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Abstract—Analysis of signals defined over graphs has been of
interest in the recent years. In this regard, many concepts from the
classical signal processing theory have been extended to the graph
case, including uncertainty principles that study the concentration
of a signal on a graph and in its graph Fourier basis (GFB). This
paper advances a new way to formulate the uncertainty principle
for signals defined over graphs, by using a nonlocal measure based
on the notion of sparsity. To be specific, the total number of nonzero
elements of a graph signal and its corresponding graph Fourier
transform (GFT) is considered. A theoretical lower bound for this
total number is derived, and it is shown that a nonzero graph signal
and its GFT cannot be arbitrarily sparse simultaneously. When the
graph has repeated eigenvalues, the GFB is not unique. Since the
derived lower bound depends on the selected GFB, a method that
constructs a GFB with the minimal uncertainty bound is provided.
In order to find signals that achieve the derived lower bound (i.e.,
the most compact on the graph and in the GFB), sparse eigenvectors
of the graph are investigated. It is shown that a connected graph has
a 2-sparse eigenvector (of the graph Laplacian) when there exist
two nodes with the same neighbors. In this case, the uncertainty
bound is very low, tight, and independent of the global structure of
the graph. For several examples of classical and real-world graphs,
it is shown that 2-sparse eigenvectors, in fact, exist.

Index Terms—Graph signals, graph Fourier basis, sparsity, un-
certainty principles, sparse eigenvectors.

I. INTRODUCTION

SIGNALS defined over a graph are useful to express high-dimensional data where the graph models the underlying
dependency structure between the data sources. In this frame-
work a graph signal is considered as a set of data points indexed
according to vertices of the graph. This type of signal struc-
ture is not limited to electrical engineering and can be found
in a variety of different contexts such as social, economic, and
biological networks, among others [1].
In some of the recent developments, processing of graph sig-

nals has been based on the so-called “graph operator.” However,
the definition of this operator is not fixed. Motivated by spectral
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graph theory, the study in [2] selects the graph operator to be the
(normalized) graph Laplacian, whereas studies in [3], [4] focus
on the adjacency matrix. There are other proposals as well [5],
[6]. Once the graph operator has been selected, its eigenvectors
are used to define the graph Fourier basis (GFB). Representation
of a signal in the selected graph Fourier basis is then used to
define the graph Fourier transform (GFT) of the signal. Inspired
by the constructions in [2]–[4], sampling, reconstruction and
multirate processing of graph signals are studied in [7]–[14].
An essential concept in signal analysis is the uncertainty prin-
ciple, which states that a signal cannot be arbitrarily localized
in both time and frequency simultaneously [15]. In classical
signal processing, the uncertainty principle is useful to design
filters that are maximally localized in time, for a given frequency
spread, or vice versa. Due to its importance, some authors ex-
tended this principle to signals defined on graphs [16]–[19].
Details of these approaches are elaborated in Section I-C.
Similar to [16]–[19], this paper studies the concept of uncer-
tainty for graph signals. However, unlike earlier methods, and
motivated by [20]–[22], we introduce a non-local measure for
uncertainty, based on the notion of sparsity of the signal in the
graph domain and frequency domain. We show that a nonzero
graph signal and its corresponding GFT cannot be arbitrarily
sparse simultaneously, and we provide a lower bound for the to-
tal number of nonzero elements. We further provide the optimal
selection of the GFB (that minimizes the uncertainty bound)
when the graph operator has repeated eigenvalues. In order to
find signals that achieve the derived lower bound, we consider
sparse eigenvectors of the graph operator. A detailed outline and
the contributions of this paper are given below.

A. Outline and Contributions

Broadly speaking, results presented here can be divided into
three main parts. In the first part (Sections II and III), we pro-
posediscreteandnon-localuncertainty principles that depend
on the max-norm of the graph Fourier basis. These results follow
from more general theory of sparse representations studied in
[20]–[22]. We consider the identity matrix and the GFB as a pair
of bases to represent a graph signal and interpret the methodolo-
gies in [22] in the context of graph signal processing. Similarly
and independently, the study in [19] has obtained very simi-
lar interpretations based on the same theory. Apart from the
overlapping results [19] generalizes these results to the case of
frames. Then, it focuses on local uncertainty principles where
bounds depend on a particular portion of the graph. More de-
tailed comparison with [19] is provided in Section I-C.
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Our main contributions are presented in the remaining sec-
tions: in the second part of our results (Section IV) we discuss
that given a graph, max-norm of the graph Fourier basis is not
unique in the presence of the repeated eigenvalues of the se-
lected graph operator. Since this non-uniqueness greatly affects
the interpretation of the relations between the graph structure
and the uncertainty, we formulate a problem to select eigenvec-
tors (GFB) such that the max-norm of the graph Fourier basis is
maximized (or, equivalently the uncertainty bounds considered
in Section II are minimized). We solve this problem analytically
(Theorem 6) and provide an algorithmic routine to obtain a set of
eigenvectors that gives a graph Fourier basis with the maximum
possible max-norm.
In the third part of our results (Section V) we focus on the

sparse eigenvectors of graphs in order to find signals that achieve
the proposed uncertainty bounds. We study the relation between
sparsity of eigenvectors and graph topology, and their effects
on the max-norm of the GFB. We provide the necessary and
sufficient conditions for the existence of 1-sparse and 2-sparse
eigenvectors of the graph Laplacian (Theorems 7 and 8). We
then show that existence of a 2-sparse eigenvector impliesvery
low and attainable uncertainty bounds(Theorem 9). Finally in
Section VI we apply our results to real world graph examples.
Interestingly, uncertainty bounds for these graphs are very low.
We precisely explain why this is the case, and find the signals
that achieve these bounds. Portions and some extensions of these
results have been presented in [23], [24].

B. Graph Signal Processing and Notation

Letx∈CN be a graph signal on a graph of sizeN (i.e.,
N nodes or vertices) whose adjacency matrix is denoted as
A∈RN×N. We assume the graph does not have self loops, i.e.
ai,i=0. The weight of the edge from thej

thnode to theith

node is denoted by the(i, j)thelement ofA. This definition of
the adjacency matrix follows from [3], [4] and is the reverse of
the usual definition in graph theory. Unless it is specified, we
consider the general case of directed graphs (i.e.,ai,j=aj,i).
For the restricted case of undirected graphs with non-negative
edge weights (ai,j=aj,i≥0), the graph Laplacian is defined
asL=D−AwhereD is the diagonal degree matrix given
as(D)i,i= jai,j. Normalized graph Laplacian is defined as

L=D-1/2LD-1/2. We will useVto denote the graph Fourier
basis (GFB) of interest. Here the definition ofVis not fixed.
Eigenvectors of either the graph Laplacian or the adjacency ma-
trix itself can be set to be the graph Fourier domain. We will
useVAandVLto explicitly denote the eigenvectors of the adja-
cency matrix and the graph Laplacian, respectively. Assuming
Ais diagonalizable, we precisely have:

A=VAΛAV
−1
A , L=VLΛLV

−1
L , (1)

whereΛA andΛLare diagonal eigenvalue matrices. We will
always assume that eigenvectors are normalized to have a unit

2-norm. When the graph is undirectedVA andVL can be
selected to be unitary. For the selected graph Fourier basisV,
graph Fourier transform (GFT) of a signalxis given byx=Fx
whereF=V−1.

In the following, the0pseudo-normx0denotes the num-
ber of nonzero elements in the signalx.Thepnorm of a vector
will be denoted by xp. The spectral norm (largest singular
value) of the matrixAwill be denoted by A 2. We will use
A maxto denote the maximum absolute value of elements in
the matrixA. Precisely, we have:

A 2= max
x=0

Ax 2/x2, A max = max
i, j
|ai,j|. (2)

Notice that A max is equivalent to the mutual coherence be-
tween the matrixAand the identity matrix [22].
For a matrixAand two index setsSandK,ASdenotes
the matrix with columns ofAindexed bySandAK,S denotes
the matrix with columns indexed bySand rows indexed byK.
For a vectorx, elements ofxindexed bySwill be denoted by
xS. The index set̄Sis defined as̄S={1,...,N}\S, where\
stands for the set difference operator. We will use⊗to denote
Kronecker product of matrices. Dimension of the right null
space of a matrixAis denoted bynullity(A).

C. Related Work

To the best to our knowledge, there are mainly four studies that
consider uncertainty principles for signals defined over graphs
[16]–[19]. The main theme in these studies (including this one)
is to define a “measure” of the signal in the vertex domain
and the graph Fourier domain. In particular, the study in [16]
considers the following for unweighted graphs:

Δ2g,u0(x)=
xHP2u0x

x2
2

, Δ2s(x)=
xHLx

x2
2

, (3)

whereΔ2g,u0(x)is referred to as the vertex spread (withPu0
being the diagonal distance matrix with respect to the nodeu0),
andΔ2s(x)is referred to as the spectral spread of the signal
x. This approach is extended to weighted graphs in [25]. The
study in [17] works on an alternative definition and focuses on
the following:

α= DSx2/x2, β= BFx2/x2, (4)

whereα2andβ2represent the amount of energy confined in
the vertex setSand the frequency setF(withDSandBFbe-
ing corresponding projection matrices), respectively. The study
in [18], [26] considers the smoothness of the signal in both
domains: using the difference operator on the graph,Dr,the
interplay betweenDrx

2
2andDrx

2
2is studied.

The main observation of these studies is that measures in both
domains cannot be arbitrarily small simultaneously: a signal
“limited” in one domain cannot be “limited” in the other domain.
These trade-offs are then considered as uncertainty principles.
Depending on their corresponding definitions, they characterize
these uncertainty curves theoretically and study the signals that
achieve them with equality.
More recently, the study in [19] takes a non-local perspective
where vertex and spectral measures are defined with pnorms.
Using the fact that the identity matrix and the GFB form a pair
of bases to represent graph signals, [19] proposes some uncer-
tainty principles where the results are based on theory of sparse
representations studied in [20]–[22], [27]. These results show
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that the “graph Fourier coherence” is a fundamental quantity
for the uncertainty principles of interest. Notice that we specif-
ically consider the case of0and1in this study and obtain
very similar results where we use the term “max-norm of GFB”
instead of coherence. This overlap is a direct consequence of the
influence of the sparse representation theory in [20]–[22]. In the
rest, [19] focuses on the representation of graph signals using
frames and proposes some uncertainty results based on these
representations. It later considers local uncertainty principles
where bounds depend on a region of the graph.
In order to find signals that achieve the proposed uncertainty

bounds we consider sparse eigenvectors (2-sparse in particular)
of the graph Laplacian. In this context, the study in [28] re-
veals a specific graph structure (referred to as motif-doubling)
that results in sparse eigenvectors of both the adjacency matrix
and the graph Laplacian. The structure of motif-doubling gives
rise to sparse eigenvectors with even number of non-zero en-
tries. However, this structure is only sufficient to have sparse
eigenvectors, whereas our condition on 2-sparse eigenvectors is
necessary and sufficient. A detailed comparison with [28] will
be provided in Section V-B.

II. DISCRETENON-LOCALSPREADS

Inspired by [20]–[22], we will study the concept of uncer-
tainty from adiscreteandnon-localperspective. We will con-
sider graph spread of a signal as the total number of nonzero
elements in the signal. Similarly, spectral spread of a signal will
be defined as the number of nonzero elements in the GFT of the
signal. Hence, we have the following definitions:
Definition 1 (0-based spread on vertex domain):Given a

nonzero signalxon a graph with GFTF, the “spread” of the
signal on vertex domain is defined asx0. ♦
Definition 2 (0-based spread on Fourier domain):Given a

nonzero signalxon a graph with GFTF, the “spread” of the
signal in the Fourier domain is defined asFx0. ♦
The definition of the spectral spread depends on the selected

GFTF. Whether it is based on the adjacency matrix, the graph
Laplacian, or something else, for a given graph, the GFBV,
henceF=V−1,maynotbe unique. This is due to the fact
that the selected graph operator may haverepeated eigenvalues.
In such a case, one can select different bases to span the cor-
responding eigenspaces resulting in different GFB matrices. In
order to avoid this ambiguity we assume that, not just the graph
itself, but also the associated GFT is given in Definition 2. It
should be noted that in the case of repeated eigenvalues selec-
tion of the GFB is not a simple task and it requires attention.
We will address this problem in Sections IV and V, where we
discuss optimal selection of the GFB in order to minimize the
spectral spread of signals.
For a nonzero graph signal notice that its vertex domain spread

and spectral spread have to be at least 1, however, they maynot
achieve this bound simultaneously. As a simple motivational
example, consider the directed cyclic graph ofNvertices, whose
graph Fourier Transform corresponds to DFT of sizeN[4]. If
the signalxis an impulse, thenx0=1,butFx0=N.
On the contrary, if the signal is a constant, then x0=N,but

Fx0=1. As a result we ask the following question:Given the
GFTF, what is the minimum total number of nonzero elements
in a graph signal and its corresponding Fourier Transform?
For this purpose, we consider the following two definitions of
uncertainty:

s0(x)= x0+ Fx0/2, p0(x)= x0 Fx0,(5)

wheres0(x)andp0(x)are referred to asadditiveandmultiplica-
tiveuncertainty of the signalx, respectively. The definitions in
(5) have the following two important properties: 1) They are
scale invariant, that iss0(αx)=s0(x)andp0(αx)=p0(x)
for allα=0. This is a useful property since uncertainty of a
signal is expected to be scale-invariant. 2) Both can take only
a discrete, finite set of values, namely,s0(x)takes half integer
values (i.e.,k/2for integerk) andp0(x)takes values in the form
ofp0(x)=

√
kfor some integerk≥1. As a final remark, notice

that the AM-GM inequality dictates the following relation:

s0(x)≥p0(x), ∀x∈CN, (6)

with equality if and only if x0= Fx0.
The main purpose of this section is to find the lowest value
thats0(x)can attain. More precisely the following problem will
be considered:

s0= min
x=0
s0(x), (7)

wheres0is called as the uncertainty bound since a signal and
its corresponding graph Fourier Transform cannot be arbitrarily
sparse simultaneously, that is,s0(x)≥s0 ∀x=0.
Due to the combinatoric nature of the problem in (7), no
closed form solution fors0is available for an arbitraryF.Nev-
ertheless, the theory of sparse representations provides useful
bounds for the problem. Motivated by Theorem 2.1 in [22], the
following theorem provides a lower bound forp0(x):
Theorem 1 (Multiplicative uncertainty principle):For a

graph with GFTF, the multiplicative uncertainty of a nonzero
signalxis lower bounded as follows:

p0(x)≥ F−1 2 F max

−1

, (8)

where ·2and ·maxare defined in (2). ♦

Proof:First notice thatx= N
i=1xieiwhereeiis thei

th

vector of the canonical basis, andxiis thei
thelement ofx.Let

fHj denote thej
throw ofF.Forthejthelement of the GFT of

xwe have

|xj|=|f
H
jx|=

i∈S

xif
H
j ei, (9)

whereSdenotes the support (set of nonzero indices) of the
signalx. Notice that|S|= x0. We can upper bound|xj|as

|xj|=
i∈S

xif
H
j ei≤

i∈S

xif
H
j ei, (10)
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using the triangular inequality. Using Cauchy-Schwarz inequal-
ity, this can be further bounded as

|xj| ≤ i∈S|xi|
2
1/2

i∈S|f
H
jei|

2
1/2

, (11)

≤ x2 |S|F
2
max

1/2

= x2 x
1/2
0 F max,(12)

where we use the fact thatfHjeiis the(j, i)
thelement ofF

whose magnitude is upper bounded by F max. Now consider
the2norm ofx=Fx:

x2
2=

j∈K

|xj|
2≤ x0 x

2
2 x0 F

2
max, (13)

whereKdenotes the support ofx,x0=|K|. Hence we have,

1

x0 x0
≤ F max

x2

x2

2

. (14)

Notice thatmaxx x2/x2= maxy F
-1y2/y2= F

−1
2.

Therefore,

1

x0 x0
≤ F max

x2

x2

2

≤ F max F
−1

2

2

(15)

which implies x0 Fx0≥ F−1 2 F max

−1

.

Corollary 1 (Additive uncertainty principle):For a graph
with GFTF, the additive uncertainty of a nonzero signalx
is lower bounded as follows:

s0(x)≥ F−1 2 F max

−1

, (16)

where ·2and ·maxare defined in (2). ♦
Proof:From (6) we haves0(x)≥p0(x). Therefore, any

lower bound forp0(x)is also a lower bound fors0(x).
When the GFT of interest is unitary, Theorem 1 and Corol-

lary 1 reduce to the following corollaries:
Corollary 2 (Weak 0uncertainty):For any graph withuni-

tarygraph Fourier basisV,

p0(x)≥ V −1
max. (17)

♦
Proof:Let V be unitary in Theorem 1. Then we

have F=VH, hence F max = V max. Furthermore,
V 2= F−1 2=1.
This corollary is important since for undirected graphs, the

adjacency matrix and the graph Laplacian are symmetric which
result in a unitary graph Fourier basis. The corollary also implies
the following (from AM-GM inequality).
Corollary 3 (Strong 0uncertainty):For any graph withuni-

tarygraph Fourier basisV,

s0(x)≥ V −1
max. (18)

♦
In Section VI, we will provide graph examples on which the

inequality in (18) is satisfied with equality.
Even though (18) is a lower bound for the uncertainty, it does

not say anything about the signal that achieves the bound. Fur-
thermore, it does not say whetherthere isa signal that achieves

the lower bound or not. In order to understand the existence of
such signals, we provide the following result.
Theorem 2 (Existence of signals):Let V be a unitary

Fourier basis of the graph. There exists a signalxon the graph
that achieves the strong0uncertainty bound (satisfies (18)
with equality) if and only if there exist index setsK andS
with|K|=|S|= V −1

max such thatnullity(VS,K̄)
H >0.

Furthermore, a signal that achieves the bound is given as

xS∈null(VS,K̄)
H , x̄S=0. (19)

♦
Proof:Assume thatxachieves the strong0bound, that is,

s0(x)=
x0+ Fx0

2
= V −1

max. (20)

Then we haves0(x)=p0(x), which implies

x0= Fx0= V −1
max, (21)

sinces0(x)=p0(x)if and only ifx0= Fx0due to AM-
GM inequality. LetSdenote the support ofxandKdenote
the support ofx. ThenFx=FSxS. Sincexis zero out-
side of its support we haveFK̄,SxS=0, which means that

nullity(FK̄,S)=nullity(VS,K̄)
H >0for someSandK

with|S|=|K|= V −1
max.

Conversely, assume thatnullity(VS,K̄)
H >0for some

SandK with |S|=|K|= V −1
max. Then selectxS as

xS∈null(VS,K̄)
H andx̄S to be0. Hence,x0=|S|.

SinceSis the support ofx,wehaveFSxS=Fx. Further-
more,

FSxS 0= FK,SxS 0+ FK̄,SxS 0=|K|, (22)

sincexS∈null(FK̄,S). As a result,s0(x)=V
−1
max.

It should be noted thatV −1
max may not be an integer in

general. In this case, we cannot find index sets of sizeV −1
max

since the size of an index set is an integer. In this case, Theorem 2
tells us that there is no signal that achieves the bound in (18)
with equality.
As an immediate example, the normalized inverse DFT ma-
trix is a unitary graph Fourier basis for circulant graphs [29],
[30]. Notice that the normalized DFT matrix of sizeN has
V −1

max =
√
N. Thus, circulant graphs have the following two

results. 1) From Corollary 2, we havep0(x)≥
√
N.Thisis

a well-known uncertainty result given in [20], and the bound
is known to be tight for allN. 2) From Corollary 3, we have
s0(x)≥

√
N. WhenNis a perfect square “picket fence” signal

is known to achieve this bound [22]. Details of these results will
be elaborated in Section VI-A1.
Even though Theorem 2 is useful to characterize signals that
achieve the bound in (18), it has a major drawback in terms of
practical usability. Finding the index sets requires a combinato-
rial search over all possible sets of sizeV −1

max, which isnot
computationally efficient.

III. UNCERTAINTYBASED ON 1NORM

In the previous section, we defined the spread of a signal as the
total number of nonzero elements in the signal. (see Definitions 1
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and 2.) In this section we will consider a “smoother” measure
by replacing the0with 1norm.
Imitating (5), we can define an1based additive uncertainty

ass1(x)=(x1+ Fx1)/2. With this definition we have
s1(αx)=|α|s1(x), that is,s1(x)isnotscale invariant. The
problem is that a nonzero signal can have arbitrarily small un-
certainty, which is an undesired property. One way to impose
the scale invariance is to use a normalization as follows:

s1(x)=
x1+ Fx1

2xp
. (23)

For any nonzerop,s1(x)in (23) has the property of
s1(αx)=s1(x)forα=0, hence it can be used as an uncer-
tainty measure. However, it should be noted that characteristics
ofs1(x)depend on the selectedpnorm. In the following, we
will consider the case ofp=2, and define the1based uncer-
tainty measures as follows:

s1(x)=
x1+ Fx1

2x2
, p1(x)=

x1 Fx1

x2
,(24)

wheres1(x)andp1(x)are referred to as1based additive and
multiplicative uncertainty of the signalx, respectively.
The main reason for considering the case ofp=2is that

such a selection has strong connections with the0based un-
certainty measures discussed in Section II. These relations will
be elaborated at the end of this section (see Theorem 4).
As done in Section II, motivated by Theorem 2.1 in [22], a

lower bound forp1(x)can be obtained as follows:
Theorem 3:For a graph with GFTF,1-based multiplicative

uncertainty of a nonzero signalxis lower bounded as follows:

p1(x)≥ F−1 2 F
1/2
max

−1

, (25)

where ·2and ·maxare defined in (2). ♦
The reader should carefully notice the presence of the square

root in (25), which was not there in (8).
Proof:Notice that F is an invertible matrix, therefore
x2/x2is lower and upper bounded as follows

F−1 −22 ≤
x2
2

x2
2

≤ F 2
2. (26)

Therefore we have:

F−1 −22 x2
2≤ x2

2=x
HFx=

i,j

x∗iFi,jxj, (27)

≤
i,j

x∗iFi,jxj ≤
i,j

|xi|F max|xj|,(28)

= x1 x1 F max, (29)

where we use the fact that|Fi,j|≤F maxfor all(i, j)in (28).
Notice that taking square-root of both sides and re-arranging the
terms in (29) give the result in (25).
When the GFT of interest is unitary Theorem 3 reduces to the

following corollary.
Corollary 4 (Weak 1uncertainty):For any graph withuni-

taryFourier basisV,

p1(x)≥ V −1/2
max . (30)

♦

Proof:In Theorem 3, whenV is unitary, we have
V 2= F−1 2=1. Furthermore, F=VH, hence
F max = V max.
We can finally provide a lower bound for the 1-based additive
uncertainty as follows.

s1(x)≥ V −1/2
max , (31)

where the inequality follows froms1(x)≥p1(x)(AM-GM
inequality). Hence, any lower bound forp1(x)(Corollary 4) is
a lower bound fors1(x).
It is quite interesting to observe that the termV maxappears

in the lower bound for both0-based and1-based uncertainty
definitions. It should be noted that1/

√
N≤ V max ≤1for

any matrixVsinceVis assumed to have columns with unit2
norm. Therefore,V −1

max ≥ V
−1/2
max always holds true. This

shows that the lower bound given by (31) is always less than the
bound in (18). In fact, not just the bounds but0and1based
uncertainties are also related with each other. The following
theorem establishes this relation.
Theorem 4:Assume that graph of interest has a unitary GFB

V. Then, we have the following inequality

p0(x)≥ p1(x)
2

, (32)

for all signals defined on the graph. ♦
Proof:We start with the following change of variables,

p1(x)
2

=
x1 Fx1

x2
2

= x̄1 Fx̄1, (33)

where we definex̄=x/x2.
Given any two vectorsxandywith x2= y2=1,we
have the following relation (page 20 of [22])

x1 y1≤ x0 y0. (34)

Notice that we have x̄2=1. Since we have assumed that
the GFB is unitary, we further haveFx̄2=1. Then (34) gives
the following

x̄1 Fx̄1≤ x̄0 Fx̄0. (35)

Notice that left-hand-side of (35) is equal to(p1(x))
2due

to (33). Remember thatp0(x)is scale-invariant. As a result
we have x̄0 Fx̄0= x0 Fx0, which shows that
right-hand-side of (35) is equalp0(x). Hence, we conclude that
(p1(x))

2≤p0(x).
Combining the result of Theorem 4, Corollary 4 and (6),
we have the following relations between the aforementioned
uncertainty definitions

s0(x)≥p0(x)≥ p1(x)
2

≥ V −1
max (36)

for a unitary graph Fourier basis. It should be noted that0-
based additive uncertainty has the strongest result. Namely,
if a signal achieves the0-based additive uncertainty bound
(s0(x)=V

−1
max), then the signal also achieves the bounds

given in Corollaries 2 and 4. (This is due to (36).) However, the
converse is not true. For this reason, in the rest of the paper, we
will focus ons0(x)as the uncertainty measure.
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IV. CASE OFREPEATEDEIGENVALUES

Definitions 1 and 2 are generic in the sense that one can choose
any suitable graph Fourier basis. Most common selections are
eigenvectors of the adjacency matrix [4], the graph Laplacian
and normalized Laplacian [2]. Even after one decides on which
of these should be used, there still is a significant point that
requires attention: the possibility ofrepeated eigenvalues.This
is mostly the case for unweighted graphs or graphs with integer
edge weights (see Section VI). The relation between eigenvalue
multiplicity of a graph and the topology of the graph is an
interesting problem. Interested reader may refer to [31] for some
results. More on this topic can be found in [32]–[35].
In the following we will use eigenvectors of the graph Lapla-

cian as the graph Fourier basis. However, the discussion is also
valid for the adjacency matrix and the normalized graph Lapla-
cian.Further, we assume that the graph Laplacian, the adja-
cency matrix and the normalized graph Laplacian are diago-
nalizable matrices. Hence, geometric and algebraic multiplicity
of an eigenvalue are the same. This justifies the use of the term
“multiplicity” without specifying which one.
Letλibe an eigenvalue of the graph Laplacian with multi-

plicityNi. The corresponding eigenspaceSiis then defined as
Si=null(L−λiI), whereSiis anNidimensional sub-space
ofCN. Whenλiis a repeated eigenvalue (Ni>1), any vector
inSiis an eigenvector with eigenvalueλi. Therefore, by se-
lecting different set of eigenvectors, one can come up with a
different graph Fourier basis. Hence,the graph Fourier basis
for the graph Laplacian is not unique.
Selection of the graph Fourier basis may affect the proposed

uncertainty principles significantly. For example, consider the
complete graph ofNnodes. It is possible to selectVsuch that
eitherV −1

max = N/(N-1),orV −1
max =

√
N. The former

decreases withNand approaches unity for largeN, whereas the
latter increases withNunboundedly. Therefore, interpretations
of the proposed uncertainty bounds differ greatly depending on
the selected basis. It should be noted that the complete graph
of sizeNis an extreme example since it has anN−1dimen-
sional eigenspace corresponding to eigenvalueN. Nevertheless
it shows the importance of the selection of the graph Fourier
basis.
Since our definition of uncertainty depends on the selected

graph Fourier basis, in the following, we will mainly discuss
two different approaches for the selection of the eigenvectors.
This section (Section IV) will study the first approach where we
select the GFB in a way that the lower bound in Corollary 3 is
minimized. In the next section (Section V), we will consider the
second approach where we look for the sparsest eigenvectors.
We will also relate these two approaches in Section V.

A. Minimizing the Lower Bound

In Corollary 3, we showed that the average number of nonzero
elements in a graph signal and its graph Fourier transform is
lower bounded byV −1

max whereVis assumed to be unitary.
When the graph of interest has repeated eigenvalues, one can
select different set of eigenvectors which results in different
values for V −1

max. In this section, our purpose is to select

eigenvectors of the given graph LaplacianLsuch that lower
bound in Corollary 3 isminimized(or equivalentlyV max is
maximized). We precisely define this problem as follows:

max
V

V max s.t. L=VΛLV
H, (37)

whereΛLis a diagonal matrix of eigenvalues ofL.
As a result of the graph Laplacian being a symmetric ma-
trix, eigenspaces,Si,ofLare orthogonal to each other. Hence,
(37) is a decoupled problem in the sense that we can focus on
individual eigenspaces rather than finding all eigenvectors of
L. To be more precise, assume that the graph Laplacian hasK
distinct eigenvalues with the corresponding eigenspacesSifor
1≤i≤K. Then, we can writeVas follows

V=[V1V2···VK], (38)

where eachVihas the dimensionVi∈C
N×Ni(Niis the mul-

tiplicity of the corresponding eigenvalue), spans the eigenspace
Si, and it is unitaryV

H
iVi=INi for1≤i≤K. Wealso

haveVHiVj=0fori=j(orthogonality of eigenspaces), and
V max = max

1≤i≤K
Vimax. Hence, we can write (37) as

max
1≤i≤K

max
Vi

Vimax s.t.
Si=null(L−λiI),
span(Vi)=Si,

VHiVi=INi.
(39)

whereλiis thei
thdistinct eigenvalue ofL.

It is important to notice that inner maximization in (39) can
be solved independently for each eigenspace. For this purpose,
we have the following definition:
Definition 3 (Max-max norm of a subspace):LetSbe an

M-dimensional subspace ofCN. The max-max norm ofS,
m(S), is defined as:

m(S) = max
U∈CN×M

U max s.t. span(U)=S, UHU=I.

That is,m(S)is the maximum of max-norm of matrices with
orthonormal columns that span the given sub-spaceS. ♦
Notice thatanyelement ofanyunitary basis that spansSis
always less than (or equal to)m(S)in absolute sense. In the
following theorem, we will provide a closed form solution for
the max-max norm of a sub-space.
Theorem 5:LetSbe aM-dimensional subspace ofCN.Let

U∈CN×M beanymatrix withspan(U)=S, andUHU=I.
Then max-max norm of sub-spaceSis

m(S) = max
1≤j≤N

UUH
j,j

(40)

where(·)j,jdenotes thej
thdiagonal entry. ♦

Proof:LetU andQ be two matrices with orthonormal
columns such thatspan(U)=span(Q)=S. Since both span
the same sub-space, we can writeQ=UXfor some unitary
matrixXof sizeM. Then we can writem(S)as:

m(S) = max
X∈CM ×M

UX max s.t. XHX =I, (41)

whereUis an arbitrary matrix with orthonormal columns that
spanS.Letxibe thei

thcolumn ofX, anduHj be thej
throw



5412 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 20, OCTOBER 15, 2017

ofU. Then we can write (41) as:

m(S) = max
1≤j≤N
1≤i≤M
xi

uHjxi s.t. xHixj=δi,j (42)

= max
1≤j≤N
x1

uHjx1 s.t. x1 2=1 (43)

= max
1≤j≤N

uHj 2= max
1≤j≤N

UUH
j,j

(44)

where we assume (w.l.o.g.) in (42) thatx1is the vector that
achieves the maximum. Furthermore, otherxi’s will have the
additional constraint of being orthonormal tox1. As a result,
xi’s for2≤i≤M cannotproduce a larger inner product. Fur-
ther, once the optimalx1is selected, the remainingxi’s can
be selected arbitrarily as long as they are orthonormal to each
other. This can be done via Gram-Schmidt process. In (43) we
use the fact that inner product is maximized when the vectors
are aligned with each other. Equality in (44) follows from the
fact that2-norm-square of a row is the corresponding diagonal
entry of the outer product.
Finally, we state the maximized objective function value in

(37) in the following theorem.
Theorem 6 (Maximum Max-Norm of GFB):Assume the

graph Laplacian,L, hasKdistinct eigenvalues. LetNidenote
the multiplicity, andSidenote the eigenspace of the eigenvalue
λifor1≤i≤K.LetUi∈C

N×Ni beanymatrix with
UHiUi=Iandspan(Ui)=Si. Then we have the following:

max
1≤j≤N
1≤i≤K

UiU
H
i
j,j
= max

V
V max s.t. L=VΛLV

H,

whereΛLis a diagonal matrix of eigenvalues ofL. ♦
Proof:Follows from equivalence between (37) and (39),

Definition 3 and Theorem 5.
Theorem 6 only provides the value of the maximized objective

function in (37), which is useful to find the minimum lower
bound given by Corollary 3. In fact, we can explicitly construct
the set of eigenvectors that result in the maximum max-norm.
For this purpose, consider again the proof of Theorem 5. Notice
that it is aconstructiveproof, which can be translated into an
algorithm as follows. Given the graph Laplacian, one can take
the eigenvalue decomposition and obtainL=VΛLV

H with a
proper ordering of eigenvectors such thatV=[V1···VK]and
columns of eachVi∈C

N×Nibelong to the same eigenspace.
Then, we utilize the following three steps for eachVi:
1) LetvHi,jdenote thej

throw ofVi, and letjbe such that

j= arg max1≤j≤N vHi,j2.

2) LetXi=[xi,1 xi,2 ···xi,Ni]∈C
Ni×Ni, and select

xi,1=vi,j/vi,j 2. Remaining columns ofXican be
selectedarbitrarilysuch thatXHiXi=INiholds true.

3) ComputeVi=ViXi.
Then, the set of eigenvectors that has the maximum max-norm

can be constructed asV =[V1 ···VK].
Notice that Vi is just a different unitary basis for
the eigenspace spanned byVi. However, unlikeVimax,
Vi max is guaranteed to achieve the max-max norm of the
corresponding eigenspace (Theorem 5). As a result,V is a

solution to (37) since it has the largest max-norm among all
possible selections of the eigenvector matrices.

B. Numerical Problems

Even though Theorem 6 provides an efficient way to select the
eigenvectors such that lower bound in Corollary 3,V −1

max,is
minimized, there is an important numerical issue. In order to uti-
lize Theorem 6, we need to group the eigenvectors that belong to
the same eigenspace, which requires an equality check between
the corresponding eigenvalues. However, it is not possible to dis-
tinguish two values if they are closer than theprecisionof the nu-
merical system. As a particular example consider a (undirected,
unweighted) path graph of sizeN. Eigenvalues of the adjacency
matrix of this graph are given asλk=2cos(πk/(N+1))for
1≤k≤N[36]. One can show that|λ1-λ2|≤, when the size
of the graph isN≥

√
3π−1/2. Hence, for any numerical preci-

sion, there exists a graph of sizeNsuch thatλ1andλ2cannot
be distinguished from each other. Study in [37] has observed
similar numerical problems as well.

V. SPARSEEIGENVECTORS OFGRAPHS

After the definition of additive uncertainty given in (5), the
ultimate purpose of this study is to find a solution to (7) in order
to find signals that are sparsebothin the vertex domain and the
Fourier domain of a given graph. Unfortunately, solution to (7)
is not straightforward due to its combinatorial nature. We have
provided lower bounds for the solution to (7) in Corollaries 1
and 3. In Section IV we studied the optimal selection of the
graph Fourier basis in order to minimize the lower bound given
by Corollary 3. However, these approaches have two downsides
1) Even though there are examples where the bound given by
Corollary 3 is tight (see Section VI), it may not be the case
for an arbitrary graph. 2) Even if the solution to (7) is known,
aforementioned results are unable to find the signals that achieve
the minima (except for Theorem 2, which requires an exhaustive
search to find a bound achieving signal). In this section, in
order to overcome these downsides, we will consider additive
uncertainty of graph Fourier basis elements.
Without losing any generality we will use orthogonal eigen-
vectors of the graph Laplacian as the graph Fourier basis. That
is,Vis the GFB whereL=VΛLV

H. Then, assuming a pre-
defined ordering of eigenvectors, theithcolumn ofV, denoted
byvi, will be thei

thelement of GFB. Since GFT is defined as
F=V−1,wehaveFvi0=1. Then, the additive uncertainty
of a graph signal that is an element of GFB is given as

s0(vi)= vi0+1/2. (45)

Notice that quantity in (45) is directly related to the sparsity
of the GFB element. Ifviitself is a sparse vector, then we have
adirect evidenceof a signal that is sparse in the vertex domain
and graph Fourier domain simultaneously. Furthermore, addi-
tive uncertainty of sparse eigenvectors may achieve (or, come
close to) the bound given in Corollary 3. Therefore, our aim
in this section, is to find sparse eigenvectors of graphs. How-
ever, it should be noted that a signal that achieves the minima
of the additive uncertainty maynotbe an element of the GFB.
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Therefore, if the GFB elements,vi, are dense, we cannot reach
any conclusion using (45). In Section VI-A2 we will provide
examples in this regard.

A. Sparse Vectors in an Eigenspace

When the graph Laplacian has repeated eigenvalues, eigen-
vectors are not unique and they form a sub-space. In
Section IV-A, we discussed how eigenvectors can be selected
so thatthe lower boundfors0(x)is minimized. In this sec-
tion we will try to select eigenvectors such thats0(vi)in
(45) is minimized. To be more precise, assume thatLhasK
(K≤N) distinct eigenvalues with corresponding eigenspaces
Sifor1≤i≤K. Then we consider the following problem:

min
v

v0 s.t. v∈Si, v2=1. (46)

for each eigenspace ofL.
The problem in (46) is precisely defined as “The Null Space

Problem” in [38], and shown to be NP-Hard. Interested reader is
referred to [39]–[41] for computational approaches to solution
of (46). Apart from these, the study in [42] proposes an iterative
algorithm in order to find an approximate solution to (46) via1
relaxation.
Unlike the case of minimizing the lower bound in Corol-

lary 3 (see Theorem 6), selection of the sparsest eigenvector is
not computationally tractable due to NP completeness of the
problem in (46). However, it is quite interesting that the max-
max norm of a subspace (given in Definition 3) provides a lower
bound for the problem in (46). In the following we will precisely
establish this relation.
Letx∈CNbe a vector with unit2norm,x2=1. Then the
infinity norm ofxcan be bounded as1≥ x∞ ≥1/

√
N.In

fact, if we further know thatxhasLnonzero elements (L≤N),
we can improve the lower bound as x∞ ≥1/

√
L. Therefore,

we have the following inequality:

x0≥ x−2
∞ ∀x s.t x2=1, (47)

where equality is achieved when|xi|=1/
√
Lfor alli’s in the

support ofx.
Using the inequality in (47) we can obtain a lower bound for

(46) as follows:

min
x∈S
x2=1

x0≥ min
x∈S
x2=1

x−2
∞ = max

x∈S
x2=1

x∞

−2

,(48)

where we use the fact that x∞ is strictly positive, finite, and
bounded away from zero so thatx−1

∞ is finite.
In the following we will show that the maximization problem

in the right hand side of (48) is equivalent to definition of max-
max norm of the subspaceS. Remember from Definition 3 that
max-max norm is defined as

m(S) = max
U∈CN×M

U max s.t.span(U)=S,U
HU=I.(49)

Assume thatU =[u1···uM]is a solution to the problem
in (49). Then we havem(S)=U max = maxi ui ∞.
Further, ui∈S, and ui 2=1. Hence we have
m(S)≤maxx x∞,x∈S,x2=1.

Now assume thatx is a solution to right hand side of
(48). Then consider the matrixU=[x u2···uM]by se-
lectingui’s such thatU

HU=Iandspan(U)=S. Hence
U is in the feasible set of the problem in (49). Therefore,
m(S)≥ U max ≥ x ∞= maxx x∞,x∈S,x2=1.
As a result, we conclude that maximization on the right-hand
side of (48) is equivalent tom(S), and provide the following
lower bound for the solution of the problem in (46)

m(S)
−2

≤min
x
x0 s.t. x∈S, x2=1. (50)

The two main points of this section can be summarized as
follows:
1) The search for a sparse eigenvector in a specific eigenspace
is an inherently difficult problem. Even though numerical tech-
niques that approximate the solution exist [42], closed form
solutions are not available in general. In this aspect, computa-
tion of sparse eigenvectors differs from the max-norm approach
discussed in Section IV, where we provided closed form solu-
tions by focusing on individual eigenspaces.
2) Although we do not have a closed form solution for the
sparsest vector in a given eigenspace, we can provide a lower
bound for the total number of nonzero elements as in (50).
The inequality in (50) is especially useful when we want to
show that an eigenspace doesnothave sparse vectors. We will
use this inequality in Section VI-A2 to formally show that an
undirected cycle graph does not have sparse eigenvectors.

B. Algebraic Characterization of Sparse Eigenvectors

In the previous section we mentioned that finding the sparsest
vector in an eigenspace is a difficult problem. Therefore, when
looking for sparse eigenvectors, we should consider the graph
(Laplacian) as a whole rather than focusing on each eigenspace
individually. Furthermore, in Section IV-B we mentioned that
characterization of eigenspaces of graphs suffers from numerical
precision when the graph is large (relative to the numerical
precision of the system). This is a significant problem especially
when a large-scale real-world data is of interest. Therefore, we
need a way to characterize the sparse eigenvectors of graphs
without usingnumericaltechniques. The purpose of this section
is to find these sparse eigenvectorsalgebraically.
In the case of disconnected graphs we have a straightforward
result. Assume that the graph isundirectedbutnon-negatively
weightedand consists ofDdisconnected components with sizes
Ci. Then the adjacency matrix and the graph Laplacian can be
written in the following form

A=

⎡

⎢
⎣

A1
...

AD

⎤

⎥
⎦, L=

⎡

⎢
⎣

L1
...

LD

⎤

⎥
⎦,

(51)
whereAi∈ M

CiandLi∈ M
Ciare the adjacency matrix and

the graph Laplacian of theithcomponent, respectively. Due
to block-diagonal form ofAandL, corresponding eigenvec-
tors can be selected to be block sparse. Therefore, there exists
an eigenvector that hasat mostCinonzero elements for each
1≤i≤D. It is important to note that the converse of this result
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is not true: if a graph has a sparse eigenvector, it doesnotimply
that the graph is disconnected. As a counter example consider
Theorem 8, which proves that a connected graph can have a
sparse eigenvector. Examples of such graphs will be provided
at the end of this section. However, 1-sparse eigenvectors are
exemption in this regard. That is, a graph has a 1-sparse eigen-
vector if and only if it has an isolated node. This result is stated
as follows.
Theorem 7 (Isolated nodes of a graph):Assume that the

graph of interest isundirectedbutnon-negatively weighted.
Then, the following statements are equivalent:
1) The graph has an isolated node.
2) The graph Laplacian has a 1-sparse eigenvector.
3) The GFBcanbe selected such that there exists a nonzero

signal that achievess0(x)=1, i.e.,x0= Fx0=1. ♦
Proof:We prove (1)implies(2): Assume that the graph

has an isolated node. According to (51), there exists a 1-sparse
eigenvector of the graph Laplacian.
We now prove that (2)implies(1):Letvbe the 1-
sparse eigenvector. Without loss of generality assume that the
first index is nonzerov1=1 and the rest is zero. There-
foreLv is equivalent to the first column ofL. That is,
Lv=[d1 -a

T
r,1]
T=λ[10T]T, wherear,1∈R

N-1is the vec-
tor that denotes the adjacency of node 1, andd1= ar,1 1is the
degree of node 1. Therefore we havear,1=0, henced1=0.
Since edge weights are non-negative, node 1 is an isolated node.
Next we will prove that(2)implies(3):Letvbe a 1-sparse

eigenvector of the graph Laplacian. Then,vcanbe selected
to be an element of the GFT. In this case,v0= Fv0=1,
hences0(v)=1.
Finally, we prove(3)implies(2):Lets0(x)=1for some

x=0. Sincex0≥1for any nonzero signal, we must have
x0= Fx0=1.Fx0=1implies thatxis an eigen-
vector of the graph Laplacian and x0=1 implies that
xis 1-sparse. Hence the graph Laplacian has a 1-sparse
eigenvector.
Now we provide the characterization theorem for 2-sparse

eigenvectors of graphs. Recall that a graph is said to be con-
nected if there is a path between any pair of nodes.
Theorem 8 (2-sparse eigenvectors of a connected graph):

LetAdenote the adjacency matrix of anundirectedandcon-
nectedgraph withai,j≥0being the weight of the edge
between nodesiandj. Then, there exist nodesiandjsuch that

ai,k=aj,k ∀k∈{1,···,N}\{i, j}, (52)

if and only ifthe graph Laplacian,L, has a 2-sparse eigenvec-
tor with nonzero eigenvalueλ=di+ai,j. When the graph is
unweighted, (52) can be stated as

N(i)\{j}=N(j)\{i}, (53)

whereN(i)is the set of nodes that are adjacent to nodei. ♦
Note that a 2-sparse eigenvector can be assumed to have

values 1 and−1on the nodes with the property (52). (See the
proof below.) This result is especially useful for Theorem 9.
Proof:Assume that the graph Laplacian of a connected graph

has a two-sparse eigenvectorvwith nonzero eigenvalue. Due to
permutation invariance of the node labels, without loss of any

generality assume that the first two indices are nonzero, that is,
v1=0andv2=0,butvi=0fori≥3.
For a connected graph, notice that the all-1 vector is the
only eigenvector of the graph Laplacian with the zero eigen-
value. Since the graph Laplacian is a symmetric matrix the
eigenspaces are orthogonal to each other. Therefore the 2-sparse
eigenvector (with nonzero eigenvalue)vis orthogonal to the all-
1 vector, which implies thatv1+v2=0. Then, we can select
v1=−v2=1without loss of any generality.
LetAdenote the adjacency matrix of the graph. We have

A=

⎡

⎢
⎢
⎣

0 a1,2 aTr,1

a2,1 0 aTr,2

ar,1 ar,2 Ar

⎤

⎥
⎥
⎦,L=

⎡

⎢
⎣

d1 −a1,2 −aTr,1

−a2,1 d2 −aTr,2

−ar,1 −ar,2 Lr

⎤

⎥
⎦,

(54)
whereAr∈ M

N−2andLr∈ M
N−2are the partitions of

the adjacency matrix and the graph Laplacian, respectively.
ar,1∈R

N−2 is the vector that denotes the adjacency of
node 1 except node 2.ar,2is the same for node 2. Notice that
d1=a2,1+ ar,1 1andd2=a1,2+ ar,2 1. Then, consider
the following

Lv=

⎡

⎢
⎣

d1+a1,2

−(a2,1+d2)

−ar,1+ar,2

⎤

⎥
⎦=λv=λ

⎡

⎢
⎣

1

−1

0

⎤

⎥
⎦.

Therefore we havear,1=ar,2, which in particular implies that
d1=d2sincea1,2=a2,1(graph is undirected). Furthermore
the corresponding eigenvalue isλ=d1+a1,2. Since the graph
is connectedd1>0,λis nonzero. Notice that the condition
ar,1=ar,2is the same as the condition in (52).
Conversely, assume that there exist two nodes with the prop-
erty in (52). Without loss of generality, assumei=1andj=2,
and letvbe a 2-sparse vector withv1=−v2=1. Then partition
the graph Laplacian as in (54). Due to (52), we havear,1=ar,2,
andd1=d2. Then we haveLv=λvwithλ=d1+ar,1.
Therefore,vis a 2-sparse eigenvector ofL. Further, the graph
is connectedd1>0, henceλ>0.
Similar to Theorem 8, the study in [28] also reveals a spe-
cific graph structure that results in sparse eigenvectors of both
the adjacency matrix and the graph Laplacian. In particular, it
considers the case when a graph has two copies of the same sub-
graph (referred to as “motif doubling” in [28]). That is, there are
two disjoint subsets (of sizeK) of nodes,S1andS2, such that
the induced sub-graphs onS1andS2are the same, there is no
edge betweenS1andS2, andS2is connected to the rest of the
graph in the same wayS1is. In this case the adjacency matrix
(and the graph Laplacian) can be shown to have(2K)-sparse
eigenvectors (Theorem 2.2 of [28]). In the case ofK=1(each
subset has only one node), this motif doubling property reduces
to the condition in (53) withai,j=0.
However, it is important to note that the condition in The-
orem 8 is more general than the one in [28] due to the fol-
lowing two reasons: 1) the construction in [28] provides only
asufficientcondition, whereas Theorem 8 gives the necessary
and sufficient condition to have a 2-sparse eigenvector. 2) The
motif doubling idea in [28] specifically considers the case when
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ai,j=0, whereas Theorem 8 is applicable to the case ofai,j=0
as well. In the general case ofK, it is straightforward to find
sufficient conditions for aK-sparse eigenvector to exist: the
motif doubling in [28] and “the same neighborhood structure”
in [24] are two such examples. On the other hand, it is difficult
to reveal the necessary conditions forK-sparse eigenvectors to
exist.
As discussed in Section II, the additive uncertainty of a signal

xin (5) can take only half integer values for nonzero signals,
that iss0(x)∈{1,3/2,2,···,N}. It should be noted that
Theorem 7 precisely characterizes the case whens0(x)takes
its possible minimum value. A nonzero signal hass0(x)=1if
and only ifthe graph has an isolated node. This result is espe-
cially useful to conclude that a nonzero signal on aconnected
graph, which does not have any isolated node,cannotachieve
s0(x)=1. Therefore, we consider the next attainable case for
connected graphs, that is,s0(x)=3/2. This happens under two
circumstances
1) x0=1,Fx0=2: the signalxis an impulse on the
vertex domain, and it has a 2-sparse GFT.

2) x0=2,Fx0=1: the signalxis a 2-sparse eigen-
vector of the graph Laplacian.

We note that Theorem 8 precisely characterizes the second
case. Therefore, given a connected graph, existence of a pair of
nodes that satisfy (52) implies thats0(x)≥3/2for all nonzero
signals on the graph. Furthermore, the bound is tight, and the
signal that achieves the bound is known. This result is formally
stated as follows.
Theorem 9 (Uncertainty bound for connected graphs):For

anundirected,connected, andnon-negatively weightedgraph,
assume that there exist nodesiandjsatisfying the condition in
(52). Then, the GFB with respect to the graph Laplaciancan be
selected such that

s0(x)≥3/2 ∀x=0. (55)

Furthermore, the signal achieving this bound,s0(x)=3/2,is
given asxi=−xj=1and zero everywhere else. ♦
Proof:For a simple and connected graph, Theorem 7 says

that there is no signal such thats0(x)=1. Sinces0(x)can take
only half integers in[1,N],s0(x)=1implies thats0(x)≥3/2
for any nonzero signalx.
Furthermore, if there is a pair of nodes satisfying (52), The-

orem 8 says that the graph Laplacian has a 2-sparse eigenvec-
tor. Letvdenote this eigenvector. Then we havevi=−vj=1
and zero everywhere else. Notice that GFB with respect to the
graph Laplaciancan beselected such thatvis an element of
GFB. In this case we have v0=2and Fv0=1, hence
s0(v)=3/2. This shows that the lower bound in (55) is tight
and attainable.
There are four remarks regarding Theorem 9.
1) The tightness of the bound given in (55) doesnotdepend

on the size and the global structure of the graph. Existence of a
pair of nodes with (52) directly implies this result.
2) The signal that achieves the bound is localized on the graph.

Notice that if two nodes have the property in (52), they must
have at least one common neighbor. (This follows from the fact

Fig. 1. (a)K8, complete graph of size 8, (b)S9, star graph of size 9, (c)C8,
cycle graph of size of 8.

that the graph is connected.) As a result, nonzero elements of
the signal that achieves the bound in (55) are at most 2 hops
away from each other. However, localization property is unique
to 2-sparse eigenvectors. An eigenvector with an arbitrary level
of sparsity may not be localized on the graph. Details of these
are discussed in [24].
3) Due to Corollary 3, the inequalitys0(x)≥ V −1

max is
always true. When3/2is the smallest attainable value for
s0(x),wehave3/2≥ V −1

max. Therefore, existence of a pair
of nodes with (52) proves that there exists a GFBVsuch that
V max ≥2/3. In fact, using Corollary 2 this result can be
slightly improved toV max ≥1/

√
2.

4) In the case of repeated eigenvalues of the graph Laplacian,
the GFB is not unique. However, uncertainty boundsdependon
the selection of the GFB. When there are repeated eigenvalues
GFB should be selected properly (sparse eigenvector should be
an element of GFB) in order to have (55). This point will be
numerically demonstrated in Section VI-A3.
In the following we will provide three classical graph exam-
ples that satisfy, or do not satisfy, the condition in (53). Notice
that these graphs are simple (undirected, unweighted, free from
self-loops) and connected.
1) Complete Graph,KN:A complete graph ofNnodes has
an edge between any two nodes. Figure 1(a) provides a visual
representation ofK8.Letiandjbe two arbitrary nodes of a
complete graph. Then we haveN(i)={1,···,N}\{i}, and
N(j)={1,···,N}\{j}. Therefore, we have

N(i)\{j}=N(j)\{i}=N(i)={1,···,N}\{i, j}, (56)

which shows that a complete graph of an arbitrary size has a
2-sparse eigenvector.
2) Star Graph,SN:A star graph of sizeN has a center
node that is connected to any other node, and all the nodes are
connected only to the center node. Figure 1(b) provides a visual
representation ofS9. Assume that the center node is labeled
as 1. Letiandjbe two nodes other than the center node. Then
we haveN(i)=N(j)={1}. Therefore,

N(i)\{j}=N(j)\{i}={1}, (57)

which shows that a star graph of an arbitrary size has a 2-sparse
eigenvector.
3) Cycle Graph,CN:A cycle graph of sizeNcontains a

single cycle through all nodes. Figure 1(c) provides a visual rep-
resentation ofC8. Notice thatC2=K2,C3=K3,C4=K2,2,
hence they have 2-sparse eigenvectors as shown above. For
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N≥5,CN doesnothave a pair of nodes that satisfy (53).
Therefore, a cycle graph forN≥5does not have a 2-sparse
eigenvector. In fact, an eigenvector of a cycle graph of sizeN
has at leastN/2nonzero values (see Section VI-A2).
Above examples are carefully selected to point out an impor-

tant observation:sparsity of the graph and existence of sparse
eigenvectors do not imply each other. This follows from the
following three facts: 1) A complete graph is dense, yet it has
a sparse eigenvector. 2) A cycle graph is sparse, yet it does not
have a sparse eigenvector. 3) A star graph is sparse, and it has a
sparse eigenvector.
One can also use Theorem 8 to find a sparse GFB of a given

graph. Existence of a pair of nodes that satisfy (53) guarantees
the existence of a 2-sparse eigenvector. When there is more than
one pair, it is possible to find various 2-sparse eigenvectors. Even
though those eigenvectors may not be orthonormal to each other
they provide a sparse GFB. In fact,N−1eigenvectors of the
graph Laplacian of a complete graph of sizeNcan be selected
to be 2-sparse. These eigenvectors will be linearly independent,
but not orthonormal. In this case, GFB has only3N−2nonzero
entries. Details of these will not be elaborated here, and deserve
an independent study.
It is important to notice that the condition in (52) is purely al-

gebraic, and does not require any numerical computation. There-
fore, Theorems 8 and 9 arenotsubject to the problems discussed
in Section IV-B. In order to find a pair of nodes with the property
in (52), one can check every pair in a brute-force manner, which
results inN2 tests in total. Therefore, complexity of verifying
that a graph has a pair of nodes with the property (52) is at
mostO(N2). However, there may exist more efficient search
algorithms for this purpose.

VI. EXAMPLES OFUNCERTAINTYBOUNDS

A. Standard Examples from Graph Theory

1) Circulant Graphs:A graph is said to be circulant when its
adjacency matrix is a circulant matrix under suitable permuta-
tion of the node numbering [29]. This is a broad family including
cyclic graphs (directed or undirected), complete graphs, com-
plete bi-partite graphs and more. The directed cyclic graph of
sizeN, whose adjacency matrix is given as

CN =

⎡

⎢
⎢
⎢
⎣

1
1
...

1

⎤

⎥
⎥
⎥
⎦
∈ MN, (58)

is particularly important since it relates the graph signal pro-
cessing to classical signal processing [3], [4].
The adjacency matrix of a circulant graph is a circulant matrix

(with suitable permutation of vertices), and can be diagonalized
by the DFT matrix:

A=WH
NΛW N, (59)

for some diagonalΛ, whereWNis the normalized DFT matrix
of sizeN. Hence, the graph Fourier transform based on the

adjacency matrix isF=WN, and we haveV
−1
max =

√
N.

As a result, the strong uncertainty principle for circulant graphs
of sizeNiss0(x)≥

√
N.

As shown in [22], this is a tight bound whenNis a perfect
square. Consider the “picket fence” signal which has support
S={1,1+

√
N,1+2

√
N,···,1+N−

√
N}with

xS=1, x̄S=0. (60)

Then we havex=Fx=x. Notice that|S|=
√
N.Asaresult

we haves0(x)=
√
N= V −1

max, that is, strong0uncertainty
is achieved (Corollary 3).
For the weak uncertainty we havep0(x)≥

√
N, that is,

x0 x0≥N, wherexcorresponds to DFT ofx.Thisis
a well-known uncertainty result given in [20]. Unlike the strong
uncertainty, weak uncertainty bound can be achieved for any
N.Letxbe an impulse, thenxwill have no zero elements,
resulting inx0 x0=N.
If the graph is unweighted, then circulant graphs are regular
(each node has the same degree). In this case the graph Laplacian
can be written asL=dI−A, wheredis the degree of each
node. Therefore,Lis also a circulant matrix, and diagonalizable
byWN. As a result, strong uncertainty bound based on the
graph Laplacian is also tight.
2) Cycle Graph:In this part we will focus on theundirected
cyclic graph as visually shown in Figure 1(c). Eigenvalues of the
Laplacian of a cyclic graph are given asλk=2−2 cos(2πk/N)
for0≤k≤N−1[36]. Notice thatλ0=0is not a repeated
eigenvalue. However, other eigenvalues have the property
λk=λN−kfork≥1. Therefore, the Laplacian of a cycle graph
has 2-dimensional eigenspaces. LetSkdenote the 2-dimensional
eigenspace of the Laplacian corresponding to eigenvalueλk.Let
wkdenote thek

thcolumn ofWH
N. ThenUk=[wk wN−k]

spans the eigenspaceSksince the Laplacian is diagonalized by
WN. Notice that|(WN)i,j|=1/

√
Nfor all pairs of(i, j).As

a result, each row ofUkhas 2norm of 2/N. Then, The-

orem 5 gives thatm(Sk)= 2/N. Using (50) we conclude
that the total number of nonzero elements of an eigenvector in
Skcan be at least(m(Sk))

−2=N/2. Since this is true for any
eigenspace,any eigenvector of the Laplacian of a cycle graph
(of sizeN) has at leastN/2nonzero values.
As discussed in the previous sub-section, we have
s0(x)≥

√
Nfor all nonzero signals on a cycle graph when GFB

selected asWH
N. When we consider the additive uncertainty of

elements of GFB, as in (45), we gets0(vi)≥(N+2)/4since
each eigenvector has at leastN/2nonzeros. As a result, ele-
ments of GFB are not useful candidates to achieve the bound
s0(x)≥

√
Nwith equality. This is because eigenvectors of the

cycle graph are not sparse.
3) Complete Graph:Being a circulant graph, GFB of a com-
plete graphcan beselected asWH

N. With this selection, the
additive uncertainty bound is given ass0(x)≥

√
N. It should

be noted that the Laplacian of a complete graph (of sizeN)
has only two distinct eigenvalues: 0 with multiplicity 1,Nwith
multiplicityN−1. One can select different set of vectors to
span theN−1dimensional eigenspace. In fact, as discussed in
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Fig. 2. Probability ofG(N,p)(a) having a pair of nodes satisfying (53),
(b) being connectedandhaving a pair of nodes satisfying (53). Probabilities
are obtained via averaging over104experiments, hence the lowest observed
probability is10−4.

Section V-B1, one of these vectors can be selected to be 2-
sparse. With such a selection, by virtue of Theorem 9, the
uncertainty bound is given ass0(x)≥3/2, which is signifi-
cantly different from the one whenWH

N is used as GFB. At
this point we are not favoring one selection of GFB over an-
other. The sole purpose of this example is to show that selection
of the GFB is an important issue in the presence of repeated
eigenvalues.

B.M-Block Cyclic Graphs

In [8]–[11], it is shown thatM-Block cyclic graphs play an
important role in the development of multirate processing of
graph signals. When we assume that all the edges have unit
weights, the adjacency matrix of anM-Block cyclic graph
of sizeN can be written as:A=CM ⊗ 1N/M 1

T
N/M ,

whereCM is given in (58) and1N is a vector of sizeN
with all 1 entries. Notice that bothCM and1N/M 1

T
N/M

are circulant matrices, hence they are diagonalizable by nor-
malized DFT matrices of respective sizes. As a result, GFT
based on the adjacency matrix (and the graph Laplacian
since all the nodes have the same degree) can be selected
asF=WM ⊗W N/M. Notice thatV=F

H is unitary and

V −1
max =

√
N.

As an example consider the caseN=9andM =3, and con-
sider the following signalx=[111]T ⊗[1 0 0]T.TheGFT
of this signal,x, is given as

x=W3[111]
T ⊗W 3[100]

T=[1 0 0]T⊗[1 1 1]T.(61)

Hence, we have x0= x0=3, ands0(x)=3=V
−1
max.

Therefore, strong uncertainty bound is achieved. In general, let
Nbe a perfect square andM =

√
N.Then for anyM-Block

cyclic graph of sizeNwith unit weights, we can find a signal
that achieves the strong uncertainty bound.

C. Erd̋os-Ŕenyi Graphs

An Erd̋os-Ŕenyi graphG(N, p)is a simple graph ofNnodes
where an edge between a pair of nodes appears randomly and
independently with probabilityp[1], [43]. In Figure 2(a) we
empirically compute the probability of aG(N, p)having a pair
of nodes satisfying the condition in (53). Notice that if a graph

has such a pair of nodes then the same pair satisfies (53) on the
complement of the graph as well. This is due to the equality
condition in (53) that remains satisfied when all the edges are
complemented. Further notice that complement of aG(N, p)is
aG(N,1−p)graph. As a resultG(N, p)andG(N,1−p)have
the same probability of having a pair of nodes satisfying (53).
This explains the symmetry of Figure 2(a) aroundp=1/2.
It is important to note that Theorem 8 specifically consid-
ers the case of connected graphs since it is trivial to find
sparse eigenvectors in disconnected graphs (see (51)). How-
ever, aG(N, p)tends to be disconnected whenpis small. In
factp<log(N)/Nresults in (almost surely) isolated vertices,
andp>log(N)/Nguarantees (almost surely)G(N, p)to be
connected [43]. In order to get rid of the trivial cases we need
to consider the probability ofG(N, p)having a pair of nodes
with (53)andbeing connected. Experimental computation of
this probability is given in Figure 2(b). Notice that connectivity
is not preserved under complementation, hence Figure 2(b) is
not symmetric aroundp=1/2.
Figure 2(b) shows the existence of connected Erd̋os-Ŕenyi
graphs with 2-sparse eigenvectors. Figure 2(b) also suggests
that asNgets larger it is less likely to find such graphs, which
can be explained as follows. The study in [44] states that the

∞-norm of any unit eigenvector ofG(N, p)is almost surely
o(1)forp=ω(log(N)/N), whereo(·)andω(·)denotes little-
o and little-omega notations, respectively. That is, asN→∞
we have v∞ →0for allv. Therefore,V max →0, hence,
V −1

max →∞. Since the uncertainty bound in (18) goes to in-
finity we do not expect to find 2-sparse eigenvectors in connected
Erd̋os-Ŕenyi graphs for large values ofN.

D. Real World Examples

In the following we will use the termλ(k)to denote that the
eigenvalueλhas multiplicityk.
1) Minnesota Road Graph:In this part, we will consider the
Minnesota road graph [7], [13]. We use the data publicly avail-
able in [45]. This graph has 2642 nodes in total where 2 nodes
are disconnected to the rest of the graph. Since a road graph
is expected to be connected, we disregard those two nodes.
See [7], [13] for the visual representation of the graph. Here
each node is an intersection, andai,j=1if there is a road
connecting the intersections, otherwiseai,j=0. There are to-
tal of 3302 undirected unweighted edges. The graph is simple
and connected,AandLare symmetric matrices (in particu-
lar, diagonalizable), henceVA andVL can be selected to be
unitary.
For the Minnesota road graph, bothAandLhave repeated
eigenvalues. As a result,VA andVLarenotunique. In fact,
the adjacency matrix has repeated eigenvalues of−1(15),0(44),
and1(13). The graph Laplacian has repeated eigenvalues of
0.3820(2),1(10),2(7),2.6180(2), and3(6). In order to minimize
the uncertainty bound given by Corollary 3, we can selectVA
andVLsuch thatVA maxandVL maxare maximized. This
idea is discussed in Section IV, and the closed-form solution
for such a selection is provided by Theorem 6. Via numerical
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Fig. 3. Pair of nodes in Minnesota road graph that result in 2-sparse eigen-
vectors. Axes represent the geographical coordinates. The pairs that satisfy the
condition in (52) are colored in blue. Notice that the pairs in (a)–(d) generate
eigenvectors with eigenvalue 1, and the pairs in (e)–(f) generate eigenvectors
with eigenvalue 2. (See Theorem 8.)

evaluation of Theorem 6 on the Minnesota road graph, we obtain
the following:

0.7071 = max
V

V max s.t. A=VΛAV
H, (62)

0.8343 = max
V

V max s.t. L=VΛLV
H. (63)

Due to Corollaries 2 and 3, when VA is selected to
be the GFB, (62) gives the following uncertainty bounds
s0(x)≥p0(x)≥ VA

−1
max =1.4142. WhenVL is selected

to be the GFB, (63) gives the following uncertainty bounds
s0(x)≥p0(x)≥ VL

−1
max =1.1987.

It is important to remember thats0(x)can have values only
on a discrete set, namely,s0(x)=k/2for some integerk≥2.
As a result, for both selection of GFB, signals on the Minnesota
road graphcannotattain the uncertainty bound in Corollary 3
in a strict sense. However, by rounding-off the value of both
VA

−1
max andVL

−1
max to the next attainable value ofs0(x),

we get

s0(x)≥3/2, (64)

for the strong uncertainty bound for both selection of GFB.
Even though (64) is a valid bound, Corollary 3 and Theorem 6

gives no further information about existence and characteriza-
tion of a signal that achieves the bound. At this point it is quite
interesting to observe that the bound in (64) is the same as the
bound provided by Theorem 9 (forVLas GFB), which requires
existence of a pair of nodes with the property in (53). In fact, the
Minnesota road graphdoeshave 6 different pairs of nodes with
the property in (53). These pairs are visualized in Figure 3. As
a result, the bound in (64) istight, and the signals that achieve
the bound are defined by the pairs of nodes in Figure 3 (see
Theorem 9). It should be noted that tightness of (64) is valid
whenVLisselectedto include at least one 2-sparse eigenvector
generated by the pairs in Figure 3.

2) Co-appearance Network:In this example, we will con-
sider the co-appearance network of characters in the famous
novel Les Miśerables by Victor Hugo [46]. Data is publicly
available in [47]. This is an undirected butweightedgraph,
where two characters are connected if they appear in the same
scene, and the weight of an edge is the total number of co-
appearances through the novel.
The graph has 77 nodes and 254 (weighted) edges in total.
The Laplacian of the graph has repeated eigenvalues of1(9),
13(2), and28(2). As a result, GFB with respect to the graph
Laplacian,VL, is not unique. In order to minimize the bound
given in Corollary 3, we use Theorem 6 and obtain the following
result

0.9398 = max
V

V max s.t. L=VΛLV
H. (65)

When VL is selected to be the GFB, (65) gives
the following uncertainty bounds (Corollaries 2 and 3)
s0(x)≥p0(x)≥ VL

−1
max =1.0641. Due to discrete nature

ofs0(x)it is clear that this bound cannot be satisfied with
equality. WhenVL

−1
max is rounded-off to the next attainable

value ofs0(x), we get the same bounds as in (64). At this point
we can use Theorem 9 to find signals (if there is any) that achieve
the bound in (64).
In a co-appearance graph, pair of nodes with the condition
in (52) has a meaningful interpretation. If two characters al-
ways appear simultaneously, they will have the same num-
ber of co-appearances with other characters, which implies
the condition in (52) mathematically. As an example, consider
characters “Brevet”, “Chenildieu”, and “Cochepaille” of the
novel Les Miśerables. They are three witnesses in Champ-
mathieu’s trial, and appear simultaneously through the court
scenes. Nodes (of the graph) that correspond to any two of these
three characters satisfy the condition in (52), which, in turn,
implies that the graph Laplacian has a 2-sparse eigenvector, and
s0(x)≥3/2is a tight uncertainty bound whenVLis selected
as GFB.

VII. CONCLUSIONS

In this paper, we studied the concept of uncertainty princi-
ple for signals defined over graphs. Unlike existing studies we
took a non-local and discrete approach, where the vertex and the
spectral domain spreads of a signal are defined as the number
of nonzero elements of the signal and its GFT, respectively. We
derived a lower bound for the total number of nonzero elements
in both domains (on the graph and in the GFB) and showed
that a signal and its corresponding GFT cannot be arbitrarily
sparse simultaneously. Based on this, we obtained a new form
of uncertainty principle for graph signals. When the graph has
repeated eigenvalues we explained that GFB is not unique, and
the derived lower bound can have different values depending on
the selected GFB. We provided a constructive method to find
a GFB that yields the smallest uncertainty bound. In order to
find the signals that achieve the derived lower bound we consid-
ered sparse eigenvectors of the graph. We showed that the graph
Laplacian has a 2-sparse eigenvector if and only if there exists
a pair of nodes with the same neighbors. When this happens,
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the uncertainty bound is very low and the 2-sparse eigenvectors
achieve this bound. We presented examples of both classical
and real-world graphs with 2-sparse eigenvectors. We also dis-
cussed that, in some examples, the neighborhood structure has
a meaningful interpretation.
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