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Valence and spin states of iron are invisible in Earth’s lower mantle
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Abstract: Heterogeneity in Earth’s mantle is a record of chemical and dynamic processes
over Earth’s history. The geophysical signatures of heterogeneity can only be interpreted
with quantitative constraints on effects of major elements such as iron on physical
properties including density, compressibility and electrical conductivity. However,
deconvolution of the effects of multiple valence and spin states of iron in bridgmanite,
the most abundant mineral in the lower mantle, has been challenging. This study of a
ferric-iron-only (Mgo.46Fe*"0.53)(Sio49Fe**0.51)O3 bridgmanite shows clearly that Fe** in
the B site undergoes a spin transition between 43 and 53 GPa at 300 K. The resolved

effects of the spin transition on density, bulk sound velocity, and electrical conductivity
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are smaller than previous estimations, consistent with the smooth depth profiles from
geophysical observations. For likely mantle compositions, the valence state of iron has

minor effects on density and sound velocities relative to major cation composition.

Introduction

Variation of redox conditions in the mantle, both laterally and vertically, is a natural
consequence of differentiation and mixing processes in the mantle over its history. Early
Earth processes segregated reduced iron through the mantle to the metallic core and
generated the habitable oxygen-rich surface. Modern convection carries oxidized and
iron-rich subducted basalt to the lower mantle', while plumes ascending from the
lowermost mantle may be reduced®. Regional and depth variation of oxygen fugacity, foz,
in the mantle has been confirmed by compositional variability in basalts® and mantle
mineral inclusions in diamonds™°.

Constraints on mantle redox heterogeneity are also important to interpreting remote
observations of heterogeneous geophysical properties. Geophysical methods such as

seismic® 8, geoid”!? and geomagnetic!!-1?

observations have been applied globally to
image thermochemical variability in the mantle. Besides subducted slabs, observed
heterogeneity in seismic tomography includes large-scale features at the base of the lower
mantle, which may be thermochemical piles. Two large low shear velocity provinces
(LLSVPs) located nearly antipodally beneath the Pacific Ocean and Africa are
characterized by lower-than-average shear (Vs) and compressional (Vp) wave

velocities®’, and possibly elevated bulk sound velocity (V5)!* and density®!*!°. Evidence

for chemical differences between these regions and the surrounding mantle includes
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sharp margins and anti-correlated anomalies between V3 and Vs in LLSVPs!®. Although
the identity and origin of these regions is still unknown, the likely high density of

LLSVPs may be explained by enrichment in Fe!”.

Redox heterogeneity is likely to be expressed by differences in Fe**/3 Fe in mantle
minerals, but the effects of Fe**/3 Fe ratios on observable mantle properties and the
corresponding influence on the geophysical and geochemical evolution of the Earth are
not well-understood. The lower mantle’s dominant mineral (Mg,Fe,Al)(Fe,ALSi)O3
bridgmanite (abbreviated Bdg) accommodates both Fe?>* and Fe*', with each species
corresponding to potentially different effects on thermoelastic and transport properties'®.
The effects of Fe?" and Fe** on incompressibility of Bdg are thought to be opposite!®. The
density contrast between Fe**-dominant and Fe*"-dominant Bdg may result in separation
of oxidized and reduced materials through mantle convection and leave imprints in
geochemical and isotopic compositions?’. However, in many experimental studies on
Bdg, Fe*'/> Fe was not characterized. Moreover, the compositions of Bdg synthesized in
laser-heated diamond anvil cells are in general not well-controlled due to unknown
oxygen fugacity, inhomogeneity in micron-scale starting materials and cation migration
by Soret diffusion at high temperatures. Such uncertainties in chemistry hamper the

investigation of the effects of Fe**/> Fe on thermoelastic and electrical properties of Bdg.

Pressure-driven electronic spin-pairing transitions of iron could further distinguish
oxidized from reduced Bdg. High-pressure experimental and theoretical studies have
concluded that Fe*" in the octahedral B-site of Bdg undergoes a high spin (HS) to low
spin (LS) transition under lower-mantle pressure-temperature (P-7) conditions (e.g. ref.

21-26). Although this spin transition is generally accepted, discrepancies remain in the
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pressure conditions of the transition reported in previous experimental studies, e.g. 18-25
GPa (ref. 24) vs. 50-70 GPa (ref. 21,22). These differences could originate from
experimental protocol (e.g ref. 24) or composition-dependence of the spin transition (e.g.
ref. 26). In contrast to Fe** in the B-site, both Fe*" and Fe** accommodated in the larger
pseudo-dodecahedral A-site will not experience a spin transition under the mantle P-T

conditions (reviewed by ref. 27), though some authors have suggested a transition of Fe*"

to an intermediate spin state?®?’

, which has not been supported by theoretical
calculations®**°. As a result, the spin transition is only likely to influence the
thermoelastic and transport properties of Bdg with Fe** in the B-site. Geophysical
relevance of spin transitions in mantle minerals has been debated, as throughout most of
the lower mantle, properties such as seismic wavespeeds®! and electrical conductivity!!1?
do not exhibit discontinuous changes with depth. On the other hand, the spin transition in
ferropericlase (abbreviated as Fp) has been suggested to generate a viscosity minimum
around 1600 km with important implications for mantle dynamics and interpretation of
the geoid®>*. If a spin transition in Bdg occurs at similar depths, it may have similar
effects on viscosity. Constraints on the effects of the spin transition in Bdg on density,
elasticity, viscosity, and thermal and electrical conductivities are key to resolving the
geophysical behavior of oxidized regions of the lower mantle.

To disentangle valence and spin effects on the elastic and electrical behavior of Bdg
under high pressures, we conducted X-ray diffraction (XRD), X-ray emission
spectroscopy (XES), time-domain synchrotron Mdssbauer spectroscopy (SMS) and

electrical conductivity measurements on (Mgo 46Fe*"0.53)(Sio.49Fe**0.51)O3 Bdg at lower-

mantle pressures up to 85 GPa and 300 K. These complementary techniques and our
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well-characterized sample demonstrate that the spin transition of Fe** in the Bdg B-site
happens between 43 and 53 GPa at 300 K. With improved constraints on the effects of
Fe*" on the equation of state and conductivity of Bdg, we conclude that neither oxidation
state nor spin state of Fe in Bdg will cause significant anomalies in geophysical

properties of mantle heterogeneities.

Results

Synthesis and characterization of bridgmanite. A unique opportunity to
unambiguously determine the behavior of oxidized, Al-free Bdg at lower mantle
conditions was presented by our discovery of a complete, reversible phase transition at
22-26 GPa and 300 K from Fe*"-bearing akimotoite to Bdg. A representative full-profile
Le Bail refinement of Bdg at 44.8 GPa is shown in Fig. 1, where all peaks were identified
as orthorhombic GdFeOs-type bridgmanite, Au or Ne. Purely ferric Bdg with Fe*" evenly
distributed between the A and B sites is ideal for studying the spin transition of Fe**
because variations of its density, spin moment, hyperfine parameters and electrical
conductivity with respect to pressure are not influenced by Fe?" or cation exchange. The
composition of the akimotoite starting material was determined by electron microprobe
analysis to be Mgo.4sFe1.04S10.4903 (Supplementary Fig. 1). In Bdg synthesized from this
composition at 26-71 GPa, synchrotron Mdssbauer spectra (Supplementary Fig. 2) are
composed of two Fe sites of equal weight with quadrupole splitting (QS) values <1.5 mm
s and similar center shift (CS) values (ACS < 0.3 mm s™!, Supplementary Table 1).
These values are consistent with the hyperfine parameters for Fe** of Bdg derived from

synchrotron-based energy-domain Mdssbauer spectroscopy>**> (Supplementary Fig. 3).
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This confirms that all iron in the Bdg sample is Fe*" and stoichiometry suggests that Fe**
is distributed almost evenly between the A- and B-sites, yielding a bridgmanite formula

of (Mgo.46Fe*"0.53)(Sio40Fe*"0.51)0s.

3+ ; 34
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Figure 1| Full-profile Le Bail refinement confirms transformation of akimotoite to
bridgmanite structure. Measured XRD data for (Mgo46Fe**0.53)(Sio.49Fe**051)03
composition at 44.8 GPa and 300 K (black dots) are consistent with orthorhombic
GdFeOs-type bridgmanite (black ticks below). Le Bail fit (red curve) also includes
expected peak positions for Au calibrant (yellow ticks) and Ne medium (blue ticks).
Spin transition of ferric iron in bridgmanite. Complementary XRD and XES results
show that the spin transition of Fe** in the B-site occurs between 43-53 GPa at 300 K in
(Mgo 46Fe*"0.53)(Sio49Fe’"0.51)O3 Bdg (Fig. 2 and Fig. 3). Over this pressure range, the
compressibility of this Bdg increases sharply and the unit cell volume decreases by about
1.9% (Fig. 2 and Supplementary Table 2). This softening is clear in the decrease in the
normalized stress F' (Fig. 2 inset), which is sensitive to magnetic and spin transitions
under pressure*®. At pressures below 43 GPa and above 53 GPa, the slope of F vs.

Eulerian strain f'is almost 0, indicating that the pressure derivative of bulk modulus (K”)

is nearly 4 and a 2" order Birch-Murnaghan EoS suffices for fitting these two segments
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(Fig. 2). Relative to high-spin Fe**-bearing Bdg, low-spin Bdg exhibits 2.7% smaller

ambient-pressure volume, Vo, and 5.7% higher ambient-pressure bulk modulus, Ko

(Supplementary Table 3). The spin transition in our Bdg is confirmed by XES

measurements up to 85 GPa at 300 K (Fig. 3a). Total spin moment decreases from a

maximum of 2.5, corresponding to 100% high-spin Fe*", to a minimum of about 1.5 (Fig.

3b), corresponding to 50% high-spin, 50% low-spin Fe**, over the range 40-60 GPa (Fig.

3b).
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Figure 2| Compression
behavior of bridgmanite at
300 K across the spin
transition. (a) Unit cell volume
of

(Mg 46Fe**0.53)(Sio.49Fe*0.51)O3
bridgmanite and 2™ order Birch-
Murnaghan equation of state
fits to the high-spin data
between 24.7-43.1 GPa (dotted)
and 50% low spin data between
52.5-61.4 GPa (dashed).
Softening is observed between
43.1-52.5 GPa (dot-dashed). The
compression curve of MgSiOs
Bdg is also plotted for
comparison (black curve, ref.
37). Inset: finite Eulerian strain
F versus normalized stress f
calculated using the fitted 1-bar
unit-cell volume from the lower-
pressure segment, revealing a
discontinuity between 43.1-52.5
GPa. The error bars are 95%
confidence intervals.
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Figure 3| X-ray emission Fe Kp spectra and total spin moment. (a) XES data for
(Mg 46Fe*"0.53)(Sio.49Fe* 0.51)O3 bridgmanite up to 84.9 GPa at 300 K. All spectra were
normalized to area and aligned to position of the main peak. Both the spectra of Fe,O3
and the sample at 1 bar served as the high-spin reference while FeS; at 1 bar was used
as the low-spin reference. The inset shows the difference between the sample spectra
and the low-spin reference FeS.. (b) The total spin moment (left axis) derived from
both integrated absolute difference (IAD, open triangles) and integrated relative
difference (IRD, black squares) methods (ref. 38) as a function of pressure. Error bars
were determined by evaluating the difference in calculated spin moment using either
Fe>O3 or ambient (Mgo.4sFe 0.53)(Sio.49Fe* 0.51)O3 sample as the high-spin standard.
The expected spin moment for high-spin-only configuration is 2.5 (marked by the
upper horizontal dashed line), while the B-site spin transition should lower total spin
moment to 1.5 (marked by the lower horizontal dashed line). The red open circles are
high-spin fractions (right axis) derived from equation of state (EoS) under high
pressures. Error bars of high-spin fractions obtained from EoS represent 95%
confidence interval in EoS parameters Vus, Vis, Kus, Kis (ref. 32). XES and XRD
concur that spin transition of B-site Fe** is centered at 48-49 GPa at ambient
temperature.

The observed spin transition pressure and volume collapse provide robust
confirmation for recent density functional theory calculations and resolve disagreement
among previous experimental studies. Theoretical computation (ref. 26) found a spin

transition in B-site Fe** at 48-56 GPa and 0 K for a similar composition

(Mgo.sFe*5)(SiosFe*"05)Os. For this composition, no prediction of the effect of the spin
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transition on the EoS is available, but for a less enriched (Mgo.g75Fe€0.125)(Si0.875F€0.125)O3
Bdg the spin transition was predicted to result in a volume collapse of 0.5% (ref. 39) or
1.2% (ref. 23). The lower bound predicted for AV is consistent with our observations
(Fig. 2), assuming a linear relation between A} and iron content. In comparison, ref. 24
reported a 0.5% reduction in unit cell volume at 18-25 GPa with 0.02 Fe** per formula
unit (pfu), which is higher but comparable with theoretical prediction?. Theoretical
calculations predict that the spin transition in A-site Fe** happens at much higher
pressures than the transition in the B-site?®, therefore the 50% LS Fe** derived from our
XES data is consistent with the transition of only B-site Fe** to the LS state at the lower
mantle pressures. Previous experimental studies disagreed on the spin transition pressure
range: a subtle change in the equation of state was reported in a recent study at 18-25
GPa?*, while two other studies found less obvious discontinuities in bulk modulus around
50-70 GPa (ref. 21,22). Other experimental studies observed no spin transition at all (e.g.
ref. 37,40). Differences between observed spin transition pressures are unlikely to be
explained by compositional differences alone as had been suggested by computational
work?®: our sample exhibits a spin transition pressure in-between reported pressures in
previous experiments on Bdg but has the highest Fe** content. Different experimental
protocols and possible diffusion or reduction of iron during high-temperature experiments
could cause the discrepancy. Well-characterized Bdg samples synthesized in the multi-
anvil apparatus often incorporate all Fe in the A-site (e.g. ref. 24,37), and would not be
expected to undergo spin transitions under the mantle pressures. Many other studies do
not have strong constraints on the valence state or site occupancy of Fe in Bdg, but it is

likely that failure to observe spin transitions indicates that no Fe*" is present in the B-site.
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Moreover, some Bdg samples synthesized using laser-heated DACs exhibit excess SiO»,
indicating that the composition of synthesized Bdg differs from the starting material.
Upon heating, cations may also be oxidized or reduced and/or migrate between the two
crystallographic sites*!, and thus some apparent changes in compressibility may be due to
different crystal chemistry. Our EoS and XES data obtained on well-characterized
samples without any heating during compression provide support for theoretical

23.2526.39 and experimental observations?!?? that at lower-mantle pressures, A-

predictions
site Fe** remains in HS state and B-site Fe*" undergoes the HS-LS transition.

For iron-rich compositions, the elastic properties and spin-transition-induced
softening in Fe**-Bdg can be easily distinguished from elastic properties of Fe?*-
dominant Bdg, but for mantle-relevant amounts of iron this difference becomes
insignificant (Fig. 4). With the highest Fe-content among synthesized Bdg, our Fe*"-only
Bdg has the largest unit cell observed to date for Bdg below the pressures of the spin
transition (Supplementary Fig. 4). Above the spin transition pressures of B-site Fe**, the
unit cell volume of our Fe**-Bdg collapses to match volumes of Fe?*-dominant Bdg with
similar total Fe-content (Supplementary Fig. 4). Consequently, redox heterogeneity
cannot be determined from density heterogeneity once the spin-transition of B-site Fe** is
complete in the deep lower mantle (Fig. 4a and Supplementary Fig. 5). The bulk moduli
K of both HS and LS Fe**-rich Bdg are lower than that of Fe?’"-dominant Bdg (Fig. 4b).
At a representative mid-lower-mantle pressure of 80 GPa (corresponding to a depth of
1850 km), K of HS (Mgo 46Fe**0.53)(Sio.49Fe*0.51)03 Bdg is 9.3% lower than the
extrapolated K for FeSiO3 Bdg, and K of (Mgo.4sFe**0.53)(Sio49Fe*0.51)O3 Bdg with B-site

LS Fe** is 11.1% lower than that of FeSiO; Bdg (Fig. 4b). The magnitudes of these

10
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differences in K are comparable to softening caused by A-site vacancy**. The
corresponding bulk sound velocity for Fe**-dominant Bdg exhibits a similar trend as bulk
modulus (Fig. 4c). The heterogeneity parameter dlnVs/0Xr. for Fe’*-Bdg is 0.15; this is
1.5 times of the 0.1 obtained for Fe?"-dominant Bdg'®, resulting in a stronger velocity
anomaly for an oxidized mantle heterogeneity. If interpolated to a typical mantle
composition with iron content 2Fe/(Mg+Fe+Al+Si) ~ 0.1 in Bdg (ref. 43), differences in
density, bulk modulus, and bulk sound velocity between reduced and oxidized
bridgmanite at 80 GPa are up to 0.3%, 1.1% and 0.5%, respectively. These small
differences have been within experimental uncertainties for studies with less Fe, but can
be resolved by our study of well-characterized Fe-rich Bdg samples with careful high-
pressure experimental design. Given the fact that lower-mantle temperatures would
reduce the difference in density and sound velocity between Fe?*- and Fe**-bearing bdg,
reduced and oxidized Bdg with mantle-relevant iron-content will exhibit almost identical
seismic velocities in the deep lower mantle.

For a given concentration of Fe, the presence of Al in Bdg has been observed to have
relatively minor effects on density and bulk modulus!®* (Fig. 4) and may suppress the
spin transition by occupying the B-site (see Implications below). As a result, experiments
on Fe,Al-bearing compositions have been unable to unambiguously determine whether
and under what conditions spin transitions take place in the mantle. The effects of spin
and valence states of Fe on density and bulk compressibility are expected to be even less
significant in Al-bearing lithologies in the mantle. Although shear properties cannot be
constrained by our experimental data, theoretical calculations have predicted that the

effects of trivalent cations and/or spin transition of the B-site Fe**on shear modulus are

11
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even smaller than on bulk modulus®. Therefore, the incorporation of trivalent cations in

Bdg is not expected to cause obvious elastic anomalies in the lower mantle.
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Figure 4| Variation of observable
seismic properties of bridgmanite
as a function of iron content at 80
GPa and 300 K. EoS results from
this study and previous work
summarized in ref. 19 demonstrate
that a) density b) bulk modulus and
¢) bulk sound velocity exhibit
different dependence on Fe?*- and
Fe*"-content. The red solid lines are
linear interpolations between
MgSi03-Bdg and end members for
high-spin Fe**-Bdg and the red
dashed lines are those for B-site low-
spin Fe** Bdg. The black lines are
linear fits for Fe?*-Bdg summarized
in ref. 19. The Fe**-Bdg end member
is from this study, and the open and
solid circles are for high-spin and B-
site low-spin Fe** Bdg, respectively.
Differences between ref. 21 (red
triangles) and solid red line trends
for bulk modulus and sound velocity
may be caused by compositional
changes during Bdg synthesis from
glass in the laser-heated diamond
anvil cell. The purple symbols are
for Fe**, Al-bearing Bdg samples
(ref. 22,44) and the green symbols
are for Fe’*, Fe’"-bearing Bdg
samples with Fe**/ZFe less than 50%
(ref. 42).

An independent constraint on mantle compositional and thermal heterogeneities can

be obtained from lower-mantle electrical conductivity. Current electrical conductivity

models based on geomagnetic observations show a smooth profile of electrical

conductivity with depth in the lower mantle!!"!2. This profile appears to be inconsistent

12
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with spin transitions of iron in lower-mantle minerals because such a transition reduces
the number of unpaired electrons, resulting in a decrease in the mobility and density of
the electric charge carriers and a potentially observable decrease in electrical
conductivity. The decrease in conductivity due to the spin transition has been observed in
Fp*#® but has been unclear for Bdg***748, Ref. 47 reported a ~0.5 order of magnitude
decrease in electrical conductivity at 70-85 GPa in (Mgo.9oFeo.1)Si03 Bdg and attributed
this anomaly to the spin transition of Fe**, but two more recent studies reported
monotonic increase in electrical conductivity of Bdg under the lower-mantle
pressures>**® (Fig. 5), which are more consistent with electrical conductivity models'!"!.
In order to clarify the influence of spin transition on the electrical conductivity of Bdg,
we determined the electrical conductivity of our Bdg sample by using a four-point-probe
method (Supplementary Fig. 6). Note that this method is only applicable to Bdg
compositions which can be either recovered or synthesized without laser heating, as Au
probes must be attached at ambient conditions to homogeneous samples. The 300-K
akimotoite-bridgmanite transition provides an entirely new route to access electrical
properties of Fe**-bearing bridgmanite. Our results show that the pressure range of spin
transition in B-site Fe*" coincides with a subtle decrease of 0.18-0.29 log unit in electrical
conductivity (Fig. 5), and this decrease in conductivity was reproduced in two successive
experiments using the same DAC. On the other hand, the electrical conductivity of B-site
LS Fe*" Bdg is only slightly lower than extrapolated values from the HS segment (Fig.
5), revealing much lower reduction of electrical conductivity by spin transition in Bdg
than Fp*>*. Given the fact that Fe content in the lower mantle is about one tenth of that

in our sample (e.g. ref. 43) and mantle temperatures would further weaken or broaden the

13



240  effects of the spin transition, our results demonstrate that the spin transition of B-site Fe**

241  of Bdg in the lower mantle has a negligible effect on electrical conductivity of the mantle,

242 which is consistent with the smooth profile obtained from geophysical observations'!!2,
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Figure 5| The electrical conductivity of three bridgmanite compositions across the
spin transition at high pressures and at 300 K. The red open triangles and blue
asterisks are for (Mgo.4sFe**0.53)(Sios0Fe**0.51)0O3 Bdg along two successive
compression paths by using the same DAC. The uncertainty is smaller than the symbol
size. The yellow region marks the pressure range (43-53 GPa) of the spin transition in
the B-site Fe** in this study constrained by complementary XRD and XES
measurements. The dashed line is a linear fit to the electrical conductivity data up to 40
GPa, which predicts slightly higher conductivity than measured data above 54 GPa.
Between 40-54 GPa, there is a 0.18-0.29 log unit drop in electrical conductivity as a
result of spin transition in the B-site Fe**. In comparison, ref. 47 reported a more
significant drop (~0.5 log unit) between 70 and 85 GPa in (Mgo.9Fe.1)SiO3 Bdg (black
open circles). In contrast to ref. 47, ref. 48 reported much smoother conductivity profile
for Mgo s28Fe0.208Al0.059S10.91103 Bdg. Note that the conductivity trend from ref. 48 also
exhibits a dip within the spin transition pressure range from this study.

243

244  Discussion

245 Whether a spin transition occurs in Bdg in Earth’s mantle has been subject to debate

14



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

due both to observed smooth variation in geophysical properties and uncertainty in the
crystal chemistry of Fe in Bdg. The Fe**/SFe ratio of Bdg in the lower mantle has been

1* and theoretical

estimated based on sound velocity of Bdg obtained by experimenta
methods>’ to range from 60% to even 90%. This high Fe*"-content relative to the upper
mantle could be explained by Fe?* self-disproportionation to Fe** and metallic Fe during
the formation of Bdg beneath the transition zone®'. AI’* facilitates Fe*"-enrichment in
lower mantle Bdg through the coupled-substitution mechanism (Mg**a + Si*'s= Fe*a +
(Fe**, AI")p) (e.g. ref. 51,52). Whether Fe* enters the B-site of Bdg through this
coupled-substitution mechanism and further undergoes the spin transition in the lower
mantle depends on the concentration of cations available to fill the B-site of Bdg and P-T'
conditions. For Bdg samples synthesized from pyrolitic starting materials representing a
lower mantle lithology, observed Al/Fe*" ratios are consistently greater than 1
(summarized in ref. 53). In this compositional regime, all Fe** is predicted to occupy the
A-site while AI*" fills the rest of the A-site and all of the smaller B-site (e.g. ref. 54,55)
and therefore no spin transition of Fe* is expected to take place in the B-site of Bdg in a
pyrolitic lower mantle. Some recent experimental studies suggest that cation exchange
between A-site Fe** and B-site AI** becomes more favorable at high P-T conditions,
driven by the volume collapse across the spin transition of the B-site Fe*" (ref.
22,41,53,56). On the other hand, site exchange is not supported by theoretical
calculations, which predict very limited migration of A-site Fe*" to the B-site (<~4%)
throughout the lower mantle P-T conditions (54,55). These studies and a recent
experimental study on single-crystal Bdg (ref. 57) suggest that Fe** in the B-site of Fe,Al-

bearing bridgmanite is metastable and therefore most Bdg in Earth’s mantle may contain
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no Fe*" in the B-site. Even in the absence of Fe-Al site exchange, however, multiple
scenarios could give rise to domains in the mantle where the experimentally observed
Fe*" spin transition occurs in Bdg. First, in Al,Si-poor, oxidized lithology Fe** may be
forced into the Bdg B-site. For example, subducted harzburgite is depleted in Al with
Al/Fe as low as 0.18 (ref. 58). If there is not enough Al+Si to fill the Bdg B-site, Fe**
may be driven by crystal chemistry to adopt this site’. Moreover, Fe**-rich materials
such as banded iron formation (BIF) and goethite could also be carried to the lower
mantle by subducted slabs and would provide local chemical heterogeneous regions
enriched in Fe**, with a high Fe*'/Al ratio. Second, Fe*" may take the B site of Bdg as a
result of metastable arrangement of Fe during fast crystallization of melts in partially-
molten (hot and/or hydrated) regions. While spin transition in Bdg likely occur in regions
with either subducted Fe**-rich, Al-poor lithologies or fast/metastable crystallization, our
results demonstrate that a spin transition in these regions would not have a major effect
on seismic velocities or electrical conductivity, but could influence other geophysical or
geochemical processes.

Spin transitions have been suggested to weaken the lower mantle phase

assemblage®33-6°

, offering a potential explanation for a viscosity minimum around 1600-
2500 km depth inferred by geoid inversion studies”!?, which may affect dynamics of
subducted slabs and hot upwelling plumes®!:®2. However, studies of effects of spin
transitions on deformation of lower mantle minerals have been limited to Fp*>33%°, Fp
likely comprises <20% of the lower mantle phase assemblage and will only have a

significant effect on viscosity if grains are interconnected. If the lower mantle is enriched

in Si and adopts equilibrium texture®%*, Bdg is the interconnected phase that will control
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314

deformation. Due to the high strength of Bdg relative to Fp®, the viscosity of a
dominantly-Bdg lower mantle is high. Based on our experimental observations, the spin
transition in Fe**-dominant Bdg occurs at similar depths and induces comparable
reduction in both bulk modulus and bulk velocity as Fp (Supplementary Fig. 7). As a
result, the spin transition in Bdg may also cause a comparable change in viscosity*>33.
The decrease in viscosity during the spin transition and increase at higher pressures
matches the observed broad valley in lower mantle viscosity profile with the minimum at
about 1600-2500 km?!°. Together with the notion that the lower mantle may be more

18.63.64 " the spin transition in Fe**-bearing Bdg

enriched in Bdg than previous estimation
thus may play an important role in controlling lower-mantle dynamics.

With this new robust constraint on the equation of state of Fe**-bearing Bdg, we can
conclude that redox effects on bulk modulus and density of Bdg for normal mantle
compositions are not detectable in the deep mantle by current geophysical methods (Fig.
4). The difference between physical properties of Bdg with HS Fe**, HS Fe*", LS Fe** or
even mixed spin Fe*" at lower mantle conditions is too small to be resolved by
seismology. Along the lower-mantle geotherm, the pressure range of the spin transition of
the B-site Fe*" in Bdg is broadened by about 30 GPa (ref. 25,26), meaning that a mixture
of HS and LS B-site Fe** in Bdg would coexist over ~800 km depth range. Although the
mixed spin state of the (Mgo.4sFe**0.53)(Sio.40Fe**0.51)O3 Bdg in this study at 300 K causes
softening of the bulk modulus (52%) and bulk sound speed (31%) (Supplementary Fig.

7), the temperature-induced broadening and lower Fe**-content in lower-mantle

bridgmanite will together decrease the magnitudes of the softening by ~100 times for

lower-mantle compositions and temperatures>>?®. The mixed spin state in ferric but not
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ferrous bridgmanite provides the strongest signal for potentially observing contrast in V3
between oxidized and reduced bridgmanite. If seismic tomography techniques improve
precision in resolution of V3 to 0.5%, valence states of iron in mantle Bdg could be
resolved; for sensitivity to spin state, a precision closer to 0.01% would be required
beneath about 1850 km (Fig. 4). For Mg#=Mg/(Mg+Fe)=90 Bdg representative of the
mantle, differences in oxidation state of iron result in a density difference up to ~0.3%
(Fig. 4), far less than the 1.5-2% redox-induced density contrast required to rapidly
separate oxidized materials from reduced materials in the early history of the Earth?’.
Moreover, the spin-transition-induced density increase makes the density contrast of Bdg
with different Fe**/ZFe ratios sharply fade away below the mid-mantle depth (Fig. 4 and
Supplementary Fig. 5). Recent experimental and theoretical studies show that the
Fe*"/2Fe ratio of Bdg is not constant but varies significantly across the lower mantle P-T
conditions**°, Given the smooth density and sound velocity profiles of the lower
mantle®!, the minor influence of both spin and valence states of iron in Bdg on its elastic
properties may reconcile geophysical observations and mineral physics. Since both spin
and valence states of iron in Bdg are invisible to seismic tomography, other mechanisms
are required to explain observed lower mantle heterogeneities, such as a combination of

regional enrichment in iron and deficiency in silicon!”%4,

Methods
Bridgmanite synthesis
Samples were synthesized from a mixture of approximately 1:1:1 molar ratios high-

purity (>99.99%) Fe>03, MgO and Si0; at 24 GPa and 1873K for about 9 hours using the

18



338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

multi-anvil apparatus at the University of Michigan. The resulting akimotoite was
quenched from high temperature and slowly decompressed. °’Fe-enriched akimotoite was
synthesized by the same method using >’Fe203 (*’Fe 94.3%) instead. The average
composition of the recovered magnesium silicate samples is Mgo 462)Fe1.04(1)Si0.49(1)O3,
based on electron microprobe analysis (SX-100; focused beam; accelerating voltage of 15
keV and beam current of 10 nA; forsterite (Mg>SiO4) was used as Mg and Si standard
while magnetite (Fe3O4) was used as Fe standard). Minor amounts of Mg 21 Fes 81)O7
were found along grain boundaries of Bdg sample (Supplementary Fig. 1) and this phase
may adopt the same structure as recently reported FesO7 (ref. 66). The ambient X-ray
diffraction (XRD) pattern of Mgo 46(2) Fe1.04(1)Sio.49(1)O3 sample matches R3 ilmenite
structure with no contamination from the minor Mgi 2(1)Fes 81)O7 phase. The ambient unit
cell volume of our akimotoite sample is 282.8 A3, consistent with 50% linear mixing
between reported volumes for the isostructural R3 end-members Fe,Os (ref. 66) and
MgSiOs (ref. 67). Mgo.462) Fe1.04(1)Si0.49(1)O3 akimotoite transforms to bridgmanite
(abbreviated as Bdg) at ~24 GPa and 300 K and is fully recovered to ilmenite structure
with the same lattice parameters as the initial values after decompression. As a result, the
composition of the Bdg phase should be the same as akimotoite and the stoichiometric

chemical formula of our Bdg sample is written as (Mgo.46Feo.53)(Sio.49Fe0.51)03.

High-pressure diamond anvil cell experiments
Akimotoite samples were prepared for high-pressure experiments in symmetric-
type DACs with pairs of 300-um, 200-pm flat diamonds for pressure ranges up to 65.9

and 84.9 GPa, respectively. The sample chambers were confined by rhenium gaskets for
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X-ray diffraction (XRD) and hybrid-mode time-domain synchrotron Mdssbauer
spectroscopy (SMS) measurements while an X-ray transparent beryllium gasket was used
for X-ray emission spectroscopy (XES) measurements. The gaskets were preindented to
~30 pum and then sample chambers with diameters approximately halves of the culet sizes
were machined using the laser drilling system at HPCAT (Sector 16) of the Advanced
Photon Source (APS), Argonne National Laboratory (ANL). About 20x20x7 um?
polycrystalline akimotoite aggregates were loaded into the sample chambers. For XRD
measurements, Au powder was spread on top of akimotoite samples to serve as pressure
standard with minimal pressure gradient between samples and Au (ref. 36). During XES
and SMS measurements, pressures were determined from the edge of the diamond
Raman peak recorded from the tip of the diamond anvil at the sample position before and
after each data collection®. For XRD experiments, the COMPRES/GSECARS gas-
loading system at APS, ANL was used to load neon into the sample chamber as a
hydrostatic pressure medium. For XES and SMS measurements, the pressure medium

was silicone oil.

X-ray diffraction

Angle-dispersive XRD measurements were performed at beamline 13-BM-C of the
APS, ANL. The incident X-ray beam had a monochromatic wavelength of 0.434 A and
was focused to a spot size with a full width at half maximum of 15 x15 um?. Diffracted
X-rays were recorded on a MAR165 image plate. The sample-to-detector distance and
the tilt angle and rotation angle of the image plate relative to the incident X-ray beam

were calibrated by 1 bar diffraction of LaBe. At intervals of 1-2 GPa, X-ray diffraction
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images of the samples were recorded for an exposure time of 60 seconds. The XRD
images were integrated using the software DIOPTAS. Diffraction patterns were analyzed
using the software FullProf to examine the crystal structure and extract lattice parameters.
The compression curve of our Bdg sample exhibits softening between 43.1 — 52.5
GPa. In this pressure range a discontinuity is also observed in the corresponding finite
Eulerian strain F = P/3f{(1+2f)*” vs. normalized stress f= [(V/Vo)?3-1]/2 plot (Fig. 2).
The horizontal segments below and above 43.1 — 52.5 GPa in F-f plot demonstrate that
2™ order Birch-Murnaghan equations of state (BM-EoS) is sufficient to fit the
compression data (Fig. 2). The fraction of the high-spin state (nrs) in the softening
segment of the compression curve is determined by the method introduced by ref. 32: V' =
(1-nrs)Vus + nisVis, and the corresponding bulk modulus (K) of the mixed spin state is

calculated by the following equation:
onLs
== (1—an)—+ LS__ (Vs = Vus) (5, )r (1)
Where Vus and Vis are the unit cell volume of HS and LS states at a given pressure P,
respectively. The fitted high spin fraction nys=1- nrs is shown in Fig. 3b and the

calculated bulk modulus (K) and bulk sound velocity (V) is plotted against pressure in

Supplementary Fig. 7.

X-ray emission spectroscopy

XES measurements were performed at beamline 16-ID-D of the APS, ANL at
pressures up to 84.9 GPa at 300 K (Fig. 3). The incident X-ray with 5x7 pm? full-width at
half maximum was focused on the sample. Fluorescence signal was observed through the

Be gasket. The incident X-ray energy was 11.3 keV with a bandwidth of ~1 eV. Fe Kp
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emission was selected by silicon analyzer and reflected to a silicon detector with an
energy step of about 0.3 eV (ref. 69). Each spectrum took about 40 minutes and 1-3
spectra were taken to accumulate at least 30,000 counts at the Fe Kp main peak at each
pressure.

Each spectrum is composed of an Fe Kp main peak and a well-resolved lower-energy
satellite Kp- peak. . Both integrated absolute difference (IAD) and integrated relative
difference (IRD) methods®® were used to quantitatively analyze the total spin moment.
Spectra were first normalized to area and aligned to the position of the Fe K main peak
(Fig. 3a). Intensity difference between the sample and standards was integrated over the
whole energy range (7018.3-7083.8 eV) for IAD, but only around the satellite Kp- peak
(7018.3-7054.0 eV) for IRD. Both the spectra of Fe;O3 and the sample at 1 bar served as
high-spin references and FeS; at 1 bar was used as the low-spin reference. The spectra of
references were collected using the same setup to prevent systematic error. The use of
different high-spin standards generates less than 5% difference, which provides an
estimate of uncertainty (Fig. 3b). The pressure range of the spin transition observed in
XES is broader than that derived from softening of the compression curve (perhaps due to
use of a less hydrostatic pressure medium in this experiment), but centered at the same

average transition pressure of 48-49 GPa (Fig. 3b).

Nuclear forward scattering
Time-domain synchrotron Méssbauer spectroscopy (SMS) measurements were
performed at 26-71 GPa and 300 K at beamline 3ID-B of the APS. The storage ring was

operated in hybrid-mode, offering a ~50% longer time window than the typical 24-bunch

22



430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

mode for data collection and thus stronger constraints on the hyperfine parameters. The
X-ray beam was focused to ~20 um x 20 pm. Spectra were typically collected for 12
hours. All SMS spectra were fitted using the CONUSS package using a two-site model
with fixed equal intensity weighting based on the chemical formula (Supplementary Fig.
2). The small quadrupole splitting (QS) values of both sites relative to high spin Fe*" and
small difference in center shift (CS) (ACS < 0.3 mm s™!) between these two sites
demonstrate that all Fe in our Bdg sample is Fe*" (ref. 70). Because QS and CS values for
Fe generally increase with increasing coordination,’ the site with smaller CS is assigned
to the 6-fold-coordinated B-site and the site with larger CS is assigned to the 8-12-fold-
coordinated A-site. Across the spin transition at 43-53 GPa, QS of the A-site Fe**
increases by 0.1-0.2 mm/s while that of the B-site Fe*" increases by 0.2-0.3 mm s’!
(Supplementary Fig. 2). This moderate increase in QS across the spin transition of Fe** is
consistent with previous experimental studies on bridgmanite (ref. 34,35, Supplementary
Fig. 3). In comparison, only the lower bound of theoretically predicted QS of B-site LS
Fe** is marginally consistent with our results (Supplementary Fig. 3). Because QS of
different sites and valence states can be similar, interpreting time-domain SMS data for
Bdg requires long-time-window spectra for unique fits, clear evidence of spin transition
in complementary XRD and XES results, and well-defined Bdg samples without

alteration in compositions and oxidation state during high-pressure experiments.

Electrical resistance measurements
In-situ high-pressure electric resistance was measured by a four-point-probe system

at High Pressure Synergetic Consortium (HPSynC) at the APS. The resistance
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measurement system is composed of a Keithley 6221 current source, a 2182A
nanovoltmeter, and a 7001 voltage/current switch system. Mgo.4sFe1.04510.4903 akimotoite
sample was loaded into a symmetric DAC with 300-um diamonds. A stainless steel
gasket was first pre-indented to 15 GPa with 50 um in thickness, then the indent was
milled out and replaced by cubic boron nitride (¢cBN). Four 10-um Au leads were pressed
into contact with the sample and insulated from the stainless steel gasket by cBN powder
(Supplementary Fig. 6). Current was supplied through two adjacent Au leads while the
other two leads measured the corresponding voltage (marked in Supplementary Fig. 6).
The first set of resistance measurements was collected during compression, then the
pressure was fully released and the DAC was compressed again for the second set of
resistance measurements (Fig. 5). The electrical conductivity was calculated by using the
measured resistance, the distances between leads and established sample thickness before
compression and after decompression. Due to its incompressibility, the thickness of cBN
insert only changed by less than 10% between 20 GPa up to 60 GPa, as observed in a test
experiment. As a result, the uncertainty of calculated electrical conductivity caused by the
sample dimension is likely to be less than 10%, which is supported by the reproducibility
of the electrical conductivity derived from two successive runs in the same DAC (Fig. 5

and Supplementary Table 4).
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