:. Geometry & Topology 22 (2018) 1593-1646
msp

Convex projective structures on
nonhyperbolic three-manifolds

SAMUEL A BALLAS
JEFFREY DANCIGER
GYE-SEON LEE

Y Benoist proved that if a closed three-manifold M admits an indecomposable
convex real projective structure, then M is topologically the union along tori and
Klein bottles of finitely many submanifolds each of which admits a complete finite
volume hyperbolic structure on its interior. We describe some initial results in the
direction of a potential converse to Benoist’s theorem. We show that a cusped
hyperbolic three-manifold may, under certain assumptions, be deformed to convex
projective structures with totally geodesic torus boundary. Such structures may be
convexly glued together whenever the geometry at the boundary matches up. In
particular, we prove that many doubles of cusped hyperbolic three-manifolds admit
convex projective structures.

57M50; 20H10, 53A20, 57M60, 57530

1 Introduction

The previous decade has seen tremendous progress in the study of three-dimensional
manifolds. Much of that progress stems from Perelman’s proof of Thurston’s ge-
ometrization conjecture, which states that any closed orientable prime three-manifold
admits a decomposition into geometric pieces modeled on the eight homogeneous
Thurston geometries. However, because these geometric pieces do not glue together in
any sensible geometric way, there are some questions about three-manifolds for which
a Thurston geometric decomposition of the manifold may not be useful. One example
is the question of linearity of three-manifold groups, ie whether a three-manifold
fundamental group admits a faithful linear representation and in which dimensions.
While, in most cases, the Thurston geometric structure on each piece of a geometric
decomposition determines a faithful linear representation of its fundamental group, these
representations cannot be directly synthesized into a representation of the fundamental
group of the entire manifold. In order to make progress on this and other problems, it

Published: 27 March 2018 DOI: 10.2140/gt.2018.22.1593


http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57M50, 20H10, 53A20, 57M60, 57S30
http://dx.doi.org/10.2140/gt.2018.22.1593

1594 Samuel A Ballas, Jeffrey Danciger and Gye-Seon Lee

is natural, given a manifold of interest, to search for a homogeneous geometry capable
of describing the entire manifold all at once.

This article studies properly convex real projective structures on three-manifolds. A
domain € in the real projective space RIP" is called properly convex if there is an affine
chart containing €2 in which €2 is convex and bounded. A properly convex projective n—
manifold is the quotient I"\ 2 of a convex domain 2 by a discrete group I" of projective
transformations preserving €2. Given a manifold N, a properly convex projective
structure on N is a diffeomorphism of N with some properly convex projective
manifold I"\2, considered up to a certain equivalence. A convex projective structure
therefore induces a representation, called the holonomy representation, identifying 71 N
with the discrete subgroup I' C PGL,, 41 R. Hyperbolic structures are special examples
of convex real projective structures, but there are many nonhyperbolic manifolds that
admit such structures as well. See Benoist [2; 3] or Kapovich [30] for some examples.
See Benoist [4] for a survey of the subject of convex projective structures on closed
manifolds.

We mention that there are simple examples of convex projective structures on three-
manifolds coming from a convex hull construction applied to lower-dimensional do-
mains; such structures are called decomposable and are not of interest to us in the
present article. By work of Benoist [2], the Thurston geometric decomposition of
any closed three-manifold that admits an indecomposable properly convex projective
structure contains only hyperbolic pieces glued together along tori and Klein bottles. We
are concerned with the converse problem: if a closed three-manifold N has geometric
decomposition containing only hyperbolic pieces, must N admit a properly convex
projective structure? Our main theorem gives a positive answer to this question in a
special case.

Theorem 1.1 Let M be a compact, connected, orientable three-manifold with a union
of tori as boundary such that the interior of M admits a finite-volume hyperbolic
structure which is infinitesimally projectively rigid rel boundary. Then the double
N =2M of M admits a properly convex projective structure.

Using cube complex techniques, Przytycki and Wise [34] showed that any mixed three-
manifold, and therefore any manifold N as in Theorem 1.1, has linear fundamental
group. However, their methods give no control on the dimension of the linear represen-
tation. On the other hand, it was shown by Button [7] that there exist three-manifold
groups which admit no linear representation in dimension 4 or lower. To determine
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the smallest possible dimension of a linear representation of a three-manifold group
remains an interesting open question. Since the holonomy representation of a convex
projective structure lifts to the special linear group (see Section 2.1), we obtain:

Corollary 1.2 Let N = 2M be as in Theorem 1.1. Then my N admits a discrete
faithful representation into SL4R .

The corollary says that the property of linearity of the two hyperbolic pieces in N
may be extended to all of N. Indeed, the proof of Theorem 1.1 will show that the
representation of 71 N in the corollary may be chosen such that the restriction to each
copy of w1 M is arbitrarily close to the holonomy representation of the finite-volume
hyperbolic structure on M.

The assumption of infinitesimal projective rigidity rel boundary (Definition 3.1), studied
by Heusener and Porti [25], is satisfied for many hyperbolic manifolds, for example for
infinitely many fillings of one component of the Whitehead link. On the other hand, this
assumption does fail in certain cases, for example when the hyperbolic structure on M
contains a totally geodesic surface. A related rigidity condition in closed hyperbolic
three-manifolds was studied in Cooper, Long and Thistlethwaite [13; 14] and shown
experimentally to hold very often in small examples. However, in the setting of cusped
hyperbolic manifolds, it is not yet known in what degree of generality infinitesimal
projective rigidity rel boundary will hold. Nonetheless, the theorem gives a large new
source of examples of convex projective structures on nonhyperbolic three-manifolds.
The only other known examples come from taking covers of convex projective reflection
orbifolds. Benoist [2] constructed the first example of such an orbifold by realizing a
truncation polyhedron, ie a polyhedron obtained from a three-dimensional tetrahedron
by successively truncating vertices, as a reflection polyhedron in projective space. Later,
Marquis [32] completely classified the three-dimensional convex projective orbifolds
obtained from projective truncation polyhedra. Generalizing Benoist’s examples, Choi,
Lee and Marquis [12] are currently classifying convex projective reflection polyhedra
and studying their deformation theory.

1.1 Convex projective structures with totally geodesic boundary

The proof of Theorem 1.1 is motivated by Benoist’s beautiful theory [2] describing the
geometry of convex projective structures on three-manifolds, which we briefly review
here. If N = I'\Q is a properly convex projective closed three-manifold which is
indecomposable, then either
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(i) € is strictly convex and N admits a hyperbolic structure, or

(i) € is not strictly convex and the points on d2 at which strict convexity fails
form a dense set in 02 each component of which bounds a properly embedded
triangle, which is the intersection of €2 with a hyperplane.

We will refer to these triangles as totally geodesic triangles. Each totally geodesic
triangle descends to a totally geodesic embedded torus or Klein bottle in N and,
after cutting along these tori and Klein bottles, N is decomposed into a union of
properly convex submanifolds M; with fotally geodesic boundary. Each piece in this
decomposition (which topologically is exactly the JSJ or geometric decomposition
of N) admits a hyperbolic structure.

In light of the Benoist theory, in order to construct convex projective structures on
nonhyperbolic three-manifolds, we first need a source of convex projective building
blocks, ie convex projective manifolds with totally geodesic boundary. Under suitable
assumptions, we are able to find such structures by deforming the hyperbolic structure.

Theorem 1.3 Let M be a connected, orientable, finite-volume, noncompact hyper-
bolic three-manifold which is infinitesimally projectively rigid rel boundary. Then
M admits nearby properly convex projective structures where each cusp becomes a
principal totally geodesic boundary component.

The term principal totally geodesic boundary (see Definition 5.2, following Gold-
man [22] in the setting of convex projective surfaces) refers to a totally geodesic
boundary component which admits a convex thickening. That all totally geodesic
boundary components are principal is a necessary condition for a convex projective
manifold to appear as a submanifold in the Benoist decomposition of a closed convex
projective manifold described above.

The deformations described in the previous theorem may be understood by analogy
with the related phenomenon of the deformation of a two-dimensional finite-volume
hyperbolic surface whose cusp “opens up” to a very small geodesic circle coming in
from infinity. Hyperbolic surfaces with geodesic boundary are indeed convex projective
structures; the associated convex domain, a subset of the hyperbolic plane, has in its
boundary a dense collection of segments, each of which covers the geodesic boundary
circle. Although cusp opening is not possible in three-dimensional hyperbolic geometry
by Mostow—Prasad rigidity, Theorem 1.3 shows that it is possible in the category
of convex projective manifolds. Indeed, as the convex projective structures in the
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conclusion of the theorem approach the hyperbolic structure, the totally geodesic
boundary tori become very small (with respect to the Hilbert metric) and escape to
infinity as the totally geodesic triangles in the boundary of the associated convex domain
converge to points; see Figure 1.

-

Figure 1: The principal totally geodesic triangles in the boundaries of the
convex domains from Theorem 1.3 collapse to points as the convex domains
converge to the round ball.

The proof of Theorem 1.3 boils down to a transversality argument in the space
Hom(7r10M, PGL4R) of representations of the peripheral fundamental groups 71 0M.
The assumption of infinitesimal projective rigidity rel boundary, also appearing in
Theorem 1.1 above, guarantees that Hom(r1 M, PGL4R) is smooth at the holonomy
representation ppy, of the complete hyperbolic structure and that (an augmented version
of) the restriction map res: Hom(r; M, PGL4R) — Hom(7r1 dM, PGL4R) submerses a
neighborhood of ppy, onto a submanifold of Hom(sr1dM, PGL4R). We prove that this
submanifold transversely intersects a certain family of diagonalizable representations
constructed explicitly in Lemma 4.3. This family of diagonalizable representations is
a partial slice (never tangent to conjugation orbits) whose construction is geometric
in nature (see Section 4.1 for details). For dimensional reasons the intersection is
positive-dimensional and thus we can find representations of 71 M into PGL4R whose
restriction to the fundamental group of each boundary component is diagonalizable
over the reals. Finally, we are able to conclude that the resulting representations are
the holonomy representations of convex projective structures as in the theorem using a
“holonomy principle” that follows from recent work of Cooper, Long and Tillmann [15]
or Choi [11].

We note that the proof of Theorem 1.3 encounters immediate problems upon removing
the assumption that M is orientable. Indeed, Poincaré duality, applied to both M
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and its torus boundary components, is used to determine the dimensions of relevant
representation spaces.

1.2 Convex gluing

Consider a finite disjoint union .# of properly convex projective three-manifolds and
two disjoint closed submanifolds d and 9" of its boundary, each of which is a finite
disjoint union of principal totally geodesic tori. Given a homeomorphism f: 9 — @/,
let .#¢ denote the (topological) manifold obtained by identifying d with 9" via f'; the
topology of .#y depends only on the isotopy class of f. By straightforward general
arguments, the projective structure on .# defines a projective structure (in fact many
different structures) on . provided that the holonomy matching condition is satisfied:
for each component d; of 9, there exists g; € PGL4R such that

(1-1) P (fey) = g (1)g; !

for all y € m0d;, where p; and p} denote the holonomy representations for the
projective structures on neighborhoods of d; and 8} = f(9;), respectively. Indeed,
if this condition is satisfied then f may be isotoped to a projective map on each
component of d and the pieces of .# may be glued together projectively. We prove that
the resulting projective structure on .#y may in fact be taken to be properly convex.
The following theorem is the three-dimensional analogue of a result of Goldman [22]
in the setting of convex projective surfaces.

Theorem 1.4 Let .# be a finite disjoint union of properly convex projective three-
manifolds, let  and 0’ be disjoint closed submanifolds of its boundary, each of which
is a disjoint union of principal totally geodesic tori, and let f: d — 0’ be a homeo-
morphism. Assume that the holonomy matching condition (1-1) is satisfied along all
components of 3. Then .4y admits a projective structure in which all connected com-
ponents are properly convex. The natural map .# — .y is isotopic to a projective map.

When .# = M U M is the disjoint union of two copies of the same properly convex
projective manifold M with principal totally geodesic boundary and f: 0M — M is
the identity map, the holonomy matching condition (1-1) is trivially satisfied. In this
case, .#y = 2M is the double of M. Hence, Theorems 1.3 and 1.4 imply Theorem 1.1.

In general, any given projective manifold .# and homeomorphism f: d — 9’ as in
the hypotheses of Theorem 1.4 are unlikely to satisfy the holonomy matching condi-
tion (1-1). To find a properly convex projective structure on the glued manifold .#,
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one may attempt to deform the properly convex projective structures on the connected
components of .# with the goal of aligning the geometry of the principal totally
geodesic boundary tori of d and 9" so that (1-1) is satisfied. However, global deforma-
tion theory problems such as this are in general very difficult. Consider for example
the case that .# = M U M is a disjoint union of two three-manifolds, each with
boundary homeomorphic to a torus d = dM; and ' = dM>, and that f: d — ' is
any fixed gluing homeomorphism. The space of representations Hom(sr;9;, A) into
the diagonal subgroup A C PGL4R is six-dimensional. Furthermore, the subset of
representations which extend to 771 M is a half-dimensional (Lagrangian) subvariety,
as is the subset of representations which extend via fx to w1 M,. Therefore, the
expected intersection between these two sets is zero-dimensional. We do not know
any reason in general to expect this intersection to be nonempty. On the other hand,
no example seems to be known in which the intersection turns out to be empty. An
experimental study of some basic cases could prove enlightening; the authors hope to
conduct such experiments in future work. Of course, even if the matching problem (1-1)
is solved at the level of representations, one needs to find convex projective structures
realizing those representations as their holonomy representations in order to apply
Theorem 1.4. The following theorem shows that any deformation of the holonomy
representation of a properly convex projective manifold through representations with
diagonalizable peripheral holonomy is indeed the holonomy representation of a properly
convex projective structure with totally geodesic boundary.

Theorem 1.5 Let M be a complete finite-volume hyperbolic three-manifold. Then
the set of holonomy representations of properly convex projective structures on M
with principal totally geodesic boundary is closed in the subspace of representations in
Hom(mry M, PGL4R) whose restriction to w1dM is diagonalizable.

Indeed, this theorem is not difficult using our techniques. Any convex projective
structure on M with totally geodesic boundary yields a convex projective structure on
the double 2M by Theorem 1.4. By a theorem of Benoist [1], the space of holonomy
representations of convex projective structures on this closed manifold 2M is closed
in Hom(mr12M, PGL4R) and any deformation of the original structure on 2M may be
cut back into pieces with principal totally geodesic boundary.

1.3 Gluing together covers of reflection orbifolds

In Section 7, we apply the work of Benoist [2] and Marquis [32] and Theorem 1.4 to
produce many new examples of convex projective structures on nonhyperbolic three-
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manifolds N which, in contrast to Theorem 1.1, are not doubles. In each of these
examples, the pieces {M;} of the JSJ decomposition of N come from covers of a
reflection orbifold O with a cusp 0 isomorphic to the Euclidean (3, 3, 3)—triangle
orbifold. Any convex projective structure on O induces a convex projective structure
at infinity on 9, the space of which is well known to be one-dimensional. Considering
only projective structures on the pieces M; which cover a convex projective structure on
such an orbifold O greatly simplifies the holonomy matching problem of Theorem 1.4.
This technique allows us, for example, to identify manifolds in the census of tetrahedral
cusped hyperbolic manifolds and gluing maps so that the resulting glued-up manifold
admits properly convex projective structures. See Section 7 for precise results.
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2 Background

2.1 Properly convex domains

The n—dimensional real projective space RIP” is the quotient of R”*1\{0} by the
action of R* by scaling. A point in RP” is an equivalence class [v] of vectors
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v € R"T1\{0}. The projective general linear group PGL,, 1R, the quotient of GL,,+1R
by its center, acts faithfully on RP”.

The image, or projectivization, of a two-dimensional vector subspace under the quotient
map is called a projective line and the image of an n—plane in RP” is called a
projective hyperplane. Each hyperplane is determined by a unique projective class
of linear functionals on R”*!, so the space of hyperplanes identifies with the dual
projective space RP”*, which is the projective space associated to (R”*1)* . This
correspondence is known as projective duality. The natural action of GL,4+1R on
(R"*1)* descends to a faithful action of PGL, 1R on RP"*,

Let H be a projective hyperplane. The complement of H in RP” is called an affine
patch and is denoted by A g . Up to change of coordinates by a projective transformation,
ie an element of PGL, 4R, any affine patch Ay may be identified with the standard
affine patch

{[x1,....,xn, 1] € RP" | (x1,...,x,) € R"}.

A subset  of RP” is called convex if it is contained in some affine patch (ie is disjoint
from a projective hyperplane) and its intersection with every projective line is connected.
If in addition its closure € is contained in an affine patch then Q is properly convex.
Equivalently, €2 is properly convex if €2 does not contain any complete affine line.
The boundary 9Q := @ \ Int(RQ) is said to be strictly convex at p € dQ if p is not
contained in the interior of any affine line segment in 2. If Q is properly convex and
02 is strictly convex at every point p € d<2, then we say that 2 is strictly convex.

Every open properly convex domain €2 gives rise to a dual domain
Q* = {[¢] e RP™ | p(v) # 0 for all [v] € Q).

It is easily verified that * is also open, nonempty and properly convex and that
(R2*)* = Q. For each p = [v] € 0Q there is a (possibly nonunique) ¢ = [¢] € IQ2*
such that ¢(v) = 0. The projective hyperplane dual to ¢ is called a supporting
hyperplane at p. A point p € dQ2 has a unique supporting hyperplane if and only if p
isa C! point of the boundary.

Let S” denote the n—sphere, realized as the quotient of R”*1\{0} by positive scaling,
and let 7: S™ — RP” denote the two-to-one covering map. The automorphisms
of S" are given by the linear transformations SL;EHR with determinant £1. Let
[T] € PGL,+1R be an equivalence class of linear transformations. By scaling we
may arrange that 7' € SL,ijR. Additionally, since T € SL,ijR if and only if
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—T eSLE 11 R, there is a two-to-one covering SLE 1 1R —PGL;+1R, which by abuse
we also call 7, given by 7 (T) = [T]. If Q is a properly convex domain then we let
SL* () and PGL(L) denote the subgroups of SLﬁE 1R and PGL, 1R preserving
7~ 1(Q) and , respectively. Then 7 restricts to a two-to-one covering homomorphism
from SL* () onto PGL(2). When  is properly convex, a homomorphic section
of 7 is constructed as follows. Since 2 C RP” is properly convex, the preimage of Q
under 7 will consist of two connected components. An element 7" € SL:‘:(Q) either
preserves both of these components individually or it interchanges them. Furthermore,
T preserves both components if and only if —7 interchanges them. The desired section
of 7 is defined by mapping [T] € PGL(2) to the unique lift of [T] to SL* (L) that
preserves both components of 7~ 1(€2). Using this section, we are able to identify
PGL(2) with a subgroup of SL*(£2). We may therefore regard elements of PGL(S2)
as linear transformations when convenient.

2.2 Projective structures on manifolds

Let M be an n—manifold. A projective atlas on M 1is a collection ¢y : Uy — RIP" of
charts that cover M with the property that if Uy and Ug are charts with nonempty
intersection then ¢y o ¢/;1 is locally the restriction of an element of PGL, +1R. Every
projective atlas determines a unique maximal projective atlas and we call a maximal
projective atlas on M a projective structure on M. In other words, a projective structure
on M is a (G, X) structure on M (see Ratcliffe [35] for an introduction to (G, X)
structures) where (G, X) is real projective geometry: G = PGL,4+1R and X = RP”.
A manifold equipped with a projective structure is called a projective manifold. Note
that a projective manifold is also a smooth manifold.

If M and M’ are projective manifolds of the same dimension, then a continuous
map f: M — M’ is projective if, for each pair of charts ¢: U — RP" of M and
V: V — RP" of M’ suchthat U N f~1(V) # @, the map

Yo fop lip(UNFHV)) >y (fU)NV)

agrees with an element of PGL, 1R on each connected component. Such a map is
necessarily smooth. If in addition f is a diffeomorphism, we say that f is a projective
equivalence.

After fixing a universal covering M — M, the local data of a projective structure
may be replaced, via analytic continuation of the charts, by global data (dev, p),
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where dev: M — RP” is a local diffeomorphism, called a developing map, which is
equivariant with respect to a representation p: w1 M — PGL, 1R called the holonomy
representation in the sense that

dev(yx) = p(y)dev(x)

forall y e ;M and all x € M. Any two developing maps dev and dev’ for the same
structure satisfy that dev’ = g odev for some g € PGL,,+1R ; the respective holonomy
representations are related by conjugation: p’ = gpg~!. More generally, two projective
structures on M are considered equivalent if developing maps dev and dev’ for the
respective structures are related by the equation dev' = g odev o @, where @ is the lift
to M ofa diffeomorphism ¢ of M that is isotopic to the identity.

Suppose that we are given a projective structure on M with development pair (dev, p).
If dev is a diffeomorphism onto a convex (resp. properly convex or strictly convex)
domain Q of RP” then we say that the projective structure is convex (resp. properly
convex or strictly convex). In this case the holonomy representation p is faithful, with
image a discrete subgroup of PGL(2). Here are some useful equivalent characteriza-
tions of convexity.

Theorem 2.1 (Goldman [22, Proposition 3.1]) Let M be a projective n —manifold.
Then the following are equivalent:

(1) M is convex.

(2) Every path in M is homotopic (rel endpoints) to a unique geodesic segment, ie
a segment that develops into a projective line.

(3) M is projectively equivalent to the natural projective structure on I'\Q2 where
Q= dev(ﬂ) C RP” isconvex and T = p(w1 M) C PGL(R) is a discrete group
acting properly discontinuously and freely on €2.

Remark 2.2 If M = I'\Q is properly convex then M can be equipped with the
Hilbert metric (see de la Harpe [23]). Segments of projective lines, also known as
projective geodesics, are always geodesics in the Hilbert metric. If €2 is strictly convex,
then Hilbert geodesics are always projective geodesics.

Via the Klein model, the hyperbolic n—space H”" is realized as a ball in RP” and its
group of isometries is realized as PO(n, 1) C PGL,+1R (see Ratcliffe [35] for details).
Thus a hyperbolic structure on a manifold is a projective structure and a complete
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hyperbolic structure is a strictly convex projective structure. Incomplete hyperbolic
structures could be convex, eg the interior of the convex core of a convex cocompact
hyperbolic structure, or could fail to be convex. For example, given a cusped hyperbolic
manifold M, Thurston’s generalized Dehn surgery space [37] consists of one complete
structure, which is strictly convex, and many incomplete structures, none of which
are convex. Some of those incomplete structures can be completed to give hyperbolic
structures on Dehn fillings of M, but even those incomplete structures are not convex:
the developing map is an infinite-sheeted covering onto the complement of a discrete
countable collection of lines.

2.3 Deformation theory and projective manifolds with generalized cusps

There is a natural correspondence between (G, X) structures and their holonomy
representations, often called the holonomy principle or Ehresmann—Thurston principle.
The correspondence, originally discovered by Ehresmann [18] and popularized by
Thurston [37], is a crucial tool in the study of deformation spaces of geometric structures.
We describe this holonomy principle in the projective setting as well as some relevant
generalizations in the setting of convex projective structures. For this discussion we
let G =PGL,1R. Let M be the interior of a compact n—manifold, possibly with or
without boundary, let I' = 71 M, and let © (M) be the space of equivalence classes of
marked projective structures on M. Let Hom(T", G) denote the space of representations
of I' into G and let y(I', G) denote its quotient by the G action by conjugation. Let
hol: ®(M) — x(I', G) denote the map that associates to each equivalence class of
projective structure the conjugacy class of its holonomy representation. Each space is
equipped with a natural topology; we refer the reader to Goldman [21] for details. When
M is closed, the holonomy principle states simply that the map hol: (M) — x ([, G)
is a local homeomorphism; in other words, the small deformations of a projective
structure are, up to equivalence, parametrized by small deformations of the conjugacy
class of its holonomy representation. In the case that dM is nonempty, the principle
holds as stated only once the definition of equivalence of projective structures is relaxed
so that two projective structures are considered equivalent if there is a diffeomorphism
of M which is projective, with respect to the one structure in the domain and the other
in the target, away from some collar neighborhood of dM. In general, the holonomy
principle does not guarantee any control of the geometry at the boundary; this is an
important issue in many studies of deformations of geometric structures (eg in the
context of cone-manifold structures; see Hodgson and Kerckhoff [27] or Danciger [17]),
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including this one. Proofs of the holonomy principle are found in Canary, Epstein and
Green [9] or Goldman [21].

In the context of this paper, we need a more powerful holonomy principle that allows for
control of more refined geometric properties, specifically that of convexity. Koszul [31]
proved that when M is closed, proper convexity is an open condition: a small defor-
mation of the holonomy representation of a properly convex projective structure is the
holonomy representation of a nearby properly convex projective structure. However,
when dM # &, the same statement fails. A simple example, that of incomplete
hyperbolic structures near a complete hyperbolic structure, was already given in the
previous subsection. We now describe recent work of Cooper, Long and Tillmann [15],
which, given a properly convex projective structure satisfying certain assumptions,
determines which deformations of the holonomy representation are the holonomy
representation of a nearby properly convex projective structure. Further, the result
allows for some control over the geometry at the boundary. We note that related results
of Choi [10; 11] on projective structures with radial ends also imply the holonomy
principle needed in our context.

A generalized cusp is a properly convex manifold B (with boundary) such that B =~
dB x [0,00), dB is compact and strictly convex (ie locally the graph of a strictly
convex function), and 71 B is virtually nilpotent. The manifold dB is called the cusp
cross-section. We now discuss some motivating examples for this definition. The
first is an end of a finite-volume hyperbolic manifold. In this case the strictly convex
boundary dB of the generalized cusp is the quotient of a horosphere by a virtually
abelian group. The second example, which is more relevant for our purposes, is a
regular neighborhood of a principal totally geodesic torus boundary component. The
following holonomy principle follows immediately from [15, Theorem 0.1].

Theorem 2.3 Let M = MUYV be a connected n—manifold such that M€ is compact
and connected, V = 9V x [0,00) and dM ¢ = dV. Suppose that Vy,...,V; are the
components of V and that p is the holonomy of a properly convex projective structure
on M in which each V; is a generalized cusp. If p’ is sufficiently close to p in
Hom(wry M, G) and p'|,v; is the holonomy of a generalized cusp structure on V; for
each i, then p’ is the holonomy of a properly convex structure on M in which each V;
is a generalized cusp.

We will use this theorem in Section 5 to prove Theorem 1.3.
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3 Smoothness

We begin by setting some notation that will be used for the remainder of the article.
Henceforth, we let M denote an orientable finite-volume noncompact hyperbolic three-
manifold with k torus cusps, which we denote by 0; for 1 <i <k.Let [ =m M
denote the fundamental group of M, and for 1 <i <k let A; denote a representative
of the conjugacy class of peripheral subgroups of the i cusp. Each A; is isomorphic
to Z x Z. We denote the groups PGL4R, SLff]R and SL4R by G, G and Gy,
respectively. All three of these Lie groups are locally isomorphic and thus have the
same Lie algebra, which we will denote by g.

Let pnyp be a representative of the unique conjugacy class of discrete faithful represen-
tations of I' into the isometry group of hyperbolic three-space. Via the Klein model,
the isometry group of hyperbolic three-space is realized as the subgroup PO(3, 1) of G
that preserves the standard round ball H? in RP3. Hence, we may regard Phyp as a
point in the representation space Hom(I', G). We also, by abuse, regard ppyp, as a point
in the quotient y(I', G) = Hom(T', G)/ G of the representation space by the action
of G by conjugation. The sense in which the quotient is taken may be left ambiguous;
if one desires x(I', G) to have the structure of an algebraic variety, then the Mumford
geometric invariant theory quotient is needed rather than the naive topological quotient.
It is a standard fact that the two quotients agree (as topological spaces) locally near
any irreducible representation such as ppyp.

We will also need to study the representation space Hom(A;, G) of a peripheral
subgroup A;, which has no irreducible representations. In this case the quotient by
conjugation is not well behaved. In the main sections of the paper, we will avoid such
issues by working exclusively in Hom rather than in the quotient y.

This section is dedicated to some basic results about the local structure of Hom(I", G)
and x(I", G) near ppyp. These results are straightforward and many of them seem to
be well known to experts, although we are not aware of their existence anywhere in the
current literature. Some analogous results from the context of deformations in SL(2, C)
and SL(n, C) can be found in Boden and Friedl [5], Heusener and Medjerab [24] and
Heusener, Porti and Suarez Peiré [26]. The main result of this section shows that if
a certain cohomological condition is satisfied (Definition 3.1), then ppy, is a smooth
point of Hom(I', G) and y(I", G). Since we are only interested in local behavior, it
is equivalent and will be marginally less cumbersome to work in the representation
space Hom(T, é) for the matrix group G. Note that, since Phyp 1s the holonomy
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representation of a convex projective structure, it admits a unique lift, denoted by abuse
again by pnyp, to G and so does every nearby representation (see Section 2.1).

3.1 Infinitesimal deformations and cohomology

Let p;: I' — G be a smooth path of representations into the matrix group G . Near
t = 0, we may express the path p; as

pi(y) = exp(tu(y) + 0(t))p(y).

where u: I' — g, defined by y %‘z:o p:(Y)p(y)~1, is a group cocycle with
coefficients in g twisted by the adjoint action of p = pg. We denote the set of such
cocycles, defined by the condition u(y1y2) = u(y1) + Ady,) u(y2), by Z}) (T, 9)
and refer to its elements as infinitesimal deformations of p; it is the Zariski tangent
space of Hom(T, G) at p. The representation p is a smooth point of Hom(T, G) if
and only if each infinitesimal deformation u is integrable, ie u is tangent to some
path p; as above. The space of coboundaries, denoted by Bp1 (T, g), is the subspace
of those cocycles b satisfying the infinitesimal conjugacy condition: that there exists
v € g such that b(y) = v — Ad,(,) v. Each such coboundary b is tangent to the
conjugation path p; = ¢ ,oct_1 at t =0, where ¢; = exp(tv). The first cohomology
group H)!(T',g) = Z}(T.g)/B, (', g) with coefficients in g twisted by the adjoint
action of p describes the infinitesimal deformations of p up to infinitesimal conjugacy.
In the case that p determines a smooth point of y(I, 5), this cohomology group
describes its Zariski tangent space.

The higher cohomology groups, with twisted coefficients in g, will not be of use to us

except in the following subsection. Given an infinitesimal deformation u, there is an

infinite sequence of obstructions to the integrability of u, each of which is an element
2

of the second cohomology group H; (T, g).

It will be important to understand the relationship between the deformations of the
representations of I' with the deformations of representations of the peripheral sub-
groups Aj, ..., Ag. The restriction map

res: Hom(I', G) — Hom(A1, G) x - -- x Hom(Ag, G)

is the product res = resy X --- X res;, where res;: Hom([", é) — Hom(A;, 6) de-
notes the restriction map induced by the inclusion A; <> I' of the i™ peripheral
subgroup into I'. Each such map res; defines a restriction map on group cohomology,
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(resi)«: le (I',g) —> Hrles,' o(Ai, g), and it is convenient to synthesize these into one

linear map .

resy: le(l", g) — @ Hrlesl.p(Ai,g),
i=1

defined by
resx = (resy)« @ --- D (res) .

When clear, we will abuse notation, using res and res; to denote the restriction map both

on representations and on cohomology. We will also conserve space using Hp*(Ai ,9)
*

tomean H7, ,(Ai,g).

We note that, since M is aspherical, the group cohomology groups Hp* (I, g) coincide
with the de Rham cohomology groups Hp* (M, g) with coefficients in the flat g—bundle
over M associated to p. Similarly, there is a natural identification between Hp*(A,- ,9)
and H)(9;,g) for each 1 <i <k and between @?:1 HY(Ai,g) and H)(0M, g).
Although it will be more convenient for us to work with group cohomology, this
identification makes available the tools commonly used in the study of cohomology of
manifolds, eg the long exact sequence of a relative pair and Poincaré duality (see eg
Heusener and Porti [25] for details).

3.2 Infinitesimal rigidity implies smoothness

The following property, introduced and studied by Heusener and Porti [25], is the
critical assumption in Theorems 1.1 and 1.3.

Definition 3.1 Let pny,: I' = SO(3,1) C G denote the holonomy representation of
the complete finite-volume hyperbolic structure on M. Then M is called infinitesimally
projectively rigid rel M if the restriction map res: lehyp (I, g) —> @le Hp}wp (Aj,9)
is an injection.

The main theorem of this section is:

Theorem 3.2 Let M be an orientable complete finite-volume hyperbolic manifold
with fundamental group I', and let ppyp,: I' — SO(3,1) C G be the holonomy repre-
sentation of the complete hyperbolic structure. If M is infinitesimally projectively
rigid rel OM, then pyyp is a smooth point of Hom(T', 5) and its conjugacy class is a
smooth point of y (T, 6)

Remark 3.3 Heusener and Porti [25] prove that the condition of infinitesimal pro-
jective rigidity rel boundary persists under infinitely many Dehn fillings. They then
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show that there are infinitely many examples of one-cusped hyperbolic 3—manifolds
that satisfy the condition by studying fillings of the Whitehead link, a two-cusped
manifold that satisfies the condition. For example, the figure-eight knot complement
as well as all but finitely many twist knots are infinitesimally projective rigid rel
boundary. In future work, we hope to determine exactly which manifolds of the
Hodgson—Weeks cusped census are infinitesimally projectively rigid rel boundary. A
related rigidity condition in closed hyperbolic three-manifolds was studied in Cooper,
Long and Thistlethwaite [13; 14] and shown experimentally to hold very often in small
examples.

The proof of Theorem 3.2 requires several lemmas. Note that Lemma 3.4 does not
require M to be orientable, but that Lemma 3.6 does.

Lemma 3.4 Foreach 1 <i <k, the restriction Phyp; = res; (Pnyp) Of pnyp to the jth
peripheral subgroup is a smooth point of Hom(4A;, G). Hence, res(pnyp) is a smooth
point of Hom(A1, 6) X ...x Hom(Apg, 6).

Proof We may work in Go=SL4R in place of G, since Phyp; has image in this smaller
group. The variety Hom(A;, Go) is the set of real points of a complex affine variety
Hom(A;, SL4C), which is defined over R. It therefore suffices to prove that ppyp; is a
smooth point of Hom(A;, SL4C). By Theorem C of Richardson [36], Hom(A;, SL4C)
is an irreducible (complex) affine variety and contains a dense set of representations
whose images consist of diagonalizable representations. Thus Hom(A;, SL4C) is an
18—dimensional complex variety. Heuristically this can be seen as follows: pick two
generators y; and y, for A;. Anelement p € Hom(A;, SL4C) can map y; arbitrarily
and thus contributes 15 degrees of freedom. The only condition on p(y,) is that it
commute with p(y1). Generically, the image of y; will be diagonalizable with distinct
eigenvalues, so the centralizer Z(p(y1)) is conjugate to the diagonal subgroup, which
is three-dimensional.

To prove the lemma, we must therefore show that the Zariski tangent space to the
variety Hom(A;, SL4C) is 18—dimensional at ppyp; . The image of A; under ppyp; is
conjugate to a lattice in the Lie group of matrices of the form

luv%(uz—i-vz)
010 u
001 v
000 1
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A simple calculation shows that the infinitesimal centralizer Hp(})lw (A;, g) is 3—dimen-
sional. By Poincaré duality (see eg Hodgson and Kerckhoff [27]),

dim Hp‘;ypi (A;, g) = dim Hpiypi (A, 9),

and therefore, since the Euler characteristic of dM is zero, we have that Hpiyp (Ai,g)
1
has dimension six. Furthermore,

dim Hy (Ai,9)+dimB, (A g)=dimg= 15,

so the coboundaries Bplhyp_ (A;, g) are 12—dimensional. Hence the Zariski tangent space

V4 ;l)hyp. (A;, g) has dimension 18, as desired. i

Remark 3.5 Despite Lemma 3.4, the representation ppyp; does not determine a smooth
point of y(A;, 6). Indeed, the conjugacy class of ppyp; contains the trivial represen-
tation in its closure. Hence, the naive quotient of Hom(A;, 5) by conjugation is not
Hausdorff at this point. The Mumford GIT quotient avoids failure of Hausdorftness by
identifying pnyp, with the trivial representation, which is not even a smooth point of
Hom(A;, G).
Next, we derive some relevant information about second cohomology groups from the
infinitesimal projective rigidity condition.
Lemma 3.6 If M is infinitesimally rigid rel boundary then the map
reSs: szhyp M, g) —> Hpiyp (M, g)

is an injection.
Proof Consider the long exact sequence of the pair (M, dM ), where the first injection
is by assumption,

1 resx 1 2 2 ress 2
O—>thle (M, g)%thyp(aM, g)—>thyp (M, oM, g)—>thyp (M, g)—>thyp(8M, 9).
We showed above that dim lehyp, (0;,g) = 6 for each i and so dim Hpiyp (0M,g) =6k.
By a standard Poincaré duality argument, known as “half lives, half dies” (see eg
Hodgson and Kerckhoff [27]), the image of Hp}wp (M, g) under the restriction map ress
is 3k —dimensional and so Hpiyp (M, g) is itself 3k —dimensional. By Poincaré duality,
we have that the group Hp%yp (M, oM, g) is also 3k—dimensional. We conclude that

the map lehyp(aM ,0) — Hpiyp(M ,OM, g) must be a surjection and by exactness that
resy: Hpiyp(M ,0) — szhyp(aM , ) is also injective. ]

We now prove Theorem 3.2.
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Proof of Theorem 3.2 To prove Theorem 3.2 we must show that each infinitesimal
deformation u € Z l17hyp (T, g) is integrable. It is well known that integrability of u
follows if we can show that the infinitely many obstructions all vanish (see eg Heusener
and Porti [25, Section 8.2.4]). The obstructions to integrability are cohomology classes
in Hpiyp (T, g). However, if one of these obstruction classes were nonzero, it would, by
Lemma 3.6, map to a nonzero class in EB;‘ZI szhyp (A;, g), obstructing the integrability
of resxu in @?:1 Hp}]yp(A,’,g). By Lemma 3.4, this is impossible. Hence, all the
obstructions vanish and u is an integrable infinitesimal deformation. This proves
that Hom(T", é) is smooth at ppy,. Since ppyp is an irreducible representation, the
orbits of ppyp and all nearby representations are closed. Since the centralizer of all
representations near pnyp is constant (equal to £17), we conclude that y(T, é) is a
manifold near the conjugacy class of ppyp. O

3.3 The augmented restriction map

In this subsection, we formulate and prove some results that are needed for the main
transversality argument in the next section, where the basic goal will be to find deforma-
tions of the discrete faithful SO(3, 1) representation with certain desired behavior along
each of the peripheral subgroups. More specifically, we will construct a submanifold
< CHom(Z x Z, 5) consisting of representations with the desired behavior and then
look for representations in Hom(T', 6) whose restriction to each peripheral subgroup
are conjugate into .7 . For technical reasons, in the execution of this strategy it will be
more convenient to work with the following augmented restriction map.

Definition 3.7 Let M be a finite-volume hyperbolic 3—manifold with k torus cusps
and with fundamental group I'. Then we define the augmented restriction map of M,
denoted by res: Hom(T, G) x G¥~1 — Hom(A1,G) x --- x Hom(Ag, G), by the
formula

(0,82 -.-8k) > (res1(p), c(g2) - resz(p), . ... c(gk) - resg (p)).

where c(g) denotes the conjugation action by g.

The main result about res that we will need for the transversality argument in Section 4
is:

Theorem 3.8 Let M be an orientable finite-volume hyperbolic 3—manifold with k
cusps and with fundamental group I', and let pyny, be the holonomy representation
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of the complete hyperbolic structure. Assume that M satisfies Theorem 3.2, so that
Hom(T, 5) is smooth at pyy,. Then the augmented restriction map

res: Hom(T, G) x Gk Hom(A1,G) x ---x Hom(Ag, G)

is a local submersion onto a submanifold of codimension 3k at (pnyp, &2, ..., 8k),
where g5, ..., g, are any elements of G.

Proof Let U be a smooth neighborhood of ppy, in Hom(T', é) whose elements are
all irreducible representations, and let W = U x G*~1. The proof proceeds by showing
that the rank of the augmented restriction map res is constant and equal to 15k for the
points in W.

We begin by identifying the relevant tangent spaces. The tangent space 7, Hom(T", (~})
is Z;(I’, g) and the tangent space T, Hom(A;, 5) is Z})(Ai,g). Since any p € U
is irreducible, we may identify Tz G = Bcl(g)p
p=(p,g2,...,8k) €W, we may identify

(I, g) forany g € G. As a result, for

k
T,(Hom(I, G) x G* 1) = Z) (N, g) @ P Bl (g,), (T 0)-
i=2

The following diagram commutes:

k ress k
Zy(T0) ®@Dis By, (1. 0) —— Z,(A1,9) @ Di—s Z (), (A1 0)

wll lm

ress k
le (F’ g) @i:l le (Al s g)

where 7 is projection to cohomology and @ is projection to cohomology in each fac-
tor followed by the identification of le(A,-, g) and Hcl(gi)p(Ai’ g) induced by c(g;).
Then ker(w) is given by B/O1 g & @5;2 Bg(gi)p(f‘, g) and ker(w,) is given by
Bp1 (A1.9)® EB{'(:z B(}(gi)p(A,' . g), so it is clear that res(ker(w1)) = ker(w>,). After
possibly shrinking U we may assume for any p € U that, for each i, the dimension of
le (A;, g) is 6, that Hom(A;, G) is smooth and 18—dimensional at ¢ (g;)res; (), and

’

therefore that the dimension of ker(w,) is 12k . Furthermore, the “half lives, half dies’
argument from Lemma 3.6 shows that the rank of res,: le (I',g) > @?:1 le (Ai,9),
and hence of @, o res«, is 3k. Combining these facts we see that the rank of res.
must be 15k. |
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Remark 3.9 When k = 1, res = res are the same. However, for k > 2, while the
local image of res is still a smooth submanifold, the codimension is larger than that

of res.

4 Diagonalizable peripheral holonomy

Recall the notation G = PGL4R, G = SLf]R and 60 = SL4R from the previous
section. Also recall that M is an orientable finite-volume hyperbolic three-manifold
with k torus cusps, I' = 1 M, the i'" cusp is denoted by d;, and A; is a peripheral
subgroup for d; . In this section we prove:

Theorem 4.1 Assume that M is infinitesimally projectively rigid rel dM. Then
there exists a smooth path of representations p; € Hom(T, 6) such that pg = pnyp
is the holonomy representation of the complete hyperbolic structure and p;(A;) is
diagonalizable over the reals forall t #0 and i €{1,...,k}.

The proof is a transversality argument in the product of the representation spaces of
the boundary tori. Let us give the rough idea in the simpler case that there is only
one cusp, whose peripheral subgroup we denote by A: Theorem 3.8 gives that the
restriction map res maps a neighborhood of ppy, in Hom(T, 5) onto a submanifold
of Hom(A, 5). This submanifold has codimension three and is smoothly foliated by
conjugation orbits. Now, the key ingredient for the proof is the construction of a smooth
four-dimensional partial slice . in Hom(A, 6) which is transverse to res at ppy, and
all of whose representations are either diagonalizable with real eigenvalues or lie in a
unipotent (parabolic) subgroup of SO(3, 1). The transverse intersection of . with the
image of res gives a one-dimensional family in Hom(A, G ) through pyyp, in which all
representations, except the restriction of pyyp, are diagonalizable. This one-dimensional
family is the image of a one-dimensional path in Hom(T', G), as desired.

Let us begin the proof by describing the four-dimensional partial slice in the following
general setting: let A = Z x 7 and let pynyp be a representation taking A to a lattice in
a unipotent subgroup of SO(3, 1). The four-dimensional partial slice . is the image
of the following map ®: R* — Hom(A, 50). We use coordinates (a, b, x, y) on R*
and generators y1, Y2 for A = 7Z x Z. Define

0 1 00
0 a b1

®(a,b,x,y)(y1) :=exp 0 b a0l
0 2(a?+5% 00
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0 x y 0
0 ax+b bx—a X
o@bx ) i=exp | T T

0 2(a? +b%)x 2(a*>+5b%y 0

A simple computation checks that ®(a, b, x, y)(y1) and ®(a, b, x, y)(y2) commute.
We may assume using conjugacy that pny, coincides with ®(0, 0, u,v), where u +iv
is the cusp shape of the cusp ,ohyp(A)\IHI3 with respect to the generators y; and ;.
When a = b =0, and x and y are allowed to vary, ® gives a global slice for the
discrete faithful unipotent SOg(3, 1) representations of A ; the restriction of @ to the
xy—coordinate plane is well known to be transverse to conjugation. Geometrically,
®(0,0, x, y) parametrizes the conjugacy classes of holonomy representations of all
possible torus cusps of hyperbolic three-manifolds.

Definition 4.2 We refer to the collection of representations ®(0, 0, x, y) forall y # 0
as the cusp shape locus.

The following lemma is the most important ingredient in the proof of Theorem 4.1. Its
proof will be given in the following subsection.

Lemma 4.3 Let u,v € R with v # 0. Then, near the point (a,b,x,y) = (0,0,u,v),
the map ® is a local immersion which is never tangent to conjugation orbits. Further,
for each (a,b) # (0,0), the representation ®(a, b, x, y) is diagonalizable over the
reals.

The eigenvalues of the generators ®(a, b, x, y)(y;) may be computed explicitly. They
are most naturally described using certain branched polar coordinates around the
cusp shape locus: (a,b,x,y) = (t cos30,tsin36, x,y). In these coordinates the
eigenvalues of ®(f cos36,7sin36, x, y)(y;) are

(1, exp(2t cos 6), exp(—t(cos 6 + V3sin b)), exp(t(—cos 6 + V3 sin 9))),

and the eigenvalues of ®(f cos 360, ¢ sin 36, x, y)(y2) (listed with respect to the same
eigenbasis) are

(1, exp(2¢(x cos 8 + y sin 9)), exp(—t((x — «/gy) cos 6 + (\/§x + y) sin 9)),
exp(—t((x + v/3y) cos 6 + (—v/3x + y) sin 0))).

Note that when moving away from the cusp shape locus (ie increasing ¢ from zero) in any
direction (ie for any value of 36), the four eigenvalues of ®(¢ cos 36, ¢ sin 36, x, y)(y)
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vary as smooth real-valued functions of ¢ with distinct first derivative for at least
some (generic) y € A. However, more is required to show that ® is not tangent to
the conjugation orbit (see Remark 4.9). The complete proof of Lemma 4.3 will be
given in the following subsection, together with a more geometric description of the
representations ®(a, b, x, y).

Let us now return to the context of Theorem 4.1. In order to state the next lemma, let
us introduce a useful splitting of g (see Johnson and Millson [28] for more details). Let
g =50(3,1) ®@v be the Killing-orthogonal splitting of the Lie algebra g; the splitting is
invariant under the adjoint action of O(3, 1). Since the representation ppy, has image
in the subgroup O(3,1) C G, all relevant cohomology groups split and the restriction
map res: lehyp(F, g) — @f_l phy (A;, g) splits into the direct sum of the two maps

reSso(3,1): php(r s0(3, 1))—>€B php(A,,50(3 1)),
i=1

resy: (F v) —> @ o p(A, ,0).

i=1

Note that dim Hpiyp(A,-, v) =2 foreach i € {1,...,k} (see Heusener and Porti [25,
Section 5.1]).

Lemma 4.4 There exists a cohomology class [z] € lehyp(F, v) of infinitesimal defor-
mations whose restriction res; ([z]) € Hp}]yp(Al-, v) is nontrivial for all i € {1,...,k}.

Proof Theimage L =res(H,, 1 (F n)) is a Lagrangian subspace (see [25, Section 5.1])
Phy (A;, v) and thus has dimension k. Note that
under the cup product pairing, the direct sum is orthogonal. The projection onto any

for the cup product pairing in @l -1

single factor is not zero, or else L would be a Lagrangian subspace of the direct sum
of the complementary k — 1 factors, which is impossible since dim L. = k. Hence,
for each j € {l,...,k}, there exists [z;] € Hp}w(F, v) such that res; ([z;]) # 0. Then
some linear combination [z] of {[z j]}j?:1 satisfies the conclusion of the lemma. O

The next lemma is a basic consequence of Calabi—Weil rigidity.

Lemmad4.5 Leti€{l,...,k}, let u; be a nontrivial element of A;, and let [v] €
lehyp(F, 50(3, 1)) have nontrivial restriction to [; . Then the eigenvalues of at least
one element of A; (although possibly not w;) become complex along any path in
Hom(T, é) tangent to any cocycle representative v € Z },hyp(F, g) of the class [v].
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Proof Let p; be any path of representations which is tangent to v. Let us first assume
that the representations p; remain in SO(3, 1). Then the restriction res; (p;) lies in
SOp(3, 1) = PSL,C and we may regard the image under p; of any individual element
as either a 4 x 4 real matrix or a 2 x 2 complex matrix. It follows easily from Calabi—
Weil rigidity [8; 40; 41] (or see Kapovich [29]) that the PSL,C traces of res; p; become
complex to first order. Further, there exists an element v; € A; such that the derivative
of the PSL,C trace of p;(v;) has imaginary part larger than its real part. It follows
that the SL4R trace of p;(v;) has strictly negative derivative. This first-order trace
behavior holds for any path of representations p; into G = SLfR that is tangent to v.
Therefore, for any sufficiently small time ¢ > 0, the trace of p;(v;) is strictly smaller
than four and so p;(v;) has at least one pair of complex eigenvalues (by the arithmetic
mean vs geometric mean inequality applied to the eigenvalues). |

Foreachi e{l,...,k},let ¥ CHom(A;, G) bea copy of the four-dimensional partial
slice .7 described above with A = A; and let g; € G be such that c(gi)-res; (pnyp) €7 .
Without loss of generality we assume g1 = 1. Let

S =7 %xx.% CHom(A1,G) x---x Hom(Ag, G),

let Vg, C lehyp(Ai , g) denote the subspace of cohomology classes of all infinitesimal
deformations tangent to ./;, and let Vg = Vo, ®--- @ V., . We now prove:

Lemma 4.6 The augmented restriction map res is transverse to S at (pnyp, &2. - - - » &k)
with k —dimensional local intersection.

Proof By Lemma 4.5, the intersection Vg N resy (Hpiyp (T, s0(3, 1))) is trivial, since
none of the representations in S have complex eigenvalues. Hence, since dim Vg = 4k
by Lemma 4.3, and Hpﬁyp(F,ﬁo(S, 1)) and its image in @5;1 Hpﬁyp(Ai,so(& 1)) have
dimension 2k, we have that

k
P H,,,(Ai.g) = Vs Bresi(H, (T,50(3,1))),

i=1
and it follows that the subspaces Vs and res*(Hpiyp(F, g)) intersect transversely in
a k—dimensional subspace. Therefore, the 4k—dimensional tangent space to S in
@le ch(g,-)phyp(Ai , ¢) intersects the codimension-3k image of the augmented restric-
tion map transversely in a k—dimensional subspace. The result follows. a

Finally we prove Theorem 4.1.
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Proof of Theorem 4.1 Lemma 4.4 guarantees the existence of a cohomology class
of infinitesimal deformation [z] € lehyp(F, v) whose restrictions (res;)«[z] are, for
each i € {1,...,k}, nontrivial in lehyp(Ai, v). The span of [z] and lehyp(l",ﬁo(?a, 1))
is a (2k+1)—dimensional subspace of Hp}w (I, g) whose restriction, also (2k+1)—
dimensional by the assumption that res, is injective, must intersect the codimension-2k
subspace Vg nontrivially (and indeed, transversally). Let res«[u] = o res«[z] + res«[w]
be a nontrivial element of the intersection, where [w] € lehyp (I',s0(3,1)). Since
Vs N resy (lehyp(l“,so(fi, 1))) = 0, we must have o # 0. In particular, (res;)«[u] does
not lie in Hpiyp(Ai,so(& 1)) for each i € {1,...,k}. Hence, (res;)«[u] € Vy, is
not tangent to the cusp shape locus. We may therefore find a representative cocycle
uE Z},hyp (I, g) and coboundaries b; € Bplhyp(Ai,g) for i €{2,...,k} such that resy«u
is tangent to .7 and res;u+b; is tangentto .%; foreachi €{2,...,k}. By Lemma4.6,
there exists a path p; € Hom(T, G) based at pg = pnyp With tangent u at 1 = 0 and
paths g1, = 1 (constant) and g2;,..., gk, in G with 82,0 = &2,---» &k,0 = &k
such that c(g; ;) - res;p; € Hom(A;, (~}) lies in .#; for each i € {1,...,k}. Since
(res;)«[u] is not tangent to the cusp shape locus, for sufficiently small ¢ > 0, each of
the representations c(g; ) - res; p; does not lie in the cusp shape locus and is therefore
diagonalizable by Lemma 4.3. The theorem is proved. |

Remark 4.7 The properties characterizing the infinitesimal deformation [z] from
Lemma 4.4 are stable under perturbation. Therefore there is an open k—dimensional
cone of [z] € Hp}w(I‘, v) satisfying the conclusion of Lemma 4.4. The proof of
Theorem 4.1 implies that this cone parametrizes a k—dimensional family of representa-
tions satisfying the conclusion of theorem.

4.1 More on the four-dimensional partial slice .

In this section we give the proof of Lemma 4.3, which describes the essential properties
of the four-dimensional partial slice . = Im(®) used in the transversality argument for
Theorem 4.1. Along the way, we will give a geometric description of the representations
in . and indicate some of the intuition behind its construction.

Let C denote the two-dimensional abelian subgroup of SO(3, 1) consisting of unipotent
matrices fixing a point ps, on the ideal boundary of hyperbolic space. Let us work
in the paraboloid model of H?3, with the ideal boundary d.,H?> described by the
paraboloid {[%(xf + x%),xl,xz, 1] € RP3 | x1,x2 € R} U [1,0,0,0], and let us
take poo = [1,0,0,0]. Then each of the cusp shape representations $(0,0, x, y),
where y # 0, is a lattice inside C. Note that C is contained in its centralizer Z(C)
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in SL4R, a three-dimensional abelian subgroup, maximal with respect to inclusion. Let
a denote the Cartan subalgebra of s(4(IR) consisting of traceless diagonal matrices. Let
A = exp a denote the corresponding Cartan subgroup. In order to find representations
near res(ppyp) which are diagonalizable, we must study the space of maximal (ie three-
dimensional) abelian subgroups of SL4R near Z(C) and attempt to locate (at least
some of) those that are conjugates of A.

We now construct a smooth two-dimensional family of three-dimensional abelian
subgroups A, p, which are conjugate to A for all (a,b) # (0,0) and such that
Ao,0 = Z(C). We work in the affine chart with coordinates [x3,x1,x2,1]. For
each ¢ > 0, consider the intersection, S;, of the paraboloid dooH3 with the affine plane
P; parallel to the xqx,—plane at height x3 =1/ (2¢?). In these coordinates, S; is a
round circle contained in Py, invariant under rotation R(#) by any angle 6 in the x1x,—
plane about the x3—axis. Let p(t) = [1/(2t?),1/1,0,1] and let p(¢,0) = R(0) p(¢t),
let pa(1.0) = R(6 + 27)p(r) and let p3(t.0) = R(6 + 37)p(1). Then p1(z,6),
p2(t,0), p3(t,0) are the vertices of an equilateral triangle inscribed in S;.

P2 P1

P s,

)C3 p3
ixz

X1

Figure 2: Left: the points p(z,0), p2(t,0) and ps3(z, 0) form an equilateral
triangle on the circle S, at height 1/(2¢?) on 9H? in the paraboloid model.
Right: the same picture shown in the affine chart in which dH? is the round
sphere.

Let A; ¢ denote the subgroup of projective transformations which fix the vertices
p1(t.0), pa(t.0), p3(t.0), poo. Then A, g = R(0)Q(1)AQ (1)~ R(6)™", where

1 1 1 1 1 0 0O 0
2t —t —t 0 0 cosf@ —sinf 0
Q) = 0 3t =3t 0|’ R(9) = 0 sinf cosf 0

212 212 2t2 0 0 0 0 1

Note that A; 9 = A; g427/3. The Hausdorff limit as 7 — 0 of A, g is exactly Z(C),
independent of 6. Indeed, (¢,0) are branched polar coordinates for a smooth two-
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dimensional family of three-dimensional abelian subgroups of SL4R. To see this,

consider the three families of traceless diagonal matrices x; g, y;.9.2;,9 € & = Lie(4),

(21 cos 6
Yep = 2t cos(9 + %n)

(21 sin 0

2¢sin(6 + 2
Vo= tsm( + 371)
£2
12

Zt,0 = 12

—3¢2

2t cos(@ + %n)

2t sin(9 + %n)

0

’

0

For all # # 0 and any 6, these three vectors form a basis of a. A simple computation

shows that

X, = RO)O(1)x,40(1) ' RO) ™" =

V1o =ROQW)y,6Q) RO

2,9 =R(6)0(1)z;9 Q1) R(H) ™

0 1 0 0

0 tcos36 ¢sin30 1
tsin36 —tcos30 0]’

\ 22 0

/O 0 1 0

0 ¢sin360 —tcos36 0
—tcos360 —tsin36 1
0 2120

’

—3¢2 2

t2
t2

These three vectors form a basis for a; 9 = Lie(A4; 9). We now set a =t cos 360 and

b =t sin 30 and rewrite, in these coordinates,

0 1 00 0 0 1 0
;10 a b1 ;|0 b —a 0
YabTlo b —ao] YebTlo-a b 1]

0 2(a?+5% 00 0 02a?+5b%)0
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—3(a? + b?) 2
2 a? + b?
ab = a2 + b2
a?+b?

In these coordinates it is transparent that the Lie algebra elements xé b y; b Z; b
span a smooth (in fact algebraic) family of three-dimensional abelian subalgebras
ag,p = ;9 With ag o = Lie(Z(C)). More relevant for Lemma 4.3, for each a,b € R,
the Lie algebra elements x"l b and y(’l b Spana two-dimensional Lie subalgebra ¢, j
which generates a two-dimensional abelian subgroup C, ;, of SL4R. Indeed both ¢, 5
and C, ; are smooth families and, of course, Co,0 = C'.

Proposition 4.8 The maps (a,b) — a, and (a,b) ¢, are both transverse to
conjugation at (a,b) = (0,0).

Proof Since ¢, 5, C ag p, itis enough to show that the map (a, b) > ¢, p is transverse
to conjugation. To do so, we must simply show that the two-parameter family of
projective classes [x b A y, ] of bivectors in P( N sl4R) is never tangent to the
conjugation orbit at [x(’)’0 A y(’)’o]. This is a straightforward calculation. First, compute

0 0010y (0100\ (0 0 00
;o 10 0o0o0| looor 0-10
YaaprVedlam=00=| o 1 M oo t|T| 000l -1 ool
0 0 0 0
0 0010y {0100\ (00 00
;o | o1 0o00f looot 100
Do enlan=00=| 1o M| oo 1|t ooof| o-io
0 0 0 0

Next, the infinitesimal action by conjugation of an arbitrary element v = (v;;) € g on
X0,0 A\ Yo,0 1S given by

—U21 VU11—V22 —VU23 V12—VUg 0010
—VU41 V21—V42 —U43 U22—V44 000
ad(V)x) oAV o+ Xh o Aad(v)y) o =
(v)xg,0AY0,0+%0,0 (v)yo.0 0 Va1 0 vy 00 1
0 V41 0 V42 0
0100 —V31 —V32 V11—V33 V13—V34
0001 0 0 V21 V23

A
000 —V41 —U42 V31—U43 U33—U4s
0 0 0 Va1 V43
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Now, let (e;;) be the usual basis for gl4R, thought of as the space of 4 x4 real matrices,
and work in the basis for /\2 gly,R D /\25[4]R consisting of all e;; A e;;, such that
either i <m or i =m and j < n. Suppose that some tangent vector to the family
[x] N v, ] is tangent to the conjugation orbit at [X0.0 A Y0,0]- This is equivalent to
the equation

adq (x(,z,b /\y[/l,b)‘i‘ﬂ dp (xé,b/\yé,b) = ad(v)x(/),o/\J’(/),O +x6’0/\ad(v)y6’0+yx6’0/\y6’0.

The coefficient of e13 A e33 on the left-hand side is o while the same coefficient on the
right-hand side is zero. The coefficient of e15 A €35 on the left-hand side is 8 while
the same coefficient on the right-hand side is again zero. It follows that « = = 0:
any vector tangent to both the family [x; b yé’ »] and the conjugation orbit is trivial.
The proposition is proved. |

Proof of Lemma 4.3 First, let us rewrite ® in the notation of this section:

B(a,b, %, y)(y1) = exp(x, ), B(a b, x, ) (y2) = eXP(Xx, , + YV 5)-

That the representations ®(a, b, x, y) are diagonalizable with real eigenvalues whenever
(a,b) # (0,0) has already been demonstrated. We must show that @ is not tangent to
the conjugation orbit in any direction at any point (0,0, x, ).

Consider the tangent vector
W =ad,® 4 bhdy® + %0, D + yd, ®

at the point ®(0, 0, x, y) and suppose w € Bé(o,o,x,y)(A’ s[4R). By Proposition 4.8,
the two-dimensional subgroup C, j, generated by ®(a, b, x, y) is changing to first order
in the direction of w if and only if (a, 5) = (0,0). So we must have (4, l}) = (0,0).
Hence, w is tangent to the cusp shape locus. Since w is a coboundary, the cusp shape
must not change to first order. It follows that X = 0 and y = 0. This completes the

proof of Lemma 4.3. a

Remark 4.9 For fixed (ag,bo) # (0,0), the eigenvalues of ®(tag,tbo,u,v) are
smooth functions of ¢ with nonzero derivative at t = 0. It is tempting to conclude
that d®g,0,,v) (@0, bo, 0,0) is not an infinitesimal conjugation. Although this turns
out to be the case, it is fallacious to conclude so purely from the given behavior of
eigenvalues; the above proof of Lemma 4.3 is needed. We give an example in the
simpler setting of 2 x 2 matrices. Consider two paths of matrices

t
Ml(t)=(eo el_t) and Mz(t)=(1_—'t_2t ll—z)'
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Note that M;(0) = M>(0) and that M{(0) = M,(0). However, the eigenvalues
of My(t), which are e’ =1+t + O(t?) and e~ = 1 —t + O(t?), vary to first order
in ¢, while the eigenvalues of M>(¢) are both constant equal to one for all ¢. Indeed,
M>(t) is a conjugation path.

S Geometry of manifolds with totally geodesic boundary

This section is dedicated to the geometry of convex projective three-manifolds with
diagonalizable peripheral holonomy. We will complete the proof of Theorem 1.3, the
algebraic side of which was given in the previous section. Recall that we denote the
Lie groups PGL4R, SL;ER and SL4R by G, G and Gy, respectively.

Let M be an open three-manifold which is the interior of a compact boundary-
incompressible manifold with k torus boundary components dM = d; Ll --- Ll k.
Let

dev: M =5 Q C RP3

be the developing map of an indecomposable properly convex projective structure
on M and denote the holonomy representation by p: I' — G, where I' = mM
denotes the fundamental group. As usual, denote the peripheral subgroups by A; =
m10; . We will assume that p(A;) is diagonalizable over the reals with eigenvectors
pgi) , pg), pgi), py) € RP? and further that pz(li) is never an attracting fixed point (not
even weakly attracting) for any nontrivial element of p(A;). Then p is said to satisfy
the middle eigenvalue condition, namely that for any nontrivial y € A;, the eigenvalue
of p(y) associated to eigenvector p‘(,f) is never the largest nor the smallest. The middle
eigenvalue condition is a slight weakening of the uniform middle eigenvalue condition

defined by Choi (see [10] for more details).

The holonomy representation p for this structure is also the holonomy representation
for other (related) convex projective structures defined by different domains. Let us
begin by constructing a minimal convex domain for the action of p(I"). Any strongly
attracting fixed point of an element of p(I") must lie on d€2. The closure of the set
of strongly attracting fixed points is called the limit set of p(I') and we define Q2 pin
to be the interior of the closed convex hull of the limit set. Then 2, is contained
in €2, is nonempty, open, p—invariant and convex, and is minimal with respect to these
properties. Pulling back Q,;, via dev determines a convex projective structure on a
submanifold M, = p(T")\ Q2min Whose inclusion into M is a homotopy equivalence.
We now investigate the geometry of My, in particular of its ends.
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Lemma 5.1 Foranyi €{l,...,k}, each of the three fixed points pgi), pg) and pgi)
is a strongly attracting fixed point for some element of p(A;). Therefore, pgi ), pg )
and pgl) lie on 92 and 02 pmin -

Proof The peripheral holonomy group p(A;) is obtained by exponentiating a lat-
tice A inside a two-dimensional Lie subalgebra ¢® of the Cartan subalgebra a® cg
corresponding to the basis pg), pg), pgi), pf) € RP3. Let A§i2)3 = exp a§i2)3 be the
(2—dimensional) subgroup of SL* (span{ pf), pg), pgi)}) ~ SL?R of elements that
fix each of pgi), pg) and pgi). Consider the natural projection wjz3: a@® - a§i2)3.
It follows from the middle eigenvalue condition that the restriction of wja3 to ¢
is injective. To see this, observe that if A € ker(w23) N ¢ then the eigenvalues
of A corresponding to the eigenvectors pgi), pg), pgi) and p‘(f) are A, A, A and p,
respectively. As a result we see that y is either the smallest or largest eigenvalue of A,
which contradicts the middle eigenvalue condition. Thus, by dimensional considerations,
we conclude that w123(c(i)) = a§i2)3. Furthermore, if A € c(i), 1 <j <3 and the

pj(-i)—eigenvalue of w123(A) is the largest eigenvalue, then the p(.i)

; —eigenvalue of A

is also the largest eigenvalue for A.

Let 1 < j <3 and let D; be the subset of a§i2)3 consisting of elements where the
pj(-i)—eigenvalue is the largest. It is easy to see that D; is a nonempty open cone, which
implies that D; has nontrivial intersection with @23(A). As a result we can find an
element of p(A;) such that the pj(-i)—eigenvalue is the largest. Such an element has

pj(.i) as an attracting fixed point, which completes the proof of the lemma. O
We make the following definition, following Goldman [22] in the two-dimensional
setting.

Definition 5.2 For each i, there is a unique (open) triangle 7@ C Qi spanned
by the points pgl), pg), pgl). Any p(I") translate of 7@ will be called a principal
totally geodesic triangle. The group p(A;) acts properly on T and the quotient is

called a principal totally geodesic torus.

We will show that My, admits a natural compactification whose boundary consists
of principal totally geodesic tori. First, we introduce a third convex domain €2«
defined as follows. Let Q* denote the convex domain dual to . Then T acts
properly discontinuously on Q* via p with diagonalizable peripheral holonomy, and
we may perform the same construction as above: Let (2*)ni, denote the interior
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of the closed convex hull of the limit set for the p(I") action on RP3*. We define
Qmax to be the convex domain dual to (2*)min. It is the maximal properly convex,
p—invariant domain because its dual is minimal. Next, observe that the fixed points
of the dual action of p(A;) are the hyperplanes Pl(i), Pz(i), Ps.(i) and Pf) spanned

by (p3, p, pPy, {pgl),pgl), pgl)}, {pil)_, P % and (pP, pP, pD3, respec-

tively. The hyperplanes Pl(’), Pz(’) and P3(’) are the attracting fixed points of p(A;)
in RP3*. Hence, Pl(i), Pz(i) and P3(i) are points on the boundary of any convex
domain in RP3* preserved by p, including on d(Q*)min. Dually, they are three
support hyperplanes for any convex domain in RP? preserved by p, in particular for
Q, Qmin and Qmax. They bound a convex (but not properly convex) open triangular
prism U® which is separated by 7@ into two components 7]?) and 7| each of
which is an open tetrahedron.

Lemma 5.3 (1) Each principal totally geodesic triangle is contained in 02 y;y .

(2) Qmin is the interior of the intersection of the positive half-spaces bounded by the
planes ,o(F)Pf) containing principal totally geodesic triangles.

B) Qmax \ Qumin is the disjoint union over all i € {1,...,k} andall y € I'/A; of
open tetrahedra p(y)T!), where T%) is the tetrahedron lying on the opposite
side from Qumin of the principal triangle T .

Proof Let S, ... S®) pe a pairwise disjoint collection of embedded tori in M
which are parallel to the k boundary components 91, ..., dx, respectively. Let D@
denote the lift to the universal cover M =  of S@ that is invariant under A;. Then
D® is (T, A;) precisely invariant, meaning that p(y)D® N D® = & if and only
if y € A;. It follows from Lemma 5.1 that 9D = 9T ® and therefore T is also
(I, A;) precisely invariant. Next, D® divides Q into two components and one of
these, the one which covers the end of M bounded by S @) s also (T, A;) precisely
invariant. As a result, the limit set of p(I") lies on one side of dD (i)iBT(i) on 092.
Hence the limit set lies entirely in one of the two closed tetrahedra Tf ) or 7 and
we take the labeling convention that it is ’71" ). Let Qg) =QnN Tf). It then follows

that the intersection )
NN el
yel'i=1

is a closed convex set containing the limit set of p(I"). We denote its interior, which
must be nonempty, by Q’. In fact, we will show soon that €’ is the minimal convex
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Figure 3: A schematic of the configuration 2, C €2 C Qpax in Lemma 5.3.
Here Q iy is red, €2 is the union of red and purple, and €2« is the union of
red, purple and blue.

domain €2;,. Until then we conclude the simple fact that 7@ is contained in 02 min
because the vertices of 7() must be contained in the boundary of any invariant convex
domain and because 7@ lies in a support plane for 0$2’.

Since the hyperplane Pf) containing TW is a support plane for 2, it is also a
point in the boundary of the dual convex domain (2myin)* = (2*)max. By applying
the above to the dual convex domain Q* in place of 2, we see therefore that the
point p‘(‘i) belongs to the boundary of €2y,«. In particular, the entire tetrahedron 7@
is contained in Q. ; see Figure 3. Since the action of p(I") is properly discontinuous
on Q. (or on any invariant open properly convex domain), we may now conclude
that p(I") acts properly on the subdomain Q’a consisting of the union of Q' with all
of the principal totally geodesic (open) triangles, and similarly on the union €2, 5
of Qnin with all of the principal totally geodesic triangles. The quotient of either
set by p(I") is a submanifold with boundary of M. := p(I")\ Q2max. The boundary
of either is the collection of principal totally geodesic tori {p(Ai)\T(i)}le. We
conclude that Qi = €. It follows that the construction of Q' is independent of the
domain 2. The proof of (2) is thus completed by applying the above argument in the
case that €2 is the interior of the intersection of the positive half-spaces bounded by
the hyperplanes containing principal triangles. The third statement of the lemma then
follows immediately. |
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Figure 4: The principal triangles on the boundary of 2, as the represen-
tation p deforms away from the holonomy representation of the complete
hyperbolic structure.

Definition 5.4 The manifold M ;, = p(T )\ min,a is called a properly convex pro-
Jective manifold with totally geodesic torus boundary. By abuse, Muin = o(I")\ Qmnin
will also be said to have totally geodesic boundary; see Figure 4.

Definition 5.5 The manifold Mp.x = p(I")\Qmax is the maximal thickening of M.
The tetrahedron 7-® (or any of its orbits) is a principal tetrahedron and its quotient by
p(A;) is a principal collar of My, ; see Figure 5.

Proof of Theorem 1.3 By assumption, the complete hyperbolic structure on M is
infinitesimally rigid rel dM. By Theorem 4.1 there is a path p; of representations
through po = pnyp such that p;(A;) is diagonalizable over the reals for all # # 0 and
i €{l,...,k}. The holonomy principle of Cooper, Long and Tillmann (Theorem 2.3)
or Choi [11, Corollary 1.1] guarantees that there is some & > 0 such that, for ¢ € (0, ¢),
the representation p; is the holonomy representation of a properly convex projective
structure, near the complete hyperbolic structure. Further, the ends of this structure
have generalized cusps, although we will not use this fact here.
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Figure 5: The principal tetrahedra of $2,,x as the representation p deforms
away from the holonomy representation of the complete hyperbolic structure.

By construction, res; (p;) belongs to .#; . Hence, for t > 0, p;(A;) is a lattice in a two-
dimensional diagonalizable subgroup conjugate to C, j, as defined in Section 4.1, where
(a,b) = (agi), bgi)) = (0,0) depend on i and continuously on 7. Since all elements of
Cg.p have a common fixed point with eigenvalue one, the middle eigenvalue condition
is satisfied for p;(A;) forall t > 0 and i € {1,...,k}. For each ¢, the minimal
convex submanifold My, C M is a properly convex projective manifold with totally
geodesic boundary. Further, the inclusion My, < M is a homotopy equivalence
which is isotopic to a homeomorphism. Such an isotopy may be constructed explicitly
in the universal cover by flowing the points lying in a principal tetrahedron of M
(realized as the convex domain €2;) radially toward the principal triangle bounding
that tetrahedron. O

Remark 5.6 In the context of the proof of Theorem 1.3, we note that for each end, the
continuous deformation of the principal totally geodesic triangles, which open up from
the parabolic fixed point of the hyperbolic structure, may be observed explicitly in terms
of the parameters (a, b) of the last paragraph of the proof. Indeed, the eigenvectors
of C4 p were described explicitly in Section 4.1.
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We close this subsection with one more lemma, which will be needed in the next section.
The region U@ = Tf) UT®DUT® is a triangular prism. Its boundary U @ is the
union of three totally geodesic bigons.

Lemma 5.7 The intersection dQma N U@ is equal to 7D\ T® . In particular,

3Qmin N 87'_,(_i) contains T but does not contain any point of any other (open) face of
Tf) of positive codimension that is adjacent to pi’) .

Proof Suppose p € 0Q2ax lies on a face .# of Tf) of positive codimension adjacent
to pf)
dimension count, an attractor for the action of some p(y) on .%. Then, by convexity,

. Although p‘(f) is never an attractor for the action of any p(y) on Tf), it is, by

Qmax contains Tf) and therefore all of U@ . However this is impossible, since U ®
is not properly convex and 2, is properly convex. |

6 Gluing convex projective structures

In this section we prove Theorem 1.4, which states that convex projective structures
may be glued along principal totally geodesic torus boundary components whenever
the holonomy matching condition (1-1) is satisfied. This will complete the proof of
Theorem 1.1. Theorem 1.4 is proved by induction using the following two lemmas:

Lemma 6.1 Let M; =T"1\Q and M, = I';\Q2, be two properly convex projective
three-manifolds. Let f: d1 — d2 be a homeomorphism between principal totally geo-
desic torus boundary components 01 and d, of M1 and M, respectively, satisfying
the holonomy matching condition: there exists g € G such that

(6-1) fey=grg !

for all y € Ay, where fi: A1 — Ay is the group homomorphism induced by f on
the fundamental groups A1 and A, of 91 and 9, respectively. Then the topological
manifold My Uy M> admits a properly convex structure which restricts to the given
properly convex projective structures on M1 and M.

Lemma 6.2 Let M = I'\Q be a properly convex projective three-manifold and
let f: 01 — 02 be a homeomorphism between principal totally geodesic boundary
components d1, d, of M that satisfies the holonomy matching condition: There exists
g€ G such that

(6-2) fey=grg !
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for all y € Ay, where fi: Ay — A, is the group homomorphism induced by f on
the fundamental groups A1 and A, of d1 and 0, respectively. Then the topological
manifold My admits a properly convex structure which restricts to the given properly
convex projective structure on M.

We now give a detailed proof of Lemma 6.1. The proof of Lemma 6.2 is nearly identical.

For convenience, throughout this subsection, we will identify the universal cover of M;
with ; and the fundamental group 71 M; with I'; C G for both i € {1,2}. For
i €{1,2}, let 3; = A;\T® be the given principal totally geodesic boundary torus
of M;, where T is a totally geodesic triangle contained in dS2;. For each i, let
Tf) and 7 be defined as in the previous section, so that Q; C Tf) and 7 is a
principal tetrahedron for €2;. By translating €2; by g and possibly a reflection in the
centralizer Z(Aj3), we may assume henceforth that g = 1 and that 1 and Q, are
positioned so that T = 7@ =. 7, 72 = T(l) 7MW and 7V = 7'(2) A
Then, by (6-1), the identity projective transformation g = 1 descends to a projective
gluing map in the isotopy class of f that glues M; to M, along their totally geodesic
boundary components. Any neighborhood in 21 UT U 2, of a point p € T serves as
a chart defining a projective structure on a neighborhood of d; = 9, in the glued-up
manifold N = My Uy M>. The charts on My and M, are compatible with these
new charts, hence N is endowed with a projective structure in which d; = 9 is
an embedded totally geodesic torus. To prove Theorem 1.4, we now show that this
projective structure is properly convex.

The fundamental group of N naturally identifies with the free product I" = I'y *¢, I"
amalgamated over the identification fix: A; — A,. Let A denote the inclusions of
A1 and A,, which are identified, in I'. We will denote the product of two elements o
and B in the abstract group I" by the notation « * 8 in order to avoid confusion with
matrix multiplication in G. The universal cover N is described combinatorially as

j\? =T XQl,a/’\’l ur XQz’a/’\'z,

where €2 5 denotes the union of €2 with the I'y orbit of 7" and ~ is the equivalence
relation generated by (y, p) ~1 (y)/l_l, y1p) forall y; € I't, and similarly for €25 5
and ~>. We refer to each {y} x Q; 5 asatile. If p e T = Q5N Q, 5, then we
consider the points (y, p) € I' x Q; 5 and (y, p) € I' x Q5 5 to be identified. The
developing map dev for the natural projective structure on N is defined by the formula
dev([y, p]) = p(y)p forany y € I and p € Q; 5 U Q5 3, where p: I' — G, the
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holonomy representation, is defined by the property that its restriction to I is the
inclusion map for each i € {1, 2}. In other words, if y1, ..., yn are elements of ' UT,,
then p(y1 *x -+ *x Ym) = y1 - ¥Ym. We will also consider an augmented version of N,
defined by

Nawg =T x Q1/~1 UT x Qp/~2,

which includes the full boundaries of the convex tiles. The developing map dev extends
naturally to an augmented developing map dev: ﬁaug — RP3. It is a local embedding,
even at points of the tile boundaries [y, 0€2;].

We show that the developing map is injective with image contained in an affine chart
via a ping-pong lemma.

Lemma 6.3 Let y; € '1\ A and y, € ' \ A. Then:
1) nT@®cTO\ Q.
Q) y2TO T\ Q,.

Proof We prove only the first statement as the second follows by symmetry. Note
that 7@ = 7 is contained in (21)max (Definition 5.5). Hence, y17? C (21)max
as well. (£21)max is contained in the triangular prism U = TOUTUTD, which
is convex (but not properly convex) and bounded by three bigons. Since y; ¢ A,
)/17'(2) is not equal to 7® and therefore the two tetrahedra do not intersect. Hence,
y1T® must lie in 7. By Lemma 5.7, we also have that ;7@ = y; 7@ lies
in 7MW, that is, no point of le_(z) intersects 37 . Of course y1 preserves €21, so
)/1T_(2) does not intersect €2; because 772) does not intersect 2. O

Lemma 6.4 The augmented developing map dev: ﬁaug — RP3 is injective and its
image is contained in (£21)max -

Proof We already know that dev is an embedding when restricted to the union of any
two adjacent closed tiles. To show that dev is a global embedding, it suffices to show
that dev([{y} x 21]) = p(y)Q does not intersect Q5 nor Q; aslongas y ¢ ' UT,.

Assume that y ¢ 'y UT». Then y may be expressed as an alternating product
y=y1*--- %Yy of m>2elements y; € [y U2\ A such that, fori =1,...,m—1,
y; € I'1 if and only if y; 1 € I';. There are two possibilities to consider. First, assume
Ym lies in 'z \ A. Then, by Lemma 6.3,
PN =71 Ym-1Ym@1 C Y1 Ym—1(TP \ Q2)
Cyr Yma(TONQD) C-- c(TO\Q)),
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where j =1 if y1 € I'1 (equivalently if m is even) or j = 2 if y; € I',. Hence,
o(y)Q1 does not intersect either ; or ©25. The other possibility is that y,, € T'; \ A.
In this case, p(y)S_Zl =y ---ym_15_21 , with y,,,—1 € T2 \ A, and we proceed as in the
previous case, replacing y with y1 % --- x y,,—1. This completes the proof that dev is
injective on ﬁaug. Indeed, dev is a closed map, so dev is an embedding.

We may also see from the above ping-pong argument that the image of dev is con-
tained in (Q1)max. For any y € Ty, we have that p(y)Q1 = Q1 C (21)max and
P(1)22 C p(¥)T® C (Q)max. If y € T2\ A, then p(y)Q22 = 22 C (Q1)max and
o)1 C p(Y)TD € T® < (2)max. Finally, let y ¢ T UT,. Then, as above,
y=yi*y2x-+ym and p(y)Q1 C T® C (Q1)max if y1 € T2. If 1 € Ty, then
p(y2 * -+ % ym)Q1 is contained in 7@, so p(y1)p(y2 * -+ * ym)Q1 = p(y)Q1 is
contained in (21)max. It follows similarly that if y ¢ Ty UT, then p(¥)Q2 C (21)max -

O

Finally, we prove:
Lemma 6.5 The projective manifold N is properly convex.

To prove Lemma 6.5, we will need the following basic result about convex sets in
Euclidean space. It is similar to a well-known theorem of Nakajima [33] and Tietze [38].
We include a proof for convenience.

Lemma 6.6 Suppose A, B C R? are closed convex subsets with nonempty interior
and nonempty intersection. Suppose that AU B satisfies the following local convexity
condition along C = 0(AU B)N (AN B): at each point z € C there is a local support
plane, ie a hyperplane containing z and bounding a closed half-space that contains a
neighborhood of z in AU B. Suppose further there is a point of AN B in the interior
of AU B. Then AU B is convex.

Proof We consider first the interior Int(A U B). Fix a point x € Int(A) and let S be
the set of all y € Int(A U B) such that [x, y] CInt(AU B). S is clearly an open subset
of Int(A U B). We show S is also closed in Int(4 U B). Suppose y, € S converges
to y € Int(AU B) but y ¢ S. The open interval (x, y) is contained in AU B and
intersects d(A U B) in at least one point z. Let H be a hyperplane supporting A U B
locally near z, guaranteed to exist by the local convexity assumption if z € C or by the
convexity of A (resp. of B)if z € dA\ C (resp.if z € dB\ C). Since (x, y) does not
cross H transversely at z, we must have [x, y] C H. However, this is a contradiction:
if z € A, the local support plane H does not intersect the convex set Int(A) so it cannot
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contain x, and if z € B, then H does not intersect Int(B) so it does not contain y.
Hence, S is closed in Int(4 U B). We note that Int(4 U B) is connected, since by
assumption a point of A N B is contained in Int(A U B). Hence, S = Int(4 U B).
Hence, [x, y] C Int(A U B) for all x € Int(A) and y € Int(A U B), and similarly for
x € Int(B) by symmetry. It now follows by taking limits that A U B is convex. O

Proof of Lemma 6.5 By Lemma 6.4, the augmented developing map is an embedding
into an affine chart A of RP3. The image of each tile of ﬁaug is convex. The union of
two adjacent tiles is locally convex at the boundary of the interface between them. To
check this, it suffices to examine Q; U Q5. We may assume that v = T_,(_l) U 7?1)
intersects the affine chart A in an infinite triangular prism (with vertex at infinity).
Since 2 U Q5 is contained in UM and since 8(5_21 u S_Zz) N (§_21 N §_22) =0T is
contained in BU_(I) , it follows that Q1 U 5 is locally convex at the boundary of the
interface 7 between the two tiles: one of the three planes bounding v supports
QU Q, at each point of d7. The union Q1 U Q, is convex by Lemma 6.6. Next,
since no three of the closed tiles of ﬁaug meet nontrivially, it follows by induction and
Lemma 6.6 that the image under the augmented developlng map of any finite connected
union of tiles of Naug is convex. The image of N(lug is an increasing union of such
convex sets and hence is convex. The image of N, which is the interior of the i image
of ]Vaug, is therefore also convex, and indeed properly convex because it is contained
in (Q_l)max. O

This completes the proof of Lemma 6.1. The proof of Lemma 6.2 is nearly the same and
so we include only the following sketch, which highlights the required modifications.

(1) Possibly after modifying g by a reflection in the centralizer Z(A5), we may
assume that 2 and g€2 are positioned so that gT(l) T(2) where for both
i €{l,2}, T(l) > Q and 7.9 is the principal tetrahedron for  preserved by
A; as above.

(2) The fundamental group of My is the HNN extension I'xy, . The universal cover
of My is combinatorially a union of tiles M =T x5, xQy/~, where Qj is
the union of Q2 and the principal triangles covering the boundary component d{
and 0> and the equivalence relation is generated by (y, p) ~ (yy; 1 y1p) for
all y; €.

(3) The developing map dev for the natural projective structure on My is defined
by the formula dev([y, p]) = p(y)p, for any y € 'z, and p € Qj, where
p: Ixp — G, the holonomy representation, is defined by the property that its
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restriction to I' is the inclusion map and p applied the stable letter of I'xy, is
the gluing transformation g. The developing map dev extends to the augmented
domain Mf,aug =T *g, xQ/~.

(4) The following analogue of Lemma 6.3 holds:

. gTjg) = Tf) (already arranged above).

« Forany i e{1,2} and y € [\ A;, yTO c T\Q (this follows im-
mediately because Q2p,x contains )/7'_(i) and is contained in the union
vO =7OyTOUYTO),

(5) Plugging (4) into the argument from Lemma 6.4 shows that dev is an embedding
with image contained in Qmax - Finally, as in Lemma 6.5, the image of M f,aug
under dev is locally convex, showing that the projective structure on My is
properly convex.

Proof of Theorem 1.4 The theorem follows by induction by applying Lemmas 6.1
and 6.2 in succession to glue together the given collection of convex projective manifolds
along various pairs of boundary components, using the given gluing maps in any order.

O

Suppose we are given a collection of cusped hyperbolic manifolds, along with gluing
homeomorphisms between some of their torus boundary components. In general, it is
not known whether projective structures with totally geodesic boundary satisfying the
appropriate holonomy matching hypotheses (1-1) of Theorem 1.4 can be found. To find
such glueable structures would seem to require a description of the global deformation
space of properly convex projective structures with principal totally geodesic boundary
on a given manifold. As of the writing of this article, there is no cusped hyperbolic
manifold for which this global deformation space has been computed, abstractly or
computationally (although there are certain Coxeter orbifolds for which the deformation
space has been computed; see Section 7). Nonetheless, the matching condition is
automatically satisfied in the case of doubling a convex projective manifold with
principal totally geodesic boundary. Indeed:

Proof of Theorem 1.1 Since M is assumed to be infinitesimally projectively rigid rel
boundary, Theorem 1.3 tells us that we can deform the complete hyperbolic structure
on M to a convex projective structure where each boundary component is a principal
totally geodesic torus. The gluing condition (1-1) is trivially satisfied for the identity
gluing, and thus Theorem 1.4 ensures that the double 2M admits a properly convex
projective structure. |

Geometry € Topology, Volume 22 (2018)



1634 Samuel A Ballas, Jeffrey Danciger and Gye-Seon Lee

Figure 6: A collection of properly embedded triangles in the convex domains
defining convex projective structures on the double of the figure eight knot
complement as the projective structure on each of the two pieces deforms
away from the complete hyperbolic structure.

7 Gluing covering manifolds of reflection 3—orbifolds

We conclude the paper by giving examples of properly convex projective structures
on nonhyperbolic manifolds which are not obtained by doubling. To do this, we
apply the convex gluing theorem, Theorem 1.4, to a collection of highly symmetric
properly convex projective structures with principal totally geodesic boundary. The
symmetry of these structures, which are covers of certain convex projective reflection
orbifolds, greatly restricts their boundary holonomy groups. This allows us to deter-
mine which combinations of these manifolds admit structures satisfying the matching
hypothesis (1-1) of Theorem 1.4.

7.1 Euclidean hex tori

We will be interested in three-dimensional hyperbolic reflection orbifolds with cusps
isomorphic to the Euclidean (3, 3, 3)—triangle orbifold. We now recall the geometric
features of this two-orbifold and describe the geometry of its torus covers.
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Let A3z 33 denote the subgroup of the isometries IsomE? of the Euclidean plane
generated by reflections in the sides of an equilateral triangle 7" in the Euclidean plane.
We denote the resulting quotient orbifold by S33,3 = A3,3,3\E2.

If Ag denotes the subgroup of all translations in A3 33, then Ay is the maximal
torsion-free subgroup of As 33 and all other torsion-free subgroups A of A3 33 are
contained in Ag . In other words, the torus Sy = Ag \]E2 is the minimal torus cover
of 8333, and every orientable surface S = A\]E2 covering S3.3,3 is a Euclidean torus
which may be decomposed into regular hexagons each made up of six copies of the
equilateral triangle 7. We call such a torus a Euclidean regular hex torus, or just hex
torus for short. The fundamental group A of a Euclidean regular hex torus S is called
a hex torus group.

Let k be a natural number and let A’ be a hex torus group. Then the group A = kA
of all k™ powers of elements of A’ is a subgroup of A'. If S’ and S are the hex tori
associated to A’ and A, then there is a natural homeomorphism, denoted by k: S’ — S,
which, in the universal cover E2, simply scales by k.

Definition 7.1 Let S; and S» be hex tori corresponding to the subgroups Aq and A
of Ag. Then a homeomorphism f: 8 — S, is said to be a lattice Q—isometry or
a lattice k, /k1—isometry if there exists a hex torus S" with associated group A’ and
natural numbers k1 and k, such that Ay = kA, Ay = koA, and such that the map
f'=k3'fki: S’ — &' is induced by conjugation by an element of A333. When
ki =ky=1,wecall f alattice isometry.

We now define an invariant, called the hex shape equivalence class which may be used
to determine when a lattice Q—isometry exists between two hex tori. Let v; and v, be
a pair of vectors of minimal length such that the translations #,, and #,, generate Ag.
Assume further that the angle between vy and v is equal to %n. Then vy and v, are
unique up to the action of the dihedral group D¢ of order 12, generated by the order

()~ () ()
()= (D)

Let w1 = p11v1 + p12v2 and wy = p21v1 + p22v2 be an ordered pair of vectors such

Six rotation

and the reflection

that the translations f,,, and f,,, generate a hex torus group A with corresponding
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hex torus denoted by S. Then we can encode the shape of A with the 2 x 2 integer
matrix Aa appearing in the equation

(wl) _ (1?11 P12) (v1)
wa p21 p22) \v2 /)’

The matrix A is only well defined up to multiplication on the left by SLZiZ and
multiplication on the right by the matrices of the dihedral group D¢ above. We call the
equivalence class of matrices A the hex cusp shape of S (or of A). The following is
elementary.

Lemma 7.2 Let Ay, Ay C Az 3,3 be the fundamental groups of two regular Euclidean
hex tori S1 and S>. Let Aa, and Aa, be matrices representing the respective hex
cusp shapes of S; and S,. Then there exists a lattice k, /k—isometry f: Sy — S, if
and only if ka[Aa,] = k1[An,], ie if there exists B € SinZ and C € D¢ such that
koAn, = k1BAA,C.

For example, if Aj = (5v1—5v3,5v1+5v;3) and A = (8vy, 4v,), then representatives
of the hex cusp shape of the corresponding hex tori S; and S, are given by Ax, =

(2 _2) and Ap, = (g 2). There exists a lattice %—isometry S1 — S, because

11 0 —1
4Ap, =5(0 1) Ap, (1 1).

Remark 7.3 Given a hex torus S, the area a of S, defined as the index of the covering
S — Sy, is simply the absolute value of the determinant of any matrix in the hex cusp
shape. It follows from the lemma that if S; and S, are lattice k5 /k1—isometric, then
their respective areas a1 and a, satisfy k%al = k%az. Therefore the ratio a,/a; is
a square, and the conformal factor k;/k; of the Q—isometry is given by \/M .
Further, there are only finitely many equivalence classes of hex tori whose area is
at most a. Hence, it is quite easy in practice to determine whether a lattice Q-
isomorphism S; — S; exists as long as the areas of S; and S» are small. If one exists,
then at most 12 = | Dg| exist.

7.2 Projective hex tori

The deformation space €(S3,3,3) of marked convex real projective structures on the
triangle orbifold S3,3,3 is homeomorphic to R and we now briefly describe this
correspondence (see Goldman [20] and Vinberg [39] for more details). Let r1, r» and r3
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denote the reflections in the three sides of the triangle 7', generating A3 3 3. We identify
the triangle T with the positive octant in the projective 2—sphere S? = (R3\ {0})/R ™,
which is the interior of the convex hull of three directions e; = (1,0,0), e; = (0, 1,0)
and e3 = (0,0, 1) of S2. Foreach t € R, let s = e™/3 , and define the representation
¢r: Azz3— SLER by

-100 1 1o 10 s
Ce(r1) = s 10), &@r2)=10—-10], &(r3)=|01 %
101 0 s 1 00 —1

For each t, these three elements are projective reflections in the sides of 7 defin-
ing a representation {; which is discrete and injective. The union of tiles, Q; =
UyeA3,3,3 Z:(y)T, is a convex open domain in S?. When 7 = 0, the convex domain
Qg is the affine chart defined by x; + x» + x3 > 0, where (x1, X2, x3) are coordinates
with respect to the standard basis, and the representation {, preserves a Euclidean
metric on this affine chart; we identify € with the Euclidean plane E? and think of &g
as the inclusion into IsomE? C SL%R. For 7 # 0, Q¢ is the interior of the convex
hull of the directions of the three vectors

l1(t) =€;(—1,5,0), Ir(t)=¢€:(0,—1,5) and I[3(r) =¢€:(s,0,—1),

where €; = t/|t|; see Figure 7. Any {;—equivariant homeomorphism of the universal
cover :573,3,3 = E? with Q. is a developing map for the unique convex projective
structure on S3,3,3 associated to the representation {;. Of course, for any regular hex
torus S covering S3.3,3 and for any r € R, we obtain a convex projective structures
on S by pullback. If A C A3 3 3 denotes the fundamental group of S, then the convex
projective torus {;(A)\2¢ is called a convex projective hex torus; indeed, such a torus
may be decomposed into “regular” hexagons, each of which is the union of six copies
of the fundamental triangle 7.

The maximal torus subgroup Ag of A3 33 is generated by three elements (which are
translations in the Euclidean structure)

81 =Fr3rarary, ga2 =rirarirz, g3 =1rarirar3.

For t # 0, let h, denote the change of basis taking (/1(t), [2(t), [3(7)) to the standard
basis. Then h.{;(gi)h;! = exp(ra;) for i € {1,2,3}, where

—-100 1 00 00 O
ar=] 000}, a2=|0-10}), az=]01 O
001 0 00 00 -1
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Figure 7: Fundamental domains of dual minimal hex tori for t = —% (left)
and T = % (right)

It is then clear that, for any y € Ay and natural number k&,

(7-1) hele(ky)hT' = hieSre (V)R -

Therefore, if A is any hex torus group, the path of representations {; restricted to kA
looks the same, up to conjugation, as the k—times faster path of representations (.
restricted to A. Using this we prove:

Lemma 7.4 Let S; and S, be Euclidean regular hex tori with fundamental groups
A1,Ay C Az 33 and assume that f: S; — Sy is a lattice ko /k1—isometry, with
fx: A1 — Ay denoting the isomorphism at the level of fundamental group. Then,
for any © # 0, there exists g € SL%R such that g{r/kl()/)g_l = {¢/k, (f4(y)) for
all y € Ay.

Proof By assumption, there exists A’ such that A; = k1A’ and Ay = kA’ and
k5! fxki: A — A is conjugation by an element § € A3 3 3. Then, for any y € Ay,
write y = k1y’, where Y’ € A’ and observe

kst fukry' =8y'87 = fu(y) =k8y'87!
k _
== fr/kz(f*(V)) = é‘t/kz (k_jklgy/(g 1)
= he/ie, Gkry'8™HR™!
= gl (Ng",
where h € SL?R is determined by (7-1) and g = h{;/k, (J). O
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7.3 Gluing 3-manifolds which cover reflection orbifolds

Let O be a finite-volume hyperbolic three-orbifold. Each cusp of O is naturally the
product d x R of a Euclidean two-orbifold d with an interval. We think of O as
the interior of an “orbifold with boundary”, where the boundary includes a copy of
each cusp cross-section 0 at infinity. Note that if O is a reflection orbifold, then any
convex projective structure on @ induces a convex projective structure on its boundary
components d. Indeed, the fundamental group A of 9 fixes a unique point with
eigenvalue one under the holonomy representation of any convex projective structure
on O; the convex projective structure induced on d may be seen in the link of this
point. Now, let d = S3 3,3 be a boundary component isomorphic to the Euclidean
(3,3, 3)—tr1angle orbifold. Then, for any manifold covering M — O, the torus boundary
components 31, ...,0n of M which cover 9 are each naturally endowed with a regular
Euclidean hex structure.

Theorem 7.5 For i € {l,...,m}, let M; be a hyperbolic three-manifold of finite
volume which covers a reflection orbifold O;. For o € {1,...,n;}, let (5i)a be a
torus component of dM; which covers a component 0; = S3,3,3 of 00;. Let .# be a
collection of homeomorplnsms of the form f (5 )a — (5 )g which identify the
boundary components {(8 )a i, in disjoint pairs. Assume that:

(1) There are natural numbers ki, ...,k, such that any f € Z is a lattice
k; / ki —isometry of the induced regular hex torus structure on (8 e » and (8 )B -

(2) Foreachi €{l,...,m}, there exists a nontrivial continuous path c;: (—¢;, €;) —
€(0;) passing through the finite-volume complete hyperbolic structure on O;
at ¢; (0) such that the convex projective structure on d; induced by c;(t) is not
constant.

Then there exists a properly convex projective structure on the manifold obtained by
gluing together the building blocks M1, ..., My, using the gluing maps in .%.

Proof By assumption, the convex projective structure on d; = S3 3,3 is not constant,
so for some #; # 0, the structure is isomorphic to the non-Euclidean convex projective
structure associated to some 7; # 0 described in the previous section. It follows easily
from the fact that the fundamental group of O; is generated by reflections that the
restriction of the holonomy representation p;; for ¢;(#;) to the fundamental group
(A3,3,3); of 0; has a fixed point p; with eigenvalue one and that, in a suitable basis,
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0t; l(As5 3); = Cr; ®1d1, where idy denotes the one-dimensional trivial representation.
Hence, for each @ € {1, ...,n;}, the restriction of p;; to the fundamental group (A;)q
of (5,~)0, is diagonalizable and satisfies the middle eigenvalue condition. Therefore, the
pullback of c¢;(¢;) to M; induces a convex projective structure which, after removing a
collar neighborhood, as in Section 5, has principal totally geodesic boundary along its
(relevant) components.

Further, by continuity, t; may be varied continuously in a small neighborhood [0, &;).
Hence, we may choose t1,...,t;, sothat (t1,...,tm)=u(1/k1,...,1/ky) for some
small u € RT. It now follows from the assumption (1) and Lemma 7.4 that the maps
f @b of 7 satisfy the holonomy matching condition (1-1) and Theorem 1.4 implies

i,J
the result. O

7.4 Application: two-colorable tetrahedral hyperbolic manifolds

A finite-volume hyperbolic three-manifold is tetrahedral if it admits an ideal trian-
gulation consisting of regular ideal tetrahedra. A triangulated three-manifold is two-
colorable if the tetrahedra can be colored using two colors so that no two adjacent
tetrahedra have the same color. Two-colorability may be easily checked by Regina [6].
For example, the figure eight knot complement and its sister manifold are tetrahedral and
two-colorable. Recently, Fominykh, Garoufalidis, Goerner, Tarkaev and Vesnin [19]
gave a census of all orientable tetrahedral manifolds with at most 25 tetrahedra.

It is well known (see [19, Remark 5.5] for instance) that every two-colorable tetrahedral
manifold M is a cover of the Bianchi orbifold @3 = PSL(2, Z[¢])\H? of discriminant
D = —3, where ¢ = %(1 + +/=3). Further, O3 covers the reflection orbifold Og%g
determined by reflections in the faces of the partially ideal tetrahedron with dihedral
angles 7, 7 and % at the three edges bounding one face and % along the other
edges, incident on the unique ideal vertex. The reflection orbifold Ogg; has one cusp
and its cross-section is the Euclidean (3, 3, 3)—triangle orbifold. Further, it follows
from Benoist’s work [2] that the hyperbolic structure on the orbifold O§§§’ may
be deformed nontrivially to nearby convex projective structures. So the deformation
hypothesis (2) of Theorem 7.5 is satisfied for tetrahedral two-colorable manifolds, and
therefore the theorem may be applied given appropriate gluing maps between torus
boundary components that respect the hex structure as in hypothesis (1). Indeed, such

gluing maps seem to be easy to find. We now give some examples.

Of the 29 orientable tetrahedral manifolds with at most 8 tetrahedra, 20 are two-
colorable, and each of those has at most 2 cusps. In Table 1 below, these 20 manifolds
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are listed along with the hex cusp shapes of the cusps. The hex torus structure at the
cusps of tetrahedral manifolds can be calculated easily using SnapPy [16]. In Figure 8§,
left, a fundamental triangle for the cusp of (’)g%;’ is drawn in yellow, while the cusp
pattern of the tessellation of H3 by regular ideal tetrahedra is drawn in black. The hex
torus structure of one boundary component d; of the tetrahedral two-colorable manifold
m207 is shown in Figure 8, right: Ag (resp. the hex lattice Ay of d1) corresponds to
vertices of triangle with black edges (resp. red dots), and two generators of A; are
shown as pink arrows; we easily read of the hex cusp shape: Ax, = [f %]

Name Name[19]  8; 9, | Name Name[19] 8, 9,
m003  otet020000 |32 9] ©12845 otet08o001 [32] [49]
moo4 otet020001 | 9] 12840 otet080002 [3 9] [49]
m202 otet0doooo [31] [49]|t12842 otet08o00s [29] [31]
m203 otet04ooor [21] [49]|t12843 otet08o00a [32] [49]
m206 otet04oo02 [29] 12844 otet08000s [32] [49]
m207 otetOdooos |3 1] 12837 otet080006 |3 &]

5959 otet060002 [39] [34]]t12839 otet080007 [ &3]

5961 otet060003 |3 9] 12838 otet08000s [ 4 2]

960 otet06ooos [ 4 2] 12836 otet080000 [3%] [34]
958 otet06ooos |3 2] t12841 otet080010 [33] [39]

Table 1: Hex torus cusps of orientable, two-colorable tetrahedral manifolds
with at most 8 tetrahedra

From Table 1, we may easily read off several new examples of closed three-manifolds
that admit properly convex projective structures.

Theorem 7.6 In each line of Table 2, there exist gluing maps identifying the boundary
components of the given building blocks in pairs so that the resulting closed three-
manifold admits a properly convex projective structure. The gluing maps may be read
off from Table 1.

Proof Examination of Table 1 verifies that each given identification of boundary
tori satisfies the hypotheses of Lemma 7.2 and therefore a lattice QQ—isometry exists
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Figure 8: Hex torus cusps of orientable two-colorable tetrahedral manifolds
(left) and a hex torus cusp d; of m207 (right)

between the given boundary components. For example, d1(m003) is lattice %—isometric
to 01(s959) and d,(s959) is lattice %—isometric to d1(s960), and so on. The result
follows from Theorem 7.5. |

Remark 7.7 As in Remark 7.3, there may be multiple (but no more than 12) gluing
maps identifying a given pair of boundary components in Theorem 7.6. Different
gluing maps might or might not produce homeomorphic manifolds. We do not check
carefully here the number of different homeomorphism types of closed three-manifolds
for which Theorem 7.6 gives properly convex projective structures. It is at least five,
but seems likely to be more.

Building blocks Gluing maps

01m003 — 075959
02,5959 — 015960
01m003 — 0,t12841
01t12841 — 075960
01m004 — 0,t12840
0:1t12840 — 0;s961
01t12843 — 0;t12844
0,t12843 — 0,t12844
01t12842 — 075961
0,t12842 — 0;t12839

m003, s959, s960

m003, t12841, s960

m004, t12840, s961

t12843,t12844

t12842,t12839, 5961

Table 2: Building blocks and boundary pairings for Theorem 7.6
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7.5 Application: the cusp covering conjecture

Finally, we briefly mention an application of the cusp covering conjecture, proven by
Wise (see [42; 43, Corollary 16.15]).

Theorem 7.8 (cusp covering conjecture; Wise [42; 43]) Let M be a finite-volume
hyperbolic 3-manifold and let OM = 01 L1 d, U --- U d,. There exist finite covers
07 — 0; such that, for any further finite covers df — 07, there is a finite cover M—>M
such that, for each i, each cover of 0; appearing on the boundary of M is isomorphic
to 8? — 0.

Let O be a reflection orbifold with one cusp d = S3 3,3 satisfying the hypothesis (2) of
Theorem 7.5 and let M be a manifold cover. It follows easily from the cusp covering
conjecture that there is a finite cover M of M (in fact infinitely many such) such that
the inclusion of the fundamental group AS of each boundary component 9 into the
fundamental group A3 33 of d has the same image. Hence, we may glue together in
pairs the boundary components of M via a lattice isometry of the hex torus structure.
The resulting manifolds admit convex projective structures by Theorem 7.5. We may
also arrange that, for each i, the image of some AS < A3 33 is a multiple kA’ of
the fundamental group of any given hex torus subgroup A’. Let A" be the hex lattice
isomorphic to, for example, the hex torus fundamental group of the boundary torus oM’
of some one-cusped manifold M’ in Table 1. Then any boundary component of the
resulting cover M of O may be glued to the boundary of a copy of M’ by a lattice
k—isometry. Let N be a manifold obtained by gluing together some pairs of boundary
components of M via hex lattices isometries and by gluing on copies of M’ with
hex lattice k—isometries to the remaining boundary components. Then N admits a
properly convex projective structure by Theorem 7.5. This gives one way to obtain
many interesting examples of closed nonhyperbolic three-manifolds N which admit
convex projective structures.
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