

1 The meteorite flux to Earth in the Early Cretaceous as  
2 reconstructed from sediment-dispersed extraterrestrial spinels

3

4 Birger Schmitz<sup>1,2\*</sup>, Philipp R. Heck<sup>2</sup>, Walter Alvarez<sup>3,4</sup>, Noriko T. Kita<sup>5</sup>,  
5 Surya S. Rout<sup>2</sup>, Anders Cronholm<sup>1</sup>, Céline Defouilloy<sup>5</sup>, Ellinor Martin<sup>1</sup>,  
6 Jan Smit<sup>4,6</sup>, and Fredrik Terfelt<sup>1</sup>

7

8 <sup>1</sup>Astrogeobiology Laboratory, Department of Physics, Lund University, Lund,  
9 Sweden

10 <sup>2</sup>Robert A. Pritzker Center for Meteoritics and Polar Studies, The Field Museum of  
11 Natural History, Chicago, USA

12 <sup>3</sup>Department of Earth and Planetary Science, University of California, Berkeley,  
13 USA

14 <sup>4</sup>Osservatorio Geologico di Coldigioco, Contrada Coldigioco 4, 62021 Apiro, Italy

15 <sup>5</sup>WiscSIMS, Department of Geoscience, University of Wisconsin-Madison,  
16 Madison, USA

17 <sup>6</sup>Department of Sedimentary Geology, Vrije Universiteit, Amsterdam, Netherlands,

18 \*E-mail: birger.schmitz@nuclear.lu.se

19

## 20 ABSTRACT

21 **We show that Earth's sedimentary strata can provide a record of the**  
22 **collisional evolution of the asteroid belt. From 1652 kg of pelagic Maiolica**  
23 **limestone of Berriasian-Hauterivian age from Italy we recovered 108**  
24 **extraterrestrial spinel grains (32-250  $\mu$ m) representing relict minerals from**

25 coarse micrometeorites. Elemental and oxygen-three isotope analyses were  
26 used to characterize the grains, providing a first-order estimate of the major  
27 types of asteroids delivering material at the time. Comparisons are made with  
28 meteorite-flux "windows" in the Ordovician before and after the L-chondrite  
29 parent-body breakup. In the Early Cretaceous about 80% of the  
30 extraterrestrial spinels originate from ordinary chondrites. The ratios between  
31 the three groups of ordinary chondrites, H, L, LL, appear similar to the  
32 present, ~1:1:0.2, but differ significantly from Ordovician ratios. We see no  
33 signs of a hypothesized Baptistina LL-chondrite breakup event. About 10% of  
34 the grains in the Maiolica originate from achondritic meteorite types that are  
35 very rare (<1%) on Earth today, but that were even more common in the  
36 Ordovician. Because most meteorite groups have lower spinel content than the  
37 ordinary chondrites, our data indicate that the latter did not dominate the flux  
38 during the Early Cretaceous to the same extent as today. Based on studies of  
39 three windows in deep time we argue that there may be a gradual long-term (a  
40 few 100 Myr) turnover in the meteorite flux from dominance of achondrites in  
41 the early Phanerozoic to ordinary chondrites in the late Phanerozoic,  
42 interrupted by short-term (a few Myr) meteorite cascades from single asteroid  
43 breakup events.

44

## 45 INTRODUCTION

46 Much knowledge about the history of life, climate, tectonics, magnetic  
47 polarity and chemistry of seawater has accumulated during the past two centuries  
48 from studies of Earth's sedimentary strata. With the discovery of the asteroid impact  
49 at the Cretaceous-Tertiary (K-T) boundary and its effects on life (Alvarez et al.,

50 1980) an interest has grown in integrating astronomical and geological perspectives.  
51 A new approach that can relate ancient events in the skies to coeval events on Earth  
52 is the search for relict spinel minerals from micrometeorites and meteorites in  
53 condensed sediments (Schmitz, 2013). The method has so far been primarily  
54 applied in reconstructions of the Ordovician L-chondrite parent-body breakup  
55 (LCPB), the largest documented collisional event in the asteroid belt in the past 3  
56 Gyr (Schmitz et al., 2003). This breakup probably led to the formation of one of the  
57 major asteroid families, with the Gefion family being the prime candidate  
58 (Nesvorný et al., 2009). The event has been dated by  $^{40}\text{Ar}$ - $^{39}\text{Ar}$  analyses of recently  
59 fallen L-chondrites to  $\sim$ 470 Ma (Korochantseva et al., 2007; Weirich et al., 2012),  
60 but the most precise relative date is given by an abrupt two-orders-of magnitude  
61 increase worldwide in sand-sized chromite grains with L-chondritic composition in  
62 Middle Ordovician sediments (Schmitz et al., 2003; Heck et al., 2016). According  
63 to the 2012 Geological Time Scale the spinel increase occurs at a stratigraphic level  
64 with an age of  $466\pm1$  Ma (Cooper and Sadler, 2012).

65 By dissolving 100-kg-sized samples of condensed sediments from different  
66 time periods in various acids the highly refractory extraterrestrial spinel minerals  
67 can be concentrated. The recovered grains typically contain high concentrations of  
68 solar-wind noble gases, indicating that they dominantly represent fragments of  
69 coarse micrometeorites (Heck et al., 2008; Meier et al., 2010). Pelagic carbonates  
70 are the best material for sampling the population of extraterrestrial chromite grains,  
71 because of their low content of detrital minerals that obscure the extraterrestrial  
72 fraction and the ease with which they can be dissolved in acid. As a part of a larger  
73 effort to create "windows" into the meteorite flux to Earth at different times during  
74 the Phanerozoic (Schmitz, 2013), we focus here on a part of the Lower Cretaceous

75 (145-133 Ma) Maiolica limestone in central Italy. This pelagic limestone is  
76 exceptionally "clean", i.e. having very low contents of terrestrial mineral grains,  
77 making it useful for reconstructions of the micrometeorite flux even in the small  
78 spinel size ranges, such as the 32-63  $\mu\text{m}$  range primarily used here. Because some  
79 meteorite types contain common spinel grains mainly in the small ( $<63 \mu\text{m}$ ) rather  
80 than in larger ( $>63 \mu\text{m}$ ) size fractions a more representative picture of the ancient  
81 meteorite flux can be gained if grains from the smaller size fraction are studied.  
82 From a total of 1652 kg of limestone collected at 13 different levels in the earliest  
83 Berriasian to early Hauterivian Maiolica Formation we recovered 108  
84 extraterrestrial spinel grains (Fig. 1). By three-oxygen isotope and elemental  
85 analyses of the grains we can obtain the very first insights into what types of  
86 meteorites fell on Earth at other times than today and in the mid-Ordovician. These  
87 data can be used to test and develop models on the dynamics of meteorite transport  
88 from the asteroid belt to Earth and how the asteroid belt has evolved over time. For  
89 example, here we add perspectives on Bottke et al's (2007) hypothesis, based on  
90 astronomical data, that a  $\sim$ 170-km-diameter asteroid broke up between 190 and 140  
91 Ma leading to the formation of the Baptistina asteroid family, one of the youngest  
92 major asteroid families in the inner main asteroid belt.

93

#### 94 **MAIOLICA STRATIGRAPHY AND SEDIMENTOLOGY**

95 Pelagic calcareous ooze dating back to the Jurassic covers large areas of the  
96 present sea floor, but cannot be used for our purposes, because spinel extraction  
97 would destroy large amounts of precious core material without yielding a  
98 statistically significant number of spinel grains. We are therefore restricted to  
99 studying pelagic carbonates exposed in outcrop. Probably the best place in the

100 world to find exposures of rocks of this kind is in the Umbria-Marche Apennines of  
101 central Italy, with pelagic carbonates (limestones, dolomites, and marls)  
102 representing most of the 165-Myr interval from the Pliensbachian to the Oligocene.  
103 These rocks are exposed in bands on the flanks of sub-parallel anticlines over a  
104 roughly square area almost 100 km on a side. Earth-history studies of many kinds  
105 have been carried out on these rocks beginning with Renz (1936), and a recent  
106 compilation is given by Menichetti et al. (2016).

107 In the Umbria-Marche sequence, the first four stages of the Lower  
108 Cretaceous (Berriasian-Barremian, ~145-125 Ma) are represented by the Maiolica  
109 formation, a pure white pelagic limestone having a fine-grained texture reminiscent  
110 of majolica pottery, with abundant beds and nodules of chert, mostly black or dark  
111 grey, and rare partings of black clay. This unit, ~400 m thick in basinal settings and  
112 ~100 m thick on fault-block seamounts, has proven difficult to correlate, date, and  
113 study because of the near-absence of distinctive marker beds, the lack of distal  
114 volcanic ashes and thus of datable contemporaneous mineral grains, the absence of  
115 planktic foraminifera, which had not yet evolved, the rarity of ammonites and other  
116 macrofossils, and the presence of slump units in the basins and probably of  
117 corresponding hiatuses on structural highs. However, for our purposes the Maiolica  
118 is ideal, easily dissolving with small residues from which refractory spinel grains  
119 can be collected.

120 All but one of our samples from the Maiolica Formation come from the 240-  
121 m-thick Monte Acuto section, extending from 43° 27.830'N, 12° 40.270'E to 43°  
122 27.842'N, 12° 40.745'E, in cuts along the road from Chiaserna to the pass between  
123 Monte Acuto and Monte Catria. Here the Maiolica is well exposed as steeply-  
124 dipping beds, with the exception of the covered uppermost part of the formation. In

125 the Monte Acuto section, Channell et al. (1995) determined the M-sequence  
126 geomagnetic polarity zonation and tied it to nannofossils events and ammonite  
127 zones for the Hauterivian and the uppermost Valanginian. Faraoni et al. (1997) in a  
128 painstaking study, recovered many ammonites and presented an ammonite zonation  
129 for all of the Valanginian and small portions of the underlying Berriasian and the  
130 overlying Hauterivian. Moreover, Sprovieri et al. (2006) studied the  
131 cyclostratigraphy of the Monte Acuto section using carbon isotopes, tying this  
132 record to the known biozonation and magnetostratigraphy. The average  
133 sedimentation rate for the Maiolica limestone in the Monte Acuto section is about  
134 25 m/Myr, based on a measured thickness of 137 m of sediments representing the  
135 5.5 Myr Valanginian Stage. It is likely that the bedding in the section reflects  
136 precession cycles. The entire late Berriasian to early Hauterivian section at Monte  
137 Acuto corresponds to ca. 9.4 Myr (ca. 141.2 -131.8 Ma) and comprises 453 beds,  
138 giving an average of 20.75 kyr/bed.

139 The oldest (ca. 145 Ma) of our Maiolica Formation samples was collected  
140 ca. 3 m above the Maiolica-Diaspri formation contact, i.e. close to the Jurassic-  
141 Cretaceous boundary, in the Bosso River section along the Pianello-Cagli road, 12  
142 km northwest of Monte Acuto (Kudielka et al., 2002).

143

#### 144 **MATERIALS AND METHODS**

##### 145 **Grain separation**

146 Samples were collected from twelve beds in two stratigraphically separated  
147 groups along the Monte Acuto road section (Fig. 1, and GSA Data Repository  
148 Tables DR1 and DR2). A total of 513 kg were collected from four beds in the  
149 Berriasian part of the section, and 1015 kg were collected from eight beds in the late

150 Valanginian to early Hauterivian part. The size of the individual samples varies  
151 between 103 and 433 kg (plus one sample of 27 kg). The additional sample from the  
152 Bosso section weighed 124 kg. The rocks were dissolved in HCl (6 M) and HF (11  
153 M) at room temperature in the Lund University Astrogeobiology Laboratory  
154 specially built for separation of extraterrestrial minerals from ancient sediments.  
155 After sieving at mesh sizes 32 and 63  $\mu\text{m}$  opaque chrome-spinel grains were  
156 identified by picking under the binocular microscope and subsequent qualitative  
157 SEM/EDS element analysis (see below). In some cases after the HF treatment we  
158 needed to add other leaching ( $\text{HNO}_3$  or  $\text{H}_2\text{SO}_4$ ) or density (LST) separation steps in  
159 order to remove pyrite and/or organic material. From all samples also all  
160 transparent, colorless or pink to red grains were collected and analysed with  
161 SEM/EDS in order to determine if any Mg-Al-spinels were present.

162

### 163 **Oxygen isotope and element analysis**

164 Polished epoxy mounts were prepared with all Cr-spinels found together  
165 with a centrally mounted analytical standard UWCr-3 (Heck et al. 2010). A Bruker  
166 white light interferometric 3D microscope at Northwestern University was used to  
167 verify that grain-to-epoxy topography was kept below 3  $\mu\text{m}$  (on average 2  $\mu\text{m}$ ) after  
168 polishing to minimize mass-dependent isotope fractionation effects during SIMS  
169 analysis. Element concentrations were analyzed quantitatively with a calibrated  
170 Oxford-Link energy-dispersive spectrometer mounted on a Hitachi scanning  
171 electron microscope (SEM/EDS), see Schmitz et al. (2009) for details. Isotopes of  
172  $^{16}\text{O}^-$ ,  $^{17}\text{O}^-$  and  $^{18}\text{O}^-$  were analyzed with a Cameca IMS 1280 SIMS at the WiscSIMS  
173 Laboratory at the University of Wisconsin-Madison in three separate sessions with  
174 the procedures similar to Heck et al. (2010, 2016, 2017), but with different primary

175 beam sizes (12  $\mu\text{m}$  to 19  $\mu\text{m}$ ) to accommodate different grain sizes. This procedure  
176 includes analysis and correction for the hydride tailing interference on  $^{17}\text{O}^-$  and  
177 bracketing with our analytical standard UWCr-3. We determine parts per thousand  
178 deviations from VSMOW as  $\delta^{18}\text{O}$ ,  $\delta^{17}\text{O}$  and from the terrestrial mass-fraction line  
179 as  $\Delta^{17}\text{O}$  ( $=\delta^{17}\text{O} - 0.52 \times \delta^{18}\text{O}$ ), the latter being the main indicator for an  
180 extraterrestrial origin. The external reproducibility (spot-to-spot, 2SD) of  $\Delta^{17}\text{O}$   
181 measurements of standards was 0.2-0.3‰ during the analyses of the unknowns. We  
182 obtained valid results from a total of 86 sediment-dispersed chromite and chrome-  
183 spinel grains (of which 77 grains are 32-63  $\mu\text{m}$  large, and 9 grains  $>63 \mu\text{m}$ ).

184

## 185 **Division of grains and definitions**

186 We divide our grains into different meteorite groups based on a combination  
187 of elemental and isotopic data. Grains from equilibrated ordinary chondrites (EC)  
188 have a very distinct and narrow elemental composition and can readily be identified  
189 on this criterion alone (Schmitz, 2013). The EC grains can then be further divided  
190 into the three groups H, L and LL based on their oxygen isotope and  $\text{TiO}_2$  content  
191 (see below). The remaining chrome-spinel grains are divided into two groups,  
192 "other chrome spinel with  $\geq 0.45$  wt%  $\text{V}_2\text{O}_3$ " (OC-V) and "all other chrome spinel"  
193 (OC). The basis for this is that most Cr-spinels from meteorites are rich in V,  
194 whereas V-rich ( $>0.5$  wt%) terrestrial Cr-spinels are generally rare. The OC-V and  
195 OC grains are further subdivided based mainly on their oxygen isotopic  
196 composition, but element composition can also give clues about their origin.  
197 Sometimes the shape of a grain can also be indicative. In many sedimentary  
198 environments far from the shore, terrestrial grains are rounded, having been

199 transported on the sea floor over long distances, whereas extraterrestrial grains that  
200 fell on the site are angular (cf., Cronholm and Schmitz, 2010).

201 The three groups of ordinary chondrites, H, L, and LL, have different  
202 average values of  $\Delta^{17}\text{O}$  (0.73, 1.07, 1.26‰) and  $\text{TiO}_2$  (2.2, 2.7, 3.4 wt%,  
203 respectively) (Clayton et al., 1991; Bunch et al., 1967; Schmitz et al., 2001). Around  
204 these averages the  $\Delta^{17}\text{O}$  and  $\text{TiO}_2$  values are spread following a Gaussian  
205 distribution, but the distributional tails overlap (Heck et al., 2016). There is no  
206 indication that a grain lying in the tail of the  $\text{TiO}_2$  distribution lies in the  
207 corresponding tail of the  $\Delta^{17}\text{O}$  distribution. Rare grains may have H-chondritic  
208  $\Delta^{17}\text{O}$ , but LL-chondritic  $\text{TiO}_2$  and vice versa (Tables DR3 and DR4). The exact  
209 definitions of the ranges for dividing grains based on  $\text{TiO}_2$  and/or  $\Delta^{17}\text{O}$  can in  
210 principle be arbitrarily set, but must be used consistently when comparing different  
211 time periods.

212

## 213 **RESULTS**

214 Among the total of 108 extraterrestrial chrome spinel grains (32-250  $\mu\text{m}$   
215 large) recovered, 81 are clearly equilibrated ordinary chondritic (EC) and 27 are  
216 vanadium-rich grains (OC-V) probably originating from other types of meteorites  
217 (Tables 1, DR1 and DR2). In the  $>63 \mu\text{m}$  fraction only two extraterrestrial grains  
218 were found; both are EC grains (Tables DR1 and DR2). In the 32-63  $\mu\text{m}$  fraction,  
219 based on element analyses alone, we found 79 grains with clear EC elemental  
220 composition. Oxygen-isotopic analyses of 46 of these grains confirmed that they all  
221 are ordinary chondritic (Fig. 2).

222 The division of the 81 recovered EC grains into their three groups using  
223 definitions as outlined above and in the Data Repository, is given in Table 2. The

224 data are compared with estimates based on the same approach for EC grains from  
225 the mid-Ordovician before and after the L-chondrite parent-body breakup, as well as  
226 the proportions among recent meteorite falls following the Meteoritical Society data  
227 base. In Table 2 we base the division of the EC grains entirely on their  $\text{TiO}_2$  content.  
228 The reason for this is the substantially larger data set for grains having been  
229 analyzed for  $\text{TiO}_2$  compared to  $\Delta^{17}\text{O}$ . In Tables DR3 and DR4 we compare the  
230 outcome of divisions based on either  $\text{TiO}_2$  or  $\Delta^{17}\text{O}$ , as well as both parameters  
231 combined. We conclude that the main trends based on  $\text{TiO}_2$  alone, can be seen in all  
232 three approaches. This is expected, because overlap effects between  $\Delta^{17}\text{O}$  and  $\text{TiO}_2$   
233 cancel out.

234 There is no significant difference between the ratios of the three ordinary  
235 chondrite groups between the Berriasian and the late Valanginian-Hauterivian part  
236 of the section (Table DR2). In the earliest Berriasian sample from the Bosso section,  
237 however, H-chondritic grains dominate among the 8 EC grains found, but this may  
238 be a local effect from e.g. the fall of a single larger H-chondritic micrometeorite  
239 containing several chromite grains.

240 Of the 27 OC-V grains in the 32-63  $\mu\text{m}$  fraction, 17 grains could be  
241 analyzed for oxygen-three isotopes (Tables 3 and DR2). Of these, 13 gave  $\Delta^{17}\text{O}$   
242 values separated (at 2SD) from the terrestrial fractionation line, i.e. indicating a  
243 meteoritic origin. Four of the grains show  $\Delta^{17}\text{O}$  indistinguishable from the terrestrial  
244 fractionation line, but we argue that the grains nevertheless originate from  
245 achondritic meteorite types that have  $\Delta^{17}\text{O}$  values at or very close to the terrestrial  
246 fractionation line. There is nothing in our data or the general paleogeographic  
247 setting that indicates that the types of rare terrestrial rocks that potentially could  
248 yield V-rich Cr-spinels existed in the study region in the Early Cretaceous. Two of

249 the 17 OC-V grains analyzed lie clearly below (at 2SD) the TFL with  $\Delta^{17}\text{O}$  values  
250 of  $-0.4\text{\textperthousand}$ . The altogether six OC-V grains with values at or just below the terrestrial  
251 fractionation line may originate from the howardite, eucrite, diogenite (HED) types  
252 of meteorites, or from primitive or ungrouped achondrites. Five of the 17 OC-V  
253 grains analyzed have  $\Delta^{17}\text{O}$  values similar to ordinary chondrites despite having an  
254 elemental composition significantly outside the range that we use to define  
255 equilibrated ordinary chondritic grains. The grains have  $\Delta^{17}\text{O}$  values spanning the  
256 range from H- to LL-chondritic ( $0.48\text{\textperthousand}$  to  $1.49\text{\textperthousand}$ ). The grains may originate from  
257 unequilibrated ordinary chondrites, i.e. petrographic types 3-4, however, they are  
258 puzzling because we have not seen such grains among hundreds of mid-Ordovician  
259 sediment-dispersed extraterrestrial grains previously studied by us. This may reflect  
260 that in this study we deal mainly with the smaller size fraction,  $32\text{-}63\text{ }\mu\text{m}$ , instead of  
261  $>63\text{ }\mu\text{m}$  as in previous work. The last six of the OC-V grains analyzed for  $\Delta^{17}\text{O}$   
262 have anomalously low  $\Delta^{17}\text{O}$  values, in the range  $-1.80\text{\textperthousand}$  to  $-3.78\text{\textperthousand}$ , indicating that  
263 they originate from primitive (e.g., winonaites, lodranites, acapulcoites,) or  
264 ungrouped or anomalous achondrites that are very rare on Earth today (see below).  
265 In summary, twelve of the 17 OC-V grains analyzed for oxygen isotopes are from  
266 achondrites, and five from (unequilibrated?) ordinary chondrites.

267 We also recovered a total of 33 and 65 grains in the  $>63$  and  $32\text{-}63\text{ }\mu\text{m}$   
268 fractions, respectively, classified as "other Cr-spinel" (OC) grains meaning that they  
269 have a different composition than the EC grains, but with  $\text{V}_2\text{O}_3$  concentrations  
270  $<0.45\text{ wt\%}$ . These grains are almost certainly terrestrial, except for possibly two of  
271 them. We analyzed 23 of them for oxygen isotopes and 21 have  $\Delta^{17}\text{O}$  values right  
272 on the terrestrial fractionation line within  $\sim 2\text{SD}$ . Two of the grains lie slightly off  
273 the terrestrial fractionation line ( $-0.31\pm0.18$ , and  $0.34\pm0.21$ ), which could indicate

274 an extraterrestrial origin, but the element compositions of the grains are similar to  
275 that of the typical terrestrial OC grains in the section.

276 The Berriasian part of the Monte Acuto section has higher concentrations of  
277 ordinary chondritic grains, 8.8 per 100 kg, compared to 3.5 per 100 kg in the  
278 younger Valanginian-Hauterivian part of the section. The ratio OC-V versus EC  
279 grains is about the same, 0.3, throughout the entire section, which represents a  
280 strong argument that all or most of the OC-V grains are extraterrestrial. In the  
281 Monte Acuto section all except three of the 88 OC grains found, were found in the  
282 younger part of the section. There is also a trend with various terrestrial acid-  
283 resistant grains, including zircons, being generally more abundant and larger in the  
284 younger part. The single sample from the very earliest Berriasian in the Bosso River  
285 section is relatively rich in both EC and OC grains (Table DR2).

286 Because acid residues of the Maiolica limestone are so clean it has been  
287 possible to quantify also the amount of transparent Mg-Al-spinels. In some of the  
288 more common carbonaceous chondritic meteorite types that fall on Earth today  
289 (e.g., CM and CV types) Mg-Al-spinels are abundant in the 32-63  $\mu\text{m}$  fraction and  
290 strongly dominate over opaque Cr-spinels (Bjärnborg and Schmitz, 2013, and  
291 references therein; Table DR5). In the Maiolica limestone there are several types of  
292 rare transparent terrestrial minerals, like zircon and corundum, that appear similar to  
293 Mg-Al-spinels under the light microscope. We have picked every such transparent  
294 grain and analyzed them by SEM/EDS for elemental composition. Only one Mg-Al-  
295 spinel grain was found, a fact significant for the interpretation of the origin of the  
296 other Cr-spinel grains (see below). The single grain was found in Bed 406 together  
297 with many zircons. This fact and the low  $\text{V}_2\text{O}_3$  content (<0.3 wt%) of the grain  
298 indicates that it is most likely of terrestrial origin.

299

300 **DISCUSSION**

301 **Flux of meteorites through the Phanerozoic**

302 Before the present study the only periods in deep time for which we knew  
303 something about the types of meteorites that commonly fell on Earth are for the  
304 mid-Ordovician after and before the LCPB (Schmitz et al., 2001, 2003; Schmitz,  
305 2013; Heck et al., 2016, 2017). The addition here of a third "window" in the  
306 geological record adds an important new perspective, but interpretations and any  
307 generalizations must be preliminary awaiting the results for additional time  
308 windows and further developments of the approach. Perhaps the most important  
309 result so far is that it indeed is possible to obtain quantitative insights into the  
310 history of the asteroid belt from Earth's sedimentary record.

311 The ratio of ordinary chondritic/achondritic meteorites in the Early  
312 Cretaceous (~3) lay somewhere between the ratios for the mid-Ordovician before  
313 the LCPB (~1.5) and the recent (~10) (Table 1). It appears that the background  
314 meteorite flux may have evolved gradually over the Phanerozoic, from being  
315 dominated by achondrites to the present situation where the ordinary chondrites  
316 dominate (>80% of all meteorite falls) and Cr-spinel-rich achondrites (other than  
317 the ~8% HED meteorites) are very rare, representing less than one per cent. Even if  
318 the ordinary chondrites may have had a more subordinate role at times, our data  
319 show that they likely have always represented an important fraction of the flux.

320 There may be a trend also for the flux of ordinary chondrites through the  
321 Phanerozoic (Table 2). Within the resolution of our approach the ratios between the  
322 different groups of ordinary chondrites in the Early Cretaceous (~1:1:0.2) are  
323 identical to the ratios today (~1:1:0.2). In the mid-Ordovician after the LCPB the

324 EC grains are 100% (or close to) L-chondritic. The 8% and 6% H- and LL-  
325 chondritic grains given in Table 2 most likely reflect L grains in the tails that  
326 overlap in  $\text{TiO}_2$  content with the "neighbor groups". Heck et al. (2016) analysed 120  
327 post-LCPB EC grains for oxygen isotopes and found that  $\geq 99\%$  of the grains were  
328 L-chondritic. Before the LCPB the LL chondrites (based on 215 EC grains analyzed  
329 for  $\text{TiO}_2$ ) represent about 30% of the ordinary chondritic flux, compared to ca. 10%  
330 in the Early Cretaceous and today (Tables 2 and DR6; Heck et al., 2017). The L and  
331 H chondrites share the remaining 70% of the pre-LCPB flux in about equal  
332 proportions. The high relative abundance of LL chondrites in the pre-LCPB  
333 meteorite assemblage probably reflects the tail of the meteorite flux related to the  
334 breakup of the LL-chondritic Flora family ca. 1 Ga (see Heck et al., 2017). With its  
335  $\sim 14,000$  members this is one of the largest asteroid families (Nesvorný et al., 2015).

336 The many OC-V grains that cannot be assigned to unequilibrated ordinary  
337 chondrites likely originate from achondritic meteorites (Table 3). The carbonaceous  
338 chondrites (with rare exceptions) contain only low concentrations of opaque spinels  
339 in the grain-size ranges we work with compared to ordinary chondrites and most of  
340 the achondrites (Table DR5). Because of the clear dominance of transparent Mg-Al-  
341 spinels over opaque spinels in carbonaceous chondrites, the scarcity of Mg-Al-  
342 spinels in our samples gives support for the interpretation that none of the recovered  
343 opaque grains are from carbonaceous chondrites. Iron meteorites, mesosiderites and  
344 pallasites contain too low spinel concentrations to be of any significance in this type  
345 of study. Rumuruti chondrites are rich in Cr-spinels but have  $\Delta^{17}\text{O}$  of ca. 2‰,  
346 values not observed here. Enstatite chondrites are too reduced to contain significant  
347 amounts of any chromium-rich oxides.

348 In our assemblage of Cr-spinel grains there is a significant amount (>10%)  
349 of achondritic grains with  $\Delta^{17}\text{O}$  values below -2‰ (Tables 3 and DR2). Such  
350 achondrites are very rare on Earth today, representing less than a tenth of a percent  
351 of the known recent meteorites. In Bed 36 there are three such grains, two grains  
352 with  $\Delta^{17}\text{O}$  close to -2‰ and one grain with a value of -3.8‰. In Bed 40 there are  
353 two grains with values of -3.5‰ and almost identical elemental composition,  
354 indicating that they may come from the same micrometeorite. In Bed 406 one grain  
355 has a  $\Delta^{17}\text{O}$  value of -3.0‰. These six grains may originate from "extinct"  
356 anomalous achondrites similar to the mid-Ordovician fossil meteorite Österplana  
357 065 (Schmitz et al., 2016). Based on Cr and O isotopic analyses this meteorite is  
358 believed to originate from a type of meteorite that no longer falls on Earth because  
359 its parent body in the asteroid belt has been consumed by collisions (see, Schmitz et  
360 al., 2016; Heck et al., 2017). The altogether five OC-V grains with  $\Delta^{17}\text{O}$  values just  
361 below or at the terrestrial fractionation line may originate from primitive  
362 achondrites or HED achondrites, the latter having  $\Delta^{17}\text{O}$  of ca. -0.2‰ and that make  
363 up about 8% of the recent flux. The HED achondrites originate from the 4 Vesta  
364 asteroid, the second largest asteroid in the asteroid belt

365

### 366 **The Baptistina family breakup**

367 We see no apparent signature of the Baptistina (LL-chondritic) asteroid-family  
368 forming event. By back-tracking the orbits of asteroids among the members of the  
369 Baptistina asteroid family in the inner main belt, Bottke et al. (2007), estimated that  
370 at 160 Ma (with an uncertainty range 190-140 Ma) the ~170 km parent-body of the  
371 Baptistina asteroid family broke up. Masiero et al. (2012) suggested a revised event  
372 age of 190±30 Ma based on astronomical data. This is one of the youngest major

373 asteroid family-forming events documented, resulting in a family of about 2500  
374 members (Nesvorný et al., 2015). Bottke et al. (2007) postulated that the impactors  
375 creating the K-T boundary Chicxulub crater on the Yucatan peninsula and the  
376 Tycho crater on the Moon around 109 Ma originated from this collisional event.  
377 However, refined spectral studies have shown that the Baptistina family members  
378 are LL chondrites (Reddy et al., 2014), whereas chromium isotopic measurements  
379 of K-T boundary ejecta clearly rule out such an impactor, favoring instead a  
380 cometary or carbonaceous (CM type) impactor (Trinquier et al., 2006). Our samples  
381 span the range from 145 to 133 Ma, and nowhere in the section do we see any  
382 enrichment in LL-chondritic grains, neither do we see any tailing-off trend in LL-  
383 grain abundances between the oldest and youngest samples. Our results together  
384 with the data of Masiero et al. (2012) constrain the breakup event to have occurred  
385 probably between 145 and 210 Ma.

386

## 387 CONCLUSIONS AND SUMMARY

388 A detailed history of the asteroid belt can be reconstructed from Earth's sedimentary  
389 record by recovering extraterrestrial spinels from condensed sediments. The three  
390 first "windows" into the meteorite flux in deep time have been reconstructed,  
391 providing some insights into the flux in the early Cretaceous as well as immediately  
392 before and after the breakup of the L-chondrite parent body in the mid-Ordovician.  
393 The background meteorite flux in the early Paleozoic appears to have been  
394 significantly different from the flux in the early Cretaceous, which is more similar  
395 to today's flux. This general trend was at times overprinted (for 1-10 Myr) by floods  
396 of single types of meteorites from occasional major breakup events in the asteroid  
397 belt, such as after the LCPB.

398

399 **ACKNOWLEDGMENTS**

400 The study was supported by an ERC-Advanced Grant (ASTROGEOBIOSPHERE)  
401 to B.S. We thank M. Alvarez and L., N. and E. Schmitz for field support, F. Iqbal  
402 for laboratory support and A. Montanari for showing us the Bosso River section.  
403 P.R.H. acknowledges funding from the Tawani Foundation. We thank B. Strack for  
404 maintenance of the Field Museum's SEM laboratory. WiscSIMS is partly supported  
405 by the National Science Foundation (EAR03-19230, EAR13-55590). We thank J.  
406 Kern for SIMS support. The 3D microscopy was performed in the Keck-II facility  
407 of the Northwestern University NUANCE Center, supported by NSEC (NSF EEC-  
408 0647560), MRSEC (NSF DMR-1121262), the Keck Foundation, the State of  
409 Illinois and Northwestern University.

410

411 **REFERENCES CITED**

412 Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V., 1980, Extraterrestrial  
413 cause for the Cretaceous-Tertiary extinction: *Science*, v. 208, p. 1095-1108.

414

415 Bjärnborg, K., and Schmitz, B., 2013, Large spinel grains in a CM chondrite (Acfer  
416 331): implications for reconstructions of ancient meteorite fluxes: *Meteoritics &*  
417 *Planetary Science*, v. 48, p. 180-194.

418

419 Bottke, W.F., Vokrouhlický, D., and Nesvorný, D., 2007, An asteroid breakup 160  
420 Myr ago as the probable source of the K/T impactor: *Nature*, v. 449, p. 48-53.

421

422 Bunch, T.E., Keil, K., Snetsinger, K.G., 1967, Chromite composition in relation to  
423 chemistry and texture of ordinary chondrites: *Geochimica et Cosmochimica Acta*, v.  
424 31, p. 1569-1582.

425

426 Clayton, R.N., Mayeda, T.K., Goswami, J.N., and Olsen, E.J., 1991, Oxygen  
427 isotope studies of ordinary chondrites: *Geochimica et Cosmochimica Acta*, v. 55, p.  
428 2317-2337.

429

430 Cooper, R.A., and Sadler, P.M., 2012, The Ordovician Period, *in* Gradstein, F.M.,  
431 Ogg, J.G., Schmitz, M.D., and Ogg, G.M., eds., *The Geologic Time Scale 2012*,  
432 Volume 2: Elsevier BV, p. 489-523.

433

434 Cronholm, A., and Schmitz, B., 2007, Extraterrestrial chromite in latest  
435 Maastrichtian and Paleocene pelagic limestone at Gubbio, Italy: the flux of  
436 unmelted ordinary chondrites. *Meteoritics & Planetary Science*, v. 42, p. 2099-2109.

437

438 Faraoni, P., Flore, D., Marini, A., Pallini, G., and Pezzoni, N., 1997, Valanginian  
439 and early Hauterivian ammonite successions in the Mt Catria group (Central  
440 Apennines) and the Lessini Mts (Southern Alps), Italy: *Palaeopelagos*, v. 7, p. 59-  
441 100.

442

443 Heck, P.R., Schmitz, B., Baur, H., and Wieler, R., 2008, Noble gases in fossil  
444 micrometeorites and meteorites from 470 Myr old sediments from southern Sweden  
445 and new evidence for the L chondrite parent body break-up event. *Meteoritics &*  
446 *Planetary Science*, v. 43, p. 517-528.

447

448 Heck, P.R., Ushikubo, T., Schmitz, B., Kita, N.T., Spicuzza, M.J., and Valley, J.W.,  
449 2010, A single asteroidal source for extraterrestrial Ordovician chromite grains from  
450 Sweden and China: High-precision oxygen three-isotope SIMS analysis:  
451 *Geochimica et Cosmochimica Acta*, v. 74, p. 497-509.

452

453 Heck, P.R., Schmitz, B., Rout, S.S., Tenner, T., Villalon, K., Cronholm, A., Terfelt,  
454 F., and Kita, N.T., 2016, A search for H-chondritic chromite grains in sediments  
455 that formed immediately after the breakup of the L-chondrite parent body 470 Ma  
456 ago: *Geochimica et Cosmochimica Acta*, v. 177, p. 120-129.

457

458 Heck, P.R., Schmitz, B., Bottke, W.F., Rout, S.S., Kita, N.T., Cronholm, A.,  
459 Defouilloy, C., Dronov, A., and Terfelt, F., 2017, Rare meteorites common in the  
460 Ordovician period: *Nature Astronomy*, v. 1, doi:10.1038/s41550-016-0035.

461

462 Korochantseva, E.V., Trieloff, M., Lorenz, C.A., Buykin, A.I., Ivanova, M.A.,  
463 Schwarz, W.H., Hopp, J., and Jessberger, E.K., 2007, L-chondrite asteroid breakup  
464 tied to Ordovician meteorite shower by multiple isochron  $^{40}\text{Ar}$ - $^{39}\text{Ar}$  dating:  
465 *Meteoritics & Planetary Science*, v. 42, p.113-130.

466

467 Kudielka, G., Koeberl, C., Montanari, A., Newton, J., and Reimold, W.U., 2002,  
468 Stable-isotope and trace element stratigraphy of the Jurassic/Cretaceous boundary,  
469 Bosso River Gorge, Italy, *in* Buffetaut, E., and Koeberl, C., eds., *Geological and*  
470 *Biological Effects of Impact Events*: Springer Verlag Berlin Heidelberg, p. 25-68.

471

472 Masiero, J.R., Mainzer, A.K., Grav, T., Bauer, J.M., and Jedicke, R., 2012, Revising  
473 the age for the Baptistina asteroid family using *WISE/NEOWISE* data: The  
474 *Astrophysical Journal*, v. 759, article 14 (14 pp).

475

476 Meier, M.M.M., Schmitz, B., Baur, H., and Wieler, R., 2010, Noble gases in  
477 individual L-chondritic micrometeorites preserved in an Ordovician limestone:  
478 *Earth and Planetary Science Letters*, v. 290, p. 54-63.

479

480 Menichetti, M., 2016, Early Cretaceous tectonic event in the Adria: Insight from  
481 Umbria-Marche pelagic basin (Italy), *in* Menichetti, M., Coccioni, R., and  
482 Montanari, A., eds., *Integrated Stratigraphy of the Late Cretaceous-Paleogene*  
483 *Umbria-Marche Pelagic Basin: Geological Society of America Special Paper*, v.  
484 524, p. 35-55.

485

486 Nesvorný, D., Vokrouhlický, D., Morbidelli, A., and Bottke, W.F., 2009, Asteroidal  
487 source of L chondrite meteorites: *Icarus*, v. 200, p. 698-701.

488

489 Nesvorný, D., Brož, M., Carruba, V., 2015, Identification of dynamical properties of  
490 asteroid families, *in* Michel, P., DeMeo, F.E., and Bottke, W.F., eds., *Asteroids IV*,  
491 University of Arizona, Tucson, pp. 297-321.

492

493 Reddy, V., Sanchez, J.A., Bottke, W.F., Cloutis, E.A., Izawa, M.R.M., O'Brien,  
494 D.P., Mann, P., Cuddy, M., Le Corre, L., Gaffey, M.J., and Fujihara, G., 2014,  
495 Chelyabinsk meteorite explains unusual spectral properties of Baptistina Asteroid  
496 Family: *Icarus*, v. 237, 116-130.

497

498 Renz, O., 1936, Stratigraphische und mikropaläontologische Untersuchungen der

499 Scaglia (Obere Kreide-Tertiär) im zentralen Apennin: Eclogae Geologicae

500 Helvetiae, v. 29, p. 1-149.

501

502 Schmitz, B., 2013, Extraterrestrial spinels and the astronomical perspective on

503 Earth's geological record and evolution of life: Chemie der Erde, v. 73, p. 117-145.

504

505 Schmitz, B., Tassinari, M., Peucker-Ehrenbrink, B., 2001, A rain of ordinary

506 chondritic meteorites in the early Ordovician: Earth and Planetary Science Letters,

507 v. 194, 1-15.

508

509 Schmitz, B., Tassinari, M., and Häggström, T., 2003, Sediment-dispersed

510 extraterrestrial chromite traces a major asteroid disruption event: Science, v. 300, p.

511 961-964.

512

513 Schmitz, B., Cronholm, A., and Montanari, A., 2009, A search for extraterrestrial

514 chromite in the late Eocene Massignano section, central Italy, *in* Koeberl, C., and

515 Montanari, A., eds., The Late Eocene Earth - Hothouse, Icehouse, and Impacts:

516 Geological Society of America Special Paper, v. 452, p. 71-82.

517

518 Schmitz, B., Yin, Q.-Z., Sanborn, M.E., Tassinari, M., Caplan, C.E., and Huss,

519 G.R., 2016, A new type of solar-system material recovered from Ordovician marine

520 limestone: Nature Communications, doi:10.1038/ncomms11851.

521

522 Sprovieri, M., Coccioni, R., Lirer, F., Pelosi, N., and Lozar, F., 2006, Orbital tuning  
523 of a lower Cretaceous composite record (Maiolica Formation, central Italy):  
524 *Paleoceanography*, v. 21, PA4212, doi:10.1029/2005PA001224.

525

526 Trinquier, A., Birck, J.-L., and Allègre, C.J., 2006, The nature of the KT impactor.  
527 A  $^{54}\text{Cr}$  reappraisal: *Earth and Planetary Science Letters*, v. 241, p. 780-788.

528

529 Weirich, J.R., Swindle, T.D., and Isachsen, C.E., 2012,  $^{40}\text{Ar}$ - $^{39}\text{Ar}$  age of Northwest  
530 Africa 091: more evidence for a link between L chondrites and fossil meteorites.  
531 *Meteoritics & Planetary Science*, v. 47, p. 1324-1335.

532

533 **FIGURE CAPTIONS**

534 **Figure 1.** Stratigraphic context of Maiolica Formation, position and size of samples  
535 analyzed and number of extraterrestrial chrome spinel grains recovered per  
536 kilogram of sediment.

537

538 **Figure 2.** Oxygen isotope and  $\text{TiO}_2$  composition for 63 out of in total 108  
539 extraterrestrial chrome spinel grains recovered from the Maiolica Formation. TFL =  
540 terrestrial fraction line; HED = howardite, eucrite and diogenite meteorites, with  
541 origin from asteroid 4 Vesta. For details on oxygen isotopic analyses, see also Table  
542 DR7 and Fig. DR1)

543

544

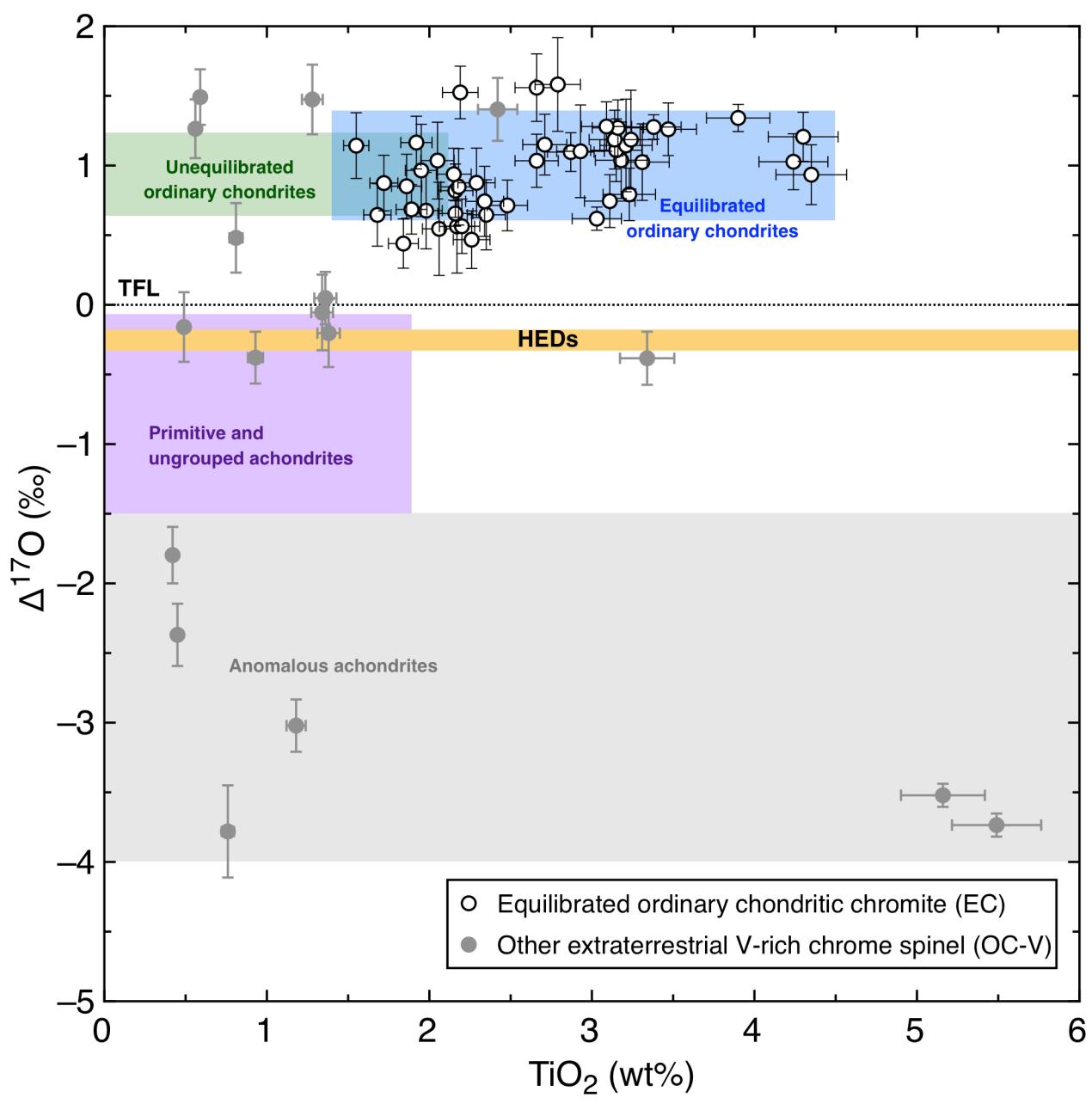



TABLE 1. COMPARISON OF FLUX OF EQUILIBRATED ORDINARY CHONDRITES TO OTHER CHROME-SPINEL BEARING METEORITE TYPES

| Type of chrome spinel     | Before LCPB<br>Ordovician <sup>1</sup><br># (%) of grains | Early<br>Cretaceous <sup>1</sup><br># (%) of grains | Today <sup>2</sup><br>% of flux |
|---------------------------|-----------------------------------------------------------|-----------------------------------------------------|---------------------------------|
| EC                        | 23 (56)                                                   | 81 (75)                                             | 90                              |
| OC-V                      | 15 (37)                                                   | 27 (25)                                             | 9                               |
| AC-low-V                  | 3 (7)                                                     | ?                                                   | <1                              |
| <i>Ratios<sup>3</sup></i> |                                                           |                                                     |                                 |
| EC/OC-V                   | 1.5                                                       | 3                                                   | 10                              |

<sup>1</sup>EC = chromite from equilibrated ordinary chondrite; OC-V = other chrome spinel with  $V_2O_3 \geq 0.45$  wt%; AC-low-V = chrome spinel from achondrites judging from  $\Delta^{17}O$  value below terrestrial fractionation line, but with  $V_2O_3 \leq 0.44$  wt%.

<sup>2</sup>Fraction of the flux excluding the recent major meteorite groups poor in large Cr-spinel (Table DR5). The OC-V category as defined for this column includes all achondrites rich in Cr-spinel with high (>0.5 wt%)  $V_2O_3$ , as well as the R chondrites and unequilibrated ordinary chondrites. The AC-low-V category includes achondrites rich in Cr-spinel but with low (<0.5 wt%)  $V_2O_3$ . Source: Meteoritical Bulletin data base ([www.lpi.usra.edu/meteor/](http://www.lpi.usra.edu/meteor/)).

<sup>3</sup>The ratios for the Ordovician and the Cretaceous are not directly comparable to the ratio for todays flux. Most achondrites and unequilibrated ordinary chondrites have significantly lower contents of chrome spinels (>32  $\mu m$ ) than the equilibrated ordinary chondrites (Table DR5). If this could be accounted for, the Ordovician and Cretaceous ratios would be even lower than given here. Ideally, comparisons between different time periods should be based entirely on variations in the types of chrome-spinel grains recovered from sediments.

TABLE 2. DIVISION OF EQUILIBRATED ORDINARY CHONDRITIC (EC) GRAINS USING TiO<sub>2</sub> (wt%).

|                                                | <b>H</b><br><b><math>\leq 2.50\%</math></b> | <b>L</b><br><b><math>2.51\text{--}3.39\%</math></b> | <b>LL</b><br><b><math>\geq 3.40\%</math></b> |
|------------------------------------------------|---------------------------------------------|-----------------------------------------------------|----------------------------------------------|
| Early Cretaceous (n=81) <sup>1</sup>           | 36                                          | 34                                                  | 11                                           |
| %                                              | 44                                          | 42                                                  | 14                                           |
| Mid-Ordovician, post-LCPB (n=119) <sup>2</sup> | 10                                          | 102                                                 | 7                                            |
| %                                              | 8                                           | 86                                                  | 6                                            |
| Mid-Ordovician, pre-LCPB (n=215) <sup>3</sup>  | 80                                          | 71                                                  | 64                                           |
| %                                              | 37                                          | 33                                                  | 30                                           |
| <b><i>Recent falls<sup>4</sup></i></b> %       | <b>42</b>                                   | <b>47</b>                                           | <b>11</b>                                    |

<sup>1</sup>This study, <sup>2</sup>Heck et al. (2016), <sup>3</sup>This study, and Heck et al. (2017), <sup>4</sup>Meteoritical Bulletin data base.

TABLE 3. GRAIN ABUNDANCES FROM DIFFERENT METEORITE TYPES OTHER THAN EQUILIBRATED ORDINARY CHONDRITES BASED ON  $\Delta^{17}\text{O}$

| $\Delta^{17}\text{O}$ of grain                                                                                                     | Before LCPB<br>Ordovician <sup>1</sup> | Early<br>Cretaceous <sup>1</sup> | Today <sup>2</sup><br><i>% of<br/>non-EC flux</i> |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------|---------------------------------------------------|
|                                                                                                                                    | <i>% of 18 gr.</i>                     | <i>% of 17 gr.</i>               |                                                   |
| $\Delta^{17}\text{O} = 0.35$ to $1.6\text{\textperthousand}$<br>Unequilibrated ordinary<br>chondrites                              | 0                                      | 29                               | $\sim 35$                                         |
| $\Delta^{17}\text{O}$ at TFL within 2SD<br>Primitive or ungrouped<br>achondrites, (HEDs, or unusual<br>terrestrial V-rich grains?) | 17                                     | 24                               | <1                                                |
| $\Delta^{17}\text{O} < 0$ to $-0.49\text{\textperthousand}$ at $\sim 2\text{SD}$<br>HEDs, primitive or ungrouped<br>achondrites    | 50                                     | 12                               | $\sim 60$                                         |
| $\Delta^{17}\text{O} < -0.50\text{\textperthousand}$<br>primitive, ungrouped or<br>anomalous achondrites                           | 33                                     | 35                               | <1                                                |
| Lunar, martian, R chondrites                                                                                                       | 0                                      | 0                                | $\sim 5$                                          |
| Total                                                                                                                              | 100                                    | 100                              | 100                                               |

<sup>1</sup>The columns show the division of all extraterrestrial grains analyzed for  $\Delta^{17}\text{O}$  but with a major element composition different from the chromites of equilibrated ordinary chondrites.

<sup>2</sup>The column shows the approximate fraction of the flux of all achondrites and unequilibrated ordinary chondrites rich in large chrome spinels (Table DR5). Data for recent falls from Meteoritical Bulletin data base ([www.lpi.usra.edu/meteor/](http://www.lpi.usra.edu/meteor/)).