LOCAL MONOMIALIZATION OF ANALYTIC MAPS

STEVEN DALE CUTKOSKY

ABSTRACT. In this paper local monomialization theorems are proven for morphisms of
complex and real analytic spaces. This gives the generalization of the local monomial-
ization theorem for morphisms of algebraic varieties over a field of characteristic zero
proven in [17] and [19] to analytic spaces.

1. INTRODUCTION

In this paper we prove local monomialization theorems for complex and real analytic
morphisms.

A local blow up of an analytic space X is a morphism 7 : X’ — X determined by a
triple (U, E, ) where U is an open subset of X, F is a closed analytic subspace of U and
7 is the composition of the inclusion of U into X with the blowup of F.

Hironaka introduced in his work on analytic sets and maps ([43] and [42]) the notion of
an étoile over a complex analytic space X to generalize a valuation of a function field of
an algebraic variety. An étoile e over an analytic space X is a subcategory of sequences of
local blowups over X which satisfy good properties. If 7 : X’ — X belongs to e, a point
ex: € X', called the center of e on X' is associated to e. The set Ex of all étoiles over X,
with the collection of sets & = {e € Ex | m € e} for all 7 : X’ — X which are products
of local blow ups as a basis of a topology is the voute étoilée over X. Hironaka proved
that the map Px : Ex — X, defined by Px(e) = ex is continuous, surjective and proper.
The Votite étoilée can be seen as a generalization of the Zariski Riemann manifold of an
algebraic function field, but the comparison is limited. A valuation of a giant field can
be associated to an étoile, but this valuation does not enjoy many of the good properties
realized by valuations on algebraic function fields ([27]). The basic properties of étoiles
are reviewed in Section 3.

Suppose that ¢ : Y — X is a morphism of reduced complex analytic spaces and that e
is an étoile over Y. We prove that ¢ can be made into a monomial mapping at the center
of e after performing sequences of local blowups of nonsingular analytic subvarieties above
Y and X. We derive some consequences for complex and real analytic geometry.

Definition 1.1. Suppose that ¢ : Y — X is a morphism of complex or real analytic
manifolds, and p € Y. We will say that the map ¢ is monomial at p if there exist reqular
p}c;mmeters Tlyeees Ty Toptls s Tt 0 O‘;gw(p) and Yi,...,Yn N ?/f‘p and c;j € N such
that

n
' (i) = [ y” for1<i<m
j=1
with rank(ci;) = m and ¢*(x;) =0 form < i <t.
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There is a related notion of an analytic morphism ¢ : ¥ — X being monomial on Y
(Definition 3.2).
Our principal result is the following theorem.

Theorem 1.2. Suppose that ¢ : Y — X is a morphism of reduced complex analytic spaces
and e is an étoile over Y. Then there exists a commutative diagram of complex analytic
morphisms

v, & X,
Bl la
y A% X

such that B € e, the morphisms a and 8 are finite products of local blow ups of nonsingular
analytic sub varieties, Y, and X, are nonsingular analytic spaces and @, is a monomial
analytic morphism at the center of e.

There exists a nowhere dense closed analytic subspace F, of X. such that X\ F. — X
is an open embedding and ¢, (F.) is nowhere dense in Y.

The last condition on F, is always true if «, 8 are sequences of local blow ups and ¢
is regular (this concept is defined in equation (5)). A regular morphism is the analog in
analytic geometry of a dominant morphism in algebraic geometry.

A stronger version of Theorem 1.2 is proven in Theorem 8.12. The analogue of The-
orem 1.2 for dominant morphisms of algebraic varieties (over a field of characteristic 0)
dominated by a valuation was proven earlier in [17] and [19]. The fact that the theorem
is not true in positive characteristic was proven in [26]. It is not difficult to extend the
proof of local monomialization along a valuation for dominant morphisms of characteristic
zero algebraic varieties to arbitrary (not necessarily dominant) morphisms, using standard
theorems from resolution of singularities.

We deduce the following Theorem 1.3 from Theorem 1.2, using the fact that the set of
étoiles (La Votute Etoilée) on a complex analytic space has some good topological properties
([43] and [42]). We use in this and the following theorems stated in this introduction the
notion of an analytic morphism ¢ : Y — X of manifolds being monomial on Y which
is defined in Definition 3.2. The proof of Theorem 1.3 is obtained from Theorem 1.2 by
utilizing techniques from [44] and [42]. Let K be a compact neighborhood of the point
p € Y. Theorem 1.2 produces for each étoile e € £x a morphism 7, : Yo — Y which lifts
the initial morphism ¢ : ¥ — X to a morphism ¢, : Y. — X, which is monomial at the
point ey. Since Py : &y — Y is proper, the set K/ = P;I(K’) is compact. Theorem 1.3
follows by extracting a finite sub cover from an open cover of K’ by the preimages of open
sets obtained from the Y.

Theorem 1.3. Suppose that ¢ : Y — X is a morphism of reduced complex analytic spaces
and p € Y. Then there exists a finite number t of commutative diagrams of complex
analytic morphisms

i, 50X
Bi | 1o
Yy 4 X

for 1 <i <t such that each B; and «; are finite products of local blow ups of nonsingular
analytic sub varieties, Y; and X; are smooth analytic spaces and p; is a monomial analytic
morphism. Further, there exist compact subsets K; of Y; such that Ul_, 3;(K;) is a compact
neighborhood of p in Y.
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There ezist nowhere dense closed analytic subspaces F; of X; such that X;\ F; — X are
open embeddings and ;' (F;) is nowhere dense in Y;.

A stronger version of Theorem 1.3 is proven in Theorem 8.13 below.
We obtain corresponding theorems for real analytic morphisms.

Theorem 1.4. Suppose that Y is a real analytic manifold, X is a reduced real analytic
space and ¢ 1Y — X is a real analytic morphism. Then there exists a finite number t of
commutative diagrams of complex analytic morphisms

i & X
Bid o
Yy 45 X

for 1 <i <t such that each B; and «; are finite products of local blow ups of nonsingular
analytic sub varieties, Y; and X; are smooth analytic spaces and p; is a monomial analytic
morphism. Further, there exist compact subsets K; of Y; such that Ut_, 3;(K;) is a compact
neighborhood of p in Y.

There ezist nowhere dense closed analytic subspaces F; of X; such that X;\ F; — X are
open embeddings and ;' (F;) is nowhere dense in Y;.

A stronger version of Theorem 1.4 is proven in Theorem 9.7.

An application of Theorem 1.4, showing that Hironaka’s rectilinearization theorem can
be deduced from local monomialization, is given in [28]. The rectilinearization theorem
was first proven by Hironaka in [42]. Different proofs have been given by Denef and Van
Den Dries [32] and Bierstone and Milman [11].

Because of the existence of examples such as the Whitney Umbrella, 22 — zy? = 0,
it is not possible for Theorem 1.4 to hold when Y is only assumed to be a reduced real
analytic space. However, using a generalization of the notion of resolution of singularities
by Hironaka for real analytic spaces we can generalize Theorem 1.4 to arbitrary reduced
analytic spaces.

We recall the definition of a smooth real analytic filtration of a real analytic space.

Definition 1.5. (Definition 5.8.2 [42]) Let X be a real analytic space. A smooth real
analytic filtration of X is a sequence of closed real analytic subspaces {X'}o<icoo 0f X
such that -

1) XO = x| and X > XD for all i > 0.

2) {X@} is locally finite at every point p € X.

3) XO\ X0+ s smooth.

If X is a reduced real analytic space which is countable at infinity, then X has a smooth
real analytic filtration (Proposition 5.8 [42]).
Using resolution of singularities, Hironaka deduces the following result.

Proposition 1.6. (Desingularization I. (5.10) [42]) Suppose that X is a real analytic
space and p € X. Then there exists an open neighborhood U of p in X, a finite smooth
real analytic filtration {U(i)} on U and real analytic morphisms 7@ : U(i) — U9 such
that

1) Each U(i) is smooth and 79 is a sequence of blowups of smooth sub varieties.

2) (7Y=L (U D) is nowhere dense in 7% and

3) 7 induces an isomorphism o \ (r)=L(U D)) - g@\ g+,
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In particular, U = U;sor® (U(i)).
We deduce the following theorem from Theorem 1.4 and Proposition 1.6.

Theorem 1.7. Suppose that ¢ : Y — X is a real analytic morphism of reduced real
analytic spaces and p € Y. Then there exists a finite number t of commutative diagrams
of real analytic morphisms

Y;
Bid i\
Y Xi
7 4 e
y % X

for 1 < <t such that each v; : Y;" — Y is a resolution of singularities of a component
of a smooth real analytic filtration of a neighborhood of p in'Y, v;, B and a; are finite
products of local blow ups of nonsingular analytic sub varieties, Y; and X; are smooth
analytic spaces and @; is a monomial analytic morphism. Further, there exist compact
subsets K; of Y; such that Ulefyiﬁi(Ki) 1s a compact neighborhood of p in'Y .

There ezist nowhere dense closed analytic subspaces F; of X; such that X;\ F; — X are
open embeddings and ¢; '(F;) is nowhere dense inY;.

There are a number of local theorems in analytic geometry, including by Hironaka on
the local structure of subanalytic sets ([43] and [42]), especially the rectilinearization the-
orem, by Hironaka, the theorem by Lejeune and Teissier [44] and by Hironaka [42] on local
flattening, by Cano on local resolution of 3-dimensional vector fields ([13]), by Denef and
van den Dries [32] and Bierstone and Milman ([11]) on the structure of semianalytic and
subanalytic sets, by Lichtin ([45], [46] )to construct local monomial forms of analytic map-
pings in low dimensions to prove convergence of series and by Belotto on local resolution
and monomialization of foliations ([7]). A global form of the result of [13] holds on an
algebraic three fold (over an algebraically closed field of characteristic zero) by combining
the theorem of [13] with the patching theorem of Piltant in [51].

For dominant morphisms of algebraic varieties of characteristic zero, local monomial-
ization along an arbitrary valuation is proven in [17] and [19]. It is shown in [26] that local
monomialization (and even “weak” local monomialization where the vertical arrows are
only required to be birational maps) is not true along an arbitrary valuation in positive
characteristic, even for varieties of dimension two.

Global monomialization (toroidalization) has been proven for varieties over algebraically
closed fields of characteristic zero for dominant morphisms from a projective 3-fold ([20],
[21] and [24]). Weak toroidalization (weak global monomialization), where the vertical
arrows giving a toroidal map are only required to be birational is proven globally for
algebraic varieties of characteristic zero by Abramovich and Karu [4] and Abramovich,
Denef and Karu [5]. Applications of this theorem to quantifier elimination and other
important problems in logic are given by Denef in [30] and [31].

The proof of local monomialization in characteristic zero function fields given in [17]
and [19] does not readily extend to the case of analytic morphisms. This is because the
methods from valuation theory that are used there do not behave well under the infinite
extensions of quotient fields of local rings which take place under local blow ups associated
to an étoile. The behavior of a valuation associated to an étoile which has rank larger than
1 is particularly wild (examples are given in [27]), and the reduction to rank 1 valuations
(the value group is an ordered subgroup of R) in the proofs of [17] and [19] does not
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extend to a higher rank valuation which is associated to an étoile. New techniques are
developed in this paper which are not sensitive to the rank of a valuation. The notion
of “independence of variables” for an étoile, Definition 5.1, replaces the notion of the
rational rank of a (rank 1) valuation which is used in [17] and [19]. If e is an étoile over
an irreducible complex analytic space X, then we have (as in the classical case of function
fields) by Lemma 5.3 [27] the inequalities

rankV, < ratrankV, < dim X

where V. is the valuation ring associated to e.

The proofs of this paper can be adapted to give simpler proofs of the local monomial-
ization theorem for characteristic zero algebraic function fields of [17] and [19]. However,
two sources of complexity in the proofs of [17] and [19] do not exist in the case of com-
plex analytic morphisms, and cannot (readily) be eliminated. They are the problem of
residue field extension of local rings, and the problem of approximation of formal (analytic)
constructions to become algebraic.

The proofs of this paper, and the difficulties which must be overcome are related to the
problems which arise in resolution of vector fields and differential forms ([52], [13] , [50], [8])
and in resolution of singularities in positive characteristic (some papers illustrating this are
1], [2], [23], [22], [38], [39], [12], [14], [15], [16]). A common difficulty to monomialization
of morphisms, resolution of singularities in positive characteristic and resolution of vector
fields is the possibility of a natural order going up after the blow up of an apparently
suitable nonsingular sub variety.

We thank Jan Denef for suggesting the local monomialization problem for analytic
morphisms, and for discussion, encouragement and explanation of possible applications.
We also thank Bernard Teissier for discussions on this and related problems. We thank
reviewers for their helpful comments and careful reading.

2. A BRIEF OVERVIEW OF THE PROOF

In this section we give an outline of the proof of Theorem 1.2 (and a stronger version,
Theorem 8.12). Suppose that ¢ : ¥ — X is a complex analytic morphism of complex
manifolds and e is an étoile over Y. The first step is to reduce, using Proposition 3.5 in
Section 3, to the assumption that ¢ is quasi regular; that is, if we have a commutative
diagram

v, 8 X,
Bl la
y % X

with 5 € e, and «, § products of local blowups of nonsingular analytic sub varieties then
* . (mMan an fq i ; :
w10 Xpr(evy) O%. ey, 18 injective. This proof only uses the statement of the theorem

of resolution of singularities. In fact, it is true that if ¢ is quasi regular then ¢ is regular

(so &7 : @rj‘(nh@l(eyl) — (’5?}1‘761/1 is also injective), as can be deduced from the sophisticated

local flattening theorem of Hironaka, Lejeune and Teissier [44] and with a different proof
by Hironaka in [42]. This deduction is shown in [27]. However, we do not need this for
our proof, and in fact deduce it in Corollary 8.11 from our proof. The fact that we only
assume quasi regularity, and not regularity, is addressed in the proof of Theorem 1.2 in
Proposition 8.5.

With the assumption that ¢ is quasi regular, we have reduced to the proof of Theorem
8.10, and we have that e induces a restricted étoile on X (as explained at the end of
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Section 3). We will also need the fact, explained in Section 3, that there is a valuation v,
with valuation ring V. on the union of quotient fields of local rings at the center of e of
sequences of local blowups by nonsingular sub varieties above Y which are in e.

The most important types of transformations (sequences of local blow ups or change of
variables) used in the proof are the generalized monoidal transformation, GMT and the
simple GMT (SGMT), which are defined in Section 5. The full set of transformations used
are defined after the proof of Lemma 6.4 in Section 5. A GMT associates to a given set
Z1,...,x, of variables another set Zi,...,Z, (which are parameters at the point on the
corresponding birational extension determined by the étoile e), defined by

where A = (a;;) is a matrix of natural numbers with Det A = £+1 and «; € C.

A collection of variables x1, ..., x, is called independent if every GMT in x1,...,x, is
monomial (all &; = 0). This is a crucial concept in the proof. A critical fact is that a
GMT preserves independence of variables.

In the proof, we inductively construct commutative diagrams

y 4 X
1 \
vy 5 X
where the vertical morphisms are products of local blow ups of nonsingular analytic sub
varieties which are in e such that there exist regular parameters x1,...,x,, in (’)}ne ~and
X
YLy« vy Yn IN O;’?ne~ such that yi1,...,ys are independent but y1,...,ys,y; are dependent
€y
for all ¢ with s+ 1 < i < mn, x,...,x, are independent, and identifying x; with ¢*(z;),
there is an expression for some [
moo= g
(1) T o= oyt ye
Tr4+1 = Ys+1
LTr4l = Ys+i-

We necessarily have that C' = (c¢;;) has rank r (by Lemma 4.1) with our assumptions.
We will say that the variables (z,y) = (z1,...,Zm; Y1, -.,Yn) are prepared of type (s,7,1)
if all of the above conditions hold. The above diagram (1) is labeled as equation (14) in
Section 6, where it is introduced in the proof. We say that (s1,7r1,01) > (s,7,1) if 51 > s,
r1 >rand r; + 0 > r+1, and that (sy,71,01) > (s,7,0) if (s1,71,01) > (s,7,1) and s1 > s
orry >rorry+Il >r+1L

Theorem 8.10, and thus Theorem 1.2, is a consequence of induction using Proposition
8.9, which shows that if ¢ is not monomial, and an expression (1) holds, then we can
construct some more local blow ups ¥; — Y and X; — X of nonsingular sub varieties,
with Y7 — Y € e such that we have a resulting morphism ¢ : Y1 — X; giving equations
(1) with an increase (s1,71,101) > (s,7,1).

We will now say a little bit about the proof of Proposition 8.9, and the necessary results
preceding it. This is accomplished in Section 8. We start with an expression (1), and
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then we perform a sequence of transformations which maintain the form (1) to also put
Zyryi4+1 into a monomial form consistent with (1). We may assume that there is no change
in (r,s,l) under these transformations (until the very last step), since otherwise we have
already obtained a proof of the induction statement.

We make use of the following method to reduce the order of a function along a valua-
tion, taking a Tschirnhaus transformation (Lemma 5.8) and then performing sequences of
blow ups to make the coefficients monomials (times units), and then performing a trans-
formation of type 4) (defined after the proof of Lemma 6.4 in Section 5) to get a reduction
in multiplicity. This is a variation on the reduction method of Zariski in [53], except we
consider valuations of arbitrary rank, and use the Tschirnhaus transformation which was
introduced by Abhyankar and developed by Hironaka. This method is used repeatedly
through out the proofs.

Another important method is developed in Section 7. We define the notion of a formal
series g in Cl[y1, ..., ys+i]] to be algebraic over x1, ..., x,4; in Definition 7.1. We consider
this notion through the decomposition of a series g expressed in (26) and (26). This
decomposition was introduced in [19].

We perform 10 types of transformations to achieve the proof of Proposition 8.9, which
are listed after Lemma 6.4. The basic transformations are 1), 2), 4) and 9) which are
generalized monoidal transforms, and 3) and 10), which are generally used to make a
Tschirnhaus transformation.

In Lemma 8.3, it is shown that we can perform transformations which preserve the
form (1) to transform a given element g € C{{y1,...,ys4i}} into a monomial in y;,...,ys
times a unit. The decomposition of Section 7 is essential in the proof of this lemma. From
this lemma, we obtain in Lemma 8.4 that if g € C{{y1,...,ys+:}} is not algebraic over

1i,...,Z, then we can perform transformations which preserve the form 1 to obtain that
(2) g=P+y(1)" -y ()"
where P is algebraic over z1(1),...,2,4(1) and y1(1)% ---y4(1)% is not algebraic over

x1(1), ..., zr(1).
In Proposition 8.5, we show that the natural map of formal power series

Cllx1, -+ Trgasa]] = Cllys, - - - Yl

is an inclusion. (Since ¢ is quasi regular, we must have that the map

Cl{zr,- o zmty = C{{y, - ynt)
is injective.)
Lemmas 8.6 and 8.7 generalize Lemmas 8.3 and 8.4 to the case when g € C{{y1,...,uyn}}.

In Proposition 8.8, we now deduce that there is a sequence of transforms preserving the
form (1) such that

Trypipr (1) = P4y (D)% yy ()™
with P € C{{y1(1),...,ys+1(1)}} algebraic over x1(1),...,2,4;(1) and y;(1)% ---ys(1)%

not algebraic over z1(1),...,x,(1) or we have an expression

Trip1 (1) = P+ yr (D)™ - ys(D) %y (1)

with P € C{{y1(1),...,yst:(1)}} algebraic over zi(1),...,z,4;(1). It now remains to
perform a sequence of transformations which remove the P term. This is accomplished in
Proposition 8.9.
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3. PRELIMINARIES ON ANALYTIC MAPS AND ETOILES

We require that an analytic space be Hausdorff.
Suppose that X is a complex or real analytic manifold and p € X. Let K = C or R.

Suppose that x1,...,x, are regular parameters in Oanp. Then the completion Og‘(np of
OF', with respect to its maximal ideal is the ring of formal power series K [21, z2, ..., Zn]].

The ring OF', is then identified with the subring K{{z1,...,zn}} of convergent power
series. By Abel’s theorem, the formal series

= i, i@t € Kl @]

is a convergent power series if and only if there exist positive real numbers rq,..., 7.y, M
such that
1 i
(3) iy, i [y < M
for every i1, ...,%0m.

The local ring (’)'jgp of a point p on a complex or real analytic space X is noetherian and
henselian by Theorem 45.5 and fact 43.4 [49]. The local ring O'}‘gfp is excellent by Section
18 [37] (or Theorem 102, page 291 [48] and by (ii) of Scholie 7.8.3 [37]).

A local blow up of an analytic space X (page 418 [43] or Section 1 [42]) is a morphism
7w : X' — X determined by a triple (U, E,7) where U is an open subset of X, E is a
closed analytic subspace of U and m is the composition of the inclusion of U into X with
the blowup of E. If 7 : X* — X is a sequence of local blowups, then taking F' to be the
union of the preimages on X* of the closed subspaces that are blown up in constructing
m, we have that F' is a closed analytic subspace of X* such that the induced morphism
X*\ F — X is an open embedding.

Suppose that X is a real or complex analytic manifold. A divisor £ on X is a sim-
ple normal crossings (SNC) divisor if the support of E is a union of irreducible smooth
codimension 1 sub varieties of X which intersect transversally.

Suppose that ¢ : Y — X is a morphism of complex or real analytic manifolds. Gabrielov
[35] (also [10] for a survey of this and related topics) has defined three ranks of ¢ at a
point ¢ of Y. Let p = ¢(¢q). We have induced local homomorphisms

¢  OX) = OYy
and
&1 08, = OF,
on the completions. We define
rq(¢) = generic rank

= largest rank of the tangent mapping of ¢ in a small open neighborhood of g,

7{(90) = dim @%l’p/Kernel p*
7':14(90) = dim 0%, /Kernel *.

We have

(4) rq(p) <77 (q) <r7t(p) < dim X

We will say that ¢ is regular at ¢ if all three of these ranks are equal to the dimension of

X,

(5) rq(p) = r{(cp) = 7“;}4(90) = dim X.
8



If Y is a connected manifold and ¢ is regular at a point ¢ € Y then ¢ is regular everywhere
on Y. In this case we will say that ¢ is regular.
The dimension of a subset E of a complex manifold X at a point p € X is (page 152
[47])
dim, E = sup{dimT" | I" is a sub manifold of U contained in ENU }

where U is a small neighborhood of p in X.

If o : Y — X is a complex analytic morphism of complex manifolds, ¢ € Y and p = ¢(q),
then dimy, ¢(U) = r¢(p) if U is a sufficiently small neighborhood of ¢ in Y.

If F is a closed analytic subset of the complex manifold X and p € E, then

dim;, £ = dim OF},

where dim OF, is the Krull dimension of the local ring OF’ .

For real analytic spaces, we use the topological dimension T-dim,, which is defined
analogously (Section 5 of [42]). Rank and dimension are also discussed in [10], along with
some illustrative examples.

An étoile is defined in Definition 2.1 [43]. An étoile e over a complex analytic space X
is defined as a subcategory of the category of sequences of local blow ups over X.

A sequence of local blow ups of X is the composite of a finite sequence of local blow
ups (U, B, ;).

Let X be a complex analytic space. &(X) will denote the category of morphisms
m : X' — X which are a sequence of local blow ups. For m : X3 — X € &£(X) and
my ¢ X9 = X € £(X), Hom(m,m2) denotes the X-morphisms X9 — X; (morphisms
which factor w1 and 7). The set Hom(m, m2) has at most one element.

Definition 3.1. (Definition 2.1 [43]) Let X be a complex analytic space. An étoile over
X is a subcategory e of E(X) having the following properties:

1) Ifm: X' — X € e then X' # 0.

2) If mj € e for i = 1,2, then there exists w3 € e which dominates w1 and mo; that is,
Hom(7ms, m;) # 0 fori=1,2.

3) For all m : X1 — X € e, there exists o : Xo — X € e such that there exists
q € Hom(mg, 1), and the image q(X2) is relatively compact in X .

4) (mazimality) If €' is a subcategory of E(X) that contains e and satisfies the above
conditions 1) - 3), then ¢’ = e.

The set of all étoiles over X is denoted by £x.

Using property 3), Hironaka shows that for e € Ex, and 7 : X’ — X € e, there exists a
uniquely determined point pr(e) € X’ (which we will also denote by exs) which has the
property that if a: Z — X € e factors as

725 x' & x,
then S(pa(e)) = pr(e). We will also call ex the center of e on X'.

The étoile associates a point ex € X to X and if m; : X7 — U is a local blow up of X
such that ex € U then 7; € e and ex, € X satisfies m(ex,) = ex. If 13 : Xo — Uj is a
local blow up of X such that ex, € U; then m;m € eand ey, € X» satisfies my(ex,) = ex, .
Continuing in this way, we can construct sequences of local blow ups

X, BX, 1 - - -X13X

such that 7 - - - m; € e, with associated points ex, € X; such that m;(ex,) = ex,_, for all 7.
9



In Section 5 of [27] it is shown that a valuation can be naturally associated to an étoile.
We will summarize this construction here.

Suppose that X is a reduced complex analytic space and e is an étoile over X. We will
say that m: X, — X € e is nonsingular if 7 factors as a sequence of local blowups

Xp—=> X1 =2 X1 - X

such that X; is nonsingular for i > 1. The set of local rings A, := Og&mxn such that m is
nonsingular is a directed set, as is the set of quotient fields K of the A; (Lemma 4.3 and
Definition 3.2 [27]). Let
Qe =1lim K, and V., = lim A,.
— —

Then V, is a valuation ring of the field . whose residue field is C (Lemma 6.1 [27]).
We now summarize some further results from [43]. Let X be a complex analytic space.
Let £x be the set of all étoiles over X and for 7 : X7 — X a product of local blow ups, let

(6) Er={ecé&x|mee}.

Then the &, form a basis for a topology on £x. The space Ex with this topology is
called the voute étoilée over X (Definition 3.1 [43]). The votte étoilée is a generalization
to complex analytic spaces of the Zariski Riemann manifold of a variety Z in algebraic
geometry (Section 17, Chapter VI [54]).

The fields €2, are gigantic, while the points of the Zariski Riemann manifold of a variety
Z are just (equivalence classes) of valuations of the function field k£(Z) of Z, so many of the
good properties of valuations of the function field do not hold for the valuation induced
by an étoile.

We have a canonical map Px : Ex — X defined by Px(e) = ex which is continuous,
surjective and proper (Theorem 3.4 [43]). It is shown in Section 2 of [43] that given a
product of local blow ups 7 : X1 — X, there is a natural homeomorphism j, : £x, — &
giving a commutative diagram

Ex, =& C €&x
PX1 \l/ \l«PX
X1 5 X

Definition 3.2. Suppose that ¢ : Y — X is a morphism of complex or real analytic
manifolds, and p € Y. We will say that the map ¢ is monomial at p if there exist reqular
p}c;mmeters Tlyeees Ty Tomgls e, Tt 10 O?w(p) and Yi,...,Yn N O%‘?p and c;; € N such
that

n
o (i) = [[y;? for1<i<m
j=1
with rank(cy;) = m and ¢*(z;) = 0 for m < i < t. We will say that yiy2---yn = 0
is a local toroidal structure O at p and that ¢ is a monomial morphism for the toroidal
structure O at p.

We will say that ¢ is monomial on'Y (or simply that ¢ is monomial) if there exists an
open cover of Y by open sets Uy, which are isomorphic to open subsets of C" (or R™) and
an open cover of X by open sets Vi, which are isomorphic to open subsets of Ct (or R?)
such that (Uy) C Vi, for all i and there exist ¢;j(k) € N such that

n
ot(a) = [y 5" for1<i<m
j=1
10



with rank(ci;) = m and ¢*(x;) =0 for m < i <t, and where x; and y; are the respective
coordinates on Ct and C" (or R' and R").

We will say that y1y2 - - yn = 0 is a local toroidal structure O on Uy and that p|Uy is
a monomial morphism for the toroidal structure O on Uy.

Definition 3.3. Suppose that ¢ : Y — X is an analytic morphism of connected complex
analytic manifolds and e is an étoile over Y. Define

de(p) = min{ry,, (1)}

where the minimum is over commutative diagrams of analytic morphisms

v, 8 X,
(7) Bl la
y 5 X

such that Y1 and X1 are connected complex analytic manifolds, B € e, a and 5 are products
of local blowups of nonsingular closed analytic sub varieties and there exists a nowhere
dense closed analytic subspace Fy of X such that X1\ F1 — X is an open embedding and
o7 H(F) is nowhere dense in Y.

We will say that o is quasi regular with respect to an étoile e on Y if

de(p) =17, () = dim X.

= Tey

Lemma 3.4. Suppose that ¢ : Y — X is a morphism of connected complex analytic
manifolds and e is an étoile over Y. Suppose that we have a commutative diagram

v, B 0Xx
as | } Be
i 8 0x
al 18
Yy & X

such that Yo, Xo, Y1 and X1 are connected complex analytic manifolds, o € e, aag € e and
a, ao, B, Ba are products of local blow ups of nonsingular closed analytic sub varieties such
that there exists a nowhere dense closed analytic subspace Fy of Xo such that Xo\ Fo — X
is an open embedding and @51(F2) is nowhere dense in Ya. Then

A A
reyl (@1) 2 Tey2 (@2)

Proof. Let K1 be the kernel of the homomorphism

901( : 0%11,901(61/1) - O?/T,eyl :
The kernel K is a prime ideal. There exists an open neighborhood V' of ¢1(ey, ) in X7 such
that Cq is generated by analytic functions fi,..., f, on V and Z; = Z(f1,...,fr) C V is
analytically irreducible with dim, (¢, ) Z1 = réﬁ (¢1). We have ey, € ¢; (V). Let Z3 be

the strict transform of Z; in 85 ' (V). The open set @, ' (85 (V) ¢ @5 ' (F2) since ¢, ' (Fy)
is nowhere dense in Yz and so pa(as (071 (V))) ¢ Fp. But

pa(03 (B (V) = @2z (971 (V))) C By (Z1)

and so B, 1(Z1) ¢ Fp and thus Zy # 0, pa(ay (97 (V) C Zo and the ideal of the germ

of Zy at ¢a(ey,) is contained in the kernel Ka of 3 : O%g oaleys) 0%, ¢, - Thus
’ 2 2

r (p2) < dimy, (e, ) Zo = dimy, (e, ) Z1 = 128, (91).

11



g

Proposition 3.5. Suppose that ¢ : Y — X is a morphism of reduced complex analytic
spaces and e € Ey is an étoile over Y. Then there exists a commutative diagram of
morphisms

v, % X,
(8) J by
y % Xx

such that & € e, the morphisms v and § are finite products of local blow ups of nonsingular
analytic sub varieties, Y, and X. are smooth analytic spaces, there exists a closed analytic
sub manifold Z, of Xe such that pe(Ye) C Z. and the induced analytic map pe : Yo — Z
18 quast reqular with respect to e. Further, there exists a nowhere dense closed analytic
subspace F, of X, such that X, \ F. — X is an open embeddding and ¢_(F,) is nowhere
dense in Y.

Proof. Let
i 3 X
(9) al 1l
Yy % X

be a diagram as in (7) such that

de(p) = 12, (1)

Let K be the prime ideal which is the kernel of

7 (9'}‘?17¢1(6Y1) — O%Ifﬁyl.

We can replace X with an open neighborhood V' of ¢1(ey; ) on which a set of generators of
IC are analytic and determine a locally irreducible closed analytic subset Z of V' and replace
Y1 with <p1_1(V). After performing an embedded resolution of singularities Xo — X7 of
Z and a resolution of indeterminacy of the rational map Y; --» X2, we may assume that
Z is nonsingular. Then we have achieved the conclusions of Proposition 3.5 by Lemma
3.4. O

Suppose that ¢ : Y — X is a regular morphism of nonsingular complex analytic spaces
and that e is an étoile over Y. Then e naturally induces an étoile f over X; we have that
Qf C Q¢ and Vy =V, N Qy by Proposition 6.2 [27].

If we do not assume that ¢ : Y — X is regular, but only that ¢ is quasi regular with
respect to e, then the same construction of an induced étoile on X is valid (by Lemma 3.4
and Proposition 3.5).

We in fact have that a quasi regular morphism is regular, as we deduce in Corollary
8.11. This fact can also be deduced from the local flattening theorem of Hironaka, Lejeune
and Teissier [44] and Hironaka [42], as is shown in [27].

4. VALUATIONS ON ALGEBRAIC FUNCTION FIELDS

We begin this section by reviewing some material from Sections 8,9,10 of [3] and Chapter
VI, Section 10 [54].
12



Let K be an algebraic function field over a field k, and let v be a valuation of K which
is trivial on k. Let V,, be the valuation ring of v and I', be the value group of v. Let

O=pgC---CpgCV,

be the chain of prime ideals in V,,. Let U; = {v(a) | a € p;\{0}}. Let I'; be the complement
of U; and —U; in I'y,. The chain of isolated subgroups in '}, is

0=ILyC---CIlo=T,.

The valuations composite with v have the valuation rings V,, with value groups I',/T';.
Let v; be the induced valuation (v;(f) is the class of v(f) in ', /T; for f € K\ {0}). The
valuation v is called zero dimensional if the residue field V,,/p, is an algebraic extension of
k. In this section we prove the following lemma. In the case when v has rank 1 (so there
is an order preserving embedding of I', in R), Lemma 4.1 is proven in Section 9 of [53].
We extend this proof to the case when v has arbitrary rank d. Related constructions of
Perron transforms along a valuation of rank greater than 1 are given by ElHitti in [33].

Lemma 4.1. Suppose that k is a field and v is a valuation of the quotient field of the poly-
nomial ring k[x1, ..., w511 such that v(z;) > 0 for1 <i < s, v(xsi1) >0, v(x1),...,v(x4)
are rationally independent and v(xsy1) is rationally dependent on v(xy),...,v(xs). Then
there exists a composition of monoidal transforms (a sequence of blow ups of nonsingular
subvarieties) of the form

S
o —aij | =Qis+1 .
T; = ij T, for1<i<s and
Jj=1
S
— F=s+1,5 | ZGs+1,5+1
Ls+1 = H Ly Loyl
Jj=1

such that v(Z;) >0 for 1 <i<s and v(Ts41) = 0. B
If v is zero dimensional and k is algebraically closed, then there exists 0 # o € k such
that v(Ts41 — ) > 0.

Proof. The proof is by decreasing induction on the largest k£ < d such that there exist
Tiyyoooy Xy, (With 1 < iy < -+- < i < s) such that v(zs41) is rationally dependent on
v(i,), .., v(x;,) and v(xg,),...,v(x;,) € Ty. If k = d then v(zs11) = 0, and the lemma
is trivially satisfied, with (a;;) being the identity matrix.

Suppose that this condition is satisfied for k, and the lemma. is true for k + 1. Without
loss of generality, since with this condition we can ignore the variables such that v(z;) & Tk,
we may assume that v(z1),...,v(zs) € I'y. After reindexing the z;, there exists r such
that 1 <r <sand vg41(z1),...,vk1(2,) is a basis of the span as a rational vector space
of vgr1(21), ..+, V1 (2s) in (D /Tiy1) ® Q.

Suppose that there exists ¢t with r < ¢ < s and vg41(x) # 0. After possibly reindexing
Ty41,- -, Ts we may assume that vgq(x,41) # 0. We necessarily have that vgq1(2,41) >0
since v(xy41) > 0. Since 'y /T'x11 is a rank 1 ordered group, we can apply the algorithm
of Section 2 on pages 861 - 863 of [53] and Section 9 on page 871 of [53] to construct a
sequence of monoidal transforms along v,

T
x; = Ha:j(l)a“(l) g1 ()% for 1 < i <r and
7j=1

13



,
Tr1 = Hmj(l)arﬂ’j(l) mr+1(1)“r+1,r+1(1)
7j=1

and x; = x;(1) for r +1 < i < s such that vy (z;(1)) >0 for 1 <i<r+1 and

Ve+1(Tr+1(1)) = Mg (z1(1) + - + Apvgpa(20(1))

for some A1,..., A, € N (by equation (11’) on page 863 [53]). We necessarily have that
some A\; > 0, so we may assume that Ay > 0. Then perform the sequence of monoidal
transforms along v

2ra1(1) = 212N 2n (202 (241 (2)

and x;(1) = x;(2) for i # r + 1. Then vgy1(x;(2)) > 0 for all ¢ with 1 <7 < r + 1 and
Vpt1 (2 41(2)) = ver1(21(2)). We necessarily have that

(o) oo ()~

asv(x1(2)),...,v(xs(2)) are rationally independent. In the first case, perform the monoidal
transform along v

21(2) = 21(3)zr4+1(3), zr4+1(2) = 21(3) and z;(2) = x;(3) for i # 1 or r + 1.
Otherwise, perform the monoidal transform along v
21(2) = 21(3), zr41(2) = 21(3)zr41(3) and z4(2) = x;(3) for i # 1 or r + 1.

We then have that v(x;(3)) > 0 for 1 < i < s+ 1, vp1(21(3)), ..., vgr1(2,(3)) is a
rational basis of the span of vki1(21(3)),...,vkr1(2s(3)) as a rational vector space in
(Tr/Tr+1) ®@Q, v(x1(3)),...,v(xs(3)) are rationally independent, and v(xsy1(3)) is ratio-
nally dependent on v(z1(3)),...,v(zs(3)). We further have that vgi1(z,+1(3)) = 0. We
repeat this algorithm, reducing to the case that vg41(z;)) =0ifr+1<i<s.

Suppose that vgi1(xsy1) > 0 (and vgpq(z;) =0 for r+1 <4 < s). Then we apply the
algorithm that we used above to construct a monoidal transform along v

i - H§:1 xj(l)aij(1)> Top1 (L)% 1) for 1 <i <r and
Ts+1 = H;Zl xj(l)ar+1,j(1)> gq1(1)ar+1r+1(D)

to achieve vg11(zi(1)) > 0 for 1 < i <7, vpp1(zs+1(1)) = 0 and v(zs4+1(1)) > 0. Since
Vi+1(21), - - ., Vgt1(zy) are rationally independent, (10) implies that v (x1(1)), ..., vgr1(x,(1))
are rationally independent. Since vgy1(x;) = 0forr < i < sand v(zy41),...,v(xs) € Tkt

are rationally independent we have that

v(r1(1)),...,v(z.(1),v(xr41),- .., v(xs)
are rationally independent. Since
v(r1(1)),...,v(z.(1)),v(xr41), .., v(xs), v(Ts+1(1))

and v(x1),...,v(xs) span the same rational subspace V of I', ® Q, which has dimension
s, we have that

(10)

v(z1(1)),...,v(zr (1)), v(xps1), ..., v(xs)
is a rational basis of V', so v(zs+1(1)) is a rational linear combination of

v(z1(1)),...,v(z,(1)),v(xrs1), ..., v(xs).
14



Since vg41(rs+1(1)) = 0 and v(xg41(1)), ..., vg+1(zr(1)) are rationally independent, we
have that v(zs41(1)) is a rational linear combination of v(zy41),...,v(zs) € Trr1. We
thus attain the conclusions of the lemma by decreasing induction on k.

Finally, if v is zero dimensional and k is algebraically closed, then the class « of T 1

in the residue field k of V,, is nonzero. Then necessarily V(Ts41 — ) > 0.
O

5. GENERALIZED MONOIDAL TRANSFORMS

Suppose that X is a nonsingular complex analytic space and e is an étoile over X. Let ve
be a valuation of Q. whose valuation ring is V. (Section 3). Suppose that X — X € e and
T1,...,Ty is a regular system of parameters in (9}“6 . Suppose that X — X is such that

X

X — X — X € e. The germ of the local homomorphism 0% _ — 0% is a Generalized
X X

Monoidal Transform (GMT) along the étoile e if OF' _ has regular parameters 7, ..., Tp
€X
such that there exists an n x n matrix A = (a;;) with a;; € N and Det(A) = +£1 such that
n
(11) zi = [ [ @) + o)
j=1

for 1 < j < mnand o; € C (at least one of which must be zero since O?ex — 0%67 is
a local homomorphism). We will say that the GMT is in the variables x;,,...,x;,, if the
GMT has the special form

zi = [[@; + )

jes
for ¢ € S and
T, = T;
for i ¢ S where S = {i1,...,in}. We will say that the GMT is monomial if all «; are
zero. We observe that a GMT is a regular morphism.
It will be assumed through out this paper that all GMT are along a fixed étoile e.

Definition 5.1. The variables x1,...,xs are said to be dependent if there exists a GMT
(11) in x1,...,xs which is not monomial.

The variables x1, ...,z are said to be independent if they are not dependent.

Lemma 5.2. Suppose that z1,...,xs are independent and (11) is a GMT in w1, ..., xs.
Then T1,...,Ts are independent.

Proof. This follows since a composition of a GMT in z1,...,zs and in Ty, ...,Ts is a GMT
inxzy,...,xs. ]

Definition 5.3. A GMT is a simple GMT (SGMT) if it can be factored by a sequence of
blow ups of nonsingular subvarieties.

Lemma 5.4. The wvariables z1,...,xs are independent if and only if every SGMT in
T1,...,Ts 18 monomial.

Proof. Suppose that every SGMT in 1, ..., x5 is monomial and (11) isa GMT in x1, ..., xs.
We must show that all a; = 0. Let v be the valuation of the quotient field K of C[x1, ..., x4]
which gives the restriction of v, to K. Let w : Z — A® be a projective morphism of non-

singular toric varieties such that 7, ..., are regular parameters in Oz,, where p is the
15



center of v on Z. Let J be a (monomial) ideal in Clzy,...,xs] whose blow up in A® is
Z. By principalization of ideals (a particularly simple algorithm which is adequate for our
purposes is given in [36]), there exists a projective morphism of nonsingular toric varieties
A : Z; — A® which is a product of blow ups of nonsingular varieties such that JOyz, is
locally principal, and so A factors through 7. Let I be a monomial ideal such that Z is
the blow up of I.

Let X be obtained by blowing up I in a neighborhood of ey in X. Then (’)E}?’ex —

¥ is a SGMT (since Z; — A® is a morphism of toric varieties which is a product of

X1,ex,
blow ups of nonsingular varieties). Thus Oy, ,, has regular parameters Z1,...,Zs (where
p1 is the center of v on Z;) and Z1,...,%s, Ts41,. .., Ty are regular parameters in o%) ex
’ 1

such that x; = H;Zl i’?“ are monomials for 1 < ¢ < s. Since A factors through =, and so

there is a factorization
OX,eX. — OY,OY — OX1,€X1

we must also have that the given GMT (11) is monomial. O
Lemma 5.5. Suppose that x1,...,xs are independent and

]\41 — xflil(l) . xgs(l)’ M2 — $Cll1(2) . l';ls(Q)

are monomials with d;(j) € N. Then there ezists a (monomial) SGMT in x1,...,xs such
that the ideal generated by My and My is principal in O

Xiexy”

Proof. Let v be the valuation of the quotient field K of C[xzy,...,z,] which gives the
restriction of v, to K. Since z1,...,xs are independent, v(z1),...,v(zs) are rationally
independent by Lemma 4.1. Let I be the ideal generated by M; and My in Clzq, ..., xs]
There exists a birational morphism of nonsingular toric varieties which is a product of
blow ups of nonsingular subvarieties m : Z — A% such that 10z is an invertible ideal

sheaf. Let p; be the center of v on Z. Since 7 is toric and v(x1),...,v(xs) are rationally
independent, there exist regular parameters 1, ...,Zs in Oz, such that

S
(12) €T; = Hfzij

j=1
for 1 < i < s are monomials in Ty,...,Ts. Let J be the monomial ideal in Clzq, ..., x]
whose blow up is Z. Let X be the blow up of J in a neighborhood of e in X. Then
Tl,...,Tg,Tst1,--.,Lm are regular parameters in O%,exl and IO;‘?heXl is a principal
ideal. O
Lemma 5.6. Suppose that x1,...,xs € (’)}ne _ are independent, v € O;{le~ is a unit and

Cx X
di,...,ds € Q. Then &1 =~v%x1,...,%, = v x4 are independent.
Proof. Suppose that Z1,..., &, are not independent. Then there exists X — X giving a

GMT &; = [[_,(&; + &;)® for 1 < j < s with some d&; # 0. After reindexing the z;, we
may assume that &; =0for 1 <j<a<sand &; #0fora<j <s. Definecy,...,cs €Q
by
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where A = (a;;). Then [[;_, (%)% = 7% for 1 <i < s. We have

(13) 79 =(0)9 mod (21, ...,%.)OF,, for all j.
Set T; = v%2; for 1 < j < a, and define o; = v(0)9&;, T; = Y9 (&; + &;) — o for
a < j <s. Then Zy,...,T, are regular parameters in OF by (13). Thus we have a
€X
GMT
S
T; = H(@ + )% for 1 < j<s
j=1
in x1,...,x,, contradicting the independence of z1, ..., xs since some o # 0. O
Lemma 5.7. Suppose that x1,...,xs are independent and x1,...,Ts, Ts11 are dependent.
Suppose that (11) is A GMT in x1,...,xs41 such that some o # 0. Then there are
z1(1),...,s11(1) in OF _ such that x1(1),. .., s41(1), Tsq2, ..., Tn are a regular system
€X

of parameters in O%le— and there is an expression
X

S
x; = ij(l)b“ for1<i<s
j=1

and
Tsp1 = H 2 (1)% (2s41(1) + )
j=1

where 0 # o € C, b;j,b; € N and the s x s matriz (bj;) has nonzero determinant. Further,

the variables x1(1),...,xs(1) are independent.
Proof. Let R = Clz1,...,%s41)(¢y,..2,,,) and K be the quotient field of R. Let (11) be a
GMT in m1,...,%s, ¥s4+1 Which is not monomial and Ry = C[T1, ..., Tst1](z,,..7,.,) We

have a commutative diagram of injective local homomorphisms

an
R — (9)276

X

+ +
R oz .
1 - X,ey

The field K is also the quotient field of R; and R — R; is birational. Let v be the
restriction of v, to K. We have that v dominates R and v dominates R;. Since all GMT
in z1,...,xs are monomial, we must have that v(x1),...,v(zs) are rationally independent
by Lemma 4.1. We have that

s+1
1/(.%'1) = Zazju(fj + Ozj) forl1 <i:<s+1.
j=1
Thus after possibly interchanging the variables zi,...,Zs+1, we have that a3 = ... =

as = 0. Further, since our GMT (11) is not monomial, we must have that asy; # 0.
Thus the s x s matrix consisting of the first s rows and columns of A = (a;;) has rank
s and v(71),...,v(Ts) are rationally independent. There exists A; € Q such that after
replacing 7; with x;(1) := (Tsy1 +as11)"; for 1 < < s, we have that x; = [[=y (1)
for 1 <i<sand zgy; = szl xj(1)* 413 (Top1 + asy1) where A € Q is non zero since
Det(A) # 0. Setting o41(1) := (Tst1 + @sr1)* — a2yy and o = a,, we obtain the
expression of the GMT asserted in the lemma.

17



The values ve(T1),...,V.(Ts) are rationally independent, and ve(Ts41 + as+1) = 0, S0
Ve(x1(1)),...,ve(zs(1)) are rationally independent. Thus x;1(1),...,x4(1) are independent.
U

The following lemma giving a Tschirnhaus transformation will be useful.

Lemma 5.8. Suppose that F € C{{x1,...,2,}} and ord F(0,...,0,2,) =t > 1. Then
there exists ® € C{{x1,...,zn_1}} such that setting T, = x, — ®, we have that

F=1nTh + 7l 2+ + 7
where 1o € C{{x1,...,ZTn}} is a unit and 7, € C{{x1,...,xp_1}} for 2 <i <t.
Proof. By the implicit function theorem (cf. Section C.2.4 [47]),
(2;;1;—' = u(x, — P)
where u € C{{x1,...,z,}} is a unit series and ® € C{{x1,...,xn-1}}. Let T, = x,, — D.
Let G(z1,...,2n-1,Tn) = F(x1,...,2,). We expand

_ —1
G ( 1, 7$n—170)+%(«xl:-'wxn—l?())mn"i_'”+ﬁg;??(xlu" y Tn— 170) il !
+%2—G(x1,...,xn4,0)§;+---
We have . .
oG o-lF
W(.’L’l, [ ,l'n_l,o) = W(J}l, - ,.’L’n_l,@) = 0
n n
and
0'G oF
oz t(ZL'l,...,l‘n,l,O) Oz t(l'l,...,l'nfl,q))
is a unit in C{{xz1,... 7avn}}, giving (by (3)) the conclusions of the lemma. O

6. TRANSFORMATIONS

Suppose that ¢ : Y — X is an analytic morphism of complex analytic manifolds and e
is an étoile over Y such that ¢ is quasi regular with respect to e (Section 3). We will also
denote the induced étoile on X (Section 3) by e.

Suppose that ¥ — Y € e and X — X € e give a morphism ¢ : Y — X. Then

an an
OX €5 - OY e5
is injective, so we may regard (9?211e~ as a subring of (9‘;/“ Assume that there exist
Cx Cy
regular parameters x1, ..., Ty in (93%“e~ and yq,...,yy Iin Oan such that yi1,...,ys are
X ’ ey

independent but yi,...,ys,y; are dependent for all ¢ with s +1 < i < n, x1,...,x, are
independent, and identifying x; with ¢*(z;), there is an expression for some [

Boo= g
(14) o= g

Tr4+1 = Ys+1

LTr4l = Ys+i-
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We necessarily have that C' = (¢;;) has rank r (by Lemma 4.1) with our assumptions,
and so by the rank theorem (page 134 [47]) and the inequality (4) there is an induced
inclusion

Cllar, - - westl] = Cllgns - -yl

Assume that Ey is a SNC divisor on Y supported on Z(y1ys2 - - ys) (in a neighborhood

of ey)in Y.

Definition 6.1. We will say that the variables (z,y) = (T1,..., Tm;Y1,---,Yn) are pre-
pared of type (s,r,1) if all of the above conditions hold.

We will say that (s1,71,01) > (s,7,0) if s > s, r1 > r and r; +1; > r+ [, and that
(s1,71,01) > (s,7,0) if (s1,71,01) > (s,r, ) and sy > sorry >rorri+1; >r+1.

We will perform transformations of the types 1) - 10) below, which preserve the form
(14) (and the quasi regularity of the morphism of germs), giving an expression

(1) = yr(1)n® .y (1)es®)
(15) ﬂfr(l) = yl(l)crl(l) e ys(l)crs(l)
Tr41(l) = yss1(1)
zr(l) = yer(1)
where 1(1),...,2m(1) and y1(1),...,2n(1) are respective regular parameters in OF
€X
and (9%?67 in the induced commutative diagram of quasi regular analytic morphisms
v 5 X
T
vy 4 X

whereY =Y Y ceand X - X — X €e.

Further, we will have that z1(1),...,z,(1) are independent and y;i(1),...,ys(1) are
independent. So we either continue to have that y1(1),...,ys(1),y:(1) are dependent for
all s +1 <t < n or after rewriting (14), we have an increase in s, without decreasing r
or r + [. In summary, we will have that the variables (z(1),y(1)) are prepared of type
(s1,71,01) with (s1,71,01) > (s,7,1).

Let E5- be the pullback of Ey on Y. Then

E is supported on Z(y1(1)y2(1)---ys(1)) C Y

(16) and Y \ Z(y1(1)y2(1) ---ys(1)) — Y is an open embedding.

Lemma 6.2. Suppose that (x,y) are prepared of type (s,r,l) and
T
T; = ij(l)‘”j for1<i<r
j=1
is a GMT in x1,...,x,.. Then there exists a SGMT
S
vi=[Jyi(1)" for1<i<s
j=1

such that the variables (x(1),y(1)) are prepared of type (s1,7r1,11) with (s1,71,01) > (s,r,1).
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Proof. Let v be the restriction of v, to the quotient field K of C[yi, ..., ys], which contains
Clz1,...,zy]. The values v(y1),...,v(ys) are rationally independent and v(z1),...,v(z,)
are rationally independent by Lemma 4.1. The inclusion Clzy,...,z,] — Clyi,...,ys]
induces a dominant morphism A® — A" of nonsingular toric varieties. Let w : Z — A" be
a projective morphism of nonsingular toric varieties such that z1(1),...,z,(1) are regular
parameters in Oz, where p is the center of ¥ on Z. Let J be a monomial ideal in
Clx1,...,z,] whose blow up is Z. By principalization of ideals, there exists a projective
morphism of toric varieties A : W — A® which is a product of blow ups of nonsingular
subvarieties, such that JOy is locally principal, so that the rational map W --» Z
is a morphism. Let ¢; be the center of v on W. Since v(y1),...,v(ys) are rationally
independent and A is toric, there exist regular parameters 7y, ...,7, in Ow,, and b;; € N
with det(b;;) = %1 such that

S
i = Hyf“ for 1 <i<s.
j=1

W is the blow up of a (monomial) ideal H in C[y,...,ys]. Let Y] — Y be the blow up of

H in a neighborhood of ey.. Let ey; be the center of e on Y1. Then ¥y, ..., s, Yst1,-- -, ¥n

are regular parameters in O} ey, » 8iving the conclusions of the lemma. O
]

Lemma 6.3. Suppose that (x,y) are prepared of type (s,r,1), 1 <m <1 and
T
T; = ij(l)“”' for1<i<r
j=1
and
,
Tyym = H 2 (1) 79 (@43 (1) + a)
j=1
with 0 # « € C is a GMT. Then there exists a SGMT
S
vi=[Jyi(1)" for1<i<s
j=1
and
S
Ys+m = H yj(l)strm‘j (Ysm(l) + @)
j=1

such that the variables (x(1),y(1)) are prepared of type (s1,7r1,11) with (s1,71,11) > (s,7r,1).

Proof. Let Ty, ..., T, be the variables defined by (11) which lead to the variables z1(1),. .., z,(1)
of the statement of Lemma 6.3 by the analytic change of variables defined in Lemma 5.7.
Let v be the restriction of v, to the quotient field K of Cly, . . ., ys, Ys+m), which contains

Clx1, .-, Ty Zypqgm). Then v(yy),...,v(ys) are rationally independent by Lemma 4.1 and
V(Ys+m) = V(Tr47) is rationally dependent on v(z1), ..., v(z,), hence v(ys47) is rationally
dependent on v(y1),...,v(ys). Let 7 : Z — A"*! be a projective morphism of nonsingular
toric varieties such that z1,..., %, T,4m are regular parameters in Oz, where p is the
center of v on Z. We have that
(17) x; = Il E;L” (Tpamm + @)%+t for 1 <4 <r and

Tpym = H;:l E?T“vj (Tpym + @)r+ir+1

where 0 # @ € C.
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Let J be a (monomial) ideal in C[z1, ..., %, Tr4m] whose blow up is Z. By principaliza-
tion of ideals, there exists a toric projective morphism A : W — AST! which is a product
of blow ups of non singular varieties such that JOy is locally principal. Let ¢; be the

center of v on W. Since v(y1), ..., v(ys) are rationally independent, and A factors through
Z, we have that Ow,, dominates Oz, and Oy, has regular parameters ¥y, ...,7,, Y, 1m
such that
_bij — N\ b .
(18) Yi = szl U7 (Ygqm + B)bw“ for 1 <¢< s and
Ystm = 121 Wogm + B)betratt

where 0 # 8 € C, b;; € N and Det(b;;) = 1.
The variety W is the blow up of a monomial ideal H in Cly, ..., ys,Ys+m). Let Y1 =Y
be the blow up of H in a neighborhood of ey. Let ey, be the center of e on Y;. Then

yla s ags7ys+l7 L) ys+m—17?s+mays+m+1> -y Yn

an
Yi.ey, "

In OF) ex,» Ve have the following relations between the variables Z and z(1).

are regular parameters in O

i = (em(]) F)P(1) for 1 <7< and
(19) - — c_ =
Tr4m = (x’f’-ﬁ-m(l) + a) -«
with o = @& and
g4l 0
(@) | | = E
Vr 0
1 1
C
with
ay; - aiy a1l s CL177=_|_1
¢ = det : det
Qry s Gpp Ar41,1 0 Grdlr4d

In OF ey, We have the following relations between the variables 3 and y(1) of the proof
of Lemma 5.7.

(20) Yi = (Ys+m(1) + B)i”yz;(l) for 1 <i < s and
Uorm = Wsem()+B)4—5
with 47 = 3 and
1 0
bii S I
( ]) Ts 0
AR
with
bin - bis bii  c bres:
bsl e bss b5+171 e bs+1,3+1

We have expressions

T = aj" ---xﬁ"wﬁl%l forl<i<r
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and

— — 9r+1,1 gr+1,r _Gr+1,7+1
Tr+m + Q=27 SR -

where (g;;) = (a;;) ! and

= h; his, Pi,s+1 .

Yi=" s Yy for1<i<s
and . . .

— N s+1,1 s+1,s s+1,s+1

Ystm + B =1y s Y

where (hl]) = (bij)fl.
Substituting (14), we have

_ . . d; .
T; = y‘lill e ygmysf%l for1<i<r

and . ) )
Tyrym = y1T+1’1 - ysr""lvsys:‘%@+l
where
-1 cir) O
(di) = (aij) <(6) 1 >

We have

(21) Ti = Ui P sy + )7t for 1< i <7 and

Trym t Q@ = gl’"“’l .. .gs”l’é (ys+m + /8)67‘+1,s+1

where (e;;) = (dij)(hi;) ™. Since v(Trim + @) = V(Ygum + B) = 0 and v(y,), ..., v(y,) are
rationally independent we have that
0= €r+1,1 = " = €Er4ls-

We then have that esi1,41 7# O since rank(e;;) = r + 1. We have that e;; > 0 for
1<i<r+1land1<j<s+1since A factors through Z. We compute

1 0

3 : _ o1 [ (eiy) O :
(elj) T, - (aZJ) ( 0 1 ) O
1

1 a

0 7

= (a)"! S I

’ 0 1w

z 1

Substituting (19) and (20) into (21), we obtain
(1) (@r4m(1) + @) = g1 (1)1 - ys (1) (ys4m(1) + B)7 for 1 <i <
and _ _
(@Tr4m(1) + @) = (Yoym(1) + )
We thus have an expression (after possibly replacing 7, with its product times a root
of unity)

S
zi(1) = [[ws(1) for 1 <i <
j=1

and

$r+m(1) = ys+m(1)
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giving the conclusions of the lemma. O

Lemma 6.4. Suppose that (z,y) are prepared of type (s,r,l), m > | and we have an

exTpression

Cr+1,1 Cr+1,s
Trym = Yy C e Ys u

where u € C{{y1,...,yn}} is a unit and

T
T; = ij(l)a”' for1 <i<r and
j=1

'
Tr4+m — H .Tj(l)aj (.I‘T_A,_m(].) + Oé) with 0 75 aeC
j=1
is a GMT in x1,...,Zp, rym- Then there exists a SGMT
S
yi=[Juw(V)% for1<i<s
j=1

inyi,...,Ys such that the variables (x(1),y(1)) are prepared of type (s1,71,11) with (s1,71,101) >
(s,7,1).
Proof. By Lemma 5.7, the GMT (z) — (z(1)) is determined by a monoidal transform

,
T; = Hflgij (Tpqmm + @)+t for 1 <i <r and
j=1

Trym = H T‘ZTHJ (T + @)Irttrtt
j=1
where det(g;;) = £1 and
x’b(l) = (fr—i-m +a))\ifi for 1 <7 <7 and
Trpm(l) = (Trim + @)A — a*, o=a

for suitable \;, A € Q (with A # 0). Letting (e;;) = (g;5) " and (dij) = (gir) " (ck;), we
have

(22)

S
_ d;i . .
T; = | | yj” ur+1 for 1 <4 <r and
i=1

S
trom b= (T[u | aerenron.
j=1
The values ve(y1), ..., ve(ys) are rationally independent by Lemma 4.1. Since

Ve(Tpym + @) = ve(u) =0,
we have that d, 1 ; =0 for 1 < j <s. Thus by (22),
(23) $r+ﬁ(1) =y it — o € C{{yla e ayn}}'

Write )
i TN,
j=1 Ni
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where M;, N; are monomials in y1,...,ys for 1 < ¢ < r. Let K be the ideal K =
[1;_,(M;, N;) in C{{y1,...,ys}}. By Lemma 5.5, there exists a (monomial) SGMT in
Yty Ys

S
yi= [y for1<i<s
j=1

such that K(’)'gl,n(l) ey is a principal ideal. yi(1),...,ys(1) are independent by Lemma
5.2. Since ve(M;/N;) = ve(x;) > 0 we have that N; divides M; in (9?}1(1) ey for1<i<s

and so we have an expression

S
T; = H y; (1)) | yeirt for 1 <i <
j=1

with ¢;;(1) € N. Since x;(1) is necessarily a Laurent monomial in y(1),...,ys(1) for
1 <i < s, comparing with (22), we see that

S
z;i(1) = Hyj(l)c“(l) for 1 <i <.
j=1

Since x4 (1) € C{{y1(1),...,yn(1)}} by (23), we have attained the conclusions of the
lemma.

g

Suppose that (z,y) are prepared of type (s,r,1). We will perform sequences of trans-
formations of the following 10 types for 1 < ¢ < 10 each of which will be called a trans-
formation of type i) from the variables (z,y) to (z(1),y(1)). The variables z(1) and y(1)

are respective regular parameters in 0%1(1)76X(1) and O';l,n(l)yeym from the corresponding

diagram of quasi regular analytic maps

vy % xq)
L
Yy 4 X

where Y(1) =Y - Y € eand X(1) - X — X € e. We have that (x(1),y(1)) is prepared
of type (s1,71,01) with (s1,71,01) > (s,r,1) for all 10 types of transformations. The fact
that none of s,7 or r + [ can go down after a transformation follows from Lemmas 5.2,
5.7 and 5.6. Existence of transformations of types 2) and 4) follow from Lemmas 6.2 and
6.3. A transformation of type 9) will be constructed in the proof of Proposition 8.9 (using
Lemma 6.4).

Transformations of types 1) to 4) are the most basic and are used most of the time.
Transformations of types 1) - 6) and 1) - 8) are used in blocks, depending on the lemma or
proposition. Transformations of type 3), 5) or 10) are often used to make a Tschirnhaus
transformation (Lemma 5.8). A transformation of type 8) is often used to make a change
of variables, giving an increase in r. A transformation of type 9) is used at the end of the
proof of Proposition 8.9.

1) A (necessarily monomial) SGMT in yi,...,ys,

S
= Hyj(l)b”' forl1 <i<s,
j=1
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with Det(bij) = +1.
2) A (necessarily monomial) SGMT in z1, ..., z, followed by a (necessarily monomial)
SGMT in v, ...,Ys,

,
x; = ij(l)“”' for1<i<r
j=1

and
S
Y = Hyj(l)bij for1<i<s
j=1

with Det(aij) = +1 and Det(bi]’) = +1.
3) A change of variables z,1m(1) = 2pq4m — ® for some m with 1 < m < [ and
& € C{{z1,...,xr4m-1}}, followed by a change of variables ysim (1) = ys4m — .
4) A SGMT in z1,...,2y, Zy4m followed by a SGMT in yi,...,Ys, Ys+m for some m
with 1 <m </,

s s
T = H xj(1)* for 1 <i <7 and z,ym = H zj(1)Y (24w (1) + )
j=1 =1

for some 0 # a € C, and

yi = [ [ws ()" for 1 <i < s and yorm = [ [ 4i(D)% (yssm(1) + @)
j=1 j=1
with Det(a;;) # 0 and Det(b;;) # 0 and []}_, y;(1)b = [Tj—y ()%,
5) A change of variables ysym (1) = F with F € C{{y1,...,Ys+m}} and

ord F(0,...,0,ys+m) =1

for some m with m > [.
6) A SGMT in y1,...,Ys, Ys+m, for some m with | +1 <m < n — s.
7) An interchange of variables ysy; and ysim with s +1 < s+i < s+m < n.
8) A change of variables, replacing y; with ;7% for 1 < ¢ < s for some unit v €
C{{v1,...,yn}} and ¢; € Q such that the form (14) is preserved.
9) A SGMT in z1,...,%, Ty followed by a SGMT in yi,...,ys (supposing that
m > [ and
Tyym = ylfl eyl
where u € C{{y1,...,yn}} is a unit),

r T
x; = ij(l)“ij for 1 <i<rand z,4m = Hasj(l)aj (@r4m(1) + @)
j=1 j=1

for some 0 # «a € C, and
S
yi = Hyj(l)bij for1<i<s
j=1

with Det(b;;) = £1 and Det(a;;) # 0 and [}, y?j = [Tj=; 2 ()%,
10) A change of variables, replacing =, with 2,47 — ® for some [ < m < m —r and

(NS (C{{l'l, PN 7$r+m_1}}.
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In the following, we will assume that (s,r, 1) is preserved by these transformations. If
this does not hold, then we just start over again with the assumption of the higher (s,r,1).
As these numbers cannot increase indefinitely, we will eventually reach a situation where
they remain stable under the above transformations.

A sequence of transformations

(@) = (2(1),y(1)) = -+ = (@(t = 1),y(t = 1)) = (x(t), y(1))

will be called a sequence of transformations from (z,y) to (x(t),y(t)).
Observe that a sequence of transformations (which are of types 1) - 10)) satisfy the
condition (16).

7. A DECOMPOSITION OF SERIES

In this section, suppose that (x,y) are prepared of type (s,7,1). As commented after
(14), we have a natural inclusion of formal power series rings

Clle, -, @]l € Cllyas - Yol
Definition 7.1. Suppose that g € k[[y1,...,yn]]. We will say that g is algebraic over
X1,y Tryy if g € Clly1, ..., ys+i]] and g has an expansion
(24) 9= iy iUt Yy
where a;, . ;.. € C is nonzero only if
c11 -+ Cls
rank =r
Cr1 Crs
Z‘1 ls
Observe that the property that g is algebraic over x1,..., 2,4 is preserved by a trans-

formation of type 8).

Lemma 7.2. Suppose that 2% - - xb with by, ... b, € Z is such that [T, (g5t - ySis)bi €

T

Clyr,-.-,ys] is algebraic over xy,...,x,. Then there exrists a SGMT
T
T; = Hacj(l)a“ for1<i<r
j=1

such that
gl = (D)W g (1)

with b;(1) € N for all i.

Proof. Let v be the restriction of v, to the quotient field of Clyi,...,ys]. We have

u(xlil oozlr) > 0. Write xlil . -:Eff = % where M7 and My are monomials in 1, ..., x,.

We have that v(M;) > v(Mz). By Lemma 5.5, there exists a monomial SGMT in

x1,...,2, such that the ideal generated by M; and M in Of;(n(l)yexm is principal. Since

v(My) > v(Ms), we have that My divides M in Ogg(l),exu)’ giving the conclusions of the

lemma. O
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Suppose that g € C[[y1,...,yss1]].- As on page 1540 of [19], we have an expression
(25) 9= > hia]
[Ale(Z#/(QrC)NZs)

where

(26) hia) = Z gayit - yss
e |[a]=[A]

with go € C[[Yst1,- -+ s Ysti]]-
If g€ C{{y1,...,ysy1}} then each hjyy € C{{y1,...,ys41}} by the criterion of (3).

Proposition 7.3. Suppose that A = (A1,...,\s) € N° is fired. Then there exists a SGMT
of type 2), (x,y) — (x(1),y(1)), w1,...,w, € N and d € Z~o such that
Pl wnw 1
(27) 5[/\} = ﬁl’l "'CL’,,,T € (C[[ﬂ?l(].)d,,l'r(l)
yl e ys

If [A] =0, we further have
hia) € Cllza (1) 4,2 (1), 201 (1), - g (D]

If g€ C{{yr, - ysp}}, then dp) € C{{zi (1), .. 2 (1) 8, 201 (1), .. 2i0(1)}} by the
criterion (3).

Proof. Write C = (C1,...,Cs) and let ® : Q" — Q? be defined by ®(v) = vC for v € Q".
® is injective since C has rank r. Let G = ®~1(Z*). For A = (\1,...,\s) € N?, define

Py={veQ" |vC;+ X\ >0forl<i<s}.
For A € N*, we have

ul=

s Tr1 (1), e (L)]]-

A As v
h[‘/\}:yllys-S Z xll...wﬁrgv
v=(V1,...,ur)EGNPy

where g, € C[[xy41,...,2,41]] and we have reindexed the g, = gyota in (26) as g,. Let
H={veZ |vC; >0forl<i<s},
I={veG|vC;>0forl<i<s}
and for A = (\y,...,As) € N%,
My ={veG|vC;+ A >0forl<i<s}.
We have that P, is a rational polyhedral set in Q" whose associated cone is
oc={veQ" |vC; =0for1<i<s}={0}.

Let W = Q". We have that G is a lattice in W and P, is strongly convex. Thus
My = Py, NG is a finitely generated module over the semigroup I (cf. Theorem 7.1 [29]).
Let m = [G : Z"]. We have that mx € H for all z € I. Gordan’s Lemma (cf. Proposition
1, page 12 [34]) implies that H and I are finitely generated semigroups. There exist
wi, ..., w; € I which generate I as a semigroup and there exist vy,...,vg € H which
generated H as a semigroup. Then the finite set

{a1w1+--~aiwz|aiENandogaigﬁforlgiSZ}
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generates I as an H-module. We thus have that M, is a finitely generated module over
the semigroup H. Thus there exist u1,...,u; € My such that if v = (v1,...,0,) € My,

then
a
v =1u; + Z n;v;
j=1
for some 1 <7 < b and nq,...,ng € N. Thus
— — E — —
xfi)l .. x;}'r ey leii’l .. x?i’r H(m;)j‘l .. x:j‘r)nj
Jj=1
where u; = (U 1,...,U;,) for 1 <i <b and vj = (Tj1,...,0j,) for 1 < j <@ By Lemma

7.2 and Lemma 6.2, there exists a transformation of type 2) such that for 1 < j <a,
2t = gy (1) g, (1) Wi

with (9(1);1,...,0(1);,) € N" for 1 < j < @ We then have expressions of all A =
(A1,...,As) € N®, where @y, ...,%; € Q" depend only on A,

b
hia) = yl(l))‘l(l) .. -ys(l))‘s(l) le(l)m,l(l) . xr(l)ﬂi,r(l)gi
=1

where g; € Cllz,41(1), ..., z,41(1)]],
A1) := (A(1),..., As(1)) = A(bsj)
and
a(1l); = (@ia(1),...,wir(1) = ui(asy).

If A =0, we have My = I so that m?’l . T?” is a monomial in yq,...,ys for 1 <i <b,
so we can construct a transformation of type 2), (z,y) — (x(1),y(1)) so that we also have

that the w;(1) satisfy u;(1) € QY for 1 <i <b.
Now let d be a common denominator of the coefficients of the w;(1) for 1 < i < b. If
[A] = 0, we have that

1 1
hiay € Cllza(1)4, .. 2 (1) 2, 21 (1), 20 (1)]]-
If [A] # 0, we choose w = (wy, ..., w;) € N" such that w +7u; € Q% for 1 <i < b. Then

hiay

- cxr e Cllp (1), .. ap (1), 2eg1 (1), 2o (1))
yl ys

g

Lemma 7.4. Suppose that f € C{{z1,...,2m}} C C[[y1,...,yn]] is algebraic over xy, ...,z 4y.
Then f € C{{z1,...,xr11}}.

Proof. By Proposition 7.3 and by the criterion of (3), there exists a monomial GMT

xr, = xl(l)all(l) e l‘r(l)““(l)
(28) .

T, = xl(l)arl(l) .. %«(1)“”(1)
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with Det(a;;(1)) = +1 and d € Z such that

feC{{zi(1)a, ...,z (1), g1, ..., Trps )
Let ) )
9(z) = TI¢ . ai(z = flwiar V)3, wiran ()3, 2, %)
€ C{{z1(1),..., 2 (1), xpq1,y ..y rii } HZ]

where w is a primitive complex d-th root of unity. We have that f is integral over
C{{z1(1),...,2r(1),xps1,...,Tr41}} since f is a root of g(z) = 0. But

feC{z1(1),...,2r(1), zp41,- .., Tm}}
and C{{z1(1),...,z7(1), Zys1,..., 2,41} } is integrally closed in

C{{z1(1),...,2p (1), Zpg1y -, T }}

so f e C{{z1(1),..., 2 (1),xp41,..., 2,4} }. Substituting (28) into the series expansion
of f in terms of z1,...,x, we obtain that f € C{{z1,...,z,1}}.
U

Lemma 7.5. Suppose that g € C[[y1,...,ys]] has an expression g = Y hjz) and one
of the transformations 1) - 4) are performed. Then g € C[[y1(1),...,ys1i(1)]] and if g =
> h’[A,] is the decomposition in terms of the variables y1(1),...,ys11(1) and x1(1),. .., z.1(1),
then

(29) hia) = hi,g
where
bir - bis
B—
bs1 bss

with b;; defined as in the definitions of types 1), 2) and 4) (and with B being the identity
matrixz for a transformation of type 3).

In particular, if a transformation of type 1) - 10) is performed, then f € Cl[yi, ..., Yn]]
is algebraic over x1,...,x,1; if and only if f is algebraic over x1(1),...,z4(1).

Proof. We will prove (29) in the case of a transformation of type 4). The other cases are
simpler. With the notation of (26), we have expansions

o =3 (i (D) ys(1)*)gay

()

with gai € Cllys+1(1),...,ys+1(1)]] so

My = g Tt (09 s (1) (S (0P -5 (1) Yiga)
= Zayl(l)al Ceygs (Zi(yl(l)bl e 'ys(l)bs)lga,i

~—

where
(30) aB =@
with @ = (aq, ..., @s). Write
aip - ary
A=
Ar1 -+ Qpr



and

c1(l) - cs(1)
c) = :
(1) oo es(1)

We showed in the proof of Lemma 6.3 (where (e;;) is defined) that

Ales;) = ( - >B.

(1) (2w ( 1),
We obtain that
(31) AC(1) = CB.
From g1 (1)% -+ y(1)% = 21(1)® - - - 2,(1)* we obtain
(a1,...,a,)C(1) = (b1,...,bs)

We have that

and so
(b1,...,bs) €Q"C(1)NZ".
Since A and B are invertible with integral coefficients, we have from (31) that for o, B € Z°,
a—peQ'CNZ?if and only if aB — B € Q"C(1) N Z*, from which we obtain (29).
O
8. MONOMIALIZATION

Lemma 8.1. Suppose that the variables (x,y) are prepared of type (s,r,1) and there ex-
ists t with r < t < r + 1 such that x1,...,x,,2; are independent. Then there exists
a transformation of type 6) with m = t — r, possibly followed by a tranformation of

type 8) (z,y) — (x(1),y(1)) such that (x(1),y(1)) are prepared of type (s1,71,l1) with
(s1,71,12) > (s,7,0).

Proof. Without loss of generality, we may assume that ¢t = r + 1. Since y1,...,ys are
independent and yi,...,ys,ys+1 are dependent, there exists by Lemmas 5.7 and 5.4 a
SGMT (y) — (y(1)) (a transformation of type 6) with m =t — r = 1) defined by

S
yi = Hyj(l)b” for 1 <j<sand

Ys+1 = H Y (1)" (ys4+1(1) + o) with o # 0.

This gives us an expression

Hy C” ) for 1 <i < r and

Tr4l = H y] ys+1 ) + Oé)-
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If s1 > s we are done. Otherwise, we must have that

611(1) Cls(l)
rank : =r+1
Crl(l) ce CTS(l)
by .- bs
since x1,...,2y+1 are independent. Thus after making a change of variables in yy,...,ys
(a transformation of type 8)) with v = (ys+1(1) + «)) we obtain an increase r; > r (and
(Slarlall) > (S,’f’,l))- 0

Lemma 8.2. Suppose that (x,y) are prepared of type (s,r,1) and g € C{{z1,...,xr41}}.
Then either there exists a sequence of transformations (x,y) — (x(1),y(1)) such that
(x(1),y(1)) are prepared of type (s1,7r1,l1) with (s1,71,01) > (s,7,1) or there exists a se-
quence of transformations of the types 2) - 4) (x,y) — (x(1),y(1)) such that (x(1),y(1))
are prepared of type (s1,71,1l1) with (s1,71,l1) = (s,r,1) and we have an expression

g =Lz, ()u
with w € C{{z1(1),...,z,11(1)}} a unit.

Proof. In the course of the proof, we may assume that all transformations do not lead
to an increase in (s,r,l). We will establish the lemma by induction on ¢ with g €
C{{z1,...,z}} for r <t < r+ 1. We will establish the lemma then with the further
restriction that all transformations of types 3) and 4) have m < ¢t — r and we will obtain
u € C{{z1(1),...,2¢(1)}}.

We first prove the lemma for ¢ = r, so suppose g € C{{z1,...,2,}}. Expand

— . NS - iy ] . .
g= g @iy, i T x, with a;, . ;. € C.

Let I be the ideal ‘
I= (2 x| ai,. i #0).

The ideal [ is generated by :zill(l) . ':Cff(l), e ,xill(k) - 2™ for some i1(1), ..., i, (k) with

k € Zso. By performing a transformation of type 2) (z,y) — (x(1),y(1)) we may prin-
cipalize the ideal I (by Lemma 5.5). Suppose that z;(1)' ---z,(1)% is a generator of

IO%&I) ex’ Then since z1,...,z, are independent, we have that g = z1(1)* --- 2, (1)%u
where v € C{{z1(1),...,2,(1)}} is a unit, obtaining the conclusions of the lemma when
t=r.

Now suppose that [ +r >t > r, g € C{{z1,...,2¢}} and the lemma is true in
C{{z1,...,m—1}}. We may then assume that g € C{{z1,...,z:}} \ C{{z1,...,ze_1}}.
Expand

oo
g= Zaixi with o; € C{{z1,...,xe—1}}.
i=0
Suppose that oy, ..., o) generate the ideal I = (0; | i € N). By induction on ¢, there exists
a sequence of transformations of types 2) - 4) (z,y) — (x(1),y(1)) (withm <¢t—7r—11in
transformations of types 3) and 4)) such that for 0 <+ < k, either o; =0 or

o; = x'1<1)aZi e Z'T(l)agﬁi

for some a;- € N and unit w; € C{{z1(1),...,24-1(1)}}. Then after a transformation of

type 2) (which we incorporate into (z,y) — (2(1),y(1))), we obtain (by Lemma 5.5) that
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IO‘a)’gl(l)veX(l)

expression

is principal and generated by z1(1)% - - z,(1)% for some i. Then we have an

g=u ()" -z ()" F
where F' € C{{z1(1),...,2+(1)}} and h := ord F(0,...,0,2(1)) < co. If h = 0 we have
the conclusions of the lemma, so suppose that h > 0. By Lemma 5.8, there exists a change
of variables in (1) (inducing a transformation of type 3) with m = ¢ — r) such that F'
has an expression

(32) F = T().CUt(].)h + 7'2x1t(1)h*2 + -+ T

with 79 € C{{z1(1),...,2¢(1)}} a unit and 7, € C{{x1(1),...,z41(1)}} for 2 < i <
h. By induction on ¢, we can perform a sequence of transformations of types 2) - 4)
(x(1),y(1)) = (x(2),y(2)) (with m <t —r —1 in transformations of types 3) and 4)) such
that for 2 < i < h, _ _
T = :L‘1(2)a11 cee ."L‘T(Q)azr?i

where 7; € C{{z1(2),...,2¢+-1(2)}} is either zero or a unit series. We can assume by
Lemma 8.1 that z1(2),...,2,(2),z:(1) are dependent. Now perform by Lemma 6.3 a
transformation of type 4) ((2),y(2)) — (z(3),y(3)) with m = ¢ — r and substitute into
(32) to get an expression

F = 1001(3)% - 2,(3)% (24(3)+0) 4+ 7221 (3) - - 2,(3)7 (2e(3)+ )" 24 - A1 (3) - 2, (3)F
with 0 # a € C. Now perform a transformation of type 2) (which we incorporate into
(z(2),9y(2)) = (2(3),y(3))) to principalize the ideal
I=(z:(3)% - 2,(3)% | i=0o0r 7 #0).
We then have an expression
g=z1(3)" -7, (3)"F
where ord F(0,...,0,2,(3)) < h. By induction on h, we eventually reach the conclusions

of the lemma for g € C{{z1,...,2:}}. The lemma now follows from induction on ¢t. [

Lemma 8.3. Suppose that (z,y) are prepared of type (s,r,1) and g € C{{y1,...,ysti}}
Then either there exists a sequence of transformations (x,y) — (x(1),y(1)) such that
(x(1),y(1)) are prepared of type (s1,7r1,l1) with (s1,71,01) > (s,7,1) or there exists a se-
quence of transformations of the types 1) - 4) (x,y) — (x(1),y(1)) such that (z(1),y(1))
are prepared of type (s1,71,1l1) with (s1,71,l1) = (s,r,1) and we have an expression

9=y ys(1)u
with uw € C{{y1(1),...,ys+:1(1)}} a unit.

Proof. We will perform a sequence of transformations which we may assume do not lead
to an increase in (s,7,1).
Let g have the expression (25). Let J be the ideal in OF'  defined by

Yy
J = (hpay [ [A] € 27/(Q°C) N Z7).
J is generated by Ay}, .. -, hja,) for some [Aq],. .., [As]. After performing a transformation
of type 2) (z,y) — (z(1),y(1)) we obtain expressions
hia, v 1 1
oA, = ﬁ 1 wre C{{m(V)d, .2 (D), 20 (1), g (1)}
Yt ys®
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for 1 < i < t of the form of (27) by Proposition 7.3. We may choose the w!, ..., wi € N
so that

'fw,i .. :'Uw:ﬁ‘
1)\1'7; € C{{y177y8}}
yll . ySS
Let w be a complex primitive d-th root of unity, and for 1 < j <, let
d
1 . 1
g = T @D, w1 2 (1), wpa(1) € C{a1 (1), (D
114yt =1

Let
t
f = H E[Ai}-
i=1

By Lemma 8.2, there exists a sequence of transformations of types 2) - ) (z(1),y
(z(2),y(2)) such that f = z1(2)™ - 2,(2)" u where v € C{{z1(2),..., 2 4:1(2)
unit series. Thus each €},,) has such a form, so

(1)) =
1} is a

for 1 <i <t where u; € C{{z1(2),...,2,4(2)}} is a unit.
Let K be the quotient field of R = C{{y1(2),...,ys+1(2)}}. We have

£[Ay)
O[A,]

XA =
for 1 <4 <t. We also have

Xiag € C{z1(2)7, . 2,0 (2) 0, 2041(2), - 71(2)}

as we have only performed transformations of types 2) - 4). So xja, is integral over
C{{z1(2),...,7,11(2)}} and thus x(s, is integral over R. Since R is a regular local ring
it is normal 80 X[a,] € R. Thus dy,) divides g[5,) in R and so there are expressions

oA, = y1(2)° - ys(2)% 0
for 1 < i <t where v; € C{{y1(2),...,ys+:(2)}} are unit series and thus

7 i

hiag = y1(2)™ - ys(2)™u
for 1 <4 <t where u; € C{{y1(2),...,ys+:1(2)}} are unit series. Now perform a transfor-
mation of type 1) to principalize the ideal JO?/H(Z),ey(z) = (y(2)™ -y (2)™s |1 <0 < t).
Then we have the desired conclusion for g by (29) in Lemma 7.5. H

Lemma 8.4. Suppose that (z,y) are prepared of type (s,r,1) and g € C{{y1,...,ysti}}
Then either there exists a sequence of transformations (x,y) — (x(1),y(1)) such that
(x(1),y(1)) are prepared of type (s1,r1,l1) with (s1,71,l1) > (s,7,1) or there exists a se-
quence of transformations of the types 1) - 4) and 8) (x,y) — (x(1),y(1)) such that
(z(1),y(1)) are prepared of type (s1,71,l1) with (s1,71,01) = (s,7,1) and either g is alge-
braic over x1(1),..., x4 (1) or

g=P+y)" -y ()"

with P € C{{y1(1),...,ys41(1)}} algebraic over x1(1),...,2m1(1) and yi(1)4 - - - ys(1)%
not algebraic over x1(1),...,z,(1).
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Proof. We will perform a sequence of transformations which we may assume do not
lead to an increase in (s,7,1). Let g have the expression (25) and let ¢’ = g — hyy €
C{{y1,--.,ys+1}}. By Lemma 8.3, there exists a sequence of transformations of type 1) -
4) (x,y) — (x(1),y(1)) so that ¢’ = y;(1)% - - ys(1)%u with w € C{{y1(1),...,ysra(1)}}
a unit. By Proposition 7.3, after possibly performing another transformation of type
2), we also obtain that hjy € C{{xl(l)é, . ,xT(l)é,xTH(l), .oy Zr(1)}}. Since hyg €
C{{y1(1),...,ys11(1)}}, by Lemma 7.5, we have that hg is algebraic over z1(1), ...,z (1)
We also have by Lemma 7.5 that

011(1) R 613(1)
rank : E =r+1.
C,«l(l) s C,»s(l)
dy ds

Thus there exist eq,...,es € Q such that
ercin(1) 4+ +escis(1)=0for 1 <i<r
and
erdy + - +esdsg = —1,
and so, making a change of variables, replacing y;(1) with y;(1)u® for 1 <i < s, we have

a transformation of type 8) which gives the conclusions of the lemma.
O

Proposition 8.5. Suppose that (x,y) are prepared of type (s,r,l). Then either there exists
a sequence of transformations (x,y) — (z(1),y(1)) such that (x(1),y(1)) are prepared of
type (s1,71,01) with (s1,71,01) > (s,r,1) or the induced homomorphism

o C[[xlv <o Tty x?”JrlJrlH - (C[[yla cee >yn]]
18 an injection.

Proof. Set z = a(x,4141) and suppose that there exists a nonzero series G € C[[z1, ..., Ty yi+1]]
such that a(G) = 0. Expand G as

oo
G = ai(.%'l,...,errl)errlJrl
=0

with a;(x1,...,2,41) € C[[z1,...,z,4]] for all i. We have a(a;) € C[lyi, ..., ys]] for all
© and
(33) 0=0a(G)= Za(ai)zi =0

in Clly1,.--,Yn]]
Let A =Cl[yi,.-.,ys+i]] and A[[t]] be a power series ring in one variable. Let

F) =) ala)t’ € A[t]].

f(t) is nonzero since «(a;) is nonzero whenever a; is nonzero.
Suppose that z &€ C[[y1, - . ., ysw1]]- We will derive a contradiction. Expand

T S e By
in Clly,...,yn]] with b; .., ., € Clly1,...,ysp]]. Since z is in the maximal ideal of

Clly1,---,yn]], we have that by o is in the maximal ideal of C[[y1,...,ysyi]]. Thus the
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map g(t) — g(t + bo..._o) is an isomorphism of A[[t]]. Let f(t) = f(t +bo. o). We have
that f(t) # 0. Let Z = 2z — by, 0. We have that f(z) = 0. Let (jstit1,---,Jn) be the
minimum in the lex order of

{(is+l+17 cee 7Zn) | bis+l+1,-~~7in 7& 0 and (i8+l+17 s 7Zn) # (07 s 70)}

Then f(Z) has a nonzero A(jsti+1,---,jn) term, where A is the smallest positive expo-
nent of ¢ such that f(¢) has a nonzero t* term. This contradiction shows that z €
Clly1, - -+, Ys+1]]- Thus

2€Cllyr, - ystl VCHyr, -}t = Cl{{yn, -+, ys i} )

Suppose that z is not algebraic over x1,...,x,4; (Definition 7.1). Let

z= > hia)

[Ale(Z#/(QrC)NZ?)

be the decomposition of (25). Then z # hjy since we are assuming that z is not algebraic
over Ii,...,T,4. Since z is in the maximal ideal of C[[y1,...,¥ys]] we have that hy is in
the maximal ideal of C[[y1,...,ys4]]. Thus the map g(t) ~ g(t + hjo)) is an isomorphism
of A[[t]]. Let f(t) = f(t+ hjo)). We have that f(t) # 0. Further, all coefficients of f(t) are
algebraic over z1,...,Zp4.

Let 2 = 2z — hg € C{{y1,-.,Ys11}}. We have that f(2) = 0. By Lemma 8.3, there
either exists a sequence of transformations (z,y) — (z(1),y(1)) such that (x(1),y(1))
are prepared of type (si,71,01) with (s1,71,l1) > (s,7,1) or there exists a sequence of
transformations (z,y) — (x(1),y(1)) of types 1) - 4) such that we have an expression

2=y (1)
where u € C{{y1(1),...,ys+1(1)}} is a unit. We have that

611(1) e 015(1)
rank E E =r+1
Crl(l) e CTS(I)
dy - ds

by Lemma 7.5. We now perform a transformation of type 8), replacing y;(1) with g;(1)u’
for some A\; € Q for 1 < i < s to obtain that Z = yr(1)% -y (1)%. We have that
f(t) € Aq[[t]] where Ay = C{{y1(1),...,ys+:(1)}} and all coefficients e; of

ey => et

are algebraic over z1(1),...,x,4;(1) by Lemma 5.2. From the expansion

0= F(2) = el -+ g1’

=0

we see that this is the expansion of type (25) of f(Z) = 0, so that ei(y (D)4 -y (1)%) =0
for all 4, which implies that e; = 0 for all i so that f(¢t) = 0, giving a contradiction,

so z is algebraic over xi,...,z,4;. By Lemma 7.4, identifying z with x,4;41 by the
inclusion C{{z1,...,2,}} C C{{y1,...,yn}}, we have that x, ;11 € C{{z1,...,z,4}}, a
contradiction. Thus « is injective. O
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Lemma 8.6. Suppose that (x,y) are prepared of type (s,r,1) and g € C{{y1,...,y:}} with
s+1<t<mn. Then either there exists a sequence of transformations (x,y) — (z(1),y(1))
such that (x(1),y(1)) are prepared of type (s1,71,11) with (s1,71,01) > (s,7,1) or there exists
a sequence of transformations of the types 1) - 6) (x,y) — (x(1),y(1)) (withl <m <t—s
in transformations of type 5) - 6)) such that (z(1),y(1)) are prepared of type (s1,71,01)
with (s1,71,0) = (s,7,1) and

9=y ys()u
with u € C{{y1(1),...,y:(1)}} a unit.

Proof. We will perform a sequence of transformations which we may assume do not lead
to an increase in (s,7,1). The proof is by induction on t with s +1 < ¢ < n, with
g € C{{z1,...,2¢}}. The case t = s+ [ is proven in Lemma 8.3. Thus we may assume

that ¢t > s + 1. Write
9=> o

where 0; € C{{y1,...,y—1}}. Let I = (0; | i > 0). There exist oy, ..., o, which generate
I. by induction, there exist a sequence of transformations of the types 1) - 6) (x,y) —
(z(1),y(1)) (with [ < m < t—1—s whenever a transformation of type 5) or 6) is performed)
such that

o =y1(1)10) .y (1)
for 0 < j <k where uw; € C{{y1(1),...,%—1(1)}} is a unit or zero. Now perform a trans-
formation of type 1) (which we incorporate into (x,y) — (x(1),y(1))) to make I principal.
Then we have an expression g = y1 (1) - - - y5(1)™*g where h = ord(g(0, ..., 0,4:(1)) < oco.
If h = 0 we are done. We will now proceed by induction on h. By Lemma 5.8, we can
perform a transformation of type 5), replacing y;(1) with (1) — ® for an appropriate
® e C{{y1(1),...,y4—1(1)}}, to obtain an expression

(34) =100V + iy (D" 2+ 1

with 79 € C{{y1(1),...,9y:(1)}} a unit series and 7; € C{{y1(1),...,ye—1(1)}} for 1 <i <
h. By induction on ¢, we may construct a sequence of transformations of type 1) - 6)
(z(1),y(1)) = (x(2),y(2)) (with m < ¢t —1— s whenever a transformation of type 5) or 6)
is performed) such that for 2 < i < h, whenever 7; is nonzero, it has an expression

-7

7=y (20 ys(2)7

where w; € C{{y1(2),...,y:-1(2)}} is a unit series. Since y;(2) is dependent on y1(2),...,ys(2),
there exists a transformation of type 6) (z(2),y(2)) = (z(3),y(3)) with m = ¢, which we
perform. Substituting into (34), we obtain

013 s (3 (1(3)+0) "+ B)T - s (3) o (3r(3)+0) -+ (B) s (3)

ith 0 # a € C). Now perform a transformation of type 1) (which we incorporate into
(2),y(2)) — (z(3),y(3))) to principalize the ideal

(0] 0 2 2 h h
J = (1 (3)" - ys(3)%, y1(3)7 -+ ys(3) 5Ty . .,y (3)1 - - - ys(3)5 ),

giving us that g = y1(3)% - - - ys(3)%§ with ord(§(0,...,:(3))) < h. By induction on h,
we obtain the conclusions of the lemma.

g=
(w
(

g
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Lemma 8.7. Suppose that (x,y) are prepared of type (s,r,l) and
g€ C{{yh cee yt}} \(C{{yla cee 7y5+l}}

with s +1 < t < n. Then either there exists a sequence of transformations (x,y) —
(x(1),y(1)) such that (x(1),y(1)) are prepared of type (s1,r1,l1) with (s1,r1,l1) > (s,7,1)
or there exists a sequence of transformations of the types 1) - 7) (x,y) — (x(1),y(1)) (with
m <t — s in transformations of types 5) - 7)) such that (z(1),y(1)) are prepared of type
(s1,71,01) with (s1,71,0l1) = (s,7,1) and

g=P+y ()" yy(1) by,
with P € C{{un (1), .. ysrs(1)}}.

Proof. We will perform a sequence of transformations which we may assume do not lead to
an increase in (s,r,1). Write g = >, o7yi with o; € C{{v1,...,%}}. Let I be the ideal
I = (0;|i>0). Suppose that I is generated by o71,...,0. By Lemma 8.6, there exist a
sequence of transformations of types 1) - 6) (z,y) — (z(1),y(1)) (withm <t—s—1ifa
tranformation of type 5) or 6) is performed) such that for 1 < j <k,

i
oj =y ()" - ys(1) % u;
with u; € C{{y1(1),...,y—1(1)}} a unit (or zero). By induction on ¢ in Lemma 8.7,

there exists a sequence of transformations of types 1) - 7) (z(1),y(1)) — (z(2),y(2)) (with
m <t—s—1if a transformation of type 5), 6) or 7) is performed) such that

(35) o0 = Po+y1(2)" - ys(2)*y-1(2)
(36) oo =PI

with Py € C{{v1(2),...,ys+1(2)}}. Case (35) can only occur if ¢t > s + [+ 1.

Let J be the ideal IO?/H(Q)&Y@) + (y1(2)™ -+ - y4(2)%) if (35) holds and J = [O;H(Q) ey if

(36) holds. J is generated by monomials in y1(2),...,ys(2). There exists a transformation
of type 1) ((2),y(2)) — (x(3),y(3)) such that JOKs) | is principal by Lemma 5.5, so

j
31

X (3
9=Po+ Y o +pD" (D1 (T = P+ (3" -y, (3)7
>0
where @ is zero or 1, Py € C{{y1(3),...,ys1(3)}} and g € C{{y1(3),...,v:(3)}} is
not divisible by y1(3),...,ys(3). If ord g(0,...,0,4:-1(3),0) = 1 we set y:(3) = g and
y1—1(3) = y:(3) (a composition of transformations of type 7) and 5)) to get the conclusions
of Lemma 8.7. Otherwise, we have

0 <ord g(0,...,0,%(3)) < oco.
Now suppose that
(37) g=P+y(3)" -y (3)=F
where P € C{{y1(3),...,ys11(3)}}, FF € C{{y1(3),-..,4:(3)}} is such that the power series
expansion of y1(3)% - - - ys(3)% F has no monomials in 41(3), - , ys1:(3); that is,
F(y1<3)7 s 7ys+l(3)707 S a0> =0,
yi(3) JF for 1 <i<s and

0 < h:=ord F(0,...,0,y:(3)) < 0.
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If h = 1, we can set y(3) = F (a transformation of type 5)) to get the conclusions of
Lemma 8.7 for g.

Suppose that h > 1. By Lemma 5.8, we can make a change of variables, replacing y;(3)
with y4(3) — ® for an appropriate ® € C{{y1(3),...,y:-1(3)}} (a transformation of type
5)) to get an expression

(38) F=1u3)"+nu@B)" 2+ +mn,

where 79 € C{{y1(3),...,v:(3)}} is a unit and 7; € C{{y1(3),...,y—1(3)}} for 2 < i < h.
By Lemma 8.6, there exists a sequence of transformations of types 1) - 6) (z(3),y(3)) —
(x(4),y(4)) (with m < t—s for transformations of types 5) - 6)) such that for 2 <i < h—1,

mi= @@

with w; € C{{y1(4),...,y—1(4)}} either a unit or zero. By induction on ¢ in Lemma 8.7,
there exists a sequence of transformations of types 1) - 7) (z(4),y(4)) — (x(5),y(5)) (with
m < t — s for transformations of types 5) - 7)) such that we further have that

(39) T = Po+y1(5)" -+ ys(5)“ye—1u

where @ is zero or 1 and Py € C{{y1(5),...,ys11(5)}}. Since y:(5) is dependent on
y1(5),...,ys(D), there exists a transformation of type 6) (z(5),y(5)) — (z(6),y(6)) with
m =t — s. Perform it and substitute into (38) to get

Fo= 1oy1(6)"F - 4s(6)% (5e(6) + ) + y1(6)"7 - - s (6)"3Ta (1 (6) + )2 + - -
+y1(6)% - - s (6)%ys 1 (6)u + P

Now perform a transformation of type 1) (z(6),y(6)) — (z(7),y(7)) to principalize the
ideal

K = (y1(6)" - 4s(6)%%) + (y1.(6)" - s (6)% | @i # 0) + (awyn (1) -+ y(1)%).

We obtain an expression

g=Pr+y ()" ys(T)*F

where

Pr=P+yi(3)" - ys3)* Fy(7), -, ys12(7),0,...,0) € C{{un(7), -, ysra ()
and

g1 (7)1 ys (N F = g1 (3)M -+ s (3) ™ (F = F(y(7), ..., ys(7),0,...,0))
is such that y;(7) JF for 1 <i < s. We either have ord F(0,...,0,9,-1(7),0) = 1 or
1 <ord F(0,...,0,5(7)) < h. In the first case, set y.(7) = F and y;—1(7) = y(7) (a
composition of transformations of type 7) and 5)) to get the conclusions of Lemma 8.7.

Otherwise we have a reduction in h in (37). By induction in h we will eventually get the
conclusions of Lemma 8.7. g

Proposition 8.8. Suppose that (x,y) are prepared of type (s,r,l) with r +1 < m. Then
either there exists a sequence of transformations (x,y) — (x(1),y(1)) such that (x(1),y(1))
are prepared of type (s1,7r1,l1) with (s1,r1,l1) > (s,7,0) or there exists a sequence of
transformations of types 1) - 8) (z,y) — (x(1),y(1)) such that (z(1),y(1)) are prepared of
type (s1,71,01) with (s1,71,01) = (s,7r,1) and we have an expression

(40) Trpr1(1) = P4y (D)™ - ys(1)%
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with P € C{{y1(1),...,ys11(1)}} algebraic over x1(1),...,2,41(1) and yi(1)% - yg(1)%
not algebraic over x1(1),...,z,(1) or we have an expression

(41) Tr41(1) = Py (DM -y (1) Py (1)
with P € C{{y1(1),...,ys+1(1)}} algebraic over x1(1),...,z,4(1).

Proof. We will construct a sequence of transformations such that either we obtain an
increase in (s,r,[), or we obtain the conclusions of Proposition 8.8. We may thus assume
that all transformations in the course of our proof do not give an increase in (s,r,1).

We have that x,,;41 is not algebraic over x1,...,2,; by Lemma 7.4.

First suppose that z,1;11 € C{{y1,...,yssi}}. Then there exists a sequence of trans-
formations of types 1) - 4) and 8) such that the conclusions of Lemma 8.4 hold, giving
an expression (40) of the conclusions of Proposition 8.8, since z,1;41 is not algebraic over
z1(1),...,2,4,(1) by Lemma 7.5.

Now suppose that z,4;11 € C{{y1,...,ys11}}. Then by Lemma 8.7, there exists a
sequence of transformations of types 1) - 7) (x,y) — (2(1),y(1)) such that we have an
expression

(42) zrgrs1(1) = P4y (D)™ s (1) ysrara (1)

with P € C{{y1(1),...,¥s4:(1)}}. Then by Lemma 8.4, there exists a sequence of trans-
formations 1) - 4) and 8) (x(1),y(1)) = (x(2),y(2)) such that we have an expression (42)

with .

P=P+y (2" -y (2
where P’ is algebraic over z1(2),...,7,4(2) and y1(2)" ---y4(2)* is not algebraic over
21(2),...,2-(2) and w is 0 or 1. If w = 0 we have achieved the conclusions of (41) of

Proposition 8.8, so assume that @ = 1. Now (by Lemma 5.5) perform a transformation of
type 1) ((2),4(2)) — («(3),y(3)) to principalize the ideal

L= (y1(2)" - ys(2)™, yr (1) - ys(1)%).
If y1(2)% -+ - ys(2)b divides (1) - ys(1)% (in O%ls), €X(3))’ since we have the condi-
tion that y;(2)% - - ys(2)b is not algebraic over x1(3),...,zs(3) from Lemma 7.5, we can

change variables, multiplying the y; by units for 1 < i < s to get an expression (40)
of the conclusions of Proposition 8.8 (a transformation of type 8)). If y(2)% ---ys(2)b
does not divide y1 (1) - - - y4(1)% in OF4 (so that y1 (1) - - - ys(1)* properly divides

( )18X(3)
y1(2)b1 - ys(2)bs in (’)3‘(‘1(3),6)((3)) we have an expression

Trp141(3) = P+ y1(3)™ - ys(3)™ F

with F' € C{{y1(3),...,¥s(3),ys+1+1(3)}} such that ord F(0,...,0,ys11+1(3)) = 1. Re-
placing ys1;41(3) with F' (a transformation of type 5)) we get an expression of the form

(41) of the conclusions of Proposition 8.8.
O

Proposition 8.9. Suppose that (x,y) are prepared of type (s,r,1) with r +1 < m. Then
there exists a sequence of transformations of types 1) - 10) (z,y) — (x(1),y(1)) such that
(2(1),y(1)) are prepared of type (s1,m1,l) with (s1,71,11) > (s,1,1)

Proof. We may assume that all transformations of type 1) - 10) in the course of our proof

do not give an increase in (s,r,l); otherwise we have obtained the conclusions of the

theorem and we can terminate our algorithms. By Proposition 8.8, there exists a sequence
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of transformations of types 1) - 8) (z,y) — (2(0),y(0)) such that we have an expression
(for i = 0)

(43) @i (i) = P yr(D) - ys(i)™

with P algebraic over x1 (i), . .., 2,17(1) and y1(7)% - - - y5(i)% not algebraic over 21 (i), . . ., 2, (i)
or we have an expression

(44) Trpip1 (i) = P+ g1 ()™ - ys(D)*ysyi1 (0)

with P algebraic over z1(7), ..., zy4+().

We will perform sequences of transformations (x,y) — (2(i),y(7)) in the course of this
proof which preserve the respective expressions (43) or (44).

We will now construct a function g (in equation (46)) using transformations which
preserve the respective form (43) or (44). The function g (or its strict transform) will play
a major role in the proof.

The decomposition (25) of P is P = hyy since P is algebraic over x1(1),...,z,4(1).
There exists a transformation of type 2) (2(0),y(0)) — (z(1),y(1)) such that

PeC{{z1 ()7, ..., 2p(1)7, 201 (1), .., 2pa(1)}}
for some d by Proposition 7.3. Let w be a primitive d-th root of unity in C. Let

Sir i = Pz (D)4, . wr (1), 21 (1), .., 20 (1))
for 1 <iq,...,4 < d. We have that
Sivveir € CHy1 (D4, ys (D, s (1), ysa (1))
for all iy,...,14, since
i -

1
Hy] EC” ) for 1 <i<r.

Since P € C{{y1(1),...,ys+i(1 )}}, we have that S;, ;. € C{{y1(1),...,ys+:(1)} for all
i1,...,4y. Further, S;, _; is algebraic over z1(1),...,z,4(1) for all 4y,...,4, since P is.
Let

d
R= J[ Si.oir€C{m@),...,2rpu(1)}}.

i1 ey =1
By Lemma 8.2, there exists a sequence of transformations of types 2) - 4) (z(1),y(1)) —
(z(2),y(2)) such that

R=x1(2)" - 2,(2)"u

where u € C{{z1(2),...,2,41(2)}} is a unit. Now P divides R in C{{y1(2),...,yr11(2)}},
so we have that

(45) P=y (2)™ - -ys(2)™a
where @ € C{{y1(2),...,ys+:(2)}} is a unit and by Lemma 7.5 and since P is algebraic
over z1(2),...,x,41(2), we have that y;(2)"™ ---ys(2)™> is algebraic over z1(2),...,z.(2).
Set

d
(46) g= H fﬂr+l+1 = Siyyin) € CH{z1(2), ... 211 (2) 1}

115yl =
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Let
(47) t =ord 9(07 RS 07 x’r‘-‘rl-i—l(Z))‘

We have that 0 <t < d".

The proof now proceedes by induction on t. We will make a series of transformations
which will either give an increase in (s,r,[) (establishing the proposition) or preserve the
respective form (43) or (44) with a reduction in ¢ (which will remain positive) in the strict
transform of g. We first perform transformations which preserve the respective forms
(43) or (44) and preserve t = ord ¢(0,...,0,z,4;11(¢)) which put g into the good form of
equation (49) (in case (43)) or in the good form of equation (50) (in case (44)).

Set

Qir iy =P —Siy i,
which are algebraic over z1(2),...,2,4(2). By the argument leading to (45), we can
construct a sequence of transformations of types 2) - 4) (z(2),y(2)) — (2(3),y(3)) which
preserve the expressions (45), (46), t in equation (47) and the expression (43) or (44) (in
the variables z(3) and y(3)) such that for all I = (iy,...,4,),

(48) Qr=u(3)" - -uu(3)" ur
where u; € C{{y1(3),...,ys+1(3)}} are units and y(3)™ ---y4(3)" are algebraic over
x1(3),...,2-(3). After a transformation of type 1) (z(3),y(3)) — (z(4),y(4)), we can
principalize the ideals (y1(3)™ -« ys(3)", y1(0)% - - y5(0)%) for all I (by Lemma 5.5),
giving us the possibilities
I I
Trgir1(4) = Siy iy = 91(3)™ - ys(3) "y
where @ € C{{y1(4),...,ys1:(4)}} is a unit and y1(3)™ ---y4(3)™ is algebraic over
x1(4),...,z,(4) or
xr+l+1(4) - Si17---7ir = (O)dl o 'ys(())dsﬁl
where u; € C{{y1(4),...,ys+1(4)}} is a unit and y1(0)% ---y5(0)% is not algebraic over
x1(4),...,2-(4) if (43) holds and giving us the possibilities
I I
Trprr1(4) = Siy, iy = 1 (3)" - ys(3) G

where G € C{{y1(4),...,ysri1(4)}} is a unit and y1(3)™ - - - y(3)" is algebraic over
x1(4),...,z.(4) or

Trpte1(d) = iy = ()™ ys ()G
where G! € C{{y1(4),...,ysr1+1(4)}} satisfies ord G'(0,...,0,y,4111(4)) = 1 if (44)
holds. We have that
Tri41(4) = P =y1(0)% - - ys(0)%

in case (43) and
Trpi1(4) = P =y1(0)" - y5(0) B ysrrs1(4)

in case (44). We thus have

(49) g=y1(4)™ - ys(4)"u

where u € C{{y1(4),...,ys+1(4)}} is a unit and y1(4)™ -- - ys(4)™ is not algebraic over
z1(4),...,z,(4) in case (43) and

(50) 9=y @™y () ™y (@) [ &

1#(d,....d)
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where for all I, GI € C{{y1(4),...,ysri+1(4)}} satisfies ord GZ(0,...,0,ys1111(4)) =1 or
0 in case (44).
We now consider a special case, when g has an expression of the form (51) below, and
show that after a few transformations we obtain the conclusions of the proposition.
Suppose that there exists ® € C{{x1(4),...,z,4:(4)}} such that

(51) g = (24141 (4) — &)
where A € Zso and @ € C{{z1(4),...,2,41+1(4)}} is a unit series. Setting P’ = P — @,
we have an expression
Tri11(4) =@ =P +Q
where @ := z,441(4) — P has the expression
~f yi(0)% -y, (0)% of (43) or
©= { y1(0) - ys(0)%ys 4141 (4) of (44)

and P’ is algebraic over x1(4),...,2,4(4). By Lemma 8.3, there exists a sequence of
transformations of types 1) - 4) (z(4),y(4)) — (z(5),y(5)) such that

Pl =y (5)" - ys(5)" !
where v € C{{y1(5),...,ys+1(5)}} is a unit series. We have that y1(5)% ---ys(5)% is

algebraic over z1(5),...,z,(5) by Lemma 7.5. By Lemma 5.5, after a transformation of
type 1), (z(5),y(5)) — (x(6),y(6)), we have that in the case when (43) holds,
(52) Tr4141(6) — @ =41 (6)™ - ys(6)" 0

with @ € C{{y1(6),...,ys+1+1(6)}} a unit and in the case when (44) holds, we have
(53)
y1(6)™ - ys(6)™a  with u € C{{y1(6),...,ysti+1(6)}} a unit
and y1(6)™ - - - ys(6)™ algebraic over
Tpyi+1(6) — P = z1(6),...,2,41(6), or
y1(6)" ---ys(6)" F with F'€ C{{y1(6), ..., ys1141(6)}}
such that ord F(0,...,0,ys11+1(6))

=1
If Case (43) holds, we have from comparison of the equations (52), (49) and (51) that

Y1 ()™ -y ()™ = (y1(6)™ - ys(6)")

where y1(4)™ - - - ys(4)™s is not algebraic over x1(6),...,zy11(6). Thus y1(6)™ - - ys(6)"
is also not algebraic over x1(6),...,z,4;(6). Making a change of variables replacing
Zypyi41(6) with z,4y11(6) — P and y1(6), . .., ys(6) with their products by appropriate units
in C{{y1(6),...,ys:1(6)}} (transformations of types 10) and 8)), we get

Try141(6) = y1(6)™ -+ - ys(6)™

with y1(6)™ - - ys(6)™ not algebraic over z1(6),...,x,(6) obtaining an increase in r (and
(s,r,1)), and so we have achieved the conclusions of Proposition 8.9.
If case (44) holds, then (50), (53) and (51) hold, so we have that

Tr141(6) — @ =y1(6)™" -+ ys(6)™ F
where F' € C{{y1(6),...,ys+1+1(6)}} satisfies ord F(0,...,0,ys4;+1(6)) = 1. Then mak-
ing changes of variables, replacing y,,1;+1(6) with F and 2,414+1(6) with z,;41(6) — ®
(transformations of types 5) and 10)), we have

Try141(6) = y1(6)™ -+ ys(6)" Ysy141(6).
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If y1(6),...,9s(6), ysti+1(6) are independent, we have an increase in s (and (s,7,1)). Oth-
erwise, we perform a SGMT in y(6),...,ys(6),ys+i1+1(6) giving a transformation of type
6) (2(6),y(6)) = (x(7),y(7)) such that

Tr141(7) = y1 (D) (1) (Y111 (7) + @)

for some 0 # a € C. If y1(7)% - - - y4(7)% is not algebraic over x1(7),...,x,4(7), then we
can make a change of variables in y1(7), ..., ys(7), (a transformation of type 8) (z(7), y(7)) —
((8),4(8))), giving an expression

Tr141(8) = y1(8)" - (8)",
thus giving an increase in r (and (s, 7,1)). If y1(7)° - - - ys(7)% is algebraic over z1(7), . . ., 2, 4(7),
then ve(x,4;41(7)) is rationally dependent on ve(z1(7)), ..., ve(zy14(7)), and so
21(7)s ooy Tt (1), T2 (7)

are dependent by Lemma 4.1. Thus by Lemma 5.7, there exists a SGMT (z(7)) — (x(8))
defined by

Hm a”(g for1 <i<rprand

Tri141(7) = H 25 (8)r 13 | (2 1(8) + B)

with 0 £ 3 € C.
By Lemma 6.4, we can extend the SGMT (z(7)) — (x(8)) to a transformation (x(7),y(7)) —
(z(8),y(8)) of type 9) (where (y(7)) — (y(8)) is a SGMT in y1(7),...,ys(7)). We have

Hl‘ 8) 1) | (2,4111(8) + B) = H%’(S)bj(s) (Ur4141(8) + a),

with «, 8 75 0. Then

r
g ar+1,j( Ve 513] E b Ve yj
Jj=1

The values v (y1(8)), ..., ve(ys(8)) are ratlonally independent by Lemma 4.1, so

c11(8) -+ c1s(8)
(Qrg11y---s Qri1r) : = (b1(8),...,bs(8)).
cr1(8) - crs(8)
Thus

T
H (8)%r+- 5 H y;(8
j=1
and a = 3, 50 Ty41+1(8) = Yr11+1(8), giving an increase in r + [ (and (s, r,1)).
In all cases, we have reached the conclusions of Proposition 8.9 (under the assumption
that (51) holds).
Now suppose that an expression (51) does not hold. Then ¢ > 1 in (47) (by the implicit

function theorem). Now we will use a Tschirnhaus transformation to put g into a good
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form, and perform a sequence of transformations that preserve the respective forms (43)
or (44) and lead to a decrease

0 < ord §(0, N ,0, $T+l+l<i)> <t

where g is the strict transform of g. The conclusions of the proposition will then follow
by induction on t.

By Lemma 5.8, we can make a change of variables, replacing x,1;+1(4) with ;. ;41(4)—®
for some ® € C{{z1(4),...,2,4+1(4)}} (a transformation of type 10)) to get an expression

(54) 9 =108 1141(4)" + 1o ()7 4+
where 79 € C{{z1(4),...,2,4y11(4)}} is a unit and 7; € C{{z1(4),...,z,(4)}}. If all
7; = 0 for i > 2 then we are in case (51), so we may suppose that some 7; # 0 with i > 2.

By Lemma 8.2, there exists a sequence of transformations of types 1) - 4) (z(4),y(4)) —
(z(5),y(5)) making _ _

T = 5[31(5)0’11 oo $5(5)aéﬂi

for 2 < i, where w; € C{{x1(5),...,2541(5)}} is either a unit or zero. The forms of
equations (43) and (49) or of (44) and (50) (in the variables z(5) and y(5)) are preserved
by these transformations.

Now apply the argument following (51) to x,4;4+1(5) (in the place of x,4;+1(4) — @ in
(51)) to construct a sequence of transformations of types 1) - 4) (z(5),y(5)) — (x(6),y(6))
to get in the case when (43) holds,

(55) Tr141(6) = 41 (6)" - - - y5(6)" @
with @ € C{{y1(6),...,ys+1(6)}} a unit and in the case when (44) holds, we have
(56)

y1(6)™ - ys(6)™u  with o € C{{y1(6),...,yst1+1(6)}} a unit
and y1(6)™ - - - ys(6)" algebraic over z1(6),...,x,4;(6), or
)

et 0) =4y @m0 with F e C{{p(6), -, yori11(6)}}
such that ord F(0,...,0,ys174+1(6)) =1

Suppose that (43) and (55) hold and y;(6)™ - - - y4(6)™s is not algebraic over z1(6), ..., z,4+(6).
Then after a transformation of type 8) we have an expression

Zri141(6) = y1(6)™ - - y5(6)"™

giving us an increase in r (and (s,r,1)) in (14), so we have obtained the conclusions of
Proposition 8.9.
Suppose that (44) and (56) hold, and we have that x,4;41(6) = y1(6)™ ---ys(6)" F
with
ord F(O, PN ,O, yn+l+1(6)) =1.
Then replacing ys1;+1(6) with F' (a transformation of type 5)), we have relations (14) with

Try141(6) = y1(6)™ - - ys(6)" Ys1141(6).

If y1(6),...,9s(6),ys+1+1(6) are independent, we have an increase in s (and in (s,7,1)),
and we have achieved the conclusions of Proposition 8.9, so we may suppose that

Al (6)7 s 7ys(6)7 ys+l+1(6)

are dependent. If z1(6),...,2,(6),z,4;+1(6) are independent, then we perform a transfor-
mation of type 6) (z(6), ( )) — (z(7),y(7)) (withm =1+ 1) to get
Trpi41(7) =y (7)™ -+ ys (7)™ (Ys141(7) + @)
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with 0 # a € C. Since z1(7),...,2,(7),xy41+1(7) are independent (and so
Ve(x1(7)); -5 ve(@r (7)), - s Ve(@r1112(7))

are rationally independent), we must have that y1(7)™ ---ys(7)™ is not algebraic over
.7)1(7), s ,wr(7).

Thus after a change of variables, multiplying y;(7) by an appropriate unit for 1 <i <'s
(a transformation of type 8)), we obtain an expression (14), with an increase in r (and
(s,7,1)).

The remaining case in (55) and (56) is when we have an expression

(57) Tri41(6) = y1(6)™ -+ ys(6)™ @

where @ € C{{y1(6),...,ys4i+1(6)}} is a unit and y1(6)™ ---ys(6)™: is algebraic over
x1(6),...,2,41(6). We will presume that this case holds.

From (57), we see that ve(z,4+1(6)) is rationally dependent on v, (z1(6)),. .., ve(x,(6)),
so by Lemma 4.1, £1(6),...,2,(6), x,1;41(6) are dependent. Thus there exists by Lemma
5.7 a SGMT

xl(ﬁ) = $1(7)a11(7) e xr('?)a'l’r(?)
(55) 5

2(6) = (7). g (7)arr ()

Zrpig1(6) = (DD (1) D (2 4011(7) + @)
with 0 # o € C. Substituting into (54) and performing a (monomial) SGMT in z1(7), ..., z.(7)
(which we incorporate into x(6) — (7)) we obtain an expression

g=21(7)" - 25(D)"g

where
(59) ord g(O, ..., 0, $T+l+1(7)) <t.

By Lemma 6.4, we can extend the SGMT (z(6)) — (z(7)) to a transformation (z(6),y(6)) —
(2(7), (7)) of type 9) (where (y(6)) — (y(7)) is a SGMT in 41(6),.. .,y (6)).
Writing § = 21(7)7% -+~ 24(7) b g, we see from (49) or (50) that g is not a unit in
C{{y1(7), -, Ysti1(7)}} Thus
ord ?(0’ sy 07 xT+l+1(7)) > 0.

Now ,441(7) continues to have a form (43) or (44), and g has a form (49) (if (43) holds)
or a form (50) (if (44) holds), in terms of the variables x(7), y(7). Thus we are in the
situation after (50) (replacing g with g), but by (59), we have a reduction of ¢ in (47). By
induction in ¢, continuing to run the algorithm following (50), we must eventually obtain
the conclusions of Proposition 8.9.

O

Proposition 8.10. Suppose that ¢ : Y — X is a morphism of complex analytic manifolds,
Ey is a simple normal crossings divisor on'Y and e is an étoile over Y. Suppose that ¢
s quasi reqular with respect to e. Then ¢ is reqular at ey and there exists a commutative
diagram

v, % X,
Te 1 Ae
Y X

& s



of reqular analytic morphisms such that the vertical arrows are products of local blow ups
of nonsingular analytic subvarieties, Yo — Y € e and e is a monomial morphism for
a toroidal structure O, on Y at p. Further, we have that ©)(Ey) is an effective divisor
supported on O, and the restriction of e to Ye \ Oe is an open embedding.

Proof. Let x4, ...,z be regular parameters in (’)3‘3 ex and y1, ..., yn be regular parameters
in O?,fley such that Fy is supported on the analytic set Z(y1y2 - - yn) (in a neighborhood
of ey in Y). After reindexing the y; we may assume that s > 1 is such that y;,...,ys

are independent and yi,...,ys,y; are dependent for all ¢ with s + 1 < ¢ < n. After
performing SGMT of type 6) for 1 < m < n — s, we may assume that Ey is supported
on Z(y1y2---ys). Then (z,y) are prepared of type (s’,0,0) with s’ > s. By successive
application of Proposition 8.9, we construct a sequence of transformations (z,y) — (z/,v’)
such that 7’ + 1’ = m, giving the conclusions of the theorem.

The fact that ¢, is regular at ey, follows from the rank theorem (page 134 [47]) and the
inequality (4) applied to the monomial morphism ¢.. Thus ¢ is regular at ey as 7. and
Ae are products of local blowups, so that they are open embeddings away from nowhere
dense closed analytic subspaces. O

We isolate as a corollary one of the conclusions of Proposition 8.10.

Corollary 8.11. Suppose that ¢ : Y — X is a morphism of connected complex analytic
manifolds, e is an étoile on Y and ¢ is quasi reqular with respect to e. Then ¢ is reqular.

Corollary 8.11 can also be deduced from the local flattening theorem of Hironaka, Leje-
une and Teissier [44] and Hironaka [42], as is shown in [27].

Theorem 8.12. Suppose that ¢ : Y — X is a morphism of reduced complex analytic
spaces, A is a closed analytic subspace of Y and e is an étoile over Y. Then there exists
a commutative diagram of complex analytic morphisms

v, % X,
Bl la
Yy 4 X

such that 8 € e, the morphisms « and 8 are finite products of local blow ups of nonsingular
analytic sub varieties, Y. and X, are nonsingular analytic spaces and @ s a monomial
analytic morphism for a toroidal structure O, on Ye at ey, such that the restriction (Ye \
O.) = Y is an open embedding. There exists a nowhere dense closed analytic subspace Fy
of X such that X, \ F. — X is an open embedding and ¢ (F.) is nowhere dense in Y.
Further, either the preimage of A in Ye is equal to Y, or ZoOy, = Oy, (—G) where L4 is
the ideal sheaf in O of the analytic subspace A of Y and G is an effective divisor which
is supported on O,.

Proof. The proof follows by first applying Proposition 3.5 above to get a morphism of
smooth analytic spaces Y7 — Xi, with closed analytic sub manifold Z of X; such that
v1(Y1) € Z and if g, : Y1 — Z is the induced map, then @, is quasi regular with respect
to e. We may thus replace X; with Z in the remainder of the proof, and assume that
p1 @ YT — X is quasi regular with respect to e in the remainder of the proof. Either
ZAOy, is the zero ideal sheaf, which holds if and only if the preimage of A in Y; is Y7,
or Z5oOy, is a nonzero ideal sheaf. Let B be a proper closed analytic subspace of Y]
such that Y7 \ B — Y is an open embedding. Then applying principalization of ideals
and embedded resolution of singularities by blowing up nonsingular sub varieties to Zp if
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Za = (0) and to Z4Zp if T4 # (0), we construct Yo — X7 such that either Z4Oy, = (0)
and ZpOy, = Oy,(—G) or TyZpOy, = Oy(—G) where G is a simple normal crossings
divisor on Y5 which satisfies the assumptions of Proposition 8.10, and Y5 \ G — Y is an
open embedding. We then apply Proposition 8.10 to Yo — X; to obtain a monomial
morphism at the center of e, satisfying the conclusions of the theorem. O

We obtain Theorem 1.2 of the introduction as an immediate consequence of Theorem
8.12.

Theorem 8.13. Suppose that ¢ : Y — X is a morphism of reduced complex analytic
spaces, A is a closed analytic subspace of Y and p € Y. Then there exists a finite number
t of commutative diagrams of complex analytic morphisms

i, 50X
Bil ye%
Yy 4 X

for 1 <i <t such that each B; and «; is a finite product of local blow ups of nonsingular
analytic sub varieties, Y; and X; are smooth analytic spaces and p; is a monomial analytic
morphism for a toroidal structure O; on Y;. FEither the preimage of A in Y; is Y; or
Z4Oy, = Oy,(—G;) where Ly is the ideal sheaf in O of the analytic subspace A of Y,
G, is an effective divisor which is supported on O;, and has the further property that the
restriction (Y;\ O;) — Y is an open embedding. Further, there exist compact subsets K; of
Y; such that Ut_,B;(K;) is a compact neighborhood of p in'Y . There exist nowhere dense
closed analytic subspaces F; of X; such that X;\ F; — X are open embeddings and cpi_l(Fi)
1s nowhere dense in Y.

Proof. Let & be the votute étoilée over Y, with canonical map Py : &y — Y defined by
Py (e) = ey. We summarized in Section 3 properties of & which we require in this proof.
By Theorem 8.12, for each e € & we have a commutative diagram

v, % X,
Te 4 I
Yy & X

such that ¢, is monomial at ey, and satisfies the other conditions of the conclusions of
Theorem 8.12. Let V. be an open relatively compact neighborhood of ey, in Y.. Let
Te : Ve = Y Dbe the induced maps. Let K be a compact neighborhood of p in Y and
K' = Py (K). The set K’ is compact since Py is proper (Theorem 3.4 [43]). The sets &=,
(see equation (6)) give an open cover of K’, so there is a finite subcover, which we reindex
as &z, ;.. ., &x,,. For 1 <4 <t let K; be the closure of V¢, in Y, which is compact. Since
Py is surjective and continuous, we have inclusions of compact sets

pe K CU_ m. (K
giving the conclusions of the theorem. O

We obtain Theorem 1.3 of the introduction as an immediate consequence of Theorem
8.13.
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9. MONOMIALIZATION OF REAL ANALYTIC MAPS

In this section we prove local monomialization theorems for real analytic morphisms.
We use the method of complexifications of real analytic spaces developed in Section 1 of
[42].

Remark 9.1. Resolution of singularities of a germ of a complex analytic space (X, x),
which has a natural auto conjugation, can be accomplished by blowing up smooth analytic
sub varieties which are preserved by the auto conjugation. This follows by applying the
basic theorem of resolution of singularities in [40] (or [9]) to the spectrum of the invariant
analytic local ring Spec((OY,)7) by the action of the auto conjugation o of X and then
extending to Spec((’)?aj). We also need the fact that a principalization of a sheaf of ideals
which is invariant under o can be obtained by blowing up smooth analytic sub varieties
which are preserved by the auto conjugation (this also follows from [40]).

Lemma 9.2. Suppose that Y is a smooth connected real analytic variety with a com-
plezification Y which is a smooth connected complex variety. Suppose that Z C'Y is a
closed real analytic subspace of Y such that its complezification Z C Y is a nowhere dense
closed complex analytic subspace of Y. Then Z is nowhere dense in'Y (in the Fuclidean

topology).

The necessity that Y be smooth in the lemma can be seen from consideration of the
Whitney Umbrella 22 — zy? = 0.

Proof. Since Y and Y are manifolds, for all p € Y, the topological dimension of ¥ at p,
T-dim, Y (Remarks 5.16 and 5.17 [42] and Section 3) is equal to the dimension dim,, Y of
Y (Section 3), which is equal to dim O

of the manifold Y, we have that

an

Vo Since Z is a nowhere dense analytic subspace

dim, Z = dim (’)aZij < dim O%‘tp =dim, Y
Since Z = ZNY, we have that T-dim, Z < dim,, Z for all p € Z. Since Z is closed in Y,

we have that Z is nowhere dense in Y. O

Lemma 9.3. Suppose that ¢ : Y — X is a morphism of connected smooth real analytic
varieties and @ : Y - X isa complexification of ¢ (with Y and X smooth). Then ¢ is
reqular if and only if @ is reqular.

Proof. Suppose that ¢ is regular. Let n = dim X. Then the closed analytic subspace
Z ={G €Y | rank(d@;) < n}
is a proper subset of Y. Suppose that v :Y — X is not regular. Then
Y = {q €Y |rank(dp,) <n}=ZNY,

a contradiction to Lemma 9.2.
A simpler argument shows that if ¢ is regular then ¢ is regular. O

Proposition 9.4. Suppose that ¢ : Y — X is a morphism of reduced real analytic spaces

with_complexification ¢ 1 Y — X, such that there are auto conjugations o : X — X and

T:Y = Y such that o7 = op. Let e € &y be an étoile over Y. Then there exists a
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commutative diagram of morphisms

5L 4A
v 3%

such that 6 € e, Y, and X. are smooth analytic spaces, there erxists a closed analytic sub
manifold Ze ofX such that <pe(Y) C Z. and the induced analytic map Qe : Y. = Z, is
regular Further, there exists a nowhere dense closed analytic subspace F, of X. such that
X\ E, — X is an open embedding and ¢ (F,) is nowhere dense in Y.
There exist auto conjugations o : X — X and Te : f/e — }76 which are compatible with
the diagram. We have that O'E(Ze) = Ze and UE(FE) = F,.

Further, we have a factorization of § as

V=W S W= s Bwy =7
where each B; is a local blow up (U;, E;, B;) where E; is a smooth sub variety of U; and
there are auto conjugations 1; : Wy — W; such that B;mi41 = 1:58; for all i. We have that
70 =7 and 7s = Te and 7;(U;) = U; and 7;(E;) = E; for all i. Further, either the center
ew, of e on Wj is a real point (1i(ew,) = ew,) or Ti(ew,) # ew, and U; is the disjoint
union of two open subsets S; and T;(S;) which are respective open neighborhoods of ey,
and T;(ew,).
We also have a factorization of 4 by

X.=2"37 1> 7%, =X

where each «; is a local blow up (V;, H;, ;) where H; is a smooth sub variety of V;, and there
are auto conjugations o; : Z; — Z; such that a;oi11 = o0, 0;(V;) =V, and o;(H;) = H;.
Further either g¢; == o - - - ar_lcﬁe(ef,e) is a real point (0;(q;) = qi) or 0i(qi) # qi and V; is
the disjoint union of two open subsets T; and o;(T;) which are respective open neighborhoods
of ¢; and o;(q;). We have that oy = o and o, = 0.

We obtain the conclusions of Proposition 9.4, by modifying the proof of Proposition
3.5, using Corollary 8.11 and Remark 9.1.

Proposition 9.5. Suppose that ¢ :' Y — X is a regular morphism_of real analytic man-
ifolds, Ey is a SNC' divisor on 'Y with complexification ¢ : Y — X where Y and X are
complex analytic manifolds and complexification Ey of Ey which is a SNC divisor on Y.

Let e be an étoile over Y. Then there exists a commutative diagram

V. % X,
Fol LA
v 4 X

of reqular complex analytic morphisms such that the vertical arrows are products of local
blow ups of nonsingular analytic subvarieties such that Yo —Y € e.
The vertical arrows have factorizations by sequences of local blow ups

%:Wt é) — W1 g VVOZ~
(60) o ! oo
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with complex auto conjugations of the W; and V; which are compatible with the above
diagram, so that taking the invariants of these auto conjugations, we have an induced
diagram of reqular real analytic morphisms

v, % X,
Te L Ae
y % X

such that the vertical arrows are products of local blow ups of nonsingular real analytic
subvarieties. The auto conjugations of W; induce auto conjugations of the preimage of Ey
on W;.

FEither all ey, (and ey, ) are real points in the diagram (60), and . and . are monomial
morphisms for toroidal structures O on Y. with complexification Oe on }76 or ey, 18 not a
real point, and Y, is the empty set.

Further, we have that 7} (Ey) is an effective divisor supported on O. and the restriction
of 7 to Y, \ O, is an open embedding. Also, 7 (Ey) is an effective divisor supported on
Oe, and the restriction of m to Ye \ Oe is an open embedding.

Proof. We inductively construct the diagram (60) of local blow ups as in the proof of
Proposition 8.10, with the following differences. If after construction of the local blow up
W; — W;_1 we find that ey, is not a real point then we take a neighborhood U of ey,
which contains no real points and set W41 to be the (disjoint) union of U and o (U) where
o is the auto conjugation of W;. We then terminate the algorithm, setting Y, = W;; and
X =V,

In our inductive construction of (60), as long as ew, are real points for j < i, the
sequences of local blow ups in (60) are complexifications of sequences of real local blow ups
of nonsingular real analytic subvarieties. This follows from the algorithms of Proposition
8.10, as we then work within the rings

R{{z1,....,zm}} — R{{yi,...,yn}}
I 4

Rl[z1,...,zm]] = Ryi,--.,ynl]

instead of in the corresponding complexifications of these rings.

The only modification which needs to be made in the algorithm (since we assume all
centers of e are real) is that a little more care is needed when taking roots of unit series.
For instance, in Lemma 5.6, we must insist that the constant term of the unit ~ is positive.
This leads to the introduction of factors of £1 in the equations of Lemmas 5.7, 6.3 and
6.4. To preserve the monomial form (15), we may have to replace some of the y;(1) with
their negatives —y;(1) and some of the x;(1) with their negatives —z;(1). We also need
the conclusions of Lemma 9.3. g

Proposition 9.6. Suppose that ¢ : Y — X is a morphism of reduced real analytic spaces
and A C'Y is a closed analytic subspace of Y, with complexification ¢ : Y = X of ¢ and
complezification A CY of A. Let e be an étoile over Y. Then there exists a commutative
diagram

AR
Bl da
y 4 X
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of complex analytic morphisms such that Y. and X, are smooth analytic spaces, Beeand
we have a factorization of B as

V=W, 3 W, 5w Bwy =7
where each B; is a local blow up (U;, E;, B;) where E; is a smooth sub variety of U; and
there are auto conjugations t; : Wy — W; such that B;mi41 = 1:58; for all i. We have that
7o =7 and 7s = Te and 7;(U;) = U; and 7;(E;) = E; for all i. Further, either the center
ew, of e on W; is a real point (1i(ew,) = ew,) or Ti(ew,) # ew, and U; is the disjoint
union of two open subsets S; and 7;(S;) which are respective open neighborhoods of ey,
and T;(ew,).
We also have a factorization of & by

X.=2"37 1= 71972, =X

where each «; is a local blow up (Vi, H;, ;) where H; is a smooth sub variety of V;, and there
are auto conjugations o; : Z; — Z; such that a;0i41 = o4, 0;(V;) = V; and 0;(H;) = H;.
Further either ¢; := o - - - ar_lcﬁe(ef,e) is a real point (0;(q;) = qi) or 0i(qi) # qi and V; is
the disjoint union of two open subsets T; and o;(T;) which are respective open neighborhoods
of ¢; and 0;(q;). We have that oy = 0 and o, = 0. Further, there exists a nowhere dense
closed analytic subspace F, oer such that Je(Fe) =F,, Xe\ﬁ’e — X is an open embedding
and $71(F,) is nowhere dense in Y,.

Taking the invariants of these auto conjugations, we have an induced diagram of real
analytic morphisms

v, & X,
Bl la
Yy % Xx

such that the vertical arrows are products of local blow ups of nonsingular real analytic
subvarieties. Either all ey, (and ey,) are real points and . and @ are monomial mor-
phisms for toroidal structures O, on Y. at ey, with complezification O. on'Y, or ey, is not
a real point, and Y. is the empty set.

Further, either the preimage of A in Y. is equal to Y, or IA(’);I: = O%ﬁ(—G) where T 3
1s the ideal sheaf in (9?7“ of the analytic subspace A of Y, G is an effective divisor which
s supported on ONe and f’e \ Oe —Y isan open embedding. We have that 7.(G) = G.

Suppose that ey, is real. Then F, = Fe N Xe is nowhere dense in Xe, Xe \ Fe — X s
an open embedding and @, (F,) is nowhere dense in Y.

We obtain Proposition 9.6 by arguing as in the proof of Theorem 8.12, using Proposition
9.4, Remark 9.1, Proposition 9.5, Lemma 9.3 and Lemma 9.2.

We have the following theorem, which generalizes Theorem 8.13 to a real analytic mor-
phism from a real analytic manifold.

Theorem 9.7. Suppose that Y is a real analytic manifold, X is a reduced real analytic
space, Y — X is a real analytic morphism, A is a closed analytic subspace of Y
and p € Y. Then there exists a finite number t of commutative diagrams of real analytic
morphisms

i, B X
Bil 1o
Yy % X
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for 1 <i <t such that each B; and «; is a finite product of local blow ups of nonsingular
analytic sub varieties, Y; and X; are smooth analytic spaces and p; is a monomial analytic
morphism for a toroidal structure O; on Y;. Fither the preimage of A in Y; is Y;, or
ZAOy, = Oy,(—G;) where Ly is the ideal sheaf in O of the analytic subspace A of Y,
G is an effective divisor which is supported on O;, and has the further property that the
restriction (Y;\ O;) — Y is an open embedding. Further, there exist compact subsets K; of
Y; such that Ut_,Bi(K;) is a compact neighborhood of p in'Y. There exist nowhere dense
closed analytic subspaces F; of X; such that X;\ F; — X are open embeddings and @fl(Fi)
is nowhere dense in Y;.

Proof. Let ¢ : Y — X be a complexification of  such that Y is nonsingular.
Suppose that e € & (the voite étoilée and the notation used in this proof are reviewed
in Section 3). Then we may construct a diagram satisfying the conclusions of Proposition

9.6

. % X
Bedl  lae
v % X
with real part
. 5 X,
56\1/ 1 ae
y 4 X

(We can have Y, = ().

Let C. be an open relatively compact neighborhood of ey, in Y. on which the auto
conjugation acts. Let 3, : C. — Y be the induced map.

Let K be a compact neighborhood of p in Y and K’ = P;l(K). The set K’ is compact
since Py is proper (Theorem 3.4 [43]). The open sets &g forec K " (defined in equation
(6)) give an open cover of K”, so there is a finite subcover, which we index as & ... ’g@t'

€1
Let K; be the closure of C‘ei in 17;31 which is compact. Since Py is surjective and continuous,
we have inclusions of compact sets p € K C Ul_; Bez( i) Slnce Y is nonsmgular and each
ﬁe is a (ﬁnlte) product of local blow ups of proper sub varieties, if He is the union of the
preimages on Y of these centers, then He is a nowhere dense closed analytic subspace of
Y and 56 is an open embedding of Y, \He into Y.
Suppose that ¢ € Y. Then T-dim, Y = dim, Y since Y is a manifold (Section 3 and
Section 5 of [42]). Suppose i satisfies 1 < i < t. The set H., N K; is compact and
Be;(He; N K;) is compact. Let M; = B, (He, N K;) NY. Suppose ¢ € M;. Then

dim, Bei(Hei NK;) <dimY
by Theorem 1, page 254 [47] or Corollary 1, page 255 [47]. Thus
T-dim, M; < dim, S, (He, N K;) < dim, Y = T-dim, Y.
Since M; is compact, we have that M; is nowhere dense in Y.

Let K* = KNY which is a compact neighborhood of pin Y. Let p’ € K* \nglﬁei (He,N
K;). Then there exist i and e € 85 ~such that ey = p' and p; = ey. € K; \ H, C Ye,.
Since p; € ﬁe,-, Bei is an open embedding near p;, and since p’ is real, p; € Y, is real.
Thus p’ € B, (KiNYe,). We thus have that the set K*\ Ul_, B, (He, N K;), which we have
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shown is dense in K*, is contained in the compact set U!_; B¢, (K; N Ye,). Thus its closure
K* is contained in U_, B¢, (K; N Ye,), giving the conclusions of Theorem 9.7. O

Theorems 1.4 and 1.7 of the introduction follow from Theorem 9.7.
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