiac phase and
c is different T} contrasts.

Acquired data in Fourier space (i.e., k-space) is given as

y(t,c) = Eic(m(z,y,t,¢)) +n(t,c),
t=1,....,T:c=1,...,C (1)

where E; . : CM*N 5 CP is the measurement system,
including a partial Fourier matrix and the sensitivities of the
receiver coil array, n(t,c) € CF is measurement noise, ¢ is
the cardiac phase, c is the contrast-weighting, and x,y are the
discrete spatial locations.

Once the image data m(z,y,t,c) is reconstructed from
{y(t,¢)}t.c, the underlying 77 value is estimated for each
(z,y,t) by a parameter estimation procedure across the con-
trast (¢) dimension. The estimation is based on the Bloch
equations describing the magnetization evolution [18].

Imaging was performed on a 3 Tesla scanner (Magnetom
Prisma, Siemens Healthcare, Germany) using a 30-channel
receiver coil-array. The MRI sequence parameters were chosen
identical to [18], except for improved spatial and temporal
resolutions (1.3 x 1.3 mm? spatial resolution and 40 ms



temporal resolution, instead of 2 x 2 mm?2 and 60 ms utilized
in [18]). An acceleration rate of 3 was used with uniform sub-
sampling to achieve this improved resolution, while decreasing
the scan time to 18 seconds from 21 seconds achieved in
[18]. 24 reference lines were acquired in the center of k-
space to facilitate parallel imaging reconstruction. The dataset
comprised C' = 5 different contrast weightings and 7" = 11
cardiac phases.

B. Low-Rank Tensor Methods

The complex-valued 4D imaging dataset, m(z,y,t,c) €
CMXNXTXC ig represented as a fourth-order tensor

R
m:ZaT@br@cT@)dr

=1 n
= m(i,j, k1) =Y a(i)b.(j)c,(k)d.(1) (2)

where © represents outer product and R represents the rank
of tensor m, the minimum number of rank-one tensors needed
to synthesize m as their sum. Finding the rank of a ten-
sor is an NP-hard problem, with an upper bound given by
min{MNT,MNC,MTC,NTC} [19].

Tucker and PARAFAC decompositions are two main ap-
proaches in low-rank tensor approximation. PARAFAC de-
composition method uniquely factorizes a tensor into a sum
of rank-one tensors; whereas Tucker decomposition factorizes
a tensor into a core tensor multiplied by a matrix along
each mode. Previous works for tensor regularization have
used both the Tucker [17] and PARAFAC [20] models. Of
these two approaches, the Tucker model is typically used for
compression applications [19], and in our context it requires
choosing four mode ranks, as it assumes low-rank in each
mode. PARAFAC is a direct low-rank decomposition that is
mostly used for latent signal estimation, and uses a single
tensor rank parameter. We adopt the latter in our work.

In previous applications of tensor regularization to MRI
[17], [20], the regularization was performed globally. However,
the imaging field-of-view contains multiple structures with
different functional and contrast properties. For instance, the
chest wall and back contain stationary tissue that is high
in fat, which has a very short 77 (< 250 ms). The heart
muscle (myocardium) on the other hand contracts and expands
substantially through the cardiac cycle and has a longer T}
(=~ 1500 ms). The blood pools also move and have even longer
T7 (> 2000 ms). Thus, it is hard to capture all the information
in a few rank-one components. Hence, in this work, we
consider small local patches in the spatial domain and model
these as low-rank tensors. This increases the likelihood that
a patch contains only tissue types that are related in function
and contrast, instead of a large number of tissue types with
varying properties.

C. Tensor-Regularized Reconstruction

The sub-sampled data was reconstructed using parallel
imaging reconstruction [2]. Parallel imaging was applied to
each of C' = 5 contrast weightings and 7' = 11 cardiac phases
individually to avoid any temporal and/or contrast blurring in

the reconstructed images. Tensor regularization was then used
to reduce the noise amplification due to the linear parallel
imaging reconstruction [1] in post-processing, similar to [13],
[14]. The low-rank tensor factorization for noise reduction of
a 4-dimensional noisy tensor X amounts to solving

R

min IX-> a@b.ocodli 3
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Instead of solving the above least square problem which is non-
convex, we use an alternating least squares (ALS) approach
[19], [21]. ALS solves for {a,} by fixing {b,}, {c,} and {d, }
so that problem becomes (conditionally) linear. The procedure
is then repeated for the other components until a stopping
criterion is met.

Locally low-rank processing was implemented by extract-
ing 8 x 8 x 11 x 5 patches from the imaging dataset, which
were processed as 4-dimensional tensors. Overlapping patches
were used with a shift of four, which were combined via
averaging after processing. Ranks of {10, 20, 30,40, 50,100}
were used for approximation, with the upper bound on
rank being 320. The locally low-rank tensor approach was
compared to global tensor regularization applied to the 4-
dimensional dataset. For the global tensor regularization,
ranks of {100,200, 300, 400,500,600} were empirically in-
vestigated, with the rank upper bound being 7425.

D. Quantitative Ty Map Analysis

The performance of the regularizations were evaluated
using the quantitative 77 maps. For each of the 11 cardiac
phases, quantitative 77 maps were generated. For each pixel
in the 77 map, the contrast changes across the 5 different
Ty-weighted images were used to estimate the underlying 7}
parameter. This parameter estimation is possible, since the
variations across the T weighted images can be modeled using
the Bloch equations as a function of 7}, as well as some of the
acquisition parameters [18]. Once this processing is completed,
for each imaging dataset, a 2D pixel-wise map of 7T} values has
been generated, across each of the eleven cardiac phases. Since
the 77 values are in milliseconds, this allows for a quantitative
characterization of the regularization performance.

Myocardial (heart muscle) 77 times are the quantity of
interest for evaluation of various cardiac diseases [15]. Thus,
regions-of-interest (ROIs) were manually drawn in the my-
ocardium, for each of the cardiac phases. The mean value in
the ROI is recorded as the estimate of the myocardial 7} value.
The standard deviation in the ROI is recorded as the spatial
variability, which is used as a surrogate for precision. The T}
times and the precision were averaged across all cardiac phases
(as mean = standard deviation), to give a metric for estimated
Ty, as well as overall precision.

There are two components to the evaluation of the regu-
larization: 1) The method should be unbiased, i.e. the average
Ty value estimated by the method should not be altered due
to regularization; 2) The method should improve precision,
i.e. the noise amplification in the dataset, and therefore the
spatial variability in the 77 maps should be reduced as much
as possible with the regularization. Both quantities were used
to evaluate the performance of the global and the proposed
local low-rank tensor regularizations.



IT1I. RESULTS
A. Effect of Tensor Rank

Figure la depicts 77 maps from a representative cardiac
phase, out of the eleven acquired ones for global (top) and local
(bottom) low-rank tensor (LRT) regularization, with different
tensor ranks. The maps are zoomed into the heart for better
visibility and the myocardial muscle is in the green-like color.
Global LRT regularization exhibits spatial blurring artifacts,
as depicted in the blood-myocardium border, for low ranks
(e.g. 100). With increasing rank, the spatial blurring is ame-
liorated, but the dataset gets noisier. The proposed local LRT
regularization does not suffer from similar blurring artifacts
at the lowest ranks, due to more localized features that are
picked up in these small patches. As expected, noisier maps
are observed with increasing rank in this case as well.

Figure 1b depicts the quantitative metrics for precision
and 77 time estimates, which confirm the behavior observed
in (a). For both LRT regularizations, the average precision
degrades with increasing rank (top). Both the best precision
and the best standard deviation of precision across cardiac
cycles are achieved with the lowest ranks that were investigated
for both methods. In terms of the estimated 73 values (bottom),
the proposed locally LRT regularization is unbiased across
the ranks that were investigated. However, the global LRT
approach shows biased 7} times for small ranks, in the range
of 100-400. This is possibly a by-product of the spatial blurring
observed in Figure 1a, biasing the myocardial 7; times towards
the higher blood 77 times.
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Fig. 1. a) T1 maps of a representative cardiac phase (zoomed into heart)
for global (top) and local (bottom) low-rank tensor (LRT) regularization, for
various ranks. Global LRT exhibits blurring artifacts for low ranks, and more
noise for higher ranks. Local LRT does not suffer from spatial blurring at low
ranks. b) The quantitative metrics confirm the behavior in (a), with precision
degrading with increasing rank (top); and global LRT exhibiting bias in 7T
value estimation at the lower ranks (bottom).

Based on these experiments, ranks of 10 and 500 were cho-
sen for the local and global LRT regularization schemes for the
remainder of the text, as these provide the best improvements
in precision without biasing the estimated quantitative values.

B. Improved High-Resolution Dynamic T Maps

Figure 2 depicts the dynamic quantitative 77 maps of all
cardiac phases in a healthy volunteer. Major noise variations
are readily observed in the baseline images, generated using
parallel imaging (top). Due to the high-resolution of the
acquisitions, the SNR of the acquisition is low, and noise
amplification of parallel imaging [1] renders these maps clin-
ically unusable. This is further evidenced by the quantitative
characterization of precision across all cardiac phases, which
is 336 + 39 ms, leading to a spatial variability of ~ 25% of
the 73 value. The noise degradation is especially apparent in
the later cardiac phases, due to less magnetization changes for
the 7 parameter estimation [18].

Global LRT regularization, with rank 500, significantly
improves the visual quality of the dynamic 7} maps (middle).
There are some residual artifacts, such as signal contamina-
tion from the blood pool in the earlier phases, as well as
residual inhomogeneity in the myocardium in the later cardiac
phases. The overall precision for this technique is 219 + 54
ms. The proposed local LRT regularization, with rank 10,
further suppresses these artifacts, while preserving the contrast
variation and the sharp border delineation between the blood
and the myocardium. The noise reduction is also more uniform
across the cardiac phases, with late cardiac phases exhibiting
limited noise amplification in the myocardium. The overall
precision for this technique is 153+23 ms. Thus, the proposed
approach outperforms global LRT regularization both visually
and quantitatively; and improves upon the precision of parallel
imaging by more than a factor of 2.

Figure 3 depicts the 7} values through the cardiac phases
for a cross-section of the heart. This helps to capture the
functional information assessed from the dynamic nature of
the acquisition. Functional representation of cardiac motion is
deteriorated in parallel imaging due to the high noise amplifi-
cation, which makes it difficult to identify tissue borders. Both
global and local LRT approaches significantly decrease these
noise artifacts, while preserving the dynamic profile across the
cardiac cycle.

IV. DISCUSSION AND CONCLUSIONS

In this study, we proposed locally low-rank tensor regular-
ization approach for MRI reconstruction, and applied it to a
high-resolution dynamic cardiac 7} mapping acquisition [18].
The method was compared to conventional parallel imaging, as
well as global low-rank tensor regularization, and was shown
to be superior to both, visually and quantitatively.

The proposed regularization in conjunction with the accel-
erated acquisition considered here enables 77 mapping with a
spatial resolution of 1.3 x 1.3 mm? and temporal resolution of
40 ms. Conventional 77 mapping acquisitions are confined to
spatial resolutions of 2 x 2 mm? and temporal resolution of
200-250 ms [15]. These improvements may facilitate better
delineation of blood-myocardium border, thereby reducing
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Fig. 2.

Dynamic quantitative 77 maps generated with conventional parallel imaging (top), global LRT (middle) and the proposed local LRT (bottom). The

full field-of-view are images depicted on the left for one cardiac phase; and the 77 maps for all eleven cardiac phases are shown. The local LRT approach
significantly reduces the noise inhomogeneity of parallel imaging, and eliminates the residual noise artifacts present in the global LRT approach. Overall spatial
variability of the myocardial T values for the three methods are 336 + 39 ms, 219 454 ms, and 153 £ 23 ms, respectively, showing a significant improvement

with the proposed regularization.

partial voluming artifacts; as well as characterization of smaller
highly mobile structures, such as the papillary muscles.

The datasets acquired in this study are 4-dimensional,
containing two spatial dimensions, one dimension for cardiac
motion, and a dimension along which the contrast weighting
of images changes based on 7. There are multiple inter-
actions among these dimensions, which cannot be captured
efficiently in a pair-wise manner. Thus, while low-rank matrix
regularization has been employed in MRI [6], [8], [9], low-rank
tensors are a natural fit to represent this dynamic myocardial
T, mapping data. Additionally since the imaging field-of-
view contains multiple structures with different functional and
contrast properties (e.g. the full field-of-view image in Figure
2), local use of the tensor properties proved to be beneficial in
improving both the visual image quality and the quantitative

Parallel Imaging Global LRT Local LRT

Fig. 3. T} times through cardiac phases across a cross-section of the heart.
Parallel imaging suffers from noise amplification, making it difficult to identify
tissue borders. The tensor-regularized methods significantly decrease these
noise artifacts, while showing no temporal blurring across the cardiac cycle.

metrics for precision.

Both Tucker and PARAFAC decompositions have been
used in MRI for regularization [17], [20]. The former is a
form of higher order singular value decomposition. Tucker-
based low-rank tensor approach gathers the highest energy
slabs for each mode in a part of the core, then truncates
the core. However, such truncation does not necessarily yield
a good approximation for the tensor [19], since there is no
tensor equivalent form of the Eckart-Young theorem which
gives the best low-rank matrix approximation by keeping a few
large singular values and truncating the rest of the singular
values. PARAFAC model has a direct relationship with the
rank and by extension with low-rank approximation, since
it is the summation of rank-one tensors. Furthermore, since
PARAFAC decomposition uses fewer degrees of freedom than
Tucker, it is less susceptible to over-fitting, avoiding excessive
modeling of noise and other system imperfections [22].

In addition to the imaging performance improvements, the
proposed locally low-rank tensor model also has a compu-
tational advantage over the globally low-rank tensor regular-
ization, due to the considerably reduced rank. This translates
to a 10-fold improvement in computational time. Note the
processing time could be further reduced using parallelization
on multi-cores or GPUs, but this was not investigated in the
current study.

A single rank was used to process all 4-dimensional patches
in the dataset. An adaptive rank selection may be desirable
to further increase the noise reduction quality, but this was
not explored. In this work, the regularization was applied to
images reconstructed with parallel imaging, which resulted in
no iterative processing.
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