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Abstract

Weconsider a free boundaryproblem for a systemofPDEs,modeling the growth
of a biological tissue. A morphogen, controlling volume growth, is produced by
specific cells and then diffused and absorbed throughout the domain. The geometric
shape of the growing tissue is determined by the instantaneous minimization of an
elastic deformation energy, subject to a constraint on the volumetric growth. For an
initial domain with C2,α boundary, our main result establishes the local existence
and uniqueness of a classical solution, up to a rigid motion.

1. Introduction

The aim of this paper is to analyze a system of PDEs on a variable domain,
describing the growth of a biological tissue. Motivated by [2–4], we consider a
living tissue containing some “signaling cells”, which produce morphogen (that
is, a growth-inducing chemical). This morphogen diffuses throughout the tissue
and is partially absorbed. A “chemical gradient” is thus created; the concentration
of morphogen is not uniform, being larger in regions closer to the signaling cells.
In turn, this variable concentration determines a different volumetric growth in
different parts of the living tissue. This can provide a mechanism for controlling
the growth of the domain towards a desired shape.

As is customary, we describe biological growth in terms of a vector field v(·),
determining the motion of single cells within the tissue. Calling u(·) the concen-
tration of morphogen, the constraint on volumetric growth is expressed by

div v = g(u), (1.1)

where g : R → R+ is a (possibly nonlinear) response function, satisfying g(0) = 0.
At any given time t , the vector field v is then determined (up to a rigidmotion) by the
requirement that it minimizes a deformation energy, subject to the constraint (1.1).
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Themodel is closed by the assumption that signaling cells are passively transported
within the tissue.

Calling �(t) the region occupied by the tissue at time t , and w(t, ·) the con-
centration of signaling cells, we prove that the above model yields a well posed
initial value problem. More precisely, our main theorems show that, if the initial
domain �(0) = �0 has C2,α boundary and if the initial concentration w(0, ·) lies
in the Hölder space C0,α(�0) for some 0 < α < 1, then the system of evolution
equations determining the growing domain has a classical solution, locally in time.
Moreover, this solution is unique up to rigid motions, and preserves the regularity
of the initial data.

A wide literature is currently available on free boundary problems modeling set
growth, see for example [5,7,8,13,19,20].Amajor goal of these studies has been the
mathematical description of tumor growth [6,9–11,14,15]. Compared with earlier
works, our model has various new features. On one hand, it contains a transport
equation for the density of morphogen-producing cells. By varying the location
and concentration of these cells, one can study how different shapes are produced.
Another fundamental difference is that in our model the velocity field v is found
as the minimizer of an elastic deformation energy involving the L2 norm of the
symmetric gradient of v. On the other hand, in free boundary problems modeling
flow in porous media one minimizes the L2 norm of the velocity field v itself (with
suitable constraints). As a consequence, while the solutions in [6,9–11,14,15] are
unique, the solutions that we presently construct are uniquely determined only up
to rigid motions.

The remainder of this paper is organized as follows. In Section 2 we introduce
the basic model and collect the main notation. Section 3 contains some geometric
lemmas on the representation of a family of sets with sufficiently smooth boundary.

The heart of the matter is worked out in Section 4, where we construct approx-
imate solutions by a time discretization algorithm. At each time step, the density
u(·) of morphogen satisfies a linear elliptic equation accounting for production, dif-
fusion, and adsorption. Existence and regularity of solutions follow from standard
theory [16]. In turn, the existence of a vector field v(·) satisfying the divergence
constraint (1.1) and minimizing a suitable elastic deformation energy is proved
relying on Korn’s inequality. A careful analysis shows that the system of equations
determining this constrained minimizer is elliptic in the sense of Agmon, Douglis,
and Nirenberg. Thanks to the Schauder type estimates proved in [1], we thus obtain
the crucial a-priori bound on the norm ‖v‖C2,α . Finally, the densityw(·) of signaling
cells is updated in terms of a linear transport equation with C2,α coefficients, pro-
viding an estimate on how the norm ‖w‖C0,α grows in time. Section 5 contains some
additional estimates, showing that our approximate solutions depend continuously
on the initial data.

In Section 6we state and prove our first main result, on the existence of classical
solutions, locally in time. The uniqueness of these solutions, up to rigid motions, is
then proved in Section 7. Two simple examples, where the growing domain �(t)
can be explicitly computed, are discussed in Section 8.

The last two sections contain some supplementary material. In Section 9 we
reformulate the problem using Lagrangian coordinates. Namely, we show that the
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growth of the living tissue can be described by an evolution equation for the coef-
ficients of a Riemann metric tensor on a fixed domain. Finally, an extension of our
basicmodel is proposed in Section 10, wherewe derive a set of equations describing
the growth of a 2-dimensional surface embedded in R

3, regarded as a thin elastic
shell.

2. The Basic Model

Let �(t) ⊂ R
d be the region occupied by a living tissue at time t , in a space of

dimension d. Cases d = 2 or d = 3 are the most relevant, however we formulate
and prove our results in the general case of arbitrary dimension.

Assume that a morphogen is produced by cells located within the tissue. Denote
by w(t, x) the density of these cells at time t and at a point x ∈ �(t). Calling
u = u(t, x) the concentration of morphogen, we shall assume that u satisfies a
linear diffusion-adsorption equation with Neumann boundary conditions:

{
ut = �u − u + w x ∈ �(t),
〈∇u,n〉 = 0 x ∈ ∂�(t).

Since the time scale of chemical diffusion is much shorter than the time scale of
tissue growth, at any given time t the solution of the above problem will be very
close to an equilibrium, described by the elliptic equation

{
�u − u + w = 0 x ∈ �(t),
〈∇u,n〉 = 0 x ∈ ∂�(t).

(2.1)

We observe that, for every w ∈ L2(�(t)), the solution u of (2.1) provides the
unique minimizer of a quadratic functional over the space W 1,2(�(t)). Namely, it
solves the problem

minimize: J (u)
.=

∫
�(t)

( |∇u|2
2

+ u2

2
− wu

)
dx . (M)

Next, we need an equation describing motion of cells within the tissue. This
is determined by the expansion caused by volume growth. Call v = v(t, x) the
velocity of the cell located at x ∈ �(t) at time t . In our model, at each time t , the
vector field v(t, ·) is determined as the solution to the constrained minimization
problem

minimize: E(v) .= 1

2

∫
�(t)

|sym∇v|2 dx subject to: div v = g(u). (E)

Notice that E(v) can be regarded as the elastic energy of an infinitesimal deforma-
tion (displacement). Throughout the paper, we assume that the function g : R →
[0,∞) satisfies that

g ∈ C3(R), g(0) = 0, g′, g′′, g′′′ are uniformly bounded. (2.2)
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Finally, we assume that the morphogen-producing cells are passively trans-
portedwithin the tissue. The transport equation below is supplemented by assigning
an initial distribution of hormone-producing cells on the initial domain:{

wt + div (wv) = 0 x ∈ �(t),
w(0, x) = w0(x) x ∈ �(0) = �0.

(H)

Notice that, as soon as the velocity field v is known, we can recover �(t) as
the set reached at time t by trajectories starting in �0. More precisely:

�(t) =
{
x(t); x(0) = x0 ∈ �0 and x ′(s) = v(s, x(s)) for all s ∈ [0, t]

}
. (G)

Summarizing, we have:

(i) The linear elliptic equation (2.1), describing the concentration of morphogen
u over the set �(t), at each time t � 0. For a given source term w(t, ·), its
solution u(t, ·) provides the unique minimizer in (M).

(ii) A constrained minimization problem (E), determining the velocity field
v(t, ·) at each given time t , up to a rigid motion: translation + rotation.

(iii) The linear transport equation (H), determining how the concentration of
morphogen-producing cells evolves in time.

(iv) The formula (G), describing the growth of the domain �(t).

The main goal of our analysis is to prove that, given an initial set �0 and an
initial density w0(x) for x ∈ �0, the equations (M–E–H–G) determine a unique
evolution (at least locally in time), up to a rigid motion that does not affect the
shape of the growing domain.

2.1. Notation

Throughout this paper, by ′ or d
dt we denote a derivative with respect to time t ,

while ∇ is the gradient with respect to the space variable x = (x1, . . . , xd).
Given a bounded, open, simply connected set � ⊂ R

d , its boundary is denoted
by� = ∂�, and its Lebesgue measure by |�|. We write n for the outer unit normal
vector to � at boundary points, while TP (∂�) is the space of tangent vectors to the
boundary ∂� at the point P . The average value of a function f on � is denoted by

−
∫

�

f dx
.= 1

|�|
∫

�

f dx .

For any integer k � 0 and α ∈ (0, 1), by Ck,α(�) we mean the space of bounded
continuous functions whose derivatives up to order k are Hölder continuous on �,
with the exponent α. This is a Banach space with the norm:

‖u‖Ck,α(�)
.=

∑
|ν|�k

sup
x∈�

|∇νu(x)| +
∑
|ν|=k

sup
x,y∈�, x �=y

|∇νu(x) − ∇νu(y)|
|x − y|α .

Since every Hölder continuous function u as above admits a unique extension to
the closure �, we observe that the spaces Ck,α(�) and Ck,α(�) can be identified.



A Model of Controlled Growth 1227

Given a d×d matrix A = [Ai j ]i, j=1...d , we denote by AT = [A ji ] its transpose,
and we set:

sym A
.= A + AT

2
, skew A

.= A − AT

2
,

〈A : B〉 .= trace(AT B), |A|2 .= 〈A : A〉 =
d∑

i, j=1

A2
i j .

The space of d × d skew-symmetric matrices is so(d), and I is the d × d identity
matrix.

3. Some Geometric Lemmas

We say that� satisfies the uniform inner and outer sphere condition when there
exists ρ > 0 such that, for every boundary point x ∈ �, we can find closed balls
Bin and Bout of radii Rin(x), Rout (x) � 2ρ satisfying Bin ⊂ �, Bin ∩ � = {x}
and Bout ∩ � = {x}. Define the signed distance function:

δ(x)
.=

{
dist(x, �) x /∈ �

−dist(x, �) x ∈ �.

If � is smooth (that is, it has a smooth boundary), then δ(·) is also smooth, when
restricted to the open set

Vρ
.= {x; dist(x, �) < ρ}.

Moreover, for every x ∈ Vρ there exists a unique point π(x) ∈ � with |π(x)−x | =
dist(x, �).

Every continuous map ϕ : � → (−ρ, ρ) determines then a bounded open set
(see Fig. 1):

�ϕ = {
x ∈ R

d ; δ(x) < ϕ(π(x))
}

with ∂�ϕ = {
y + ϕ(y)n(y); y ∈ �

}
.

(3.1)
To measure the Hölder regularity of ϕ, we extend it to Vρ by ϕ(x)

.= ϕ(π(x)), and
set:

‖ϕ‖Ck,α
.= ‖ϕ‖Ck,α(Vρ). (3.2)

By definition, � ∈ Ck,α if the following holds. For every x ∈ � there exists an
open ball B(x, r) and a homeomorphism h : B(x, r) → B(0, 1) ⊂ R

d such that

(i) The map h as well as its inverse h−1 are Ck,α regular;
(ii) h

(
B(x, r) ∩ �

) = B(0, 1) ∩ {
x ∈ R

d ; x1 > 0
}
.

Lemma 3.1. Let � ⊂ R
d be an open, bounded, simply connected and smooth

set, satisfying the uniform inner and outer sphere condition with radius 2ρ > 0.
Then, for every κ > 0 there exists a constant M such that the following holds.
If ϕ : � → (−ρ

2 ,
ρ
2 ) satisfies ‖ϕ‖C2,α � κ , then there exists a homeomorphism


 : � → �ϕ satisfying the bounds

‖
‖C2,α(�) � M, ‖
−1‖C2,α(�ϕ) � M. (3.3)
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Fig. 1. The set �ϕ in (3.1), described in terms of the function ϕ : � → R

Proof. 1. Let σ : R → R be a C∞ function such that σ(s) = 0 for s � −ρ, and
σ(x) = 1 for s � 0, and moreover,

0 � σ ′(s) � 3

2ρ
for all s ∈ R. (3.4)

The homeomorphism 
 : � → �ϕ is defined by setting


(x) =
{
x if δ(x) � −ρ

x + σ(δ(x))ϕ(x)n(π(x)) if − ρ < δ(x) < 0.

It is easily seen that 
 maps � onto �ϕ . Since 
 coincides with identity on the set
where δ(x) � −ρ, to estimate the C2,α norm of 
 it suffices to study what happens
when−ρ < δ(x) < 0. On this latter set, the functions δ(x), σ(δ(x)), n(π(x)) have
uniformly bounded derivatives up to any order. By the definition of 
 we thus get
the estimate

‖
‖C2,α(�) � C
(
1 + ‖ϕ‖C2,α

)
for a suitable constant C depending only on �.

2. In order to obtain a similar estimate for 
−1, it is enough to check that det∇


has uniformly bounded inverse on�. Indeed, in this case, the C2,α norm of
−1 will
be bounded by a polynomial in ‖
‖C2,α(�) whose order and coefficients depend
only on � and d.

On the set where δ(x) � −ρ, we have det∇
 = 1. Let now −ρ < δ(x) < 0,
and let y = π(x) ∈ �. Let U ⊂ � be a relatively open neighborhood of y, with
coordinates (x2, . . . , xd). Then the map x 
→ (δ(x), x2, . . . , xd) provides a chart
of the inverse image π−1(U ). In these coordinates, 
 has the form


̃(x1, . . . , xd) = (
x1 + σ(x1)ϕ(x), x2, . . . , xd

)
.

In view of (3.4) and the fact that ϕ is independent of x1, we thus conclude that

det∇
̃(x) = 1 + σ ′(x1)φ(x) � 1 − 3

2ρ

ρ

2
= 1

4
.
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The estimate (3.3) now follows by covering the compact surface � with finitely
many coordinate charts and by noting that, on each chart, det∇
 is uniformly
comparable with det∇
̃. ��
Lemma 3.2. Let�0 ⊂ R

d be an open, bounded and simply connected set with C2,α
boundary �0, satisfying the uniform inner and outer sphere condition with radius
3ρ > 0. Then, for any ε0 > 0, there exists an open, bounded and simply connected
set�with C∞ boundary�, satisfying the uniform inner and outer sphere condition
with radius 2ρ, and such that �0 = �ϕ as in (3.1) for some function ϕ ∈ C2,α(�)

with
|ϕ(x)| < ε0 for all x ∈ �. (3.5)

Proof. 1. Let δ0 be the signed distance function from �0. By assumption, δ0 is
C2 on the open neighborhood V0,3ρ of �0 with radius 3ρ. We now consider the
mollification δε = δ0 ∗ Jε with a standard mollifier Jε in Rd . It is not restrictive to
assume that ε � ε0 � ρ and that

‖δε − δ0‖C2,α(V0,3ρ−ε0 ) � Cε. (3.6)

We claim that the set

� = �ε
.= {x ∈ R

d ; δε(x) < 0}
satisfies the conclusions of the lemma, provided that ε > 0 is chosen sufficiently
small. Since |∇δ0| = 1 in V0,3δ , we note that

|∇δε(x)| � 1 − ε0

2
for all x ∈ V0,3ρ, |δε(x)| � ε0

2
for all x ∈ �0.

Now fix x ∈ �0. By the above estimates and since δ0 ∈ C2, we can find y ∈ V0,ρ
such that

δε(y) = 0 and |y − x | � ε0

2

(
1 − ε0

2

)−1
< ε0.

Consequently, every point x ∈ �0 is at a distance less than ε0 from some y ∈ �ε =
∂�ε. We conclude that the smooth set � = �ε indeed satisfies �ϕ = �0 and the
uniquely determined function ϕ, given as the signed distance from �, obeys (3.5)
and it is C2,α regular.

2.Wenow check that� = �ε satisfies the uniform inner and outer sphere condition
with radius 2ρ. Fix any point P ∈ �0. On a neighborhood of P we introduce an
orthonormal frame of coordinates (y1, . . . , yd) = (y1, ỹ) as in Fig. 2, where the
y1-axis is orthogonal to the surface�0 at P . In these local coordinates, the surfaces
�0, �ε have the representations

�0 = {(y1, ỹ); y1 = ψ0(ỹ)
}
, �ε = {(y1, ỹ); y1 = ψε(ỹ)

}
,

with the variable ỹ ranging in some neighborhood of the origin U ⊂ R
d−1.

By construction we have ∂δ0
∂y1

(P) = 1. Hence, by possibly shrinking the neigh-

borhood U , we can assume ∂δ0
∂y1

(ỹ) � 1
2 for every ỹ ∈ U . By (3.6) we thus have
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Fig. 2. Estimating the radius of curvature of the boundary �ε = ∂�ε

‖ψε − ψ0‖C0(U ) � Cε and the implicit function theorem further implies the con-
vergence

‖ψε − ψ0‖C2(U ) → 0 as ε → 0. (3.7)

We now recall that the maximal curvature χ(ỹ) of the graph of a function
ψ : Rd−1 → R at a point ỹ, equals the maximum of the absolute values of the
principal curvatures, that is the maximum of the absolute values of the eigenvalues
of the second fundamental form � = (∇ψ)T∇n. Since the second fundamental
forms of �0 and �ε satisfy ‖�ε − �0‖C0(U ) → 0 as ε → 0 in virtue of (3.7), and
since for every ỹ ∈ U the assumption of the lemma gives χ0(ỹ) � 1

3ρ , it indeed

follows that χε(ỹ) � 1
2ρ for small ε > 0.

In turn, this yields an a-priori bound on the inner and outer curvature radii:

min
{
Rin(ψε(ỹ), ỹ), Rout (ψε(ỹ), ỹ)

} = 1

χε(ỹ)
� 2ρ.

By covering the compact surface �0 with neighborhoods of finitely many points
P1, . . . , Pν , and choosing ε = min{ε1, . . . , εν}, the proof is achieved. ��

4. Regularity Estimates

Given the initial data w0 in (H), a local solution to the system of equations (M–
E–H–G) will be constructed as a limit of approximations, obtained by discretizing
time.

Fix a time step ε > 0 and let tk = kε. Assume that at time tk we are given the set
�k = �(tk) and the scalar nonnegative function wk = w(tk, ·) on �k . Successive
�k+1 = �(tk+1) and wk+1 = w(tk+1, ·) on �k+1 are obtained by the application
of the four steps below.

Step 1. Determine the density uk : �k → R by minimizing (M) with w = wk .
This implies that uk is the solution to the elliptic problem (2.1).

Step 2. Determine the velocity field vk : �k → R
d by solving the minimization

problem (E) on �k subject to the current constraint div vk = g(uk). The
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minimum is defined up to a rigid motion and we can single out a unique
vk by requiring that

−
∫

�k

vk dx = 0, skew−
∫

�k

∇vk dx = 0. (4.1)

Step 3. Define the domain �k+1 by an approximation of (G):

�k+1
.= {

x + εvk(x); x ∈ �k
}
. (4.2)

Step 4. On the set �k+1, define the density wk+1 implicitly by setting

wk+1(x + εvk(x))
.= wk(x)

det(I + ε∇vk(x))
. (4.3)

Notice that (4.3) is motivated by mass conservation: wk+1 is the push-
forward of the densitywk through themap x 
→ x+εvk(x). Themotivation
for (4.3) in the continuous framework is given in Lemma 4.5.

Throughout what follows, we assume that the initial domain �0 ⊂ R
d is open,

bounded and simply connected, with boundary �0 ∈ C2,α , whereas the initial
density satisfies w0 ∈ C0,α(�0), for some 0 < α < 1. Moreover, the function
g ∈ C3(R) satisfies (2.2), unless stated otherwise.

4.1. Step 1: The Elliptic Equation for u

Lemma 4.1. Let � ⊂ R
d be an open, bounded and simply connected set with C2,α

boundary. Let w ∈ C0,α(�) be a nonnegative function. Then (2.1) has a unique
solution u ∈ C2,α(�), which is nonnegative and satisfies

‖u‖C2,α(�) � C‖w‖C0,α(�). (4.4)

Further, for every constant M > 0 and every domain �̃ for which there exists a
homeomorphism 
 : � → �̃ with ‖
‖C2,α(�), ‖
−1‖C2,α(�̃) � M, the corre-
sponding bound (4.4) is valid with a uniform constant C that depends only on M
(in addition to � and α that are given in the problem).

Proof. 1. The existence and uniqueness of solutions to (2.1) follow fromTheorem
6.31 in [16] (see also the remark at the end of Chapter 6.7 in [16]). We now
show the non-negativity of u. If u is constant then u = w � 0. For non-constant
u, we invoke the maximum principle (Theorem 3.5 [16]) and conclude that the
non-positive minimum of u on � cannot be achieved in the interior �. On the
other hand, if such minimum is achieved at some x ∈ ∂�, then by Hopf’s
lemma (see Lemma 3.4 in [16]), one must have 〈∇u(x),n〉 < 0, contradicting
the boundary condition in (2.1).
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2. Let now 
 and M be as in the statement of the lemma. Let ũ be the solution to
(2.1) on �̃, for some w̃ ∈ C0,α(�̃). Then the composition u = ũ ◦
 ∈ C2,α(�)

provides the unique solution to the following boundary value problem:

⎧⎨
⎩

〈∇2u : A〉 + 〈∇u, �(
−1) ◦ 
〉 − u = − w̃ ◦ 
 x ∈ �,

〈∇u, An〉 = 0 x ∈ ∂�.

(4.5)

Here the matrix of coefficients A is defined as

A(x) =
(
(∇
−1)(∇
−1)T

)
(
(x)) =

(
(∇
)T (∇
)

)−1
(x).

To derive the boundary condition, we used the following formula which is
valid for every invertible matrix: (Bξ1) × (Bξ2) = (det B)B−1,T (ξ1 × ξ2). By
Theorem 6.30 in [16] we obtain the bound

‖u‖C2,α(�) � C
(‖u‖C0,α(�) + ‖w̃ ◦ 
‖C0,α(�)

)
, (4.6)

where the constant C depends only on �, α and on an upper bound to the
following quantities: ‖A‖C1,α(�), ‖�(
−1) ◦ 
‖C0,α(�) and the joint ellipticity
and non-characteristic boundary constant κ
. The defining requirement for κ


is that

1

κ


|ξ |2 � 〈A(x)ξ, ξ 〉 � κ
|ξ |2 for all x ∈ �.

Hence we can simply take κ
 = ‖(∇
)−1‖C0 + ‖∇
‖2C0 , confirming that the
constant C in (4.6) depends only on M .

3. We now show that (4.6) can be improved to

‖u‖C2,α(�) � C‖w̃ ◦ 
‖C0,α(�), (4.7)

for a possibly larger constant C , which still depends only on the bounding con-
stant M . We argue by contradiction; assume there are sequences of diffeomor-
phisms
n such that ‖
n‖C2,α , ‖
−1

n ‖C2,α � M , and of solutions un ∈ C2,α(�)

to the problem (4.5) with some w̃n ∈ C0,α(
n(�)), so that

‖un‖C2,α(�) = 1 and ‖w̃n ◦ 
n‖C0,α(�) � 1

n
.

Fix β ∈ (0, α). Passing to a subsequence if necessary, we may assume that 
n

converge as n → ∞ (together with their inverses) in C2,β(�) to some 
, and
that, likewise, un converge to u. The limit u must then solve the problem (4.5)
with w̃ = 0. Thus u = 0 and ‖un‖C0,α converging to 0 implies, in view of (4.6),
that ‖un‖C2,α converges to 0 as well. This is a contradiction that achieves (4.7).
Noting that ‖ũ‖C2,α � C‖u‖C2,α and ‖w̃ ◦
‖C2,α � C‖w̃‖C2,α with C depend-
ing only on M , we see that (4.7) yields (4.4) on �̃. ��
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4.2. Step 2: The Elastic Minimization Problem for v

Lemma 4.2. Let � ⊂ R
d be an open, bounded and simply connected set with C2,α

boundary. Assume that u ∈ W 1,2(�,R) and that g ∈ C1 satisfy g(0) = 0 with g′
bounded. Then the following holds:

(i) The minimization problem (E) has a solution, which is unique up to rigid
motions;

(ii) A vector field v ∈ W 1,2(�,Rd) is a minimizer of (E) if and only if there exists
p ∈ L2(�,R) such that (v, p) solves:⎧⎪⎪⎨

⎪⎪⎩

div(sym∇v − pI ) = 0 x ∈ �,

div v = g(u) x ∈ �,

(sym∇v − pI )n = 0 x ∈ ∂�;
(4.8)

(iii) There exists a constant C, independent of u, such that any (v, p) as above
satisfies∥∥∥∥∇v − skew −

∫
�

∇v dx

∥∥∥∥
L2(�)

+
∥∥∥∥p − −

∫
�

p dx

∥∥∥∥
L2(�)

� C‖u‖L2(�). (4.9)

Proof. 1. Note that g(u) ∈ W 1,2(�,R). Existence in (i) follows by the direct
method of Calculus of Variations. Consider a minimizing sequence vn . By
Korn’s and Poincaré’s inequalities, we can replace each vn by a vector field of
the form

ṽn(x) = vn(x) − (Anx + bn),

where An ∈ so(d) and bn ∈ R
d , so that ṽn ⇀ v weakly in W 1,2, up to a

subsequence. By the convexity of the functional E , it is clear that the limit v is
a minimizer.
To prove uniqueness, let v1 and v2 be two minimizers. Test the minimization
in (E) in both v1 and v2 by the admissible divergence-free perturbation field
v1 − v2. Subtract the results to get:

∫ 〈sym∇v1 − sym∇v2 : ∇(v1 − v2)〉 = 0.
Consequently:

∫ |sym∇(v1−v2)|2 = 0 and thus v1−v2 must be a rigidmotion.
2. Note that v is a critical point (necessarily a minimizer) of the problem (E) if

and only if∫
�

〈sym∇v : ∇w〉 dx = 0 for all w ∈ W 1,2(�,Rd) with divw = 0.

(4.10)
Taking divergence free test functions which are compactly supported in � and
integrating by parts in (4.10), it follows that div (sym∇v) = ∇ p in the sense
of distributions in �, for some p ∈ L2(�,R). Here we use the convention that
the divergence operator acts on rows of a square matrix. This yields the first
equation in (4.8). In addition, one has∫

�

〈(sym∇v − pI
) : ∇w〉 dx = 0 for all w ∈ W 1,2(�,Rd) with

divw = 0. (4.11)
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Now let ϕ ∈ C∞
c (∂�,Rd) satisfy

∫
∂�

〈ϕ,n〉 = 0. (4.12)

Then there exists a divergence-free test function w with trace w = ϕ on ∂�. It
is well known (see [21]) that, since (sym∇v− pI ) together with its divergence
are square integrable in �, the normal trace (sym∇v− pI )n is well defined on
∂�. By (4.11) it thus follows that

0 =
∫

�

〈(sym∇v − pI
) : ∇w〉 dx =

∫
∂�

〈ϕ, (sym∇v − pI )n〉.

Since every tangential ϕ obeys (4.12), it follows that the tangential component
of the normal stress vanishes:

(
(sym∇v − pI )n

)
tan = 0. On the other hand,

the normal part satisfies

〈(sym∇v − pI )n,n〉 = const. on ∂�.

Absorbing the constant in p, we obtain the boundary condition in (4.8).
3. To show (iii), let v̄ ∈ W 1,2(�) be a solution to div v̄ = g(u), satisfying the

bound (see [21])

‖v̄‖W 1,2(�) � C‖g(u)‖L2(�) � C‖u‖L2(�). (4.13)

Using w = v − v̄ as test function in (4.10), one obtains∫
�

|sym∇v|2 =
∫

�

〈sym∇v : ∇v̄〉 � ‖sym∇v‖L2(�)‖∇v̄‖L2(�).

In view of Korn’s inequality and of (4.13), this yields the bound on the first term
in (4.9). Since∇ p = div (sym∇v), we also obtain ‖p−−∫ p‖L2 � C‖∇v‖L2(�)

(see again [21]). This completes the proof in view of g being Lipschitz and
g(0) = 0. ��
The next lemma states the uniform Schauder’s estimates for the classical solu-

tion of (4.8).

Lemma 4.3. Let � ⊂ R
d be an open, bounded and simply connected set with C2,α

boundary. Let g ∈ C2(R) be such that g(0) = 0 and g′, g′′ are bounded. Then, the
boundary value problem (4.8) on� satisfies the ellipticity and the complementarity
boundary conditions [1]. Therefore its classical solution (v, p) satisfies the a-priori
bound

‖v‖C2,α(�) + ‖p‖C1,α(�) � C
(‖g(u)‖C1,α(�) + ‖v‖C0,α(�) + ‖p‖C0,α(�)

)
, (4.14)

where the constant C depends only on �. Moreover, for every u ∈ C1,α(�) the
minimization problem (E) has a unique solution v ∈ C2,α(�,Rd) normalized by
the conditions

−
∫

�

v dx = 0, skew−
∫

�

∇v dx = 0. (4.15)
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This solution satisfies

‖v‖C2,α(�) � C‖g(u)‖C1,α(�). (4.16)

Further, for every constant M > 0 and every domain �̃ for which there exists a
homeomorphism 
 : � → �̃ with ‖
‖C2,α(�), ‖
−1‖C2,α(�̃) � M, the corre-
sponding bound (4.16) is valid with a uniform constant C that depends only on M
(in addition to � and α that are given in the problem).

Proof. 1. We denote the right hand side function in (4.8) as

U = g ◦ u, (4.17)

and observe that u ∈ C1,α(�) implies U ∈ C1,α(�) in view of the assumptions on
g.

Let (v, p) ∈ W 1,2 × L2 be the weak solution to (4.8) whose existence follows
from Lemma 4.2. To deduce that actually v ∈ W 2,2 and p ∈ W 1,2, one employs
the usual difference quotients estimates (see [16] for scalar elliptic problems and
[17] for systems with Dirichlet boundary conditions), provided that the system is
elliptic and satisfies the complementarity conditions on the boundary. We check
these in the next steps below, for a slightly more general system with nonconstant
coefficients. Then, a repeated application of the classical a-priori estimate due
to Agmon, Douglis and Nirenberg [1] Theorem 9.3, combined with a Sobolev
embedding estimate, yields

‖v‖W 2,q (�) + ‖p‖W 1,q (�) � C
(‖U‖W 1,q (�) + ‖v‖W 1,q (�) + ‖p‖Lq (�)

)
,

for every 2 � q < ∞, since U ∈ C1,α(�) implies U ∈ W 1,q(�). Consequently,
by Morrey’s embedding we have (v, p) ∈ C1,γ × C0,γ (�) for every 0 < γ < 1.
Applying the Schauder estimates [1] to Theorem 10.5, we finally arrive at (4.14).

Let now
 and M be as in the statement of the lemma. Let (ṽ, p̃) be the solution
to (4.8) on a perturbed domain �̃, for some right hand side Ũ ∈ C1,α(�̃). Then the
composition (v1, . . . , vd , p) = (v, p) = (ṽ, p̃) ◦ 
 ∈ C2,α × C1,α(�) solves the
following boundary value problem for a system of d + 1 equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

〈
∇2vi : (∇
)−1(∇
)−1,T

〉
+ 1

2

〈 d∑
k=1

(∇
)−1,T (∇2vk)(∇
)−1ek , ei
〉

+
〈
∇vi ,�(
−1) ◦ 


〉
+ trace

(
(∇v)(∇∂i (


−1) ◦ 
)
)

−
〈
(∇
)−1,T∇ p, ei

〉
= 0 x ∈ �,〈

∇v : (∇
)−1,T
〉

= Ũ ◦ 
 x ∈ �,

(
sym

(
(∇v)(∇
)−1

) − pI
)
(∇
)−1,T n = 0. x ∈ ∂�.

(4.18)
Note that, when 
 = id is the identity map, the system (4.18) reduces to (4.8).

2. To show ellipticity and boundary complementarity of (4.18), we use the standard
notation in [1]. The principal symbol is the square operator matrix L
 of dimension
(d+1)× (d+1), given in the block form below. Its coefficients are polynomials in
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the variables ξ = (ξ1 . . . ξd), corresponding to differentiation in directions e1 . . . ed
in �:

L
(ξ) =
⎡
⎣

1

2

〈
ξ ⊗ ξ : (∇
)−1(∇
)−1,T

〉
I + 1

2
(∇
)−1,T (ξ ⊗ ξ)(∇
)−1 −(∇
)−1,T ξ

(
(∇
)−1,T ξ

)T 0

⎤
⎦

= L
(
(∇
)−1,T ξ

)
,

where the (d + 1) × (d + 1) polynomial matrix L = Lid is defined as:

L(ξ) =
[

1
2 |ξ |2 I + 1

2ξ ⊗ ξ −ξ

ξ T 0

]
. (4.19)

The first d rows in the matrix L
 correspond to the equations in: div(sym∇ṽ −
pI ) = 0; to these rows we assign weights s = 0. The last row corresponds to the
equation div ṽ = g(u); we assign to it the weight s = −1. The first d columns in
L
 correspond to the components of v; to these columns we assign weights t = 2.
The last column corresponds to p; we assign to it the weight t = 1.

In order to check the ellipticity of the operator L
, we need to compute the
determinant of L
(ξ). The determinant of a block matrix, where D has dimension
1 × 1, can be written as

det

[
A B
C D

]
= (D + 1) det A − det(A + B ⊗ C).

Hence

det L(ξ) = det
(1
2
|ξ |2 I + 1

2
ξ ⊗ ξ

) − det
(1
2
|ξ |2 I − 1

2
ξ ⊗ ξ

)
.

Further, if B is a square matrix of rank 1, then det(A + B) = det A + 〈cof A : B〉.
Hence

det(|ξ |2 I + ξ ⊗ ξ) = |ξ |2d + |ξ |2(d−1)〈I : ξ ⊗ ξ 〉 = 2|ξ |2d and

det(|ξ |2 I − ξ ⊗ ξ) = 0.

Consequently, we obtain the ellipticity condition:

det L
(ξ) = det L((∇
)−1,T ξ) = 1

2d−1 |(∇
)−1,T ξ |2d �= 0 for all ξ �= 0.

(4.20)
The supplementary condition on L
 is also satisfied: for any pair of linearly

independent vectors ξ, ξ̄ ∈ R
d the polynomial det L
(ξ + τ ξ̄ ) in the complex

variable τ , has exactly d roots τ+

 (ξ, ξ̄ ) with positive imaginary parts. The roots of

det L(ξ + τ ξ̄ ) are all equal to

τ+(ξ, ξ̄ ) = 1

|ξ̄ |2
( − 〈ξ, ξ̄ 〉 + i(|ξ |2|ξ̄ |2 − 〈ξ, ξ̄ 〉2)1/2).



A Model of Controlled Growth 1237

Finally, we find the adjoint of L(ξ) by a direct calculation:

Lad j (ξ) = (
det L(ξ)

)
L(ξ)−1 = |ξ |2d

2d−1

[ 2
|ξ |2 I − 2

|ξ |4 ξ ⊗ ξ 1
|ξ |2 ξ

1
|ξ |2 ξ

T 1

]
.

Naturally, the following formulas correspond to the change of variable 
:

Lad j

 (ξ) = Lad j ((∇
)−1,T ξ

)
, τ+


 (ξ, ξ̄ ) = τ+((∇
)−1,T ξ, (∇
)−1,T ξ̄
)
.

3.We nowwant to verify the complementing boundary condition at a point P ∈ ∂�

and relative to any tangent vector η ∈ TP (∂�) perpendicular to the unit normal n to
∂� at P . The boundary operator matrix B
 in (4.18) is of dimension d× (d+1). It
has the block form as below, where we assign to each row the same weight r = −1:

B
(ξ ;n) =
[
1

2

〈
(∇
)−1,T ξ, (∇
)−1,T n

〉
I + 1

2
(∇
)−1,T (ξ ⊗ n)(∇
)−1 −(∇
)−1,T n

]

= B
(
(∇
)−1,T ξ ; (∇
)−1,T n

)
,

and where the polynomial matrix B = Bid is defined as

B(ξ ; ξ̄ ) =
[
1

2
〈ξ, ξ̄ 〉I + 1

2
ξ ⊗ ξ̄ −ξ̄

]
.

Compute the product

D
(ξ ;n) = B
(ξ ;n)Lad j

 (ξ) = D

(∇
)−1,T ξ ; (∇
)−1,Tn
)
,

D(ξ ; ξ̄ ) = |ξ |2d
2d−1

[ 〈ξ, ξ̄ 〉
|ξ |2 I − 2

〈ξ, ξ̄ 〉
|ξ |4 ξ ⊗ ξ + 2

|ξ |2 skew(ξ ⊗ ξ̄ )
〈ξ, ξ̄ 〉
|ξ |2 ξ − ξ̄

]
.

(4.21)

The complementing boundary condition requires that, for any nonzero tangent
vector η ∈ TP (∂�), the d × (d + 1) matrix D
(τn + η;n), whose entries are
polynomials in the complex variable τ , has rows which are linearly independent
modulo the polynomial

M+(τ ) = (
τ − τ+


 (η,n)
)d = (

τ − τ+(ζ, N )
)d

. (4.22)

We use here the notation

N
.= (∇
)−1,Tn, ζ

.= (∇
)−1,T η. (4.23)

We will now directly reduce all the entries of D
(τn+ η;n) by M+ and prove
that the reduced matrix of coefficients at τ 0 has rank d. In view of (4.21), we obtain

D
(τn + η;n) = D(τN + ζ ; N ) = |τN + ζ |2(d−2)

2d−1

×
[ |τN + ζ |2〈τN + ζ, N 〉I − 2〈τN + ζ, N 〉(τN + ζ )⊗2 + |τN + ζ |2(N ⊗ ζ − ζ ⊗ N

)
|τN + ζ |2〈τN + ζ, N 〉(τN + ζ )T − |τN + ζ |4NT

]T
.

(4.24)
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Observe that the vectors η, n are perpendicular, whereas ζ and N , in general,
are not. However, 〈ζ, N 〉 = 〈η, (∇
)−1(∇
)−1,Tn〉 and since the metric tensor
(∇
)−1(∇
)−1,T is uniformly positive definite on �, it follows that

|〈ζ, N 〉| � α|ζ ||N |, (4.25)

with a universal constant α ∈ (0, 1) that depends only on M .
Denote a = (|ζ |2|N |2 − 〈ζ, N 〉)1/2, which is a positive number because of

(4.25). Writing for simplicity τ+ = τ+(ζ, N ), we obtain

τ+ − τ+ = 2ia

|N |2 , 〈τ+N + ζ, N 〉 = ia. (4.26)

It is also easy to check that

|τN + ζ |2(d−1) = (τ − τ+)d−1(τ − τ+)d−1

≡ (τ − τ+)d−1(τ+ − τ+)d−1 mod M+

= (τ − τ+)d−1
( 2ia

|N |2
)d−1

mod M+,

〈τN + ζ, N 〉I ≡ 〈τ+N + ζ, N 〉I mod (τ − τ+) = ia I mod (τ − τ+),

τN + ζ ≡ τ+N + ζ mod (τ − τ+).

Therefore, by (4.26), we get the reduction of the last column of D
:

D
(τn + η;n)ed+1 ≡ (τ − τ+)d−1Zd+1 mod M+, (4.27)

where

Zd+1 =
(

2ia

|N |2
)d−1

(ia)(τ+N + ζ ).

In the next step we shall reduce the entries of D
(τn + η; v)d×d by M+.

4. Arguing as above, and observing that ζ ⊗ N − N ⊗ ζ = (τ+N + ζ )⊗ N − N ⊗
(τ+N + ζ ), we obtain

|τN + ζ |2(d−1)
(
〈τN + ζ, N 〉I + ζ ⊗ N − N ⊗ ζ

)

≡ (τ − τ+)d−1
(

2ia

|N |2
)d−1 (

ia I + ζ ⊗ N − N ⊗ ζ
)

mod M+

= (τ − τ+)d−1

[(
2ia

|N |2
)d−1 (

ia I − N ⊗ (τ+N + ζ
))

+ 1

ia
Zd+1 ⊗ N

]
mod M+.
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On the other hand,

|τN + ζ |2(d−2)〈τN + ζ, N 〉(τN + ζ )⊗2

≡ (τ − τ+)d−1
( 2ia

|N |2
)d−2

(ia)
[ |N |2d

2ia
(τ+N + ζ )⊗2 + N ⊗ (τ+N + ζ )

+ (τ+N + ζ ) ⊗ N
]

+ (τ − τ+)d−2
( 2ia

|N |2
)d−2

(ia)(τ+N + ζ )⊗2 mod M+

= (τ − τ+)d−1
[( 2ia

|N |2
)d−2

(ia)N ⊗ (τ+N + ζ )

+Zd+1 ⊗
(( |N |2d

2ia

)2
(τ+N + ζ ) + |N |2

2ia
N
)]

+ (τ − τ+)d−2 |N |2
2ia

Zd+1 ⊗ (τ+N + ζ ) mod M+.

Concluding, we obtain

D
(τn + η;n)d×d ≡ Zd×d mod M+, where

Zd×d = (τ − τ+)d−1
( 2ia

|N |2
)d−1[

ia I +
( |N |2

2
− 1

)
N ⊗ (τ N + ζ )

]

+(τ − τ+)d−1Zd+1 ⊗
[( |N |2d

2ia

)2
(τ+N + ζ ) + |N |2 + 2

2ia
N
]

+(τ − τ+)d−2 |N |2
2ia

Zd+1 ⊗ (τ+N + ζ ). (4.28)

Consider now the reduced polynomial matrix of dimension d × (d + 1):

Z(τ ; η,n) = [Zd×d (τ − τ+)d−1Zd+1
]
,

where Zd×d and Zd+1 are given in (4.27), (4.28). The complementing boundary
condition states precisely that Z has maximal rank (equal d) over the field of
complex numbersC. To validate this statement, it suffices to check that the complex-
valued matrix Z(0; η,n) is of maximal rank. By performing elementary column
operations and using the fact that τ+ �= 0, we observe that Z(0; η,n) is similar to

Z ′(0; η,n) = (−τ+)d−1
( 2ia

|N |2
)d−1

[
ia I +

( |N |2
2

− 1
)
N ⊗ (τ+N + ζ ) τ+N + ζ

]
. (4.29)

We then compute, using (4.26), that

det
[
I + 1

ia

( |N |2
2

− 1
)
N ⊗ (τ+N + ζ )

]
= 1 + trace

( 1

ia

( |N |2
2

− 1
)
N ⊗ (τ+N + ζ )

)

= 1 + 1

ia

( |N |2
2

− 1
)
〈τ+N + ζ, N 〉 = |N |2

2
.

Moreover,

| det(Z ′)d×d | =
∣∣∣2τ+a
|N |2

∣∣∣d(d−1)
ad

|N |2
2

�= 0. (4.30)
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This establishes the validity of the ellipticity and the boundary complementarity
conditions for the system (4.18), and thus in particular for the system (4.8).

5. By the previous step, we can apply Theorem 10.5 in [1] and obtain the estimate

‖v‖C2,α(�)+‖p‖C1,α(�) � C
(‖g(ũ◦
)‖C1,α(�)+‖v‖C0,α(�)+‖p‖C0,α(�)

)
, (4.31)

where the constant C (in addition to its dependence on � and α) depends only on
an upper bound for the following quantities: the C1,α norms of the coefficients of
the highest order terms in the equations in (4.18); the C0,α norms of the coefficients
of the lower order terms; the uniform ellipticity constant λ
; and the inverse of the
minor constant κ
 (which is denoted in [1] by the symbol �). It is clear that the
former two quantities depend only on M . We now prove that the bounds on λ
 and
(κ
)−1 also depend only on M .

Indeed, λ
 is defined in terms of the inequalities

1

λ


|ξ |2d � det L
(ξ) � λ
|ξ |2d .

By (4.20) we can thus take λ
 = 2d−1
(‖(∇
)−1‖2dC0 + ‖∇
‖2dC0

)
� 2dM2d , valid

for every x ∈ �.
On the other hand, theminor constant κ
 is defined as follows: for any boundary

point P ∈ ∂� and any tangent unit vector η ∈ TP (∂�) at P , we write

[Z(τ ; η,n)
]
i j =

d−1∑
s=0

qsi jτ
s for i = 1 . . . d, j = 1 . . . d + 1.

Construct the matrix Q = [qsi j ], having d rows: i = 1 . . . d, and (d +1)d columns:
j = 1 . . . d + 1, s = 0 . . . d − 1. Under the complementing boundary condition,
the rank of Q equals d. Hence, if Q1 . . . QK denote all the d-dimensional square
minors of Q, one has

max
l=1...K

| det Ql | > 0.

Theminor constantκ
 is precisely the infimumof these quantities, over all boundary
points P and all tangent unit vectors η as above. Clearly, κ
 > 0 and

κ
 � inf
P∈∂�, η∈TP (∂�), |η|=1

∣∣ det(Z ′(0; η,n))d×d
∣∣.

By (4.30) and the formula for τ+(ζ, N ), we obtain

1

κ


� sup
P∈∂�, η⊥n, |η|=1

( |N |4
2a

)d(d−1) 1

ad
2

|N |2 . (4.32)

Recalling (4.23) and observing that a � (1 − α)1/2|ζ ||N | in view of (4.25), we
conclude that the quantity on the right hand side of (4.32) is bounded from above
in terms of a (positive) power of M . This completes the proof of (4.31), valid with
a constant C that depends only on M .



A Model of Controlled Growth 1241

6. We now show that (4.31) can be improved to

‖v‖C2,α(�) + ‖p‖C1,α(�) � C‖Ũ ◦ 
‖C1,α(�), (4.33)

where the constant C depends only on M , provided that (v, p) are normalized
according to

−
∫

�

| det∇
|v dx = 0, skew −
∫

�

| det∇
|(∇v)(∇
)−1 dx = 0,

−
∫

�

p| det∇
| dx = 0. (4.34)

As in the proof of Lemma 4.1, we argue by contradiction. Assume there are
sequences of diffeomorphisms 
n such that ‖
n‖C2,α , ‖
−1

n ‖C2,α � M , and of
normalized solutions (vn, pn) to (4.18) with some Ũn ∈ C1,α(
n(�)), such that

‖vn‖C2,α(�) + ‖pn‖C1,α(�) = 1 and ‖Ũn ◦ 
n‖C1,α(�) � 1

n
. (4.35)

We extract converging subsequences:
n → 
, vn → v, and pn → p, as n → ∞,
in appropriate Hölder spaces with a fixed exponent β ∈ (0, α). The above implies
(4.34) and, since (v, p) solves the problem (4.18) with Ũ = 0, by the uniqueness
of weak solutions on �̃ = 
(�) stated in Lemma 4.2 (i), we obtain that v = 0 and
p = 0. Consequently, both ‖vn‖C0,α and ‖pn‖C0,α converge to 0, and by (4.31) we
get a contradiction with the first assumption in (4.35). Hence (4.33) is proved.

Finally, we have

‖ṽ‖C2,α(�̃) � C‖v‖C2,α(�), ‖Ũ ◦ 
‖C1,α(�) � C‖Ũ‖C1,α(�̃),

with a constant C depending only on M . In view of (4.33) and recalling (4.17),
this completes the proof of the estimate (4.16), with a constant independent of the
domain �̃. ��

4.3. Step 3: The Growth of the Domain �

Lemma 4.4. Let � ⊂ R
d be an open, bounded, smooth and simply connected

set, satisfying the uniform inner and outer sphere condition with radius 2ρ > 0.
Let ϕ : � → (−ρ

2 ,
ρ
2 ) be a C2,α map, defining the set �ϕ as in (3.1)–(3.2). Let

v ∈ C2,α(�ϕ,Rd) and define the new set

�ε
.= {

x + εv(x); x ∈ �ϕ
}
. (4.36)

Then, there exists ε0 > 0, depending only on the upper bounds of ‖ϕ‖C2,α and
‖v‖C2,α(�ϕ), such that for every ε < ε0 the following holds. The set �ε is open and
it can be represented as �ε = �ψ for some ψ : � → R satisfying the bound

‖ψ‖C2,α � ‖ϕ‖C2,α + Cε‖v‖C2,α(�ϕ). (4.37)

The constant C above depends only on the upper bounds of ‖ϕ‖C2,α and ‖v‖C2,α(�ϕ).
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Proof. 1. Let L be the Lipschitz constant of v on �ϕ . Since by Lemma 3.1 we
have �ϕ = 
(�) for some C2,α homeomorphism satisfying ‖∇
‖C0 � M ,
it follows by integrating along a curve connecting x and y in �ϕ that |v(x) −
v(y)| � C�M‖∇v‖C0 |x − y|, where C� depends only on the geometry of �.
Thus

‖∇v‖C0 � L � C‖∇v‖C0 , (4.38)

where C depends only on ‖ϕ‖C2,α (we always suppress the dependence on the
referential �).
Define ε0

.= 1
2L . Then, for every ε < ε0, the map id + εv is a C2,α homeomor-

phism between the open sets�ϕ and (the automatically open image)�ε. This is
so because the gradient I+ε∇v is invertible, implying the localC2,α invertibility
of the map, whereas the map itself is an injection, since x + εv(x) = y+ εv(y)
yields x = y in view of

|x − y| = ε|v(x) − v(y)| � εL|x − y| � ε

ε0
|x − y|.

In particular, we observe that ∂�ε = {x + εv(x); x ∈ ∂�ϕ}.
2. We now construct ψ so that �ε = �ψ . By covering the boundary � with

finitely many charts, it suffices to consider the case where

� = {
(x1, x

′) = (x1, x2, . . . , xd) ∈ R
d ; x1 < 0

}
,

�ϕ = {
(x1, x

′); x1 < ϕ(x ′)
}
.

Given v = (v1, v′) = (v1, v2 . . . , vd) and ε > 0 as above, ψ is defined by the
relation

ψ
(
x ′ + εv′(ϕ(x ′), x ′)

) = ϕ(x ′) + εv1
(
ϕ(x ′), x ′). (4.39)

The existence of ψ and the bound (4.37) now follow by the implicit function
theorem. ��

4.4. Step 4: Updating the Density w

Before we continue with the discrete time set-up, let us motivate the implicit
definition (4.3) by the followingnatural observation regarding the transport equation
(H).

Lemma 4.5. Let {�(t)}t∈[0,T ] be a Lipschitz continuous family of sets with C2,α
boundaries, defined as in (G) through a Lipschitz vector field v : D = {(t, x); t ∈
[0, T ], x ∈ �(t)} → R

d , satisfying v(t, ·) ∈ C2,α(�(t),Rd) for every t ∈ [0, T ].
Denote {
t : �(0) → �(t)}t∈[0,T ] the corresponding 1-parameter family of dif-
feomorphisms given by the ODE

d

dt

t (x) = v(t,
t (x)), 
0 = id. (4.40)

Assume that w ∈ C0,α(D,R) is a nonnegative density function that satisfies (H) in
the weak sense (see (6.2) for the precise definition). Then

w(t,
t (x)) = w(0, x)

det∇
t (x)
for all x ∈ �(0), t ∈ [0, T ]. (4.41)
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Proof. Wewill prove (4.41) under the assumptionw ∈ C1(D). The general case of
lower regularity will follow by a standard approximation argument. Observe that,
by (H),

d

dt
w(t,
t (x)) = wt (t,


t (x)) + 〈∇w(t,
t (x)),
d

dt

t (x)

〉
= (

wt + 〈∇w, v〉)(t,
t (x))

= (
wt + div (wv) − wdiv v

)
(t,
t (x)) = − (wdiv v)(t,
t (x)).

On the other hand, using the formula

d

dt
det F(t) = det F(t)trace

(
F ′(t)F(t)−1), (4.42)

valid for any matrix function t 
→ F(t) ∈ R
d×d , we obtain

d

dt
det∇
t (x) = (

det∇
t (x)
)
trace

(( d
dt

∇
t (x)
)
(∇
t (x))−1

)

= (
det∇
t (x)

)
trace

(
∇v(t,
t (x))∇
t (x)(∇
t (x))−1

)

= (
det∇
t (x)

)
div v(t,
t (x)). (4.43)

Consequently,

d

dt

(
lnw(t,
t (x))

) = − d

dt

(
ln det∇
t (x)

) = d

dt

(
ln

1

det∇
t (x)

)
,

which directly yields (4.41). ��
Lemma 4.6. In the same setting of Lemma 4.4, letw ∈ C0,α(�ϕ) be a non-negative
density and let u ∈ C2,α(�ϕ) be the solution of (2.1) on the set �ϕ . Then, there
exists ε0 > 0 such that for every ε < ε0, a new density wε is well defined on the
set �ε in (4.36) by setting, implicitly

wε(x + εv(x)) .= w(x)

det(I + ε∇v(x))
. (4.44)

Moreover, wε � 0, and the following estimate holds:

‖wε‖C0,α(�ε)
� (1 + Cε)‖w‖C0,α(�ϕ). (4.45)

Both the threshold ε0 and the constant C above depend only on the upper bounds
of ‖ϕ‖C2,α and ‖v‖C1(�ϕ).

Proof. Let L be the Lipschitz constant of v on �ϕ . As observed in the proof of
Lemma 4.4, the map x 
→ x + εv(x) is a C2,α homeomorphism between �ϕ and
�ε. Hence both the numerator and denominator in (4.44) are well defined C2,α
functions on �ε, for all ε < ε0 as long as ε0 � 1

2L . By (4.44) the function wε is
well defined and non-negative, provided that ε < ε0.
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By (4.38), the choice of ε0 depends only on the upper bounds of the quantities
‖ϕ‖C2,α and ‖v‖C1(�ϕ). Writing det(I + ε∇v(x)) = 1 + εO(‖∇v‖C0 + ‖∇v‖dC0),
we also deduce

0 � wε(x) � (1 + Cε)‖w‖C0(�ϕ), (4.46)

for ε < ε0 and C as indicated in the statement of the Lemma.
It remains to estimate the Hölder constant of wε. Using (4.4) and the fact that

|(x + εv(x)) − (y + εv(y))| � (1 − εL)|x − y|,
we obtain
∣∣wε(x + εv(x)) − wε(y + εv(y))

∣∣
� |w(u) − w(y)|

det(I + ε∇v(x))
+ w(y)

∣∣∣∣ 1

det(I + ε∇v(x))
− 1

det(I + ε∇v(y))

∣∣∣∣
� [∇w]α |x − y|α(1 + Cε‖v‖C1

) + ‖w‖C0Cε‖v‖C1 |x − y|
�

(
[∇w]α + Cε‖w‖C0

)
|x − y|α

�
(
[∇w]α + Cε‖w‖C0

) |(x + εv(x)) − (y + εv(y))|α
(1 − εL)α

�
(
[∇w]α + Cε‖w‖C0 (1 + L)

)
|(x + εv(x)) − (y + εv(y))|α,

since (1 − εL)−α � (1 + 2εL)α � 1 + 2εL . In view of (4.46), this
yields (4.45). ��

5. Continuous Dependence on Data

As proved in Lemmas 4.1 and 4.3, the regularity estimates (4.4) and (4.16) hold
with a constant C which is uniformly valid for a family of domains �, obtained
via diffeomorphisms with uniformly controlled C2,α norms. In this section we
study in more detail how the solutions u, v of (2.1) and (4.8) change, under small
perturbations of �.

Lemma 5.1. Let � ⊂ R
d be an open, bounded and simply connected set with C2,α

boundary. Let w ∈ C0,α(�) be a nonnegative function. Then there exists ε0 > 0
such that the following holds. Consider a homeomorphism 
 : � → �̃ = 
(�),
satisfying ‖
 − id‖C2,α(�) � ε0, and define w̃ ∈ C0,α(�̃) by

w̃(
(x)) = w(x)

det
(x)
for all x ∈ �.

Let u be the solution to (2.1) and v be the solution to the minimization problem
(E), normalized as in (4.15). Likewise, let ũ and ṽ be the corresponding solutions
of these problems on �̃. Assume that g ∈ C3(R) with g(0) = 0 and g′, g′′, g′′′
uniformly bounded. Then

‖ũ ◦ 
 − u‖C2,α(�) � C‖
 − id‖C2,α(�)‖w‖C0,α(�). (5.1)
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and

‖ṽ ◦ 
 − v‖C2,α(�) � C‖
 − id‖C2,α(�)‖w‖C0,α(�)

(
1 + ‖w‖2C0,α(�)

)
. (5.2)

Both the threshold ε0 and the constant C above depend only on the domain �, and
they are uniform for a family of domains that are homeomorphic with controlled
C2,α norms (as in the statements of Lemmas 4.1 and 4.3).

Proof. 1.We first observe that, choosing ε0 > 0 sufficiently small, the map 
 has
a C2,α inverse 
−1. In addition, w̃ ∈ C2,α(�̃) is well defined, nonnegative, and
satisfies

‖w̃‖C0,α(�̃) � C‖w‖C0,α(�). (5.3)

The existence and uniqueness of the corresponding solutions u and ũ follow from
Lemma 4.1.We regard u� = ũ◦
 as an approximate solution of (2.1), and estimate
the error quantities e1, e2 in{

�(u� − u) − (u� − u) = e1 x ∈ �

〈∇(u� − u),n〉 = e2 x ∈ ∂�.

By (4.4) and (5.3) we obtain

‖u�‖C2,α(�) � C‖w̃‖C0,α(�̃) � C‖w‖C0,α(�). (5.4)

On the other hand, u� solves the boundary value problem (4.5), where A(x) =(
(∇
)T∇


)−1
(x). An explicit calculation yields

‖A − I‖C1,α(�) + ‖∇2(
−1) ◦ 
‖C0,α(�) � C‖
 − id‖C2,α(�). (5.5)

Subtracting the equality

�u� − u� = (�u� − u�) − (〈∇2u� : A〉 + 〈∇u�,�(
−1) ◦ 
〉 − u) − w̃ ◦ 


from �u − u = −w, we obtain

e1 = − 〈∇2u� : (A − I )〉 − 〈∇u�,�(
−1) ◦ 
〉 − (w̃ ◦ 
 − w).

Hence, by (5.5) and (5.4), we obtain the bound

‖e1‖C0,α(�) � C‖u�‖C2,α(�)‖
 − id‖C2,α(�) + ‖w(
1 − 1

det∇


)‖C0,α(�)

� ‖
 − id‖C2,α(�)‖w‖C0,α(�).

Likewise, computing the difference between the boundary conditions of u� and u,
we obtain

e2 = 〈∇u�,n〉 = − 〈∇u�, (A − I )n〉.
Therefore (5.4) and (5.5) imply

‖e2‖C1,α(�) � C‖u�‖C2,α(�)‖
 − id‖C1,α(�) � C‖
 − id‖C2,α(�)‖w‖C0,α(�).
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By Theorem 6.30 in [16] it now follows that

‖u� − u‖C2,α(�) � C
(‖u� − u‖C0,α(�) + ‖
 − id‖C2,α(�)‖w‖C0,α(�)

)
,

and the usual argument by contradiction, as in the proof of Lemma 4.1, yields the
required bound on ‖ũ ◦ 
 − u‖C2,α(�) in (5.1).

2. In order to estimate ‖ṽ ◦ 
 − v‖C2,α(�), let (ṽ, p̃) and (v, p) be the normalized
solutions to (4.8) on the domains �̃ and�, respectively. Call v� = ṽ◦
, p� = p̃◦
.
We regard (v�, p�) as an approximate solution to (4.8). Indeed, it satisfies the
boundary value problem

⎧⎨
⎩
div

(
sym∇(v� − v) − (p� − p)I

) = e3 x ∈ �

div (v� − v) = e4 x ∈ �(
sym∇(v� − v) − (p� − p)I

)
n = e5 x ∈ ∂�,

(5.6)

with error terms e3, e4, e5. As in the proof of Lemma 4.3, Theorem 10.5 in [1]
yields

‖v� − v‖C2,α(�) + ‖p� − p‖C1,α(�)

� C
(‖v� − v‖C0,α(�) + ‖p� − p‖C0,α(�) + ‖e3‖C0,α(�) + ‖e4‖C1,α(�)

+‖e5‖C1,α(�)

)
. (5.7)

We claim that (5.7) can be replaced by

‖v� − v‖C2,α(�) + ‖p� − p‖C1,α(�)

� C

(∣∣∣ −
∫

�

(v� − v) dx
∣∣∣ +

∣∣∣ −
∫

�

skew∇(v� − v) dx
∣∣∣

+
∣∣∣ −
∫

�

(p� − p) dx
∣∣∣

+‖e3‖C0,α(�) + ‖e4‖C1,α(�) + ‖e5‖C1,α(�)

)
. (5.8)

Otherwise, we could find a sequence (v�
n − vn, p

�
n − pn) solving (5.6) with corre-

sponding right hand sides en3 , e
n
4 and en5 , and such that the left hand side of (5.8)

equals 1 for every n, while the quantities in the right hand side converge to 0,
as n → ∞. Fix β ∈ (0, α). Extracting a subsequence, we deduce that v�

n − vn
and p�

n − pn converge in C2,β(�) and C1,β(�), respectively, to some limiting
fields V , P , that solve the homogeneous problem (5.6). Moreover, all the averages:

−
∫

�

V dx,−
∫

�

P dx,−
∫

�

skew∇V dx , equal 0. By uniqueness, this implies V = 0

and P = 0. Hence ‖v�
n − vn‖C0,α(�) and ‖p�

n − pn‖C0,α(�) converge to 0, but this
contradicts the uniform estimate (5.7), since the left hand side always equals 1.
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3. We now compute the error quantities e3, e4, e5 in (5.6). Since (v�, p�) = (v�1,

. . . , v�d , p�) solve the system (4.5) on �, one has

ei3 = − 1

2

〈∇2v�i : (A − I )
〉 − 1

2

〈
d∑

k=1

[
(∇
)−1,T (∇2v�k)(∇
)−1 − ∇2v�k]ek , ei

〉

− 〈∇v�i ,�(
−1) ◦ 

〉 − trace

(
(∇v�)(∇∂i (


−1) ◦ 
)
) + 〈(

(∇
)−1 − I
)T∇ p�, ei

〉
,

e4 = − 〈∇v� : ((∇
)−1 − I
)T 〉 + g(u�) − g(u),

e5 = − 1

2
(∇v�)(A − I )n − 1

2

[
(∇
)−1(∇v�)(∇
)−1 − ∇v�

]T n + p�
(
(∇
)−1 − I

)T n.

Using (5.5) and the obvious bound ‖(∇
)−1 − I‖C1,α(�) � C‖
− id‖C2,α(�), we
obtain

‖e3‖C0,α(�) + ‖〈∇v� : ((∇
)−1 − I )T 〉‖C1,α(�) + ‖e5‖C1,α(�)

� C
(‖v�‖C2,α(�) + ‖p�‖C1,α(�)

)‖
 − id‖C2,α(�) � C‖

− id‖C2,α(�)‖g(ũ)‖C1,α(�̃).

Here we used (4.33) in

‖v�‖C2,α(�) + ‖p�‖C1,α(�) � C
(‖ṽ‖C2,α(�̃) + ‖ p̃‖C1,α(�̃)

)
� C‖g(ũ)‖C1,α(�̃).

Similarly, we check that

∣∣∣ −
∫

�

(v� − v) dx
∣∣∣ +

∣∣∣ −
∫

�

(p� − p) dx
∣∣∣ =

∣∣∣ −
∫

�

v�(det∇
 − 1) dx
∣∣∣

+
∣∣∣ −
∫

�

p�(det∇
 − 1) dx
∣∣∣

� C
(‖v�‖C0(�)+‖p�‖C0(�)

)‖
− |!id‖C1(�) � C‖
−id‖C1(�)‖g(ũ)‖C1,α(�̃),∣∣∣skew −
∫

�

∇(v� − v) dx
∣∣∣ =

∣∣∣skew −
∫

�

(∇v�)
(
(det∇
)(∇
)−1 − I

)
dx

∣∣∣
� C‖v�‖C1(�)‖
 − id‖C1(�) � C‖
 − id‖C2,α(�)‖g(ũ)‖C1,α(�̃).

To bound the expression ‖g(ũ)‖C1,α(�̃), we estimate

∣∣∇(g ◦ ũ)(x) − ∇(g ◦ ũ)(y)
∣∣ � |g′(ũ(x)) − g′(ũ(y))| · |∇ũ(x)|

+ |g′(ũ(y)| · |∇ũ(x) − ∇ũ(y)|
� C‖g′′‖C0‖∇ũ‖2C0(�̃)

|x − y|
+ ‖g′‖C0‖∇ũ‖C0,α(�̃)|x − y|α

and thus, by (5.3)

‖g ◦ ũ‖C1,α(�̃) � C
(‖g′′‖C0‖ũ‖2C1(�̃)

+ ‖g′‖C0‖ũ‖C1,α(�̃)

)
� C‖w̃‖C0,α(�̃)

(
1 + ‖w̃‖C0,α(�̃)

)
� C‖w‖C0,α(�)

(
1 + ‖w‖C0,α(�)

)
.
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4. To conclude estimating the right hand side of (5.8), we need to deal with the term
‖g(u�) − g(u)‖C1,α(�). We have

‖g(u�) − g(u)‖C0(�) � C‖g′‖C0 ‖u� − u‖C0(�),

and ∣∣∇(g ◦ u�)(x) − ∇(g ◦ u)(x)
∣∣

�
∣∣∣(g′(u�(x)) − g′(u(x))

)∇u�(x)
∣∣∣ +

∣∣∣g′(u(x))
(∇u�(x) − ∇u(x)

)∣∣∣
� ‖g′′‖C0‖u� − u‖C0(�)‖∇u�‖C0(�) + ‖g′‖C0‖∇u� − ∇u‖C0(�).

Moreover∣∣∇(g ◦ u�)(x) − ∇(g ◦ u)(x) − ∇(g ◦ u�)(y) + ∇(g ◦ u)(y)
∣∣

= ∣∣g′(u�(x))∇u�(x) − g′(u�(y)) ∇u�(y) − g′(u(x)) ∇u(x) + g′(u(y))∇u(y)
∣∣

= ∣∣(g′(u�(x)) − g′(u�(y)
)∇u�(x) + g′(u�(y))

(∇u�(x) − ∇u�(y)
)

− (
g′(u(x)) − g′(u(y)

)∇u(x) − g′(u(y))
(∇u(x) − ∇u(y)

)∣∣
�

∣∣(g′(u�(x)) − g′(u�(y)
)(∇u�(x) − ∇u(x)

)∣∣
+ ∣∣(g′(u�(x)) − g′(u�(y)

) − (
g′(u(x)) − g′(u(y)

)∣∣ · |∇u(x)|
+ ∣∣(g′(u�(y)) − g′(u(y))

)(∇u�(x) − ∇u�(y)
)∣∣

+ |g′(u(y))| · ∣∣(∇�u(x) − ∇�u(y)
) − (∇u(x) − ∇u(y)

))∣∣
� C |x − y| ‖g′′‖C0‖∇u�‖C0(�)‖∇u� − ∇u‖C0(�)

+ C
(
‖g′′‖C0‖∇u� − ∇u‖C0(�) |x − y|‖∇u‖C0(�)

+ ‖g′′′‖C0‖u� − u‖C0(�)‖∇u‖2C0(�)
|x − y|

)

+ ‖g′′‖C0‖u� − u‖C0(�) ‖u�‖C1,α(�)|x − y|α + ‖g′‖C0‖u� − u‖C1,α(�)|x − y|α,

where the constantC may depend on the geometry of�.We used here the following
representation, valid for all x, y such that [x, y] ⊂ �(
g′(u�(x)) − g′(u�(y)

) − (
g′(u(x)) − g′(u(y)

)

=
∫ 1

0

d

ds

(
g′(u�(sx + (1 − s)y)

) − g′(u(sx + (1 − s)y)
))

ds

=
∫ 1

0
g′′(u�)〈∇u�−∇u, x − y〉 ds+

∫ 1

0

(
g′′(u�)−g′′(u)

)〈∇u, x−y〉 ds.
Consequently, by (5.1), (5.3) and the estimates in Lemma 4.1, we get

‖g ◦ u� − g ◦ u‖C1,α(�)

� C‖u� − u‖C1,α(�)

(
1 + ‖u�‖C1,α(�) + ‖u‖C1(�) + ‖u‖2C1(�)

)
� C‖u� − u‖C1,α(�)

(
1 + ‖w‖2C0,α(�)

)
� C‖
 − id‖C2,α(�)‖w‖C0,α(�)

(
1 + ‖w‖2C0,α(�)

)
.

In view of the bounds in Step 3, the proof of (5.2) is done. ��
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6. Local Existence of Solutions to the Growth Problem

By a solution to the growth problem (M–E–H–G) on some time interval [0, T ],
T > 0, we mean:

• A Lipschitz continuous family of sets {�(t)}t∈[0,T ] with C2,α boundaries;
• A Lipschitz continuous velocity field v(t, x) defined on the domain:

D = {(t, x); t ∈ [0, T ], x ∈ �(t)}, (6.1)

with v(t, ·) ∈ C2,α(�(t),Rd) for every t ∈ [0, T ];
• A nonnegative, C0,α regular continuous density function w = w(t, x) defined

in D,

for which the following holds:

(i) For every t ∈ [0, T ], the set �(t) is determined by (G);
(ii) The densityw provides a weak solution to the transport equation (H), namely∫

[0,T ]×Rd
wηt + w〈v,∇η〉 dtdx +

∫
Rd

w0(x)η(0, x) dx = 0

for all η ∈ C∞
c

(D ∩ ([0, T ) × R
d)
);

(6.2)

(iii) For every t ∈ [0, T ], the vector field v(t, ·) on �(t) is a minimizer of (E),
while u(t, ·) is the minimizer of (M) with w = w(t, ·).

Theorem 6.1. Assume that the initial domain�0 ⊂ R
d is an open, bounded, simply

connected set with C2,α boundary �0, for some 0 < α < 1. Assume that g satisfies
(2.2). Then, given an initial nonnegative density w0 ∈ C0,α(�0), the problem (M–
E–H–G) has a solution on some time interval [0, T ], with T > 0.

Proof. 1. By the assumed regularity of �0, the set �0 satisfies the uniform inner
and outer sphere condition with a radius 3ρ > 0. We construct a new smooth,
referential domain � and a function ϕ0 = ϕ ∈ C2,α(�), so that the assertions of
Lemma 3.2 hold with ε0 = ρ/3. In particular, we have �0 = �ϕ0 . Introduce the
constants

Mϕ
.= 1 + ‖ϕ0‖C2,α , Mw

.= 1 + ‖w0‖C0,α(�0)
, (6.3)

where the first norm refers to a ρ-neighborhood Vρ of �, as in (3.2).
Fix a time step 0 < ε < ε0, where ε0 > 0 is chosen small enough, as in

Lemma 4.4 and Lemma 4.6, in connection with the upper bounds ‖ϕ‖C2,α � Mϕ ,
‖w‖C0,α(�ϕ) � Mw and ‖v‖C2,α(�ϕ) � C0Mw(1 + Mw). The constant C0 is such
that ‖u‖C2,α � C0‖w‖C0,α and ‖v‖C2,α � C0‖w‖C0,α (1 + ‖w‖C0,α ) according to
(4.4) and (4.16), and it depends only on Mϕ through Lemma 3.1. Consider the
discrete times tk = kε. For each k = 0, 1, 2, . . ., given the set �k and the scalar
nonnegative functionwk ∈ C0,α(�k),we followsteps 1–4ofSection4 and construct
a new density wk+1 on the new set �k+1. As in (3.1), we use the representation
with an appropriate ϕk ∈ C2,α:

�k = �ϕk = {
x ∈ R

d; δ(x) < ϕk(π(x))
}
.
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We claim that, as long as tk remains in a sufficiently small interval [0, T ], the norms
‖wk‖C0,α(�k)

and ‖ϕk‖C2,α satisfy a uniform bound, independent of the time step
ε > 0, namely,

‖ϕk‖C2,α � Mϕ and ‖wk‖C0,α(�k)
� Mw. (6.4)

Indeed, by Lemmas 4.1, 4.2 and 4.3, we see that the Schauder estimates yield

‖uk‖C2,α(�k)
� C0‖wk‖C0,α(�k)

,

‖vk‖C2,α(�k)
� C0‖wk‖C0,α(�k)

(
1 + ‖wk‖C0,α(�k )

)
.

(6.5)

In turn, by Lemma 4.4, the new domain has the form �k+1 = �ϕk+1 , with

‖ϕk+1‖C2,α � ‖ϕk‖C2,α + Cε‖vk‖C2,α(�k)

� ‖ϕk‖C2,α + CC0(1 + Mw)ε‖wk‖C0,α(�k)
.= ‖ϕk‖C2,α

+ C1ε‖wk‖C0,α(�k)
,

(6.6)

while by Lemma 4.6 the density wk+1 on �k+1 satisfies the estimate

‖wk+1‖C0,α(�k+1)
� ‖wk‖C0,α(�k)

+ C2ε ‖wk‖C0,α(�k)
. (6.7)

The constants C1,C2 remain uniformly bounded, as long as ϕk, wk satisfy (6.4).
Let now

T
.= min

{
1

C1Mw

,
1

C2Mw

}
.

By (6.3), (6.6), (6.7), the bounds (6.4) are valid as long as tk ∈ [0, T ], regardless
of ε < ε0.

2. We write �ε(tk) = �k and wε(tk, ·) = wk at the times tk = kε for k =
0, 1, 2, . . . , � T

ε
� + 1. The sets �ε(t) and the functions wε(t, ·) are then defined for

all t ∈ [0, T ], by linear interpolation. More precisely, for t ∈ [tk, tk+1] we define
�ε(t)

.= {x + (t − tk)vk(x); x ∈ �k},
wε(t, x + (t − tk)vk(x))

.= wk(x)

det
(
I + (t − tk)∇vk(x)

) . (6.8)

Clearly, each wε is Lipschitz continuous in t . We claim that wε are uniformly
Hölder continuous in both variables t and x . Indeed, the uniform bounds on the
norms ‖vk‖C2,α(�k)

(see (6.5) and (6.4)) imply the uniform Lipschitz continuity of
vk in x , with a Lipschitz constant independent of the time step ε > 0:

|vk(x) − vk(y)| � L|x − y|. (6.9)

Given an initial point x0 ∈ �0, let t 
→ x(t, x0) be the characteristic of (6.8),
starting at x0; that is the polygonal line defined inductively by

x(0, x0) = x0 and x(t, x0) = x(tk, x0)+(t−tk)vk(x(tk, x0)) for t ∈ [tk, tk+1],
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so that

�ε(t) =
{
x(t, x0); x0 ∈ �0

}
.

By (6.9), it follows that for every tk = kε ∈ [0, T ] and x0, x̄0 ∈ �0, we have:
(1 − εL)k |x̄0 − x0| � |x(tk, x̄0) − x(tk, x0)| � (1 + εL)k |x̄0 − x0|. This yields

e−2Lt |x̄0 − x0| � (1 − εL)t/ε|x̄0 − x0|
� |x(t, x̄0) − x(t, x0)| � (1 + εL)t/ε|x̄0 − x0|
� eLt |x̄0 − x0| � eLT |x̄0 − x0| for t ∈ [0, T ], (6.10)

where the lower bound holds for all ε > 0 small enough, while the upper bound
holds for every ε. Using (4.42) and the definition (6.8), we compute the derivative
of wε along a characteristic x(·, x0) as

d

dt
wε(t, x(t, x0)) = d

dt

(
wk

(
x(tk, x0)

)
det

(
I + (t − tk)∇vk(x(tk, x0))

)
)

= −wε(t, x(t, x0))trace(
∇vk(x(tk, x0))

(
I + (t − tk)∇vk(x(tk, x0))

)−1
)

= −wε(t, x(t, x0))div vε
tr (t, x(t, x0)), (6.11)

where we trivially extend the definition of vk at tk to vε
tr (t, ·) on �ε(t), for every

t ∈ [0, T ], by simply transporting its value along the characteristics

vε
tr

(
t, x + (t − tk)vk(x)

) = vk(x) for t ∈ [tk, tk+1).

Note that vε
tr is not continuous (in time) at t = tk . However we still have the uniform

bound on its spacial derivatives: ‖vε
tr (t, ·)‖C2,α(�ε(t)) � Mv, independent of ε < ε0

and valid for all t ∈ [0, T ]. The last equality in (6.11) now follows from the identity

∇vε
tr (t, x(t, x0)) = ∇vk(x(tk, x0))

(
I + (t − tk)∇vk(x(tk, x0))

)−1
.

From (6.11) we obtain the representation formula

wε(t, x(t, x0)) = exp

{
−

∫ t

0
div vε

tr (s, x(s, x0)) ds

}
w0(x0). (6.12)

Therefore, for any τ1 � τ2 and x0, x̄0 ∈ �0, we have the estimate

∣∣wε(τ2, x(τ2, x̄0)) − wε(τ1, x(τ1, x0))

∣∣∣∣
�

∣∣∣exp
{
−

∫ τ2

0
div vε

tr (s, x(s, x̄0)) ds

}
− exp

{
−

∫ τ1

0
div vε

tr (s, x(s, x0)) ds

} ∣∣∣∣w0(x̄0)

+ exp

{
−

∫ τ1

0
div vε

tr (s, x(s, x0)) ds

} ∣∣w0(x̄0) − w0(x0)
∣∣. (6.13)
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By the uniform C2,α bound on vε
tr (t, ·) and by (6.10), the first term in (6.13) satisfies

C
∣∣∣
∫ τ2

τ1

div vε
tr (s, x(s, x̄0)) ds

∣∣∣w0(x̄0) + C
∣∣∣
∫ τ1

0
div vε

tr (s, x(s, x̄0))

− div vε
tr (s, x(s, x0)) ds

∣∣∣w0(x̄0)

� C‖w0‖C0,α(�0)

∫ τ2

τ1

‖vε
tr (s, ·)‖C2,α(�ε(s)) ds

+C‖w0‖C0,α(�0)

∫ τ1

0
‖vε

tr (s, ·)‖C2,α(�ε(s))|x(s, x̄0) − x(s, x0)| ds

� C

(
max
t∈[0,T ] ‖v

ε
tr (t, ·)‖C2,α(�ε(t))

)
‖w0‖C0,α(�0)

(|τ1 − τ2| + eLT |x̄0 − x0|
)
.

Moreover, the second term in (6.13) is bounded by C‖w0‖C0,α(�0)
|x̄0 − x0|α . By

(6.10) we thus have∣∣wε(τ2, x(τ2, x̄0)) − wε(τ1, x(τ1, x0))
∣∣

� C
(|τ1 − τ2|α + |x̄0 − x0|α

)
� C

(|τ1 − τ2|α + |x(τ2, x̄0) − x(τ1, x0)|α
)
,

where C depends only on Mw, Mv and T , but it is independent of ε, as claimed.

3. We now examine the representation �ε(t) = �ϕε(t,·), where ϕε(t, ·) ∈ C2,α(�)

in view of Lemma 3.2. For t ∈ [tk, tk+1] we consider the homeomorphism �(t, ·) :
� → �, defined by

�(t, x)
.= π

(
x + ϕk(x)n(x) + (t − tk)vk

(
x + ϕk(x)n(x)

))
.

Observe that �(t, x) and �−1(t, x) are uniformly Lipschitz continuous in both t
and x . Since the map ϕε(t, ·) : � → R can be implicitly defined by

x + ϕk(x)n(x) + (t − tk)vk(x + ϕk(x)n(x))

= �(t, x) + ϕε(t,�(t, x))n(�(t, x)),

it follows that ϕε is a Lipschitz continuous function of (t, x) ∈ [0, T ] × �, with a
Lipschitz constant independent of ε.

4. For every t ∈ [0, T ], we now define the velocity fields vε(t, ·) on �ε(t), by
setting

vε
(
t, x + (t−tk)vk(x)

) .= t − tk
ε

vk+1(x + εvk(x)) + (
1 − t − tk

ε

)
vk(x)

= t − tk
ε

vk+1(x+εvk(x))+
(
1 − t − tk

ε

)
vε
tr (t, x + (t − tk)vk(x)),

(6.14)

whenever t ∈ [tk, tk+1) and x ∈ �k . Notice that this provides an interpolation
between the composition vk+1 ◦ (id + εvk) and vk , on �k . In view of (6.10), it is
clear that ‖vε(t, ·)‖C2,α(�ε(t)) � Mv, as before.
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We now claim that the vector fields vε are uniformly Lipschitz continuous in
both variables t and x . By Lemma 5.1, in view of (6.5) and (6.4), we have the
uniform bound

‖vk+1 ◦ (id + εvk) − vk‖C2,α(�k)

� Cε‖vk‖C2,α(�k)
‖wk‖C0,α(�k )

(
1 + ‖wk‖2C0,α(�k )

)
� Cε. (6.15)

Observe that, for any τ1 � τ2 and x0, x̄0 ∈ �, one has

|vε(τ2, x(τ2, x̄0)) − vε(τ1, x(τ1, x0))|
� |vε(τ2, x(τ2, x̄0))−vε(τ1, x(τ1, x̄0))|+|vε(τ1, x(τ1, x̄0))−vε(τ1, x(τ1, x0))|.

(6.16)

To prove Lipschitz continuity in time, it is not restrictive to assume that τ1, τ2 ∈
[tk, tk+1]. Then, by (6.14) and (6.15) the first term on the right hand side of (6.16)
is bounded by

|vε(τ2, x(τ2, x̄0)) − vε(τ1, x(τ1, x̄0))|
= τ2 − τ1

ε

∣∣vk+1
(
x(tk, x̄0) + εvk(x(tk, x̄0))

) − vk(x(tk, x̄0))
∣∣

= τ2−τ1

ε

∣∣∣(vk+1 ◦ (id+εvk)−vk
)
(x(tk, x̄0))

∣∣∣ � C(τ2−τ1).

On the other hand, in view of (6.5) and (6.4), the second term in (6.16) is bounded
by

|vε(τ1, x(τ1, x̄0)) − vε(τ1, x(τ1, x̄0))|
�

∣∣vk+1
(
x(tk, x̄0) + εvk(x(tk, x̄0))

) − vk+1
(
x(tk, x̄0) + εvk(x(tk, x0))

)∣∣
+ |vk(x(tk, x̄0)) − vk(x(tk, x0))|

� Mv(2 + εMv)|x(tk, x̄0) − x(tk, x0)|.
Together, the above estimates yield the following Lipschitz bound on (6.16):

|vε(τ2, x(τ2, x̄0)) − vε(τ1, x(τ1, x0))| � C
(
|τ1 − τ2| + |x(τ2, x̄0) − x(τ1, x0)|

)
.

In a similar way, we interpolate linearly along characteristics and define the
scalar function uε implicitly by setting

uε
(
t, x + (t − tk)vk(x)

) .= t − tk
ε

uk+1(x + εvk(x)) + (
1 − t − tk

ε

)
uk(x).

As in the previous case of vε, we conclude that the norms ‖uε(t, ·)‖C2,α(�ε(t)) �
Mu are uniformly bounded and that uε is uniformly Lipschitz continuous in both
variables t, x .

5. To avoid technicalities stemming from the fact that the functions wε, uε, vε are
defined on different domains Dε = {

(t, x); t ∈ [0, T ], x ∈ �ε(t)
}
, we extend

each of these maps to the set [0, T ] × B, where B ⊂ R
d is a ball large enough to

contain all �ε(t). By the analysis in previous steps, and the appropriate uniform
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boundedness of ϕε,wε, uε, vε, the Ascoli–Arzelà compactness theorem, yields the
uniform convergence of (possibly subsequences, as εn → 0)

ϕε → ϕ in C0([0, T ] × �,R), vε → v in C0([0, T ] × B,Rd)

wε → w, uε → u in C0([0, T ] × B,R)
(6.17)

Defining D = {
(t, x); t ∈ [0, T ], x ∈ �(t)

}
as in (6.1), where �(t) = �ϕ(t,·),

we see that the limit functions have the following properties:

• ϕ is Lipschitz continuous on [0, T ] × � and satisfies ‖ϕ(t, ·)‖C2,α � Mϕ for
all t ∈ [0, T ];

• w ∈ C0,α(D) is nonnegative and satisfies ‖w(t, ·)‖C0,α(�(t)) � Mw;
• u and v are Lipschitz continuous on D and satisfy the uniform bounds

‖u(t, ·)‖C2,α(�(t)) � Mu , ‖v(t, ·)‖C2,α(�(t)) � Mv for all t ∈ [0, T ].
It remains to check the requirements (i)–(iii) in the definition of solution to (M–E–
H–G). To prove (i), we first remark that the uniform convergence of vε in (6.17)
implies the uniform convergence of vε

tr to v, because in view of (6.15) and (6.16)
we have

‖vε(t, ·) − vε
tr (t, ·)‖C0(�ε(t)) � ‖vk+1 ◦ (id + εvk) − vk‖C0(�ε(t)) � Cε.

Consequently, the ε-characteristics t 
→ x(t, x0) that are trajectories of the ODE

x ′(t) = vε
tr (t, x(t)), x(0) = x0 ∈ �0,

converge, as ε → 0, to the corresponding trajectory of

x ′(t) = v(t, x(t)), x(0) = x0,

uniformly for t ∈ [0, T ]. Note that x(t) above is precisely given by the diffeomor-
phisms in (4.40), with x(t) = 
t (x0). Hence (G) follows by (6.1).

To prove (ii), we note that each wε is a weak solution of the linear transport
equation:

wε
t + div (wεvε

tr ) = 0, w(0, ·) = w0

in view of (6.11) and the identity

d

dt
wε(t, x(t, x0)) = wε

t +
〈
∇wε,

d

dt
x(t, x0)

〉
= wε

t + 〈∇wε, vε
tr 〉.

Thanks to the uniform convergence in (6.17), the limit density w provides a weak
solution to the transport equation (H), as expressed in (6.2).

To prove (iii), we observe that u(t, ·) is a minimizer of (M) if and only if∫
�(t)

〈∇u(t, x),∇φ(x)〉 + u(t, x)φ(x) − w(t, x)φ(x) dx = 0, (6.18)

for every test function φ ∈ C∞
c (�(t)). Fix t ∈ [0, T ] and φ as above. By construc-

tion, there exists a sequence of sets �n = �ϕn = �εn (τn), with

εn → 0, τn = knεn → t ϕn → ϕ(t, ·) as n → ∞.
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Moreover, there exist functions un = uεn (τn, ·),wn = wεn (τn, ·) on�n , converging
uniformly to u(t, ·) and w(t, ·) on every compact subset of �(t), such that

∫
�n

〈∇un,∇φ〉 + unφ − wnφ dx = 0.

Passing to the limit with n → ∞ and recalling that ∇un converges to ∇u(t, ·), we
get (6.18).

Likewise, there exists a sequence vn = vεn (τn, ·), converging uniformly to
v(t, ·) on any compact subset of �(t), and satisfying

∫
�n

〈vn(x),∇φ(x)〉 − (g ◦ un)(x)φ(x) dx = 0,

for every test functionφ, since div vn = g(un) in�n . Passing to the limit as n → ∞,
we obtain that div v(t, ·) = g(u(t, ·)) holds in its equivalent weak sense:

∫
�(t)

〈v(t, x),∇φ(x)〉 − g(u(t, x))φ(x) dx = 0.

Finally, we show that for every t ∈ [0, T ], the vector field v(t, ·) is a minimizer of
(E). As in (4.10), this is equivalent to

∫
�(t)

〈sym∇v(t, x) : ∇w(x)〉 dx = 0, (6.19)

for all divergence-free vector fields w ∈ C1(�(t),Rd). Let w be such a vector
field. By construction, we have:

∫
�n 〈sym∇vn : ∇w〉 dx = 0, whereas the uniform

convergence ∇vn → ∇v(t, ·) implies (6.19). This concludes the proof of the local
existence. ��
Remark 6.2. (i) In our construction scheme, the discrete approximations vk are

normalized according to (4.1). As a consequence, the same properties are
valid for the limiting solution:

−
∫

�(t)
v(t, x) dx = 0, skew −

∫
�(t)

∇v(t, x) dx = 0 for t ∈ [0, T ].
(6.20)

(ii) Calling T the maximal time of existence of solutions, the proof of Theorem
6.1 suggests that either T = +∞, or else as t → T−, one of the following
possibilities occurs:

• ‖w(t, ·)‖C0,α(�(t)) → +∞;
• The inner or the outer sphere condition fails, namely

Rad(t) = min
{

inf
x∈∂�(t)

Rin(x), inf
x∈∂�(t)

Rout (x)
}

→ 0,

where Rin(x) is the inner radius of curvature of �(t) at a boundary point
x , and Rout is the outer curvature radius.



1256 Alberto Bressan & Marta Lewicka

7. Uniqueness of the Normalized Solutions

It is straightforward to check that if the sets {�(t)}t∈[0,T ] and the functions
(t, x) 
→ w(t, x), v(t, x) provide a solution to the problem (M–E–H–G), then
infinitely many other solutions can be constructed by superimposing rigid motions:

�̃(t) = {
R(t)x + b(t); x ∈ �(t)

}
,

w̃
(
t, R(t)x + b(t)

) = w(t, x), ṽ
(
t, R(t)x + b(t)

)
= R(t)v(t, x) + R′(t)x + b′(t).

Here, t 
→ R(t) ∈ SO(d) and t 
→ b(t) ∈ R
d define a smooth path of rigid

motions t 
→ R(t)x +b(t)with R(0) = I , b(0) = 0. The corresponding function
ũ is then implicitly defined by the identity

ũ
(
t, R(t)x + b(t)

) = u(t, x).

Note that the normalisation (6.20) for v implies that

−
∫

�̃(t)
ṽ(t, x) dx = R′(t) −

∫
�(t)

x dx + b′(t), skew −
∫

�̃(t)
∇ṽ(t, x) dx =

R′(t)R(t)T ,

Therefore, (6.20) holds for ṽ if and only if R(t) = I and b(t) = 0 for all t .
The next result shows that the normalized solution is unique.

Theorem 7.1. In the same setting as Theorem 6.1, the problem (M–E–H–G) has a
unique solution which satisfies the additional identities (6.20) for all t ∈ [0, T ].
Proof. Let (�, v, w) and (�̃, ṽ, w̃) be any two solutions, as defined in Section 6,
both satisfying the normalization identities (6.20). For t ∈ [0, T ], call 
t : �0 →
�(t) and 
̃t : �0 → �̃(t) the corresponding homeomorphisms (see Figure 3)
given by the ODEs (4.40). We then have

d

dt
‖
̃t − 
t‖C2,α(�0)

� ‖ṽ(t, ·) ◦ 
̃t − v(t, ·) ◦ 
t‖C2,α(�0)
. (7.1)

For a fixed t ∈ [0, T ], we shall apply Lemma 5.1 to the homeomorphism 
 =

̃t ◦ (
t )−1 : �(t) → �̃(t) and the nonnegative density w(t, ·) ∈ C0,α(�(t)).

The first assumption in Lemma 5.1 holds for all sufficiently small t , because

‖
−id‖C2,α(�(t)) = ‖(
̃t−
t )◦(
t )−1‖C2,α(�(t)) � C‖
̃t−
t‖C2,α(�0)
� ε0,

(7.2)
Since 
̃0 = 
0 = id. The second assumption follows by Lemma 4.5:

w̃(t,
(x)) = w0
(
(
t )−1(x)

)
det∇
̃t

(
(
t )−1(x)

) = w(t, x)
det∇
t

(
(
t )−1(x)

)
det∇
̃t

(
(
t )−1(x)

)
= w(t, x)

det∇
(x)
.
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Fig. 3. The diffeomorphisms 
t and 
̃t define the change of variable 
 = 
̃t ◦ (
t )−1

Consequently, by (5.1), we obtain

‖ṽ(t, ·) ◦ 
 − v(t, ·)‖C2,α(�(t)) � C ‖
 − id‖C2,α(�(t)).

Together with (7.2), this implies

‖ṽ(t, ·) ◦ 
̃t−v(t, ·) ◦ 
t‖C2,α(�0)
= ‖(ṽ(t, ·) ◦ 
 − v(t, ·)) ◦ 
t‖C2,α(�0)

� ‖ṽ(t, ·) ◦ 
 − v(t, ·)‖C2,α(�(t)) � C‖
̃t − 
t‖C2,α(�0)

for all times t small enough, and with a uniform constant C . Combining the above
inequality with (7.1), we finally obtain

d

dt
‖
̃t − 
t‖C2,α(�0)

� C‖
̃t − 
t‖C2,α(�0)
.

By Gronwall’s inequality, this implies that 
̃t = 
t for all times t small enough.
In turn, this implies the equalities w̃(t, ·) = w(t, ·) and ũ(t, ·) = u(t, ·). Likewise,
ṽ(t, ·) = v(t, ·), because of the normalization (6.20). Applying the same argument
on consecutive, sufficiently short time intervals, we conclude that (�̃, ṽ, w̃) =
(�, v, w) on the entire interval t ∈ [0, T ]. ��

8. Examples

We consider here two easy cases where the growth system can be solved explic-
itly.

Example 1. Assume that the volumetric growth rate is proportional to the density
of the morphogen, so that g(u) = au in (E) with some a > 0. Then the volume of
�(t) grows at a constant rate. Indeed, (G) and (4.43) give

d

dt
vol�(t) = d

dt

∫
�0

det∇
t (x) dx =
∫

�0

(
det∇
t (x)

)
div v(t,
t (x)) dx

=
∫

�(t)
div v(t, x) dx,
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while from (2.1), and since the conservation equation (H) enjoys the solution for-
mula (4.41), it follows that∫

�(t)
u(t, x) dx =

∫
�(t)

(�u+w)(t, x) dx =
∫

�(t)
w(t, x) dx =

∫
�0

w0(x) dx .

Concluding, the linear response function g yields

d

dt
vol�(t) = a

∫
�0

w0(x) dx = aκ0vol�0 where κ0
.= −
∫

�0

w0(x) dx . (8.1)

As a special case, assume that the initial domain �0 is a ball centered at the origin
with radius r0 > 0, and the initial densityw0 of signaling cells is radially symmetric.
By uniqueness (up to a rigid motion), the density w(t, ·) remains then radially
symmetric for all t > 0, whereas the domain �(t) remains a ball whose radius r(t)
may be determined from (8.1), namely: r(t)d = (1 + κ0at)rd0 .

In particular, when w0(x) ≡ w0 > 0 is constant, then the quantities


t (x) = (1 + w0at)
1/d x, �(t) = B

(
0, (1 + w0at)

1/d),
u(t, x) = w(t, x) = w0

1 + w0at
,

v(t, x) = w0a

d(1 + w0at)
x and p(t, x) = w0a

d(1 + w0at)

(8.2)

provide the unique normalised solution to (M–E–H–G).

Example 2. Next, assume that the growth rate g : R 
→ [0,+∞[ is a function
satisfying (2.2), while the initial density w0 of signaling cells is again constant on
an arbitrary domain �0 with center of mass at 0, so that

∫
�0

x dx = 0. In this case,
for every t � 0 the density w(t, x) = w(t) is spatially constant over the domain
�(t) and it satisfies the ODE

ẇ = −g(w)w, w(0) = w0. (8.3)

Indeed, generalizing (8.2), we have that


t (x) =
( w0

w(t)

)1/d
x, �(t) =

( w0

w(t)

)1/d
�0,

u(t, x) = w(t, x) = w(t),

v(t, x) = g(w(t))

d
x and p(t, x) = g(w(t))

d

solve (M–E–H–G) together with (6.20). We further observe that by setting

wmin
.= max{w � w0; g(w) = 0} � 0,

the solution to (8.3) satisfies w(t) → wmin as t → ∞. Consequently, if wmin = 0
then �(t) becomes unbounded and its volume approaches infinity. On the other
hand, if wmin > 0, then �(t) increases to a finite limit �∞ = (

w0
wmin

)1/d
�0.



A Model of Controlled Growth 1259

9. The Lagrangian Formulation

In this section, we reformulate the coupled variational-transport problem (M–
E–H–G) using the Lagrangian variable ξ ∈ �0 labeling points in the initial domain.

Let 
 : [0, T ] × �0 → R
d be the solution to the problem in (G), as in (4.40),

then
d

dt

(t, ξ) = v(t,
(t, ξ)), 
(0, ξ) = ξ. (9.1)

Define, for small t ∈ [0, T ], a flow of Riemann metrics g : [0, T ]×�0 → R
d×d
sym,>,

by setting
g(t, ξ) = (

(∇
)T∇

)
(t, ξ). (9.2)

The Christoffel symbols of g are given through ∂i j
 = ∑d
m=1 �m

i j ∂m
 or, in vector
notation

�·
i j = (∇
)−1∂i j
 for all i, j : 1 . . . d.

We pull-back the solution quantities of the system (M–E–H–G) on �0:

w̃(t, ξ) = w(t,
(t, ξ)), ũ(t, ξ) = u(t,
(t, ξ)), ṽ(t, ξ)

= ∇
(t, ξ)−1v(t,
(t, ξ)), (9.3)

and seek their equivalent description (M1–E1–H1–G1) below. There are a number
of advantages in doing this:

• A solution is a time-dependent field of d × d matrices g = [gi j ] on the fixed
domain �0;

• The transport equation (H) has a trivial solution;
• The non-uniqueness is automatically removed, since adding a rigid motion to
the map ξ 
→ 
(t, ξ) does not affect gi j ;

• In Eulerian coordinates, the solution may cease to exist in finite time because
different portions of the growing set may overlap. This issue does not arise
when working in Lagrangian coordinates.

On the other hand, while in Eulerian coordinates the elliptic equation (2.1)
and the system (4.8) have constant coefficients, in Lagrangian coordinates these
coefficients depend on the metric itself. This makes the analysis considerably more
difficult.

1. By Lemma 4.5, and since det g = (det∇
)2, we get

w̃(t, ξ) = w0(ξ)√
det g(t, ξ)

. (H1)

To deal with (M), we observe equality of (the row) vectors in:∇u = (∇ũ)(∇
)−1,
so that

|∇u(t,
(t, ξ))|2 = 〈
(∇ũ)(∇
)−1(∇
)−1,T ,∇ũ

〉 = 〈
(∇ũ)g−1,∇ũ

〉
(t, ξ).
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Changing the variables in (M) results in

J (u(t, ·)) =
∫

�0

( |∇u|2
2

+ u2

2
− wu

)
(t,
(t, ξ)) det∇
(t, ξ) dξ

=
∫

�0

(1
2

〈
(∇ũ)g−1,∇ũ

〉 + 1

2
|ũ(t, ξ)|2 − w̃ũ

)√
det g(t, ξ) dξ,

so that the minimization problem becomes

minimize: J̃ (t, ũ) =
∫

�0

(〈(∇ũ)g−1,∇ũ
〉

2
+ |ũ|2

2
− w̃ũ

)√
det g(t, ξ) dξ. (M1)

2. To rewrite (E), differentiate the (column vector) equality v(t,
(t, ξ)) = (∇
)

ṽ(t, ξ) in ξ :

∇v(t,
(t, ξ))

= (∇
)(∇ṽ)(∇
)−1(t, ξ) +
[
(∂2∇
)ṽ, (∂1∇
)ṽ, . . . , (∂d∇
)ṽ

]
(∇
)−1(t, ξ)

= (∇
)

[
∇ṽ +

[
(∇
)−1(∂2∇
)ṽ, (∇
)−1(∂1∇
)ṽ, . . . , (∇
)−1(∂d∇
)ṽ

]]
(∇
)−1(t, ξ)

= (∇
)(∇̃ṽ)(∇
)−1(t, ξ), (9.4)

where ∇̃ṽ = {ṽi, j }i, j=1...d is the covariant derivative of the vector field ṽ =
{ṽi }i=1...d with respect to the metric g, in matrix notation given by

∇̃ṽ = ∇ṽ

+
[[

�·
11, �

·
12, . . . , �

·
1d

]
ṽ, . . . ,

[
�·

j1, �
·
j2, . . . , �

·
jd

]
ṽ, . . . ,

[
�·
d1, �

·
d2, . . . , �

·
dd

]
ṽ
]
,

so that [∇̃ṽ]i j = ṽi, j = ∂ j ṽ
i + ∑d

m=1 �i
jm ṽm . We thus obtain

|sym∇v|2(t,
(t, ξ)) = 1

4

(〈
(∇
)(∇̃ṽ)(∇
)−1 : (∇
)(∇̃ṽ)(∇
)−1〉

+ 2
〈
(∇
)(∇̃ṽ)(∇
)−1 : (∇
)−1,T (∇̃ṽ)T (∇
)T

〉
+ 〈

(∇
)−1,T (∇̃ṽ)(∇
)T : (∇
)−1,T (∇̃ṽ)T (∇
)T
〉)

= 1

2

(〈
g(∇̃ṽ)g−1 : ∇̃ṽ

〉 + 〈∇̃ṽ : (∇̃ṽ)T
〉)

= 1

2

(〈
g(∇̃ṽ)g−1 : ∇̃ṽ

〉 + trace
(
(∇̃ṽ)2

))
.

Consequently, changing the variables in (E) yields

E(v(t, ·)) = 1

2

∫
�0

∣∣sym∇v(t,
(t, ξ))|2 det∇
(t, ξ) dξ

= 1

4

∫
�0

(〈
g(∇̃ṽ)g−1 : ∇̃ṽ

〉 + trace
(
(∇̃ṽ)2

))
(t, ξ)

√
det g(t, ξ) dξ.
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We further get

div v(t,
(t, ξ)) = trace∇v(t,
(t, ξ)) = trace∇̃ṽ(t, ξ) = d̃iv ṽ(t, ξ),

where the covariant divergence of the vector field ṽ is given by

d̃iv ṽ = div∇ṽ +
∑

k,i=1...d

�k
ki ṽ

i = div∇ṽ + 〈∇(
ln

√
det g

)
, ṽ〉.

The minimization problem (E) hence becomes

minimize: Ẽ(t, ṽ) = 1

4

∫
�0

(〈
g(∇̃ṽ)g−1 : ∇̃ṽ

〉 + trace
(
(∇̃ṽ)2

))√
det g(t, ξ) dξ

with d̃iv ṽ = ũ.

(E1)

We observe in passing that the integrand in (E1) above depends only on the
symmetric part of the covariant derivative ∇̃ṽ∗ of the covariant tensor ṽ∗ = gṽ,
carrying the resemblance to the original functional in (E). Indeed, since ∇̃ṽ∗ =
∇̃(gṽ) = g∇̃ṽ, then ∇̃ṽ = g−1∇̃ṽ∗, and〈
g(∇̃ṽ)g−1 : ∇̃ṽ

〉 + trace
(
(∇̃ṽ)2

) = 〈
g−1(∇̃ṽ∗)g−1 : ∇̃ṽ∗

〉 + trace
(
(g−1∇̃ṽ∗)2

)
= 〈

g−1(∇̃ṽ∗)g−1 : ∇̃ṽ
〉 + 〈

g−1(∇̃ṽ∗)g−1 : (∇̃ṽ∗)T
〉

= 2
〈
g−1(∇̃ṽ∗)g−1 : sym∇̃ṽ

〉 = 2
〈
g−1(sym∇̃ṽ∗)g−1 : sym∇̃ṽ

〉
.

3. The rule (G) is being replaced by the equation for the evolution of the metric

d

dt
g(t, ξ) = d

dt

(
(∇
)T∇


)
(t,
(t, ξ))

= (∇v(t,
(t, ξ))∇
(t, ξ)
)T∇
 + (∇
)T∇v(t,
(t, ξ))∇
(t, ξ)

= (∇̃ṽ)T g + g(∇̃ṽ) = 2 sym
(
g(∇̃ṽ)

)
(t, ξ).

(9.5)

We now conclude, by a direct calculation, that

d

dt
g(t, ξ) = 2 sym

(
g∇ṽ

) +
d∑

i=1

(∂i g)ṽ
i . (G1)

10. Modeling the Growth of a 2-Dimensional Surface in R
3

We now generalize the model (M–E–H–G) to the case where, instead of an
open domain �(t) ⊂ R

d , the growing set is a codimension-one manifold S(t). For
simplicity, we assume that d = 3, so that S(t) is a two-dimensional surface in R3.

1. Again, for each t ∈ [0, T ] we denote by w(t, ·) : S(t) → R a nonnegative
function representing the density of the signaling cells in the tissue, whereas u(t, ·) :
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S(t) → R is the concentration of produced morphogen. This function u(t, ·) is
defined to be the minimizer of

minimize: J (u) =
∫
S(t)

( |∇u|2
2

+ u2

2
− wu

)
dσ(x), (M2)

or, equivalently, the solution to

{
�LBu − u + w = 0 x ∈ S(t)
〈∇u, ν〉 = 0 x ∈ ∂S(t).

(10.1)

Here ν ∈ Tx S is the normal vector to the boundary ∂S, and �LBu stands for the
Laplace-Beltrami operator acting on the scalar field u on S.

Consider a chart of S, so that S = y(ω) is parametrized by an immersion
y : ω → R

3 for some open set ω ⊂ R
2. We recall that the Laplace-Beltrami

operator is given by

�LBu =
⎡
⎣ 1√

det g

2∑
i, j=1

∂i

(√
det g gi j∂ j (u ◦ y)

)⎤⎦ ◦ y−1.

On the domain ω of the chart, we denote by [gi j ]i, j=1,2 = (∇ y)T∇ y the pull-back
metric g of the Euclidean metric I restricted to S, while its inverse is denoted by
[gi j ]i, j=1,2 = (

(∇ y)T∇ y
)−1.

2. To determine the velocity v(t, ·) : S(t) → R
3, we first derive the compressibil-

ity constraint expressing the fact that the infinitesimal change of the surface area
element due to the family of deformations 
ε = id + εv : S → R

3 as ε → 0,
equals u.

Fix t ∈ [0, T ] and consider a flow of deformed surfaces ε 
→ 
ε(S), starting
from S = S(t). For a given point x ∈ S, let {τ1(x), τ2(x)} be an orthonormal basis
of the tangent space Tx S. Calling n the unit normal vector to S, we compute

|∂τ1
ε × ∂τ2
ε|
= |(τ1 + ε∂τ1v) × (τ2 + ε∂τ2v)|
= |(τ1 × τ2) + ε(∂τ1v × τ2 − ∂τ2v × τ1) + O(ε2)|
=

(
|τ1 × τ2|2 + 2ε

〈
τ1 × τ2, ∂τ1v × τ2 − ∂τ2v × τ1

〉 + O(ε2)
)1/2

= |τ1 × τ2|
(
1 + 2ε

〈 τ1 × τ2

|τ1 × τ2|2 , ∂τ1v × τ2 − ∂τ2v × τ1
〉 + O(ε2)

)1/2

= |τ1 × τ2|
(
1 + ε

〈 τ1 × τ2

|τ1 × τ2|2 , ∂τ1v × τ2 − ∂τ2v × τ1
〉 + O(ε2)

)

= |τ1 × τ2| + ε
〈
n, ∂τ1v × τ2 − ∂τ2v × τ1

〉 + O(ε2).

By suitably choosing the orientation of n, we can assume that {τ1, τ2,n} is a posi-
tively oriented orthonormal basis of R3. Therefore
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lim
ε→0

|∂τ1
ε × ∂τ2
ε| − |τ1 × τ2|
ε

= 〈
n, ∂τ1v × τ2 − ∂τ2v × τ1

〉
= 〈

∂τ1v, τ2 × n
〉 − 〈

∂τ2v, τ1 × n
〉

= 〈
∂τ1v, τ1

〉 + 〈
∂τ2v, τ2

〉
.

We now decompose the vector field v = vtan + v3n into a tangential component
vtan(x) ∈ Tx S and a normal component, given by a scalar field v3 : S → R. Then

〈
∂τ1v, τ1

〉 + 〈
∂τ2v, τ2

〉 = 〈
∂τ1vtan, τ1

〉 + 〈
∂τ2vtan, τ2

〉 + v3

(
〈∂τ1n, τ1〉 + 〈∂τ2n, τ2〉

)

= 〈
∂τ1vtan, τ1

〉 + 〈
∂τ2vtan, τ2

〉 + v3

(
〈�τ1, τ1〉 + 〈�τ2, τ2〉

)
= div vtan + v3trace � = div vtan + 2Hv3,

where� = ∇n is the shape operator on S and H = 1
2 trace � is the mean curvature

of S. The constraint on v accounting for area growth can thus be written in the form

div vtan + 2Hv3 = u. (10.2)

To find an appropriate replacement of (E) in the present setting, consider the
following model of elastic energy of deformations 
 : S → R

3 of S, given by

I (
) =
∫
S
dist2

(∇
(x), O(2, 3)
)
dσ(x).

Here O(2, 3) = {F ∈ R
3×2; FT F = I } represents gradients of deformations that

preserve the metric on S. The integrand dist2(·, O(2, 3)) may be replaced by some
other quadratic function reflecting the material properties of the shell, provided it
still satisfies the frame invariance and some other minimal regularity conditions.

Consider the expansion 
 = id + εv. Then, in analogy to the result in [12],
we claim that the scaled functionals ε−2 I �-converge as ε → 0 to the following
elastic energy on S:

E(v) = 1

2

∫
S
|sym∇vtan + v3�|2 dσ(x). (10.3)

Among all velocity fields vwhich satisfy (10.2), by the previous analysis we should
thus choose one which minimizes (10.2). In the present setting, the constrained
minimization (E) should be replaced by

minimize:
∫
S
|sym∇vtan + v3�|2 dσ(x), subject to: div vtan + 2Hv3 = u.

(E2)
3. The evolving surface S(t) is now recovered as the set reached by trajectories of
v starting in S(0). Namely,

S(t) =
{

t (x); 
t (0)= x ∈ S(0) and

d

ds

s(x)=v(s,
s(x)) for all s ∈ [0, t]

}
.

(G2)
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Again, the morphogen-producing cells are transported along the flow, so that their
density satisfies

w(t,
t (x)) = w(0, x)

det∇
t (x)
for all x ∈ S(0), t ∈ [0, T ], (H2)

where det∇
t (x) is the Jacobianof the linearmap∇
t (x) : Tx S(0) → T
t (x)S(t).
In conclusion, we propose (M2–E2–G2–H2) as a model for thin shell/surface

growth. We leave the resulting system of PDEs as a topic for future study.

Remark 10.1. (i) In the flat case S ⊂ R
2 and assuming the in-plane evolution

to the effect that v3 = 0, the constraint (10.2) becomes div v = u, which is
precisely the constraint in (E). In the general case, the infinitesimal change of
area decouples into the in-surface part div vtan , and 2Hv3. Note that if S is
a minimal surface then all its variations (preserving the boundary) yield zero
infinitesimal change of total area, so in view of (10.2) we get

∫
S Hv3 = 0 for

every v3 vanishing on ∂S. Thus H ≡ 0, as expected.
(ii) The problem (10.2) is under-determined (one equation in three unknowns).

Representing vtan = ∇ψ as the gradient of a scalar fieldψ on S, the equation
(10.2) can be replaced by the Laplace-Beltrami equation

�LBψ = u − 2Hv3.

(iii) The energy functional E(v) in (10.3) measures stretching, that is the change
in metric on S after the deformation to 
ε(S), of order ε. This functional can
be augmented by adding the bending term at a higher order:

Ē(v) = 1

2

∫
S
|sym∇vtan + v3�|2 dσ(x)

+ μ

24

∫
S
|(∇((∇v)n) − (∇v)�

)
tan|2 dσ(x). (10.4)

The integrand in the second term above measures the difference of order ε

between the shape operator � on S and the shape operator �ε of 
ε(S) =
id + εv. Alternatively, the tensor under this integral represents the linear
map: Tx S � τ 
→ (

∂τ (∇v)
)
n ∈ Tx S. The presence of a bending term

introduces a regularizing effect, while the prefactor μ
24 , which is a fixed small

“viscosity” parameter, guarantees that bending contributes at a higher order
than stretching.

Let us alsomention that potentially relevant to the problem at hand is the discus-
sion of the 2-dimensional models of elastic shells and their relation to 3d nonlinear
elasticity, which also appears in the presence of prestrain, which is effectively man-
ifested through constraints of the type (10.2), which can be found in the review
paper [18], and references therein.
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