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Abstract

We consider a free boundary problem for a system of PDEs, modeling the growth
of a biological tissue. A morphogen, controlling volume growth, is produced by
specific cells and then diffused and absorbed throughout the domain. The geometric
shape of the growing tissue is determined by the instantaneous minimization of an
elastic deformation energy, subject to a constraint on the volumetric growth. For an
initial domain with ¢ boundary, our main result establishes the local existence
and uniqueness of a classical solution, up to a rigid motion.

1. Introduction

The aim of this paper is to analyze a system of PDEs on a variable domain,
describing the growth of a biological tissue. Motivated by [2—4], we consider a
living tissue containing some “signaling cells”, which produce morphogen (that
is, a growth-inducing chemical). This morphogen diffuses throughout the tissue
and is partially absorbed. A “chemical gradient” is thus created; the concentration
of morphogen is not uniform, being larger in regions closer to the signaling cells.
In turn, this variable concentration determines a different volumetric growth in
different parts of the living tissue. This can provide a mechanism for controlling
the growth of the domain towards a desired shape.

As is customary, we describe biological growth in terms of a vector field v(-),
determining the motion of single cells within the tissue. Calling u(-) the concen-
tration of morphogen, the constraint on volumetric growth is expressed by

divv = g(u), (1.1)

where g : R — R, is a(possibly nonlinear) response function, satisfying g (0) = 0.
Atany given time ¢, the vector field v is then determined (up to arigid motion) by the
requirement that it minimizes a deformation energy, subject to the constraint (1.1).
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The model is closed by the assumption that signaling cells are passively transported
within the tissue.

Calling €2(¢) the region occupied by the tissue at time ¢, and w(t, -) the con-
centration of signaling cells, we prove that the above model yields a well posed
initial value problem. More precisely, our main theorems show that, if the initial
domain Q(0) = Qo has C>* boundary and if the initial concentration w(0, -) lies
in the Holder space C%%(Qq) for some 0 < a < 1, then the system of evolution
equations determining the growing domain has a classical solution, locally in time.
Moreover, this solution is unique up to rigid motions, and preserves the regularity
of the initial data.

A wide literature is currently available on free boundary problems modeling set
growth, see forexample [5,7,8,13,19,20]. A major goal of these studies has been the
mathematical description of tumor growth [6,9-11,14,15]. Compared with earlier
works, our model has various new features. On one hand, it contains a transport
equation for the density of morphogen-producing cells. By varying the location
and concentration of these cells, one can study how different shapes are produced.
Another fundamental difference is that in our model the velocity field v is found
as the minimizer of an elastic deformation energy involving the L> norm of the
symmetric gradient of v. On the other hand, in free boundary problems modeling
flow in porous media one minimizes the L2 norm of the velocity field v itself (with
suitable constraints). As a consequence, while the solutions in [6,9-11,14,15] are
unique, the solutions that we presently construct are uniquely determined only up
to rigid motions.

The remainder of this paper is organized as follows. In Section 2 we introduce
the basic model and collect the main notation. Section 3 contains some geometric
lemmas on the representation of a family of sets with sufficiently smooth boundary.

The heart of the matter is worked out in Section 4, where we construct approx-
imate solutions by a time discretization algorithm. At each time step, the density
u(-) of morphogen satisfies a linear elliptic equation accounting for production, dif-
fusion, and adsorption. Existence and regularity of solutions follow from standard
theory [16]. In turn, the existence of a vector field v(-) satisfying the divergence
constraint (1.1) and minimizing a suitable elastic deformation energy is proved
relying on Korn’s inequality. A careful analysis shows that the system of equations
determining this constrained minimizer is elliptic in the sense of Agmon, Douglis,
and Nirenberg. Thanks to the Schauder type estimates proved in [ 1], we thus obtain
the crucial a-priori bound on the norm || v|| 2.« . Finally, the density w(-) of signaling
cells is updated in terms of a linear transport equation with C> coefficients, pro-
viding an estimate on how the norm ||w||co.« grows in time. Section 5 contains some
additional estimates, showing that our approximate solutions depend continuously
on the initial data.

In Section 6 we state and prove our first main result, on the existence of classical
solutions, locally in time. The uniqueness of these solutions, up to rigid motions, is
then proved in Section 7. Two simple examples, where the growing domain €2 (#)
can be explicitly computed, are discussed in Section 8.

The last two sections contain some supplementary material. In Section 9 we
reformulate the problem using Lagrangian coordinates. Namely, we show that the
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growth of the living tissue can be described by an evolution equation for the coef-
ficients of a Riemann metric tensor on a fixed domain. Finally, an extension of our
basic model is proposed in Section 10, where we derive a set of equations describing
the growth of a 2-dimensional surface embedded in R3, regarded as a thin elastic
shell.

2. The Basic Model

Let (1) C R¥ be the region occupied by a living tissue at time ¢, in a space of
dimension d. Cases d = 2 or d = 3 are the most relevant, however we formulate
and prove our results in the general case of arbitrary dimension.

Assume that a morphogen is produced by cells located within the tissue. Denote
by w(t, x) the density of these cells at time # and at a point x € 2(¢). Calling
u = u(t, x) the concentration of morphogen, we shall assume that u satisfies a
linear diffusion-adsorption equation with Neumann boundary conditions:

Uy =Au—u+w xe€Q(@),
(Vu,n) =0 x € 0Q2(¢).

Since the time scale of chemical diffusion is much shorter than the time scale of
tissue growth, at any given time ¢ the solution of the above problem will be very
close to an equilibrium, described by the elliptic equation

{Au—u—i—w:O x € Q(1), @)

(Vu,n) =0 x € 9Q().

We observe that, for every w € L2(Q2(t)), the solution u of (2.1) provides the
unique minimizer of a quadratic functional over the space W'-2((r)). Namely, it
solves the problem

e . IVul?  u?
minimize: J(u) = ( + — - wu) dx. M)

Q) 2 2
Next, we need an equation describing motion of cells within the tissue. This
is determined by the expansion caused by volume growth. Call v = v(¢, x) the
velocity of the cell located at x € 2(¢) at time 7. In our model, at each time 7, the
vector field v(z, -) is determined as the solution to the constrained minimization

problem

1
minimize: V) = — sym Vv X Ssubjectto: divv = u).
inimize: E(v) = - ym Vv[* dx  subj di gu). (E)
Q1)

Notice that E(v) can be regarded as the elastic energy of an infinitesimal deforma-
tion (displacement). Throughout the paper, we assume that the function g : R —
[0, 00) satisfies that

geCXR), g0)=0, g, g, ¢ areuniformly bounded. (2.2)
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Finally, we assume that the morphogen-producing cells are passively trans-
ported within the tissue. The transport equation below is supplemented by assigning
an initial distribution of hormone-producing cells on the initial domain:

(H)

w; +div(wv) =0 x € Q(1),
w(0, x) = wo(x) x € 2(0) = Q.

Notice that, as soon as the velocity field v is known, we can recover 2(¢) as
the set reached at time ¢ by trajectories starting in £2¢. More precisely:

Q@) = {x(t); x(0) = x0 € Qo and x'(s) = v(s, x(s)) foralls € [0, t]}. G)

Summarizing, we have:

(1) The linear elliptic equation (2.1), describing the concentration of morphogen
u over the set Q(¢), at each time r = 0. For a given source term w(z, -), its
solution u(t, -) provides the unique minimizer in (M).

(i) A constrained minimization problem (E), determining the velocity field
v(t, -) at each given time ¢, up to a rigid motion: translation + rotation.

(iii) The linear transport equation (H), determining how the concentration of
morphogen-producing cells evolves in time.

(iv) The formula (G), describing the growth of the domain 2 (7).

The main goal of our analysis is to prove that, given an initial set 2o and an
initial density wo(x) for x € o, the equations (M-E-H-G) determine a unique
evolution (at least locally in time), up to a rigid motion that does not affect the
shape of the growing domain.

2.1. Notation

Throughout this paper, by ’ or (f—t we denote a derivative with respect to time ¢,
while V is the gradient with respect to the space variable x = (x1, ..., x4).

Given a bounded, open, simply connected set & C R, its boundary is denoted
by ¥ = 9%, and its Lebesgue measure by |2|. We write n for the outer unit normal
vector to €2 at boundary points, while Tp (3€2) is the space of tangent vectors to the
boundary 92 at the point P. The average value of a function f on 2 is denoted by

forasg [ rax

For any integer k = 0 and o € (0, 1), by cke (2) we mean the space of bounded
continuous functions whose derivatives up to order k are Holder continuous on £2,
with the exponent «. This is a Banach space with the norm:

VVu(x) — V'u
lullera )y = Z sup |V u(x)| + Z sup Vux) - (y)l.
1<k xeQ v|=k X, yEQ, x#y [x — y|

Since every Holder continuous function # as above admits a unique extension to
the closure $2, we observe that the spaces C*%(€2) and C*% () can be identified.
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Givenad xd matrix A = [A;;];, j=1..4, we denote by AT = [A j;]its transpose,
and we set:

A+ AT CA—AT
sym A 5 , skewA = 5 ,

d
(A:B) = trace(A"B), |A]P = (A:A)= > A}
i,j=1
The space of d x d skew-symmetric matrices is so(d), and [ is the d x d identity
matrix.

3. Some Geometric Lemmas

We say that 2 satisfies the uniform inner and outer sphere condition when there
exists p > 0 such that, for every boundary point x € X, we can find closed balls
B and B of radii R;,(x), Rou (x) = 2p satisfying B C Q, B" N'E = {x}
and B’ N Q = {x}. Define the signed distance function:

dist(x, ) x¢Q

) = {—dist(x,E) xeQ.

If Q is smooth (that is, it has a smooth boundary), then §(-) is also smooth, when
restricted to the open set

V, = {x; dist(x, X) < p}.

Moreover, for every x € V, there exists a unique point 7 (x) € ¥ with |7 (x) —x| =
dist(x, X).

Every continuous map ¢ : ¥ — (—p, p) determines then a bounded open set
(see Fig. 1):

Q¥ = {x eRY 8(x) <p(r(x)} with Q¥ ={y+eO)n(); yex}
(3.1
To measure the Holder regularity of ¢, we extend it to V,, by ¢(x) = ¢ (7 (x)), and
set:

lellera = ll@lcrecy,)- (3.2)

By definition, & € C* if the following holds. For every x € X there exists an
open ball B(x, r) and a homeomorphism % : B(x,r) — B(0,1) C R? such that

(i) The map & as well as its inverse A~ are CK* regular;
(i) h(B(x,r)NQ) =B, 1) N {x e RY; x; > 0}.

Lemma 3.1. Let @ C R? be an open, bounded, simply connected and smooth
set, satisfying the uniform inner and outer sphere condition with radius 2p > 0.
Then, for every k > 0 there exists a constant M such that the following holds.
Ifo: ¥ — (—%, /7)) satisfies |¢|lcze < k, then there exists a homeomorphism
A : Q — QY satisfying the bounds

IAllczay S M, 1A  le2a(qey < M. (3.3)
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Fig. 1. The set Q¥ in (3.1), described in terms of the function ¢ : & — R

Proof. 1.Let o : R — R be a C*° function such that o (s) = 0 for s £ —p, and
o(x) = 1fors = 0, and moreover,

3
0<o'(s) £ 7 forall s eR. (3.4)
0

The homeomorphism A : Q — Q¥ is defined by setting

X if §(x) < —p

A= {x +o@E)eon@) if —p<3x) <0.

It is easily seen that A maps €2 onto Q¢. Since A coincides with identity on the set
where §(x) < —p, to estimate the C>* norm of A it suffices to study what happens
when —p < §(x) < 0. On this latter set, the functions §(x), o (§(x)), n(;r(x)) have
uniformly bounded derivatives up to any order. By the definition of A we thus get
the estimate

IAllg2e) S C(1+ llglicae)
for a suitable constant C depending only on X.

2. In order to obtain a similar estimate for A~} it is enough to check that det VA
has uniformly bounded inverse on €2. Indeed, in this case, the C%® norm of A~! will
be bounded by a polynomial in || A||¢2.«(q) Whose order and coefficients depend
only on 2 and d.

On the set where §(x) < —p, we have det VA = 1. Let now —p < §(x) < 0,
and let y = m(x) € ¥. Let U C X be a relatively open neighborhood of y, with
coordinates (xz, ..., x4). Then the map x — (6(x), x2, ..., x4) provides a chart
of the inverse image 7 ~!(U). In these coordinates, A has the form

A(x1, ... xg) = (x1+0@De®), x2, ..., Xq).
In view of (3.4) and the fact that ¢ is independent of x|, we thus conclude that

~ 3 1
det VA() = 140/ (x)g(x) = 1_55 =7
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The estimate (3.3) now follows by covering the compact surface ¥ with finitely
many coordinate charts and by noting that, on each chart, det VA is uniformly
comparable withdet VA. O

Lemma 3.2. Let Qo C R? be an open, bounded and simply connected set with C**
boundary X, satisfying the uniform inner and outer sphere condition with radius
3p > 0. Then, for any go > 0, there exists an open, bounded and simply connected
set Q with C*° boundary X, satisfying the uniform inner and outer sphere condition
with radius 2p, and such that Qo = Q¥ as in (3.1) for some function ¢ € C>%(X)
with

lp(x)| < ey forall x € X. 3.5

Proof. 1. Let §y be the signed distance function from X(. By assumption, dy is
C? on the open neighborhood Vp 3, of ¢ with radius 3p. We now consider the
mollification §; = 8o * J. with a standard mollifier J, in R?. It is not restrictive to
assume that ¢ < g9 < p and that

6 — 50”62-&(\/013,)_80) < Ce. (3.6)
We claim that the set
Q=Q, = {xeR?% §,(x) <0}

satisfies the conclusions of the lemma, provided that ¢ > 0 is chosen sufficiently
small. Since |V§p| = 1 in Vj 35, we note that

& &
V8 (x)] =1 — 70 forall x € Vo, [8:(x)| < 30 for all x € .

Now fix x € X. By the above estimates and since &g € C2, we can find y € Vo,
such that

S:(y) =0 and |y —x| =< £ (1 — €—O> : < &.
2 2
Consequently, every point x € X is at a distance less than g from some y € X, =
092.. We conclude that the smooth set 2 = Q, indeed satisfies Q¥ = Qq and the
uniquely determined function ¢, given as the signed distance from X, obeys (3.5)
and it is C>“ regular.

2. We now check that 2 = €2, satisfies the uniform inner and outer sphere condition
with radius 2p. Fix any point P € Xg. On a neighborhood of P we introduce an
orthonormal frame of coordinates (yi, ..., y4) = (¥1,y) as in Fig. 2, where the
y1-axis is orthogonal to the surface ¥ at P. In these local coordinates, the surfaces
Yo, X have the representations

2o ={0nLY: y1=v%M}. Ze={01.9); y=v.O},

with the variable § ranging in some neighborhood of the origin U ¢ RY~!.

By construction we have 9% (p) = 1. Hence, by possibly shrinking the neigh-

ay1
borhood U, we can assume g%)(y) > % for every y € U. By (3.6) we thus have
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Fig. 2. Estimating the radius of curvature of the boundary X, = 9,

1¥e — Yollcow) < Ce¢ and the implicit function theorem further implies the con-
vergence

I¥e — Yollczyy — 0 as & — 0. (3.7

We now recall that the maximal curvature x(y) of the graph of a function
¥ : R41 - R at a point j, equals the maximum of the absolute values of the
principal curvatures, that is the maximum of the absolute values of the eigenvalues
of the second fundamental form IT = (VI/I)TVII. Since the second fundamental
forms of ¥ and X satisfy |[IT, — ITo[lco(yy — 0 as e — 0 in virtue of (3.7), and
since for every § € U the assumption of the lemma gives xo(3) < %, it indeed

follows that x.(y) < ﬁ for small ¢ > 0.
In turn, this yields an a-priori bound on the inner and outer curvature radii:

v

min{Rin (Ve (7). 5): Row Ve (9. )} = ==

By covering the compact surface ¥y with neighborhoods of finitely many points
P1, ..., Py, and choosing ¢ = min{ey, ..., &,}, the proof is achieved. O

4. Regularity Estimates

Given the initial data wg in (H), a local solution to the system of equations (M—
E-H-G) will be constructed as a limit of approximations, obtained by discretizing
time.

Fix atime step ¢ > 0 and let 7, = ke. Assume that at time #; we are given the set
Qr = Q () and the scalar nonnegative function wy = w(#, -) on Q. Successive
Qi41 = Q(t+1) and w41 = w(tk+1, -) on Q41 are obtained by the application
of the four steps below.

Step 1. Determine the density uy : ; — R by minimizing (M) with w = wy.
This implies that uy is the solution to the elliptic problem (2.1).

Step 2. Determine the velocity field v; : Q; — R? by solving the minimization
problem (E) on 2, subject to the current constraint div vy = g(ux). The
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minimum is defined up to a rigid motion and we can single out a unique
Vi by requiring that

][ v dx =0, skew][ Vv dx = 0. 4.1)
Q Q

Step 3. Define the domain €241 by an approximation of (G):
Qi1 = {x +evi(x); x € ) 4.2)
Step 4. On the set Q2 1, define the density wy41 implicitly by setting

wy (x)
det(I + eVvi(x))

W1 (x +evi(x)) = (4.3)

Notice that (4.3) is motivated by mass conservation: wiy is the push-
forward of the density wy through the map x +— x+4¢v,(x). The motivation
for (4.3) in the continuous framework is given in Lemma 4.5.

Throughout what follows, we assume that the initial domain 2o C RY is open,
bounded and simply connected, with boundary £y € C>%, whereas the initial
density satisfies wo € C%%(Qq), for some 0 < « < 1. Moreover, the function
g€ C3(R) satisfies (2.2), unless stated otherwise.

4.1. Step 1: The Elliptic Equation for u

Lemma 4.1. Let @ C R? be an open, bounded and simply connected set with C**
boundary. Let w € C%%(Q) be a nonnegative function. Then (2.1) has a unique
solution u € C*>%(Q), which is nonnegative and satisfies

||u||CZ,oz(Q) é C”U)”CO,a(Q) (44)
Further, for every constant M_> 0 and every domain Q for which there exists a
homeomorphism A : Q@ — Q with | Allc2e (), ||A_1||C2,a(§) < M, the corre-
sponding bound (4.4) is valid with a uniform constant C that depends only on M
(in addition to Q2 and « that are given in the problem).

Proof. 1. The existence and uniqueness of solutions to (2.1) follow from Theorem
6.31 in [16] (see also the remark at the end of Chapter 6.7 in [16]). We now
show the non-negativity of u. If u is constant then u = w = 0. For non-constant
u, we invoke the maximum principle (Theorem 3.5 [16]) and conclude that the
non-positive minimum of « on  cannot be achieved in the interior Q. On the
other hand, if such minimum is achieved at some x € 92, then by Hopf’s
lemma (see Lemma 3.4 in [16]), one must have (Vu(x), n) < 0, contradicting
the boundary condition in (2.1).
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2. Let now A and M be as in the statement of the lemma. Let & be the solution to
(2.1) on , for some W € C*%(L2). Then the composition u = iio A € C>*(S)
provides the unique solution to the following boundary value problem:

(VZu: A+ (Vu, AAHoA)—u = —oA xeQ,
4.5)
(Vu, An) = 0 x € 9Q.

Here the matrix of coefficients A is defined as

A@ = ((VATHEVATHT) (A @) = ((va(m))"(x).

To derive the boundary condition, we used the following formula which is
valid for every invertible matrix: (B&;) x (B&;) = (det B)B 1T (& x &). By
Theorem 6.30 in [16] we obtain the bound

lulleza(y S C (llullcoagy + W o Allcoag)) - (4.6)

where the constant C depends only on €2, @ and on an upper bound to the
following quantities: [|Allc1.«(q) | AA™Ho A llco.« () and the joint ellipticity
and non-characteristic boundary constant « 5 . The defining requirement for « 5
is that

ilé‘l2 < (A(0)E, E) < kalg)? forallx € Q.

Hence we can simply take k5 = [|[(VA)™! lco + ||VA||%,O, confirming that the
constant C in (4.6) depends only on M.
3. We now show that (4.6) can be improved to

”u”CZO‘(Q) § C”li) o A”CO,a(Q), (47)

for a possibly larger constant C, which still depends only on the bounding con-
stant M. We argue by contradiction; assume there are sequences of diffeomor-
phisms A, such that || A, || c2., ||A;] ez« < M, and of solutions u,, € CY(Q)
to the problem (4.5) with some w,, € C%%(A,(2)), so that

S| =

||Mn||cz.a(g) =1 and “ﬁ}n o An“co,a(Q) é

Fix B € (0, @). Passing to a subsequence if necessary, we may assume that A,
converge as n — oo (together with their inverses) in C>#(Q2) to some A, and
that, likewise, u, converge to u. The limit # must then solve the problem (4.5)
with w = 0. Thus # = 0 and ||u,, || c0.« converging to O implies, in view of (4.6),
that ||u, || c2.« converges to 0 as well. This is a contradiction that achieves (4.7).
Noting that ||it||c2.« < Cllullc2e and || o Allp2e < C||@]| 2.« with C depend-
ing only on M, we see that (4.7) yields (4.4) on Q. o
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4.2. Step 2: The Elastic Minimization Problem for v

Lemma 4.2. Let Q@ C R? be an open, bounded and simply connected set with C>*
boundary. Assume that u € W2(Q, R) and that g € C' satisfy g(0) = 0 with g’
bounded. Then the following holds:
(i) The minimization problem (E) has a solution, which is unique up to rigid
motions;
(ii) A vector field v Wl’Z(Q, ]Rd) is a minimizer of (E) if and only if there exists
p € L*(Q, R) such that (v, p) solves:

div(symVv —pl) =0 x €,
divv = gu) x € Q, 4.8)
(symVv—plhn= 0 x €d%Q;

(iii) There exists a constant C, independent of u, such that any (v, p) as above
satisfies

| r=fres
L2(Q) Q

Proof. 1. Note that g(u) € W'2(Q, R). Existence in (i) follows by the direct
method of Calculus of Variations. Consider a minimizing sequence v,. By
Korn’s and Poincaré’s inequalities, we can replace each v, by a vector field of
the form

S Cllullzzg)- 4.9)
L2(@)

Vv — skew ][ Vv dx
Q

Vi(x) = vu(x) = (Apx +by),

where A, € so(d) and b,, € RY, so that ¥, — v weakly in w2, up to a
subsequence. By the convexity of the functional E, it is clear that the limit v is
a minimizer.
To prove uniqueness, let vi and v, be two minimizers. Test the minimization
in (E) in both v; and v, by the admissible divergence-free perturbation field
vi — v3. Subtract the results to get: f(sym Vvi —symVvy : V(v —vp)) =0.
Consequently: [ |sym V(vi—v3) |> = 0 and thus v; — v, must be a rigid motion.
2. Note that v is a critical point (necessarily a minimizer) of the problem (E) if
and only if

/(SymVV:VW) dr = 0 forall we W'2(Q,RY) with divw = 0.
Q

(4.10)
Taking divergence free test functions which are compactly supported in 2 and
integrating by parts in (4.10), it follows that div (sym Vv) = Vp in the sense
of distributions in €2, for some p € L2(Q, R). Here we use the convention that
the divergence operator acts on rows of a square matrix. This yields the first
equation in (4.8). In addition, one has

/ ((sym Vv — pI) :Vw)dx =0 forall we WI’Z(Q, ]Rd) with
Q
divw = 0. “4.11)
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Now let ¢ € C°(3Q2, RY) satisfy

/ (¢, m) = 0. 4.12)
R

Then there exists a divergence-free test function w with trace w = ¢ on 9<2. It
is well known (see [21]) that, since (sym Vv — p[) together with its divergence
are square integrable in €2, the normal trace (sym Vv — pI)n is well defined on
2. By (4.11) it thus follows that

0= f((syva—p]) :Vw)dx = / (¢, (sym Vv — pI)n).
Q Ele)

Since every tangential ¢ obeys (4.12), it follows that the tangential component
of the normal stress vanishes: ((sym Vv — pl )n) = 0. On the other hand,
the normal part satisfies

tan

((sym Vv — pI)n,n) = const. on df2.

Absorbing the constant in p, we obtain the boundary condition in (4.8).
3. To show (iii), let v € W12(Q) be a solution to divv = g(u), satisfying the
bound (see [21])

IVllwiz@) = Clg@llzq = Clull2g)- (4.13)

Using w = v — Vv as test function in (4.10), one obtains

[ symvve = [ foym v 99 < sym vl 192
Q Q

In view of Korn’s inequality and of (4.13), this yields the bound on the first term
in (4.9). Since V p = div (sym Vv), we also obtain || p —fp .2 < C| Vv L2(Q)
(see again [21]). This completes the proof in view of g being Lipschitz and
g(0)=0. O

The next lemma states the uniform Schauder’s estimates for the classical solu-
tion of (4.8).

Lemma 4.3. Let @ C R? be an open, bounded and simply connected set with C>*
boundary. Let g € C*(R) be such that g(0) = 0 and g', g" are bounded. Then, the
boundary value problem (4.8) on 2 satisfies the ellipticity and the complementarity
boundary conditions [1]. Therefore its classical solution (v, p) satisfies the a-priori
bound

IVlic2acey + IPllcre) = C(Ilg@llcraq) + IVilcoa (@) + I1Pllcoag), (4.14)

where the constant C depends only on Q. Moreover, for every u € Ch%(Q) the
minimization problem (E) has a unique solution v € cre(Q, Rd) normalized by
the conditions

][ vdx =0, skew][ Vvdx =0. (4.15)
Q Q
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This solution satisfies
||V||(12-a(gz) = C”g(u)”cl,a(gy (4.16)

Further, for every constant M > 0 and every domain Q for which there exists a
homeomorphism A : Q — Q with ||A||Cz,a(Q), ”A_IHCM(?Z) < M, the corre-
sponding bound (4.16) is valid with a uniform constant C that depends only on M
(in addition to 2 and « that are given in the problem).

Proof. 1. We denote the right hand side function in (4.8) as
U=gou, 4.17)

and observe that u € C1¥() implies U € C1%(Q) in view of the assumptions on
g.

Let (v, p) € W2 x L2 be the weak solution to (4.8) whose existence follows
from Lemma 4.2. To deduce that actually v € W22 and p € W2, one employs
the usual difference quotients estimates (see [16] for scalar elliptic problems and
[17] for systems with Dirichlet boundary conditions), provided that the system is
elliptic and satisfies the complementarity conditions on the boundary. We check
these in the next steps below, for a slightly more general system with nonconstant
coefficients. Then, a repeated application of the classical a-priori estimate due
to Agmon, Douglis and Nirenberg [1] Theorem 9.3, combined with a Sobolev
embedding estimate, yields

IVllwza) + IPlwia = C(||U||W1-q(§z) + IVllwra) + ||P||Lfl(§2)),

for every 2 < ¢ < oo, since U € C1*(Q) implies U € W!9(). Consequently,
by Morrey’s embedding we have (v, p) € C17 x CO7(Q) forevery 0 < y < 1.
Applying the Schauder estimates [1] to Theorem 10.5, we finally arrive at (4.14).

Letnow A and M be as in the statement of the lemma. Let (V, p) be the solution
to (4.8) on a perturbed domain €, for some right hand side U e C'%(Q). Then the
composition (v!,...,v¢, p) = (v, p) = (¥, p) o A € C>* x C*(Q) solves the
following boundary value problem for a system of d + 1 equations:

%(Vzvi : (VA)*l(VA)*"T> 4 %(Xd:(VA)*"T(vzvk)(VA)*‘ek, e,~>
+<W", Ao A> + trace((Vf'):(lvai A Yo A)) - ((VA)—‘-Tvp, ei>

=0 x € Q,
<Vv:(VA)*‘vT> =UoA xe€Q,
(sym (V(vA)T) - pl)(VA)—l-Tn —0. x € dQ.

(4.18)

Note that, when A = id is the identity map, the system (4.18) reduces to (4.8).

2. To show ellipticity and boundary complementarity of (4.18), we use the standard
notation in [1]. The principal symbol is the square operator matrix L 5 of dimension
(d+1) x (d+1), given in the block form below. Its coefficients are polynomials in
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the variables & = (& ...&,), corresponding to differentiation in directions e . . . e4
in Q:

1 . —1 —1,T l LT 1] e
LA@):P(E@S.WA) (VA) )I+2(VA) (E®&)(VA) ‘(VA) 5}

(vayTg)" [0
=L((va)~"Te),

where the (d + 1) x (d + 1) polynomial matrix L = L;g4 is defined as:

Lig2p 4 1 _
L($)=|:2|E| ;TZEQM‘OE] (4.19)

The first d rows in the matrix L correspond to the equations in: div(sym Vv —
pI) = 0; to these rows we assign weights s = 0. The last row corresponds to the
equation divv = g(u); we assign to it the weight s = —1. The first d columns in
L 5 correspond to the components of v; to these columns we assign weights t = 2.
The last column corresponds to p; we assign to it the weight r = 1.

In order to check the ellipticity of the operator L,, we need to compute the
determinant of L  (£). The determinant of a block matrix, where D has dimension
1 x 1, can be written as

det [%%} —(D+1)det A —det(A+ B® C).

Hence
det L(£) = det (l|s|21 - ls ® &) — det (1|S|21 - lé ®§)
2 2 2 2 '

Further, if B is a square matrix of rank 1, then det(A + B) = det A 4 (cof A : B).
Hence

det(IET +£®&) = |2 + 162" N1 e @ &) =2/6[*  and
det(|E)*1 —E ® &) = 0.

Consequently, we obtain the ellipticity condition:

detLo(§) = detL(VA) ") = %KVA)_I’TElM #0 forall & # 0.

(4.20)

The supplementary condition on L, is also satisfied: for any pair of linearly

independent vectors £, € € RY the polynomial det LA (£ + &) in the complex

variable 7, has exactly d roots tj{ (€, &) with positive imaginary parts. The roots of
det L(& + t&) are all equal to

_ 1 _ _ _
T, E) = @( — (&,E) +i(EIPEI” — (5, E)DH/2).
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Finally, we find the adjoint of L(&) by a direct calculation:

1—#5@5#5}
: .
geé’ |1

2
L% (&) = (det L()LE) " = 'g' L [52

Naturally, the following formulas correspond to the change of variable A:

Ly &) = L (V) MTe), i B =1t (V) e (va) TN TE).

3. We now want to verify the complementing boundary condition at a point P € 92
and relative to any tangent vector n € Tp (9<2) perpendicular to the unit normal n to
0<2 at P. The boundary operator matrix By in (4.18) is of dimensiond x (d +1). It
has the block form as below, where we assign to each row the same weightr = —1:

Ba(&;m) = |:%<(VA)71’T$, (VA)fl’Tn>1 + %(VA)’I'T(g @n)(VA)~! _(VA)—I,TH]
=B((vA) g (va) ),

and where the polynomial matrix B = B;g is defined as
_ 1 _ 1 - -
B(§:§) = FE G+ 8@8|—F |-
Compute the product

Da(g;m) = Bp(E; m) LS (£) = D(VA) 1T (VA) 1 Tn),

1% [ (g, &) N £) 2 -
zdl[ =270 E @8+ pskew (é®$)|s|2é—é]

D ;_ =
€9 £ 3 £
“4.21)

The complementing boundary condition requires that, for any nonzero tangent
vector n € Tp(0R2), the d x (d + 1) matrix D (tn + n; n), whose entries are
polynomials in the complex variable 7, has rows which are linearly independent
modulo the polynomial

Mt@) =t —f ) = (r =@, M) (4.22)

We use here the notation
N=A " Tn, ¢=wa)~"Ty. (4.23)
We will now directly reduce all the entries of D (tn+n; n) by M and prove
that the reduced matrix of coefficients at ¥ has rank d. In view of (4.21), we obtain

|tN + g2
2d 1
N [|fzv+:|2<rN+c N —2(N +¢, NYEN + 0P+ tN+¢P(Noc—¢aN) ]
[tN + ¢P(tN + ¢, NY@N + )T — [TN + ¢[*'NT

Da(tn+n;n) = DN +¢;N) =

(4.24)
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Observe that the vectors n, n are perpendicular, whereas ¢ and N, in general,
are not. However, (¢, N) = (1, (VA)~'(VA)~"Tn) and since the metric tensor
(VA LvA) LT §s uniformly positive definite on €2, it follows that

(¢, N)I < alg|IN, (4.25)

with a universal constant & € (0, 1) that depends only on M.
Denote a = (|[¢]*IN|* — (¢, N))l/z, which is a positive number because of
(4.25). Writing for simplicity T+ = t7(¢, N), we obtain

th—tt="" (t"N+¢ N)=ia. (4.26)

It is also easy to check that
|TN + ¢ 297D = (r — )41 (¢ — 7 H)d7!
= (1t — r+)d_1(r+ — r+)d_1 mod M
2ia

_ + dfl(
= (1t — -
(t—1") N2

(tN+¢, NI =(t"N+¢, NI mod(rt —t") =ial mod (r — ™),
IN+¢=t"N+¢ mod(r —tH).

d—1
) mod M,

Therefore, by (4.26), we get the reduction of the last column of D :
Da(rn+p;megyr = (r —t 412, mod M, 4.27)

where
2ia \¢7! . i
Za+1 = N[ (ifa)(TTN +¢).

In the next step we shall reduce the entries of D (zn 4 1; V)gxqg by M.
4. Arguing as above, and observing that t @ N —~N®¢ = TN+ QN -N®
(ttN +¢), we obtain
TN + {|2(d’1)((tN Y NI+C®N-N® ;)
=(r — ‘L'—’_)d_1 ( 2ia

d—1
W) (ial +t ® N—N®¢) mod M*

. d—1
= (r —rH)e! [(%) (ial =N & (xtN + g))

1
+'—Zd+]®N} m0dM+.
la
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On the other hand,
|TN + 29D (N + ¢, N)(zN + )®?

_ +nd—1 bid_ IN | + ®2 +
=@ () @G N FOPEN® N +0)

+ (TN +0) ®N]

2ia \d-2

e —r+)d—2(W) (ia)(ttN + )% mod M+
IN|?

N|*d
2ia

2ig \d—2
= (1 — 1)1 [(i) (ia)N ® (N + )
| IN|?

Yierwror 8]

+Z4411® ((

+(r — )42 '2 i 241 @ (TN +¢) mod M.

Concluding, we obtain

Da(tn+ ;M) gxg = Zaxqa mod MT, where
4 2ia \d-IT, IN|?
Zg = (1 — 1) 1<W) [zal n (T — 1)N ® @V + g)]

_Ayd—1 INI2d\2, INI> +2
tr—1) 241 ® [( 2ia ) TN+ + 2ia N]
+(r -t 2'2 i 241 ® (TTN +0). (4.28)

Consider now the reduced polynomial matrix of dimension d x (d + 1):
Z(tin.m) = [ Zqxa|(t —tH 1 2441 ],

where Z;«4 and Z;441 are given in (4.27), (4.28). The complementing boundary
condition states precisely that Z has maximal rank (equal d) over the field of
complex numbers C. To validate this statement, it suffices to check that the complex-
valued matrix Z(0; n, n) is of maximal rank. By performing elementary column
operations and using the fact that T #£ 0, we observe that Z(0; 1, n) is similar to

Dia \d-1 2
z’(O;n,n):(—ﬁ)"*‘(ﬁ) [za1+(|2| 1)N®(r+N+;)

v | (429)

We then compute, using (4.26), that

1 /INP N 1/INP +
det[l+i (7—1)N®(r N+§)]—1+trace<m(T—1>N®(r N+0))
., L/INP + _INP?
_1+E<T—l)(r N+¢ Ny =
Moreover, )
2ttaq|dd-1 | |N
| det(Z )anal = | = ( du £ 0. (4.30)

INI?
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This establishes the validity of the ellipticity and the boundary complementarity
conditions for the system (4.18), and thus in particular for the system (4.8).

5. By the previous step, we can apply Theorem 10.5 in [1] and obtain the estimate

IVlic2e @+l = C(”g(inA)||C11a(sz)+||V||CO,a(gz)+||P||c01a(gz)), (4.31)

where the constant C (in addition to its dependence on 2 and o) depends only on
an upper bound for the following quantities: the C'** norms of the coefficients of
the highest order terms in the equations in (4.18); the % norms of the coefficients
of the lower order terms; the uniform ellipticity constant A 5 ; and the inverse of the
minor constant k (which is denoted in [1] by the symbol A). It is clear that the
former two quantities depend only on M. We now prove that the bounds on A and
(k) ™" also depend only on M.
Indeed, A is defined in terms of the inequalities

1
Hmz" Sdet L) < anlgl.

By (4.20) we can thus take A5 = 2¢71([(VA)~! ||§d0 +IVAIZ) < 29M%, valid
for every x € Q.
On the other hand, the minor constant « 4 is defined as follows: for any boundary

point P € 92 and any tangent unit vector n € Tp(92) at P, we write
d—1
[Z@nm], = D ghTt fori=1...d, j=1...d+]1
s=0

Construct the matrix Q = [ql.sj], havingd rows:i = 1...d, and (d 4 1)d columns:
j=1...d+1,5s =0...d — 1. Under the complementing boundary condition,
the rank of Q equals d. Hence, if 0' ... 0K denote all the d-dimensional square
minors of Q, one has

max |detQ1| > 0.
[=1..K

The minor constant k 5 is precisely the infimum of these quantities, over all boundary
points P and all tangent unit vectors 1 as above. Clearly, k5 > 0 and

>

Ka = | det(Z(0: 7. m))dxal-

inf
Ped2, neTp (3R, |nl=1

By (4.30) and the formula for T (¢, N), we obtain

IN|*\d@-1) 1 2
) (4.32)

1
—< (— -
= P 24 a? |N|?

KA~ Pedq, nln, |n=1

Recalling (4.23) and observing that a = (1 — a)'2|¢||N| in view of (4.25), we
conclude that the quantity on the right hand side of (4.32) is bounded from above
in terms of a (positive) power of M. This completes the proof of (4.31), valid with
a constant C that depends only on M.
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6. We now show that (4.31) can be improved to
IVlc2a) + IPllcre@) = CIU o Allcre(g) (4.33)

where the constant C depends only on M, provided that (v, p) are normalized
according to

][ |det VA|lvdx = 0, skeW][ |detVA|(Vv)(VA)_ldx = 0,

Q Q
][pldetVA| dx = 0. (4.34)
Q

As in the proof of Lemma 4.1, we argue by contradiction. Assume there are
sequences of diffeomorphisms A, such that [[Ay||c2e, A, ! lcze < M, and of
normalized solutions (V,, p,) to (4.18) with some U, € C"*(A,()), such that

~ 1
”Vn”Cz-O‘(Q) —+ ||Pn||cl»a(gz) = 1 and ||Un o An”Cl»a(Q) é ; (435)
We extract converging subsequences: A, — A, v, — v,and p, — p,asn — o0,
in appropriate Holder spaces with a fixed exponent 8 € (0, ). The above implies
(4.34) and, since (v, ll) solves the problem (4.18) with U = 0, by the uniqueness
of weak solutions on 2 = A(L2) stated in Lemma 4.2 (i), we obtain that v = 0 and
p = 0. Consequently, both ||v,||c0.« and || p,|l¢o.« converge to 0, and by (4.31) we
get a contradiction with the first assumption in (4.35). Hence (4.33) is proved.
Finally, we have
Wlcze@ < Clivlicray: 10 o Alleraigy < CllUllra):

with a constant C depending only on M. In view of (4.33) and recalling (4.17),
this comgletes the proof of the estimate (4.16), with a constant independent of the
domain 2. O

4.3. Step 3: The Growth of the Domain Q2

Lemma 4.4. Let Q@ C R? be an open, bounded, smooth and simply connected
set, satisfying the uniform inner and outer sphere condition with radius 2p > 0.
Letp : ¥ — (—%, %) be a C>* map, defining the set Q¥ as in (3.1)~(3.2). Let
v € C2Y(Q¢, RY) and define the new set

Q. = {x+ev(x); x € Q7). (4.36)

Then, there exists g > 0, depending only on the upper bounds of ||¢|c2.« and
IVllc2.e(qey, Such that for every & < &g the following holds. The set Q2 is open and

it can be represented as Qs = QV for some ¥ : £ — R satisfying the bound

I¥llcze = ll@llcza + Cellvliczaiqe)- (4.37)

The constant C above depends only on the upper bounds of || ¢ || c2.« and ||| c2.e (qg)-
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Proof. 1. Let L be the Lipschitz constant of v on Q7. Since by Lemma 3.1 we
have Q¥ = A(R) for some C>% homeomorphism satisfying IVAllco £ M,
it follows by integrating along a curve connecting x and y in Q¥ that |v(x) —
v(y)| = CaM||VV|lcolx — y|, where Cq depends only on the geometry of 2.
Thus

IVVlico = L = C[[VVlico, (4.38)

where C depends only on [|¢||c2.« (We always suppress the dependence on the
referential 2).

Define g = ﬁ Then, for every ¢ < &g, the map id 4+ evis a C%“ homeomor-
phism between the open sets 2% and (the automatically open image) €2.. This is
so because the gradient / +¢ Vv is invertible, implying the local C> invertibility
of the map, whereas the map itself is an injection, since x +-ev(x) = y +¢&v(y)
yields x = y in view of

£
lx =yl = elv(x) = vl = eLlx —y| = glx—yl-

In particular, we observe that 02, = {x + ev(x); x € IQ?}.
2. We now construct ¥ so that Q, = Q. By covering the boundary ¥ with
finitely many charts, it suffices to consider the case where

Q = {(x1.x) = (1. x2,...,x0) € RY x; <0},
Q¢ = {(x1,x); x1 < p(x)}.

Givenv = (vl, V) = (vl, vio., vd) and ¢ > 0 as above, v is defined by the
relation

¥ (& + e (@), ) = o) +ev! (), x). (4.39)
The existence of ¥ and the bound (4.37) now follow by the implicit function
theorem. O

4.4. Step 4: Updating the Density w

Before we continue with the discrete time set-up, let us motivate the implicit
definition (4.3) by the following natural observation regarding the transport equation
(H).

Lemma 4.5. Let {Q2(t)},c(0.7] be a Lipschitz continuous family of sets with co
boundaries, defined as in (G) through a Lipschitz vector field v : D = {(t,x); t €
[0, T1, x € Q(1)} — RY, satisfying v(z, -) € C>%(Q2(t), R?) for every t € [0, T.
Denote {A" : 2(0) — Q(1)}efo. 1 the corresponding 1-parameter family of dif-
feomorphisms given by the ODE

d t 0o .
aA x)=v(, A'(x)), A" =id. (4.40)

Assume that w € C*% (D, R) is a nonnegative density function that satisfies (H) in
the weak sense (see (6.2) for the precise definition). Then
w(0, x)

w(t, A'(x)) = m forall x € Q(0), t € [0, T]. 4.41)
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Proof. We will prove (4.41) under the assumption w € C!(D). The general case of
lower regularity will follow by a standard approximation argument. Observe that,
by (H),

%w(r, A (x)) = w(t, A'(x)) + (Vw(t, A (x)), %At(x»

= (wr + (Vw, v))(#, A’ (x))
= (w, + div (wv) — wdiv V) (t, A'(x)) = — (wdivv)(r, A’ (x)).

On the other hand, using the formula

d ’ —1

g Jet F() = det F(t)trace(F/'(t)F (1)), (4.42)
valid for any matrix function t — F () € R?*?  we obtain

d d .
et VA () :(detVAl(x))trace((aVA’(x))(VA’(x)) )

= (det VA () trace( Vv (1, AT () VA’ (1) (VA () )
= (det VA (x))divv(r, A (x)). (4.43)

Consequently,

d (Indet VA’ (x)) = 4 1 !

d t — _ e T ALl oY
g (lnw@ A'@)) = - al detVAf(x))’

dr
which directly yields (4.41). O

Lemma 4.6. In the same setting of Lemma 4.4, let w € C%*(Q%) be a non-negative
density and let u € C>*(Q¥) be the solution of (2.1) on the set Q¥. Then, there
exists €9 > 0 such that for every € < &g, a new density wg is well defined on the
set Qg in (4.36) by setting, implicitly

w(x)
= — . 4.44
we(xr +6V0)) = T evva)) (4.44)

Moreover, we 2 0, and the following estimate holds:
||wg||C0,ot(Q£) g (1 + CS)”U)”CO,O((Q(p). (445)

Both the threshold eq and the constant C above depend only on the upper bounds
of lgllcza and (IVllct o)

Proof. Let L be the Lipschitz constant of v on Q2¢. As observed in the proof of
Lemma 4.4, the map x — x + ev(x) is a C>* homeomorphism between Q¢ and
Q.. Hence both the numerator and denominator in (4.44) are well defined C>
functions on g, for all ¢ < &g as long as g9 < ﬁ By (4.44) the function w; is
well defined and non-negative, provided that ¢ < &.
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By (4.38), the choice of g9 depends only on the upper bounds of the quantities
l@llcz« and [[V]le1(qe). Writing det(/ +eVv(x)) = 1+ O(|VV|co + IIVvllzo),
we also deduce

0= we(x) = (1 + Ce)llwlleogp)s (4.46)

for & < gg and C as indicated in the statement of the Lemma.
It remains to estimate the Holder constant of w,. Using (4.4) and the fact that
I(x +ev(x)) — (y+ev(y)] =2 (I —eLl)lx —yl,

we obtain

|we (x + ev(x)) — we (y +&v(y))|

lw(w) — w(y)] B 1
= det(I +eVv(x)) det(/ +eVv(x)) det(I +eVv(y))

[Vwlalx — y1* (1 + Cellvlior) + lwlleoCellvierlx — |
(IVwla + Cellwlico )i = yI°

[(x +ev(x)) — (y + ev(y)|*
(1—eL)

(IVwla + Cellwligo(l + 1)) I +ev(0) = (v +ev()I,

+w(y)

IIA

IIA

A

(19wl + Cellwlien)

A

since (1 —el)™ < (1 +2eL)* < 1 4+ 2¢L. In view of (4.46), this
yields (4.45). O

5. Continuous Dependence on Data

As proved in Lemmas 4.1 and 4.3, the regularity estimates (4.4) and (4.16) hold
with a constant C which is uniformly valid for a family of domains €2, obtained
via diffeomorphisms with uniformly controlled C>® norms. In this section we
study in more detail how the solutions u, v of (2.1) and (4.8) change, under small
perturbations of €2.

Lemma 5.1. Let @ C R? be an open, bounded and simply connected set with C**
boundary. Let w € C%%(Q) be a nonnegative function. Then there exists gy > 0
such that the following holds. Consider a homeomorphism A : Q — Q= A(R),
satisfying | A — id || c2.eq) < €0, and define % € C%* () by

w(x)

VAR = A®

forall x € Q.

Let u be the solution to (2.1) and v be the solution to the minimization problem
(E), normalized as in (4.15). Likewise, let i and V be the corresponding solutions
of these problems on Q. Assume that g € C>(R) with g(0) = 0 and g', g", g""
uniformly bounded. Then

liio A —ulcrag = ClIA —idlcregllwlcoeg)- (5.1)
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and

”{’ o A - V||Cz,0¢(9) S C”A - ld”cZ,a(Q)”w”COQ(Q)(l + ||U)||é0u(g2)) (52)

Both the threshold gy and the constant C above depend only on the domain <2, and
they are uniform for a family of domains that are homeomorphic with controlled
C% norms (as in the statements of Lemmas 4.1 and 4.3).

Proof. 1. We first observe that, choosing g9 > 0 sufficiently small, the map A has
a C%“ inverse A~!. In addition, ¥ € Cz*"‘(§~2) is well defined, nonnegative, and
satisfies

||IZ)||600¢(§) < C||w||CO.a(Q). (5.3)

The existence and uniqueness of the corresponding solutions u and u follow from
Lemma4.1. We regard u® = iio A as an approximate solution of (2.1), and estimate
the error quantities eg, > in

AP —w)y—w—uw)y=e xeQ
(Vu* —u),n) = e x €9Q.
By (4.4) and (5.3) we obtain
luFllc2a(q) < Clbllcoag < Cllwllcoeg)- (5.4)

On the other hand, u* solves the boundary value problem (4.5), where A(x) =
((VA)TVA)_l (x). An explicit calculation yields

1A = Tlleragy + IVZA™) 0 Allgoag) < CIIA —idllc2a(gy- (5.5)
Subtracting the equality
Aut —ut = (Auf —u®) — (V2 A) + (VU ALMT) o A) —u) — o A
from Au — u = —w, we obtain

e = — (V2 i (A=D) = (Vu', A(A™H) o A) — (W o A — w).

Hence, by (5.5) and (5.4), we obtain the bound

. 1
||€1||c0,a(9) = C||uﬁ||cz,o,(9)||A - ld||c2va(§z) + ||w(1 - m)”cw(g)
= A —idllcre @) lwlicoe(q)-

Likewise, computing the difference between the boundary conditions of u* and u,
we obtain

er = (Vub,n) = — (Vu®, (A —Dn).
Therefore (5.4) and (5.5) imply

lealleragy < ClluflleragyllA = idlleray < ClIA = id|lcrag lwllcoa(q)-
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By Theorem 6.30 in [16] it now follows that

lu* = wllgraqay < C(Iu* = ulloaiq) + 1A = idll e lwlcow),

and the usual argument by contradiction, as in the proof of Lemma 4.1, yields the
required bound on [|it o A — ul|c2.u(g) in (5.1).

2. In order to estimate [V o A — V(|20 (), let (V, p) and (v, p) be the normalized
solutions to (4.8) on the domains £ and €2, respectively. Call v = VoA, p? = poA.
We regard (v%, p?) as an approximate solution to (4.8). Indeed, it satisfies the
boundary value problem

div (symV(vﬁ—V)—(pﬁ—p)I) =e3 X€Q
div(vf —v) = e4 xeQ (5.6)
(symV(V* —v) — (pF —p)I)n=es5 x €92,

with error terms e3, e4, e5. As in the proof of Lemma 4.3, Theorem 10.5 in [1]
yields

IV = Vllg2a() + 1P* = pllcrae
< C(IV* = Vllgoaq) + 1PF = pllcoag) + lleslicoaig) + leallcrace
+llesllcrag))- (5.7)

We claim that (5.7) can be replaced by

V¥ = Vlic2a(g) + 17" = pllcre

< C(‘ ][ v —wv) dx’ + ‘ ][ skew V(v¥ — v) dx‘
Q Q

+‘][(pt—p)dX’
Q

+ llesllcoe gy + leallcre(q) + lles ||C1,or(sz)>- (5.3)

Otherwise, we could find a sequence (vf, — Vy, p?, — pn) solving (5.6) with corre-
sponding right hand sides e%, e; and e, and such that the left hand side of (5.8)
equals 1 for every n, while the quantities in the right hand side converge to 0,
asn — oo. Fix 8 € (0, o). Extracting a subsequence, we deduce that V,E -V
and p,% — p, converge in C># () and C1# (), respectively, to some limiting
fields V, P, that solve the homogeneous problem (5.6). Moreover, all the averages:

][ \%4 dx][ P dx,][ skew VV dx, equal 0. By uniqueness, this implies V = 0
Q Q Q

and P = 0. Hence ||V,§ — Vnlloe(q) and ||p5 — Pnllcoe(q) converge to 0, but this
contradicts the uniform estimate (5.7), since the left hand side always equals 1.
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3. We now compute the error quantities ez, e4, es in (5.6). Since (vE, pj) = (vFl,
.., vk pﬁ) solve the system (4.5) on €2, one has

d

, 1 , 1

e =— E(vzutl (A-D) - 3 <Z [(VA) T (V2R (va) ! — v2uHh]e, e,»>
k=1

— (Vo A(A™"Y 0 A) — trace (VW) (Va; (A7) 0 M) + (VA = 1) V. i),

ey =— (V' (VAT = 1))+ gwh) - gw),

es =~ (WA~ D= S [VA) (@A) ] n 4 (V) 1) .

Using (5.5) and the obvious bound || (VA)™! — Iicre(g) S ClA - id||c2e(q), We
obtain

lesllcoaqay + IKVVF : (VA = DT )lleraqy + lesliereq
< C(IV¥llc2aq) + I1P% lre@)IA — idllc2a(gy < ClIA
- id”CZ-a(sz)||g(ﬁ)||cl,a(§2).

Here we used (4.33) in
Vel + 1P llcaqe) S C(I¥ll ey + 15llcaq)) S Cllg@lieres,-

Similarly, we check that

‘]{Z(Vﬁ—v)dx‘—i-‘][g(pﬁ—p)dx‘ :‘][gvﬁ(detVA—l)dx‘

+(][ PEdet VA — 1) dx’
Q
< C(IIV¥llcoy + PP llcocay ) 1A — lidllc1 ) < Cla—idller@)llg@llerag)
’skew ][ Vv —v) dx’ - )skew ][(vVﬁ)((detVA)(VA)—l —1) dx‘
Q Q
< ClV¥ller ey 1A — idlleiigy < CIIA — idllcaaoy 1@ llerag)-
To bound the expression || g (i) ]| Cla)> We estimate
V(g oit)(x) — V(g o) ()| < g ((x)) — g @(y)| - |Vit(x)|
+1g' @) - |Vi(x) — Va(y)|
< " N2 _

+11g o1 Viill o gy 1 — 1

and thus, by (5.3)

g 0 dilleracy < CI" leo il g, + 18 lcoliillera )

< Cllbllgna gy (1 + 1Bl coa) < Clwlleoag (1 + lwlicows))-
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4. To conclude estimating the right hand side of (5.8), we need to deal with the term
lg(u®) — g(u) lcre(q)- We have

lg@®) — gw)llcoy = Clig'llco llu* — ullcoy.

and
V(g 0u?)(x) = V(g ou)(x)]
< [(¢'0 ) = ¢/ w@n) V)| + [¢ @) (Vi) - Vu)|
< g lleo 1 = wllen ey IV oy + 18/ lleo IV = Vulgog-
Moreover

V(g ou?)(x) — V(g ou)(x) — V(g ou")(y) + V(g o u)(»)]
&' (* (x)) VuF (x) — ' (u* () Vb (y) — g/ (w(x)) Vu(x) + ¢ (u(y)) Vu(y)|
= |(¢' W () — ' WF () VUl (x) + g’ W () (Vi (x) — Vi (1))

— (g @) — &' () Vulx) — g w())(Vu(x) — Vu(y))|

< (g W) — &' wF () (VuF (x) = Vu(x))]
+ (g W () — &' WP (y) — (&' ) — &' ()| - [Vux)|
+ (g W (») — &' () (Vul (x) — Vi (y))|
+ 18" N - [(Viux) = VEu(y)) — (Vu(x) = Vu(y)))]

< Clx = ylllg" lleo IV [l eogy | Vi = Vall o

+C (18" lleo 14 = Vuullgo gy Ix = ¥l Vulleocey

+llg" llolu® = ulleoey I VatllGo gy 1¥ — y|)
+ 118" lleollu® — ullcogqy Ul oragylx — ¥I1* + 118 llco lu® — ulleraqaylx — y1%,

where the constant C may depend on the geometry of 2. We used here the following
representation, valid for all x, y such that [x, y] C

(g W (x) — g W (»)) — (&' w(x) — g (u(y))

I'd
= /0 a(g/(uu(sx + (1 =9)y) — g (ulsx + (1 — s)y))) ds

= fol g W (VuF —=Vu, x — y) ds+/01(g”(uu)—g”(u))(Vu,x—y)ds.
Consequently, by (5.1), (5.3) and the estimates in Lemma 4.1, we get
g ou® — g oulereg
< Clluf = ullgraggy (1 + I lleragy + lullerg) + Il g))
< Cllu* = ullrage (1 + 1wl1Gowg)
S ClIA = idll 2y lwllgoa gy (1 + 1w 1Eoa g)-

In view of the bounds in Step 3, the proof of (5.2) is done. O
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6. Local Existence of Solutions to the Growth Problem

By a solution to the growth problem (M-E-H-G) on some time interval [0, T],
T > 0, we mean:

e A Lipschitz continuous family of sets {€2(¢)};c[0,7] with C%® poundaries;
e A Lipschitz continuous velocity field v(z, x) defined on the domain:

D={(t,x); tel0,T], x € Q(1)}, (6.1)

with v(z, -) € C>*(Q(r), RY) for every t € [0, T1;
e A nonnegative, C>* regular continuous density function w = w(z, x) defined
in D,

for which the following holds:

(1) Forevery t € [0, T], the set Q(¢) is determined by (G);
(i1) The density w provides a weak solution to the transport equation (H), namely

/ wn: + w(v, Vn) drdx + / wo(x)n(0,x)dx =0
[0,T1xR4 Rd (6.2)

forall n € C2°(D N ([0, T) x RY));

(iii) For every ¢t € [0, T], the vector field v(z, -) on Q(¢) is a minimizer of (E),
while u(z, -) is the minimizer of (M) with w = w(t, -).

Theorem 6.1. Assume that the initial domain Qo C R? is an open, bounded, simply
connected set with C** boundary X, for some 0 < a < 1. Assume that g satisfies
(2.2). Then, given an initial nonnegative density wo € C** (), the problem (M-
E-H-G) has a solution on some time interval [0, T], with T > 0.

Proof. 1. By the assumed regularity of ¥, the set ¢ satisfies the uniform inner
and outer sphere condition with a radius 3p > 0. We construct a new smooth,
referential domain €2 and a function ¢y = ¢ € C%2(%), so that the assertions of
Lemma 3.2 hold with g9 = p/3. In particular, we have Q¢ = Q0. Introduce the
constants

My = 1+ llgollcza, My = 1+ [wollcoucgy), (63)

where the first norm refers to a p-neighborhood V,, of ¥, as in (3.2).

Fix a time step 0 < ¢ < &g, where g9 > 0 is chosen small enough, as in
Lemma 4.4 and Lemma 4.6, in connection with the upper bounds [|¢ |2« < M,
lwllcoe ey = My and [|V]lc2a(qey = CoMy (1 + My,). The constant Co is such
that ||lullc2e < Collw|lcoe and |[V]|c2e < Collwllcoe(1 + |wlco«) according to
(4.4) and (4.16), and it depends only on M, through Lemma 3.1. Consider the
discrete times f; = ke. For each k = 0, 1, 2, ..., given the set €2; and the scalar
nonnegative function wy, € C%% (), we follow steps 1—4 of Section 4 and construct
a new density wg41 on the new set Q;41. As in (3.1), we use the representation
with an appropriate ¢; € C>%:

Q= Q% = {x eR% §(x) < pr(w ()}
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We claim that, as long as #; remains in a sufficiently small interval [0, T'], the norms
lwillco.e () and [l¢kllc2.« satisfy a uniform bound, independent of the time step
& > 0, namely,

”(pk”clot S M(p and ||U)k||c().a(9k) S Mw. (64)

Indeed, by Lemmas 4.1, 4.2 and 4.3, we see that the Schauder estimates yield

<

lurllcze@y = Collwkllcow (g,

B (6.5)
IVillc2e(qp) = CO||wk||COYa(Qk)(1 + ||wk||co-a(szk))~

In turn, by Lemma 4.4, the new domain has the form Q4 = Q%+!, with

loprillze < llgelloa + Cellvillozeqay
S leklicza + CCo(1 + My)ellwillcoa(g,y = leklicza  (6.6)
+ C15||wk||cﬂvm(gk),

while by Lemma 4.6 the density w41 on 2441 satisfies the estimate
lwitillcoeg, ) = lwkllgow g, + Ca2e lwkllgow(g,)- (6.7)

The constants C1, C, remain uniformly bounded, as long as ¢k, wy satisfy (6.4).
Let now

1 1
T = min , .
{Cle C2Mw}

By (6.3), (6.6), (6.7), the bounds (6.4) are valid as long as #; € [0, T'], regardless
of ¢ < gg.

2. We write Q°(1;) = Qi and w®(#, ) = wy at the times tp = ke for k =
0,1,2,..., L%J + 1. The sets Q°¢(¢) and the functions w®(z, -) are then defined for
all t € [0, T], by linear interpolation. More precisely, for t € [#, tx+1] we define

Q) = {x+(t —t)vi(x); x € Ul

wi (x) (6.8)
det(I + (t — 1) Vve(x))

wé(t, x + (1 — H)ve(x)) =

Clearly, each w?® is Lipschitz continuous in ¢. We claim that w® are uniformly
Holder continuous in both variables ¢ and x. Indeed, the uniform bounds on the
norms [|vi |l c2.«(g,) (see (6.5) and (6.4)) imply the uniform Lipschitz continuity of
vk in x, with a Lipschitz constant independent of the time step ¢ > 0:

Vie(x) = vk = Llx —yl. (6.9)

Given an initial point xo € o, let + +— x(¢, x9) be the characteristic of (6.8),
starting at xo; that is the polygonal line defined inductively by

x(0,x0) =x0 and x(t,x0) = x(t, x0)+(t—tr) Vi (x (&, x0)) fort € [t, trq1],
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so that
QF (1) = [x(t,xo); X0 € szo}.

By (6.9), it follows that for every #, = ke € [0, T] and xo, Xo € €20, we have:
(1 — eL)*|%o — xo| < |x (i, %o) — x(t, x0)| < (1 + eL)¥|Xo — xo|. This yields

(1 —eL)"#|xo — xo|
lx(t, %) — x(t,x0)] = (14 eL)"*|Z — xo
ez — xol < et ixg—x9| forr €0, T], (6.10)

e 2|3 — xol

A A NIA

where the lower bound holds for all ¢ > 0 small enough, while the upper bound
holds for every ¢. Using (4.42) and the definition (6.8), we compute the derivative
of w® along a characteristic x (-, xg) as

d ., d wy (x (1%, x0))
—w (t»x(tv-xo)) =7
dr dr \ det (I + (t — 1) Vv (x (tx, x0)))

= —w®(t, x(t, xp))trace
(V¥ie s xo) (1 + (0 = 1) Ve (1 %)) )
= —w®(t, x(t, x0))div v}, (¢, x (1, x0)). (6.11)

where we trivially extend the definition of v at # to v;,.(¢, -) on Q°(¢), for every
t € [0, T, by simply transporting its value along the characteristics

Vi (t,x + (0 — )vi(x)) = vi(x) for 1 € [t frg1).

Note that v, is not continuous (in time) at# = #;. However we still have the uniform
bound on its spacial derivatives: vy, (7, ) [lc2.« (qe (1)) < My, independent of ¢ < g
and valid for all t € [0, T']. The last equality in (6.11) now follows from the identity

-1
YV (e x(tx0) = Ve xo) (14 (= 10 Vv (o, 50)))
From (6.11) we obtain the representation formula
t
w’(t, x(t, x9)) = exp {—/ div vi, (s, x (s, x0)) ds} wo(x0).- (6.12)
0
Therefore, for any 7; < 1, and xg, Xy € €0, we have the estimate

|w? (12, x(12, %0)) — w* (1, x (11, X0))

wo (X0)

(%) Tl
< ‘exp{—/ divve, (s, x(s, 0)) ds} —cxp!—/ div v2, (s, x (s, x0)) ds}
0 0

+exp {f fﬂ div vé, (s, x (s, x0)) ds} |wo(F0) — wo(x0)|- (6.13)

0
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By the uniform C>% bound on vi,.(t, -) and by (6.10), the first term in (6.13) satisfies

C

19} 12!
/ divve, (s, x (s, o)) ds’wo(io) n c)/ divve, (s, x (s, %))
T 0

1
—div v, (s, x(s, xp)) ds ‘wo(io)

©

< Cllwollgneay) / V55, ez ey s
T

7
+ Cllwolleoaay) / IV, 5, Mz ol (s, To) — x(s, x0)] ds
0
=C (Zg[lél’;] lIvi,(t, ')”ClO‘(QS(t))) ||w0||(:0,a(§zo)(|fl — 1| + €LT|XO - x0|)-

Moreover, the second term in (6.13) is bounded by C|lwo|lco.e (g X0 — x0l*. By
(6.10) we thus have

|w® (12, x(12, X)) — w* (71, X (11, X0)) |
C(lti — ©l* + %o — x0l%)

C(lt1 — |* + |x (22, Xo) — x (71, X0)[*),

A A

where C depends only on M,,, My and T, but it is independent of ¢, as claimed.

3. We now examine the representation Q°(¢) = Q¢ (") where (1, ) € CP*(D)
in view of Lemma 3.2. For ¢ € [#, tx+1] we consider the homeomorphism ®(z, -) :
¥ — ¥, defined by

O, x) = 7(x + @O + (= V(¥ + g (In(x)).

Observe that (¢, x) and ®~1(z, x) are uniformly Lipschitz continuous in both ¢
and x. Since the map ¢°(¢, -) : ¥ — R can be implicitly defined by

X+ e (n(x) + (¢ — i) Vi (x + g (x)n(x))
= O, x) + ¢ (1, O, x))n(O(t, x)),

it follows that ¢ is a Lipschitz continuous function of (¢, x) € [0, T] x X, with a
Lipschitz constant independent of €.

4. For every t € [0, T], we now define the velocity fields v®(z, -) on Q°(¢), by
setting

t—ty T —1Ix
- Vig1(x 4 evi(x) + (1 —

Vet x + (t—t)ve(x)) = ) Vi (x)

r— 1 t— 1

Vig1(x+evi () +(1 —

Wit x + (8 — t)Vi(x)),
(6.14)
whenever ¢t € [t, tx+1) and x € Q. Notice that this provides an interpolation

between the composition vi41 o (id + evg) and vg, on Q. In view of (6.10), it is
clear that [|[v*(#, )|l c2.e (¢ (1)) = My, as before.
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We now claim that the vector fields v® are uniformly Lipschitz continuous in
both variables ¢ and x. By Lemma 5.1, in view of (6.5) and (6.4), we have the
uniform bound

IVkt1 0 (id + eVi) — Villze (o)

§ C‘gllvk”sz“(Qk)”wk”CO’”(Qk)(l + ”wk“é().a(gk)) § Ce. (6.15)
Observe that, for any t; < 75 and xg, X € €2, one has

V¥ (12, x (12, X0)) — V¥ (71, x(T1, X0))|
SV (12, x (12, X0)) =V (T1, x(T1, X0)) | +|VE (71, X (71, X0)) —V* (71, X (71, X0)) .
(6.16)

To prove Lipschitz continuity in time, it is not restrictive to assume that 71, 7o €
[#%, tx+1]. Then, by (6.14) and (6.15) the first term on the right hand side of (6.16)
is bounded by

[V¥ (12, x (12, X0)) — V¥ (71, x(T1, X0))]|
-1

Vi1 (x (1, Xo) + eV (x (i, X0))) — Vi (x (1., X0))|

T—T1]

| (Vi1 © Gd+evo—vi) (vt 50))| £ Cla—70).

On the other hand, in view of (6.5) and (6.4), the second term in (6.16) is bounded
by
Ve (T1, x (71, X0)) — V¥ (71, X (71, X0))|
S | Vit (x (. Xo) + eV (x (i, X0))) — Vi1 (x (i, Xo) + Vi (x (., x0))) |
+ [V (x (&, X0)) — Vi (x (g, X0))|
< My(2 4 eMy)|x (1, Xo) — x (1, X0)|.

Together, the above estimates yield the following Lipschitz bound on (6.16):

[V (22, x(2, £0)) = ¥ (a1, 3 xo)) | £ € (171 = 7ol + [ (z2, Fo) — x(z1, x0)]).

In a similar way, we interpolate linearly along characteristics and define the
scalar function u® implicitly by setting

[ r—

ug(t, x4+ (t— tk)vk(x)) = tk)uk(x)-

uk1(x +eve(x) + (1 —

As in the previous case of v¥, we conclude that the norms [|u® (7, -) 2.« (q¢ (1)) <
M,, are uniformly bounded and that u® is uniformly Lipschitz continuous in both
variables ¢, x.

5. To avoid technicalities stemming from the fact that the functions w?, u®, v are
defined on different domains D° = {(z,x); 1 € [0, T], x € Q°(1)}, we extend
each of these maps to the set [0, T'] x B, where B C RY is a ball large enough to
contain all Q¢(¢). By the analysis in previous steps, and the appropriate uniform
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boundedness of ¢°, w?, uf, v°, the Ascoli—Arzela compactness theorem, yields the
uniform convergence of (possibly subsequences, as &, — 0)

¢* = ¢ in C°0,T1x =,R), v¢® > v in C°0,T]x B,RY)

. . ) 0 (6.17)
w® —>w, u®*—u in C([0,T] x B,R)

Defining D = {(t,x); tel0,T], x € Q(t)} as in (6.1), where Q(f) = Q¥"),
we see that the limit functions have the following properties:

e ¢ is Lipschitz continuous on [0, 7] x X and satisfies [|¢(z, -)|c2e = M, for
allt € [0, T];

e weCoMD)is nonnegative and satisfies [[w(z, )|l co.« (o)) < M,;

e u and v are Lipschitz continuous on D and satisfy the uniform bounds
||M(t, )HCZQ(Q([)) § Mu, ||V(l‘7 ')”CZ,O((Q(I)) é MV forallt e [O, T]

It remains to check the requirements (i)—(iii) in the definition of solution to (M—E—
H-G). To prove (i), we first remark that the uniform convergence of v® in (6.17)
implies the uniform convergence of v¢, to v, because in view of (6.15) and (6.16)
we have

Ve, ) = v, (t lleoeyy = Vi1 o (Gd +evi) — Villeoeyy = Ce.
Consequently, the e-characteristics t — x(t, xq) that are trajectories of the ODE
x'(t) = vi.(t,x(1), x(0)=xp € Q,

converge, as ¢ — 0, to the corresponding trajectory of
x'(1) = v(t, x(1), x(0) = xo,

uniformly for ¢ € [0, T']. Note that x (¢) above is precisely given by the diffeomor-
phisms in (4.40), with x(¢) = A’(xo). Hence (G) follows by (6.1).

To prove (ii), we note that each w? is a weak solution of the linear transport
equation:

w; +div(w®v;,) =0, w(0,-) =wo

in view of (6.11) and the identity
i & _ & & i _ & £ €
dtw (t, x(t, x0)) = w; +{Vw ,dlx(t,xo) = w; +(Vw®, v,,.).

Thanks to the uniform convergence in (6.17), the limit density w provides a weak
solution to the transport equation (H), as expressed in (6.2).
To prove (iii), we observe that u(z, -) is a minimizer of (M) if and only if

/ (Vu(t, x), Vo (x)) + u(t, x)¢(x) — w(t, x)¢(x) dx = 0, (6.18)
Q(1)

for every test function ¢ € C2°(2(¢)). Fix t € [0, T'] and ¢ as above. By construc-
tion, there exists a sequence of sets Q" = Q¥" = Qf(1,,), with

en —> 0, T, =kyen >t @" — @(t,-) as n — oo.
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Moreover, there exist functions u” = u®(t,, -), w" = w® (z,, -) on Q", converging
uniformly to u(¢, -) and w(t, -) on every compact subset of €2(#), such that

/ (Vu", Vo) +u"¢p — w"¢ dx = 0.

Passing to the limit with n — oo and recalling that Vu" converges to Vu(t, -), we
get (6.18).

Likewise, there exists a sequence v’ = v® (1, -), converging uniformly to
v(t, -) on any compact subset of 2(¢), and satisfying

/Qn (V'(x), Vo (x)) — (g ou")(x)p(x) dx = 0,

for every test function ¢, since div v"* = g(u") in Q". Passing to the limitasn — oo,
we obtain that div v(z, -) = g(u(t, -)) holds in its equivalent weak sense:

/ (v(t,x), Vo (x)) — g(u(t, x))p(x) dx = 0.
Q@)

Finally, we show that for every ¢ € [0, T'], the vector field v(¢, -) is a minimizer of
(E). As in (4.10), this is equivalent to

/ (symVv(t,x) : Vw(x))dx = 0, (6.19)
Q1)

for all divergence-free vector fields w € C'(Q(r), RY). Let w be such a vector
field. By construction, we have: fQ,, (sym Vv" : Vw) dx = 0, whereas the uniform
convergence Vv"' — Vv(z, -) implies (6.19). This concludes the proof of the local
existence. O

Remark 6.2. (i) In our construction scheme, the discrete approximations vy are
normalized according to (4.1). As a consequence, the same properties are
valid for the limiting solution:

][ v(t,x)dx = 0, skew ][ Vv(t,x)dx = 0 fort e [0, T].
Q1) Q(r)

(6.20)
(ii) Calling T the maximal time of existence of solutions, the proof of Theorem
6.1 suggests that either T = 400, or else as ¢ — T —, one of the following
possibilities occurs:
o lw(t, )o@y = +00;
e The inner or the outer sphere condition fails, namely

Rdz:'{'fR-,'fR }0,
a () min erBI}Z(l) zn(x) El(‘)nﬂ(t) out(x) -

X

where R;,(x) is the inner radius of curvature of 2 () at a boundary point
x, and R, is the outer curvature radius.
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7. Uniqueness of the Normalized Solutions

It is straightforward to check that if the sets {€2(¢)};c[0,7] and the functions
(t,x) — w(t, x), v(t, x) provide a solution to the problem (M-E-H-G), then
infinitely many other solutions can be constructed by superimposing rigid motions:

Q) = {R(x +b@); x € QD)},
w(t, ROx +b(@) = w(t,x), v(t, R(t)x + b))
= R(@)v(t,x) + R'(1)x +b'(1).
Here, t — R(t) € SO(d) and t — b(t) € R? define a smooth path of rigid

motions t — R(#)x +b(¢) with R(0) = I,b(0) = 0. The corresponding function
u is then implicitly defined by the identity

i(t, R()x +b@)) = u(t,x).

Note that the normalisation (6.20) for v implies that

][ v(t,x)dx = R'(t) xdx +b'(1), skeW][N VV(t, x)dx =
10

Q1) Q(1)
RORMT,

Therefore, (6.20) holds for v if and only if R(#) = I and b(z) = O for all ¢.
The next result shows that the normalized solution is unique.

Theorem 7.1. In the same setting as Theorem 6.1, the problem (M-E-H-G) has a
unique solution which satisfies the additional identities (6.20) for all t € [0, T].

Proof. Let (22, v, w) and (S~2, v, w) be any two solutions, as defined in Section 6,
both satisfying the normalization identities (6.20). For t € [0, T], call A’ : Q¢ —
Q(t) and Al Qo — ﬁ(t) the corresponding homeomorphisms (see Figure 3)
given by the ODEs (4.40). We then have

4R A < ¥, ) o AT —v(t, ) o A 7.1
E” - ||c2,a(90) S Iv@@, o —v(t,-)o ||c2,or(§zo)~ (7.1)
For a fixed ¢ € [0, T'], we shall apply Lemma 5.1 to the homeomorphism A =
Ao (AH™!: Q(r) — Q(r) and the nonnegative density w(z, -) € CO*(Q2(r)).
The first assumption in Lemma 5.1 holds for all sufficiently small ¢, because
IA=idll ey = IA=AD(A) crauy S CIA'=Alllc2a(gy) §(7Sg,
Since A? = A? = id. The second assumption follows by Lemma 4.5:

det VA (AH)~(x))
det VA ((AD 1 (x))

3 wo((AH™!(x))
5 A - = = .
w(t, Ax)) det VAT (M) () w(t, x)

. w(t, x)
T detVA(x)’
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Fig. 3. The diffeomorphisms A’ and A’ define the change of variable A = A’ o (ahH~!

Consequently, by (5.1), we obtain
IV(t, ) o A = v(t, Veze@ey = CIA —idllcreqey-
Together with (7.2), this implies
[9(t,) 0 A'=v(t,) o Alllcragqy = (¥, )0 A —v(t, ) o Alllc2aqy
S V() o A — (2, Mezeay < CIA - At”cla(gzo)
for all times ¢ small enough, and with a uniform constant C. Combining the above
inequality with (7.1), we finally obtain

d - -
EIIA' — Nle2a(gy = CIA" = Alllc2a(gy)-

By Gronwall’s inequality, this implies that A’ = A’ for all times ¢ small enough.
In turn, this implies the equalities w(¢, -) = w(t, -) and u(t, -) = u(t, -). Likewise,
v(t, ) = v(¢, -), because of the normalization (6.20). Applying the same argument
on consecutive, sufficiently short time intervals, we conclude that (S~2, vV, W) =
(2, v, w) on the entire interval r € [0, T]. O

8. Examples
We consider here two easy cases where the growth system can be solved explic-
itly.

Example 1. Assume that the volumetric growth rate is proportional to the density
of the morphogen, so that g(u) = au in (E) with some a > 0. Then the volume of
Q(t) grows at a constant rate. Indeed, (G) and (4.43) give

d d
—volQ(t) = — det VA’ (x) dx = / (det VA" (x))divv(z, A’ (x)) dx
dr dr Q0 Q0

/ divv(s, x) dx,
Q1)
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while from (2.1), and since the conservation equation (H) enjoys the solution for-
mula (4.41), it follows that

/ u(t,x)dx:/ (Au—l—w)(t,x)dx:/ w(t,x)dx:/ wo(x) dx.
Q(t) Q1) Q) Qo

Concluding, the linear response function g yields

d
avol Q) = a/

wo(x) dx = akgvol 209 where kg i][ wo(x)dx. (8.1)
Qo Q0

As a special case, assume that the initial domain €2 is a ball centered at the origin
withradiusrg > 0, and the initial density wg of signaling cells is radially symmetric.
By uniqueness (up to a rigid motion), the density w(¢, -) remains then radially
symmetric for all # > 0, whereas the domain €2 (#) remains a ball whose radius 7 (¢)
may be determined from (8.1), namely: r)? = (1 + K()Clt)rg.

In particular, when wo(x) = wo > 0 is constant, then the quantities

A'(x) = (1 +woat)¥x, Q1) = B(0, (1 + woar)'/?),

(t.x) = w(t, x) = ——
) = W = T eat” (8.2)
vt )= —2% v and p(rx) = —0
d(1 + wopat) d(1 + woat)

provide the unique normalised solution to (M-E-H-G).

Example 2. Next, assume that the growth rate g : R +— [0, +o00[ is a function
satisfying (2.2), while the initial density wq of signaling cells is again constant on
an arbitrary domain 2¢ with center of mass at 0, so that fSZo x dx = 0. In this case,

for every ¢ = 0 the density w(f, x) = w(t) is spatially constant over the domain
Q(t) and it satisfies the ODE

w=—gw)w, w()=wp. (8.3)

Indeed, generalizing (8.2), we have that

Mo = (2 a0 = (22) e,

w(n) w(t)
u(t,x) = w(t,x) = U)(I),
v(t, x) = g(u;(t))x and p(t,x) = g(u;(z))

solve (M-E-H-G) together with (6.20). We further observe that by setting
Wpin = max{w < wo; g(w) =0} 20,

the solution to (8.3) satisfies w(t) — wy,i, as t — oo. Consequently, if w,,;, =0
then Q2 (#) becomes unbounded and its volume approaches infinity. On the other

hand, if w;,;, > 0, then € (¢) increases to a finite limit Qoo = (ﬂ)l/dﬁo.

Wmin
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9. The Lagrangian Formulation

In this section, we reformulate the coupled variational-transport problem (M-
E-H-G) using the Lagrangian variable § € Q¢ labeling points in the initial domain.

Let A : [0, T] x Q0 — R4 be the solution to the problem in (G), as in (4.40),
then

d
A8 =V AG.8). AD.5) =¢. 9.1

Define, for small ¢ € [0, T'], a flow of Riemann metrics g : [0, T] x Q2o — Rfyx,i>,
by setting

gt &) = (VA VA)@,&). (9.2)

The Christoffel symbols of g are given through 9;; A = Zi:l FZ? o A or, in vector
notation

;= (VA 'o;A foralli,j:1...d.
We pull-back the solution quantities of the system (M—E-H-G) on Q2:

w(t, &) =wl, A, 8), u, &) =u(, A, &), V(&)
= VAW €)@, A, £)), 9.3)

and seek their equivalent description (M1-E1-H1-G1) below. There are a number
of advantages in doing this:

e A solution is a time-dependent field of d x d matrices ¢ = [g;;] on the fixed
domain 2¢;

e The transport equation (H) has a trivial solution;

e The non-uniqueness is automatically removed, since adding a rigid motion to
the map & — A(z, &) does not affect g;;;

e In Eulerian coordinates, the solution may cease to exist in finite time because
different portions of the growing set may overlap. This issue does not arise
when working in Lagrangian coordinates.

On the other hand, while in Eulerian coordinates the elliptic equation (2.1)
and the system (4.8) have constant coefficients, in Lagrangian coordinates these
coefficients depend on the metric itself. This makes the analysis considerably more
difficult.

1. By Lemma 4.5, and since det g = (det VA)Z, we get

wo(§)
Jdetg(t, &)

To deal with (M), we observe equality of (the row) vectors in: Vu = (Vi)(VA) !,
so that

w(t, §) = (HI)

IVu(t, At, NP = (Vi) (VA) (VA T Vi) = ((Vig ™!, Vi, &).
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Changing the variables in (M) results in

2
1 1
= /Q <§<(Vﬁ)g_1, Vi) + Sl £)? - ﬁ)ﬁ)«/detg(t, £) dg,
0

so that the minimization problem becomes

|Vul?
J(u(t, ) =/ ( + ? —wu)(r A(t,E))det VA(t, £) d&
Qo

. (Vg ™!, 2
minimize: J(t,ﬁ):/ (% ﬂ—wu)a/detg(t £)de. (M1)
Q0

2. To rewrite (E), differentiate the (column vector) equality v(¢, A(¢, £)) = (VA)
v(t,&)in &:
Vv(t, A1, &))
= (VA(VV)(VA) Lt &) + [(azvzx)v, (OIVA, ..., (BdVA)V}(VA)_l (t, &)

= (VA)[W + [(VA)_l(é)zVA)V, (VA @1 VAT, ..., (VA)_I(E}dVA)\”fH(VA)_l(t, £)

= (VA (VI)(VA) L@, §), (9.4)

where VV = {17"]-},',‘/:1__.01 is the covariant derivative of the vector field v =

{f)i }i=1..a With respect to the metric g, in matrix notation given by
Vv = Vv
+ [[F'“, r‘lz,...,rid]v,..., [F}l, r;z,...,r;d]e,...,
[r;”, T, F;ld]v},
so that W\"f]ij = ﬁfj o+ Zm | ij 9. We thus obtain
1 - -
IsymVv[*(r, Az, €)) = Z(((VA)(W)(VA)“ H(VA VIV A) )

+2((VAEVHVA) T (va) T n T v T
+((va)y vy vaT (VA)—LT(W)T(VA)T))

1 ~ - - -
= S (ls@Dg™": 99)+ (99 ¥97))
= %((g(@f/)g_l : 6‘7) + trace((@?)z)).

Consequently, changing the variables in (E) yields

E((, ) = %/Q |symVv(, A(t, £))1 det VA(r, §) d&
0

1 ~ ~ ~
=7 fﬂ ((e¥9)g™" : %) + wrace((V9)?) ) 1, €) V/det g1, &) d.
0

4
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We further get
div v(z, A1, §)) = traceVv(t, A(t, §)) = traceVV(z, §) = &i\\_//f/'(l‘, &),
where the covariant divergence of the vector field v is given by
divy =divvi+ Y Tf#' = divVi+ (V(In/detg). V).
ki=l..d
The minimization problem (E) hence becomes

minimize: E(t,%):é—ll / ((g(@ff)g_l:@V)+trace((§§)2))\/detg(t,S) de

Qo
with div v = .
(E1)
We observe in passing that the integrand in (E1) above depends only on the
symmetric part of the covariant derivative Vv, of the covariant tensor v, = gV,
carrying the resemblance to the original functional in (E). Indeed, since Vv, =
V(gV) = gV¥V, then V¥V = g~!V¥,, and
(g(V9)g™" : V¥) + trace((V9)?) = (g7 (Vi)g ™" 1 V¥,) + trace((g 7' V¥,)?)
={g7 (VIg ™t V9 + (g7 (Vi T (VRO
= 2(g_1(6‘7*)g_1 : sym@?) = 2(g_1(sym§‘7*)g_1 : sym@?).

3. The rule (G) is being replaced by the equation for the evolution of the metric

d _d r
88 = E((VA) VA) (@, At, §))

= (Vv(t, A1, §)) VA, s))TVA + (VAT VvV, A1, £))VA(L, §)
= (V9)7g +g(V¥) =2 sym(g(V¥)) (1, &).
9.5

We now conclude, by a direct calculation, that

d
d B »
386 =2sym(gV¥) + 3 (3;0)7". (G1)

i=1

10. Modeling the Growth of a 2-Dimensional Surface in R>

We now generalize the model (M-E-H-G) to the case where, instead of an
open domain Q (1) C R, the growing set is a codimension-one manifold S(r). For
simplicity, we assume that d = 3, so that S(¢) is a two-dimensional surface in R3.

1. Again, for each r € [0, T] we denote by w(t,-) : S(#) — R a nonnegative
function representing the density of the signaling cells in the tissue, whereas u(z, -) :
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S(t) — R is the concentration of produced morphogen. This function u(¢, -) is
defined to be the minimizer of

minimize: J () = / (Fom 4% — ) do o), (M2)
s N 2
or, equivalently, the solution to

{ALBu—u—i-w:O x € S() (10.1)

(Vu,v) =0 x € 98(1).

Here v € T, S is the normal vector to the boundary 95, and Ay pu stands for the
Laplace-Beltrami operator acting on the scalar field «# on S.

Consider a chart of S, so that S = y(w) is parametrized by an immersion
y : @ — R3 for some open set @ C R%. We recall that the Laplace-Beltrami
operator is given by

—1

2
1 i
_ . iy,
Arpu = detgi;_l&l( detg g aj(uoy)) oy

On the domain w of the chart, we denote by [g;;];, j=1,2 = (Vy)T Vy the pull-back
metric g of the Euclidean metric [ restricted to S, while its inverse is denoted by

(8" i j=12 = ((Vy)TVY)_l-

2. To determine the velocity v(z, ) : S(r) — R>, we first derive the compressibil-
ity constraint expressing the fact that the infinitesimal change of the surface area
element due to the family of deformations A, = id +¢v : § — R3ase — 0,
equals u.

Fix t € [0, T] and consider a flow of deformed surfaces ¢ — A.(S), starting
from § = S(¢). For a given point x € S, let {t1(x), 72(x)} be an orthonormal basis
of the tangent space 7 S. Calling n the unit normal vector to S, we compute

|ar1 Ag x arer|
= |(t1 + €07 V) X (12 + €3, V)|

= (11 X 1) + €0V X T2 — 0,V X T1) + 0(82)|

12
(lrl x o> + 26(t1 X T2, 0,V X T2 — 05,V X T1) + 0(82))

TN X Ty

12
) ‘L'2|(1 + 2¢( dr,V X T2 — 05,V X T1) + (9(52))

71 X ©f?
T X Ty

lT) r2|<1 + & 0V X T2 — 05,V X T1) + 0(82))

11 x )%

= |t x 2l +&n, 0, vXx 1 — 0,V X 1)+ O(&?).

By suitably choosing the orientation of n, we can assume that {ty, 12, n} is a posi-
tively oriented orthonormal basis of R3. Therefore
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0 Ag X 0p, Ag| — |T1 X T
lim |90 e X 9y Al = |71 X 72 =(n, 35,V X T — 05,V X 71)
e—0 &
= (0, v, 2 x n) — (0;,v, 71 x n)
= (0, v. 71) + (0, V. 2).
We now decompose the vector field v = v;,, + v3n into a tangential component
Vian(x) € Ty S and a normal component, given by a scalar field v3 : § — R. Then

<8‘L’1V7 Tl) + (arzva T2> = (arl Vian, T]) + (atzvl{ln’ "-'2) + v3(<8r1ns 71) + (9,0, "52>)

= (07, Vian, T1) + (02, Vian, 72) + v3(<1'lf1, 71) + (M1, Tz))

= div V;u, + vstrace I1 = divv,,, + 2Hv3,

where [T = Vn s the shape operator on S and H = %trace IT is the mean curvature
of S. The constraint on v accounting for area growth can thus be written in the form

divvun +2Hv3 = u. (10.2)

To find an appropriate replacement of (E) in the present setting, consider the
following model of elastic energy of deformations A : S — R? of S, given by

1(A) = /distz(VA(x), 0(2,3)) do (x).
S

Here 0(2,3) = {F € R¥*?; FTF = I} represents gradients of deformations that
preserve the metric on S. The integrand dist>(-, O (2, 3)) may be replaced by some
other quadratic function reflecting the material properties of the shell, provided it
still satisfies the frame invariance and some other minimal regularity conditions.

Consider the expansion A = id + ev. Then, in analogy to the result in [12],
we claim that the scaled functionals ¢ 2/ I'-converge as ¢ — 0 to the following
elastic energy on S:

1
E(v) = 5/ Isym Vv,a, 4+ v3T1|% do (x). (10.3)
S

Among all velocity fields v which satisfy (10.2), by the previous analysis we should
thus choose one which minimizes (10.2). In the present setting, the constrained
minimization (E) should be replaced by

minimize: / sym Vv;,, + v3H|2 do(x), subjectto: divvyy, +2Hv3 = u.
S

(E2)
3. The evolving surface S(¢) is now recovered as the set reached by trajectories of
v starting in S(0). Namely,

S(t) = {At(x); A"(0)=x€S(0) and %A“(x):v(s, A*(x)) foralls € [0, ¢] .
(G2)
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Again, the morphogen-producing cells are transported along the flow, so that their
density satisfies
w(0, x)
t, A =——""" forall x € S(0), r € [0, T], H2
w(t, A (x)) det VA () x € 5(0) [0, 7] (H2)
where det VA’ (x) is the Jacobian of the linear map VA’ (x) : T S(0) — Tar(x)S(2).
In conclusion, we propose (M2-E2-G2-H?2) as a model for thin shell/surface
growth. We leave the resulting system of PDEs as a topic for future study.

Remark 10.1. (i) In the flat case S C R? and assuming the in-plane evolution
to the effect that v3 = 0, the constraint (10.2) becomes divv = u, which is
precisely the constraint in (E). In the general case, the infinitesimal change of
area decouples into the in-surface part div v;4,, and 2 Hv3. Note that if S is
a minimal surface then all its variations (preserving the boundary) yield zero
infinitesimal change of total area, so in view of (10.2) we get [ g Hvz = 0 for
every v3 vanishing on dS. Thus H = 0, as expected.

(i1) The problem (10.2) is under-determined (one equation in three unknowns).
Representing v, = V1 as the gradient of a scalar field { on §, the equation
(10.2) can be replaced by the Laplace-Beltrami equation

ALBw = u— 2HU3.

(ii1) The energy functional E(v) in (10.3) measures stretching, that is the change
in metric on S after the deformation to A, (S), of order ¢. This functional can
be augmented by adding the bending term at a higher order:

_ 1
E() = 5/ |sym Vv;q, + v31'I|2 do (x)
N

+ 2 [ 1(Vvvm) - (vwT)

2
2 |“ do (x). (10.4)

tan
The integrand in the second term above measures the difference of order ¢
between the shape operator IT on S and the shape operator I1, of A.(S) =
id + ev. Alternatively, the tensor under this integral represents the linear
map: 7xS 3 7 — (8T (VV))n € T,S. The presence of a bending term
introduces a regularizing effect, while the prefactor ﬁ, which is a fixed small
“viscosity” parameter, guarantees that bending contributes at a higher order
than stretching.

Let us also mention that potentially relevant to the problem at hand is the discus-
sion of the 2-dimensional models of elastic shells and their relation to 3d nonlinear
elasticity, which also appears in the presence of prestrain, which is effectively man-
ifested through constraints of the type (10.2), which can be found in the review
paper [18], and references therein.

Acknowledgements. The first author was partially supported by NSF Grant DMS-1714237,
“Models of controlled biological growth”. The second author was partially supported by
NSF Grants DMS-1406730 and DMS-1613153.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A Model of Controlled Growth 1265

References

. AGMON, S., DOUGLIS, A., NIRENBERG, L.: Estimates near the boundary for solutions of

elliptic partial differential equations satisfying general boundary conditions II, Comm.
Pure Appl. Math. 17, 35-92 (1964)

. AMBROSI, D., ATESHIAN, G., ARRUDA, E., CowiIN, S., DumalIs, J., GORIELY, A.,

HoLzAPFEL, G., HUMPHREY, J., KEMKEMER, R., KUHL, E., OLBERDING, J., TABER,
L., GArikipATI, K.: Perspectives on biological growth and remodeling. J. Mech. Phys.
Solids 59, 863-883 (2011)

. BAKER, R., MAINI, P.: A mechanism for morphogen-controlled domain growth. J. Math.

Biol., 597-622 (2007)

. BAKER, R., GAFFNEY, E., MaINI, P.: Partial differential equations for self-organization

in cellular and developmental biology. Nonlinearity 21, R251-R290 (2008)

. BARLES, G., CARDALIAGUET, P., LEY, O., MONTEILLET, A.: Uniqueness results for

nonlocal Hamilton-Jacobi equations. J. Funct. Anal. 257, 1261-1287 (2009)

. Bazavly, B, FRIEDMAN, A.: A free boundary problem for an elliptic-parabolic system:

application to a model of tumor growth. Comm. Partial Differential Equations 28, 517—
560 (2003)

. BERGNER, M., ESCHER, J., LIPPOTH, F.M.: On the blow up scenario for a class of parabolic

moving boundary problems. Nonlinear Analysis 75, 3951-3963 (2012)

. CARDALIAGUET, P, LEY, O.: Some flows in shape optimization. Arch. Rational Mech.

Anal. 183, 21-58 (2007)

. CHEN, X., FRIEDMAN, A.: A free boundary problem for an elliptic-hyperbolic system:

an application to tumor growth. SIAM J. Math. Anal. 35, 974-986 (2003)

Cul, S., ESCHER, J.: Well-posedness and stability of a multi-dimensional tumor growth
model. Arch. Rational Mech. Anal. 191, 173-193 (2009)

Cul, S., FRIEDMAN, A.: A free boundary problem for a singular system of differential
equations: an application to a model of tumor growth. Trans. Am. Math. Soc. 355,
3537-3590 (2002)

DAL Maso, G., NEGRI, M., PERCIVALE, D.: Linearized elasticity as I"-Limit of finite
elasticity, Set-Valued Analysis 10, 165-183 (2002)

ESCHER, J.: Classical solutions for an elliptic parabolic system. Interfaces Free Bound.
6, 175-193 (2004)

FRIEDMAN, A..: A free boundary problem for a coupled system of elliptic, hyperbolic, and
Stokes equations modeling tumor growth. Interfaces and Free Boundaries 8, 247-261
(2006)

FrIEDMAN, A., REITICH, E.: Analysis of a mathematical model for the growth of tumors.
J. Math. Biol. 38, 262-284 (1999)

GILBARG, D., TRUDINGER, N. S.: Elliptic Partial Differential Equations of Second Order.
Springer, Berlin, 2001

LADYZHENSKAYA, O. A.: Linear and Quasilinear Elliptic Equations, Academic Press,
London, 1968

LEwiICcKkA, M., PAkzAD, R.: Prestrained elasticity: from shape formation to Monge-
Ampere anomalies, Notices of the AMS, January 2016

LUNARDI, A.: An introduction to parabolic moving boundary problems. Functional
analytic methods for evolution equations, Springer Lecture Notes in Math. 1855, 371—
399 (2004)

PRrUSS, J., SIMONETT, G.: Moving Interfaces and Quasilinear Parabolic Evolution Equa-
tions, Birkhéuser, Basel 2016

TeEMAM, R.: Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea
Publishing, Providence, 2010



1266

ALBERTO BRESSAN & MARTA LEWICKA

ALBERTO BRESSAN
Department of Mathematics,
Penn State University,
University Park,

PA 16802, USA.
e-mail: bressan@math.psu.edu

and

MARTA LEWICKA
Department of Mathematics,
University of Pittsburgh,
301 Thackeray Hall,
Pittsburgh,

PA 15260, USA.
e-mail: lewicka@pitt.edu

(Received August 31, 2016 / Accepted October 2, 2017)
Published online October 12, 2017 — © Springer-Verlag GmbH Germany (2017)



	A Model of Controlled Growth
	Abstract
	1 Introduction
	2 The Basic Model
	2.1 Notation

	3 Some Geometric Lemmas
	4 Regularity Estimates
	4.1 Step 1: The Elliptic Equation for u
	4.2 Step 2: The Elastic Minimization Problem for v
	4.3 Step 3: The Growth of the Domain Ω
	4.4 Step 4: Updating the Density w

	5 Continuous Dependence on Data
	6 Local Existence of Solutions to the Growth Problem
	7 Uniqueness of the Normalized Solutions
	8 Examples
	9 The Lagrangian Formulation
	10 Modeling the Growth of a 2-Dimensional Surface in mathbbR3
	Acknowledgements.
	References




