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Abstract The paper studies a PDE model describing the elongation of a plant stem and its
bending as a response to gravity. For a suitable range of parameters in the defining equations,
itis proved that a feedback response produces stabilization of growth, in the vertical direction.
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1 Introduction

We consider a simple mathematical model describing the growth of the stem of a plant [1,2].
Here our main interest is how this growth can be stabilized in the vertical direction, by a
feedback response to gravity.

Assume that new cells are generated at the tip of the stem, and then they grow in size.
Namely, at time ¢t > 0, the length of the cells born during the time interval [s, s 4 ds] is
measured by

dt = (1 —e @) gg (1.1
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Fig. 1 Left: at any point P along the stem, if the tangent vector k is not vertical, consider the plane spanned
by k and e3. Then the bending of the stem at P produces an infinitesimal rotation of all the upper portion of
the stem, with angular velocity w = k x e3. Right: the stability condition introduced in Definition 1. If at the
initial time #( the stem is almost vertical, then at all times ¢ > # the stem should remain entirely inside the

cylinder where | /x12 + x% <eg

for some constant « > 0. The total length of the stem is thus

! 1] —e
L(t) = /(1 —e N gy = ———— (1.2)
0 o

Ata given time ¢, the stem is described by a C Lcurve s > P(t, s) in the plane. For s € [0, ¢],
the point P (t, s) describes the position of the cell generated at time s.

Moreover, we denote by k(z, s) the unit tangent vector to the stem at the point P(z, s), SO
that

Py (¢, . 0P(t,
K(os) = S Py = 220 (13)
|Py(t,5)] ds
The position of a cell born at time s is thus
S /
P(t,s) = / (1 —e =Nk, s')ds' . (1.4)
0
We shall always assume that the curvature vanishes at the tip, so that
d
—k(t, ) = 0. (1.5)
ds s=t
If there is no response to gravity, then
9 k(t, s) 0
o , 8 = ’
ot

and each portion of the stem would grow with a constant direction. Differentiating (1.4) one
thus obtains

8 S
—P(t,s) = / ae K, o) do . (1.6)
at 0
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We seek a model which takes into account a response to gravity, stabilizing growth in the
upward direction.

We assume that, if a portion of the stem is not vertical, growth will be slightly larger on
the lower side. This determines a change in the local curvature, affecting the position of the
upper section of the stem (Fig. 1, left).

More precisely, let {e, e;, e3} be the standard orthonormal basis in IR3, with e3 oriented
in the upward direction. At every point P(¢, o), o € [0, t], consider the cross product

w(t,o) = Kk(t,0) x es.

The change in the direction of the stem, in response to gravity, is modeled by
a s
Ek(z, 5) = / we P9 (k(t,0) x e3) x k(z,5) (1 — e ")) do. 1.7
0

Notice that, in the above integrand:

o (1—e 2= do = dt =arclength.

e w(t,o0) = Kk(t,0) x ez is an angular velocity, determined by the response to gravity at
the point P (¢, o). This affects the upper portion of the stem, i.e. all points P(¢, s) with
s € |o, t].

o ¢~ P9 5 a stiffening term. It accounts for the fact that older parts of the stem are more
rigid and hence they bend more slowly. On the other hand, © > 0 is a constant that
measures the strength of the response to gravity.

Given the position of the stem at some initial time 79 > 0, to determine the values of k(z, s)
on the domain

D ={(t,s); 0<s=<t t=1) (1.8)
one can use the integral equation (1.7) together with the boundary conditions
= d
k(10,5) = k(s), s €10, 1], a—k(t, ) =0,1>1. (1.9)
§ s=t

This yields a well posed evolution problem for the unit tangent vector to the stem.
Differentiating (1.4) w.r.t. r and using (1.6) , (1.7) we obtain

a s ‘/
—P(t,s) — oz/ e UK(r, s") ds’
at 0

N
= f (1 — e =Nk, (t,s")ds'
0

s s
/ (1 =) / pe P (k(t, 0) x e3)
0 0

x k(t, s)(1 — e =) do ds’
- /s we B9 (K1, 0) x e3) x (P(z, 5) — P(t, 0)) (1 — ==y 4o
0
(1.10)

For simplicity, as in [1] our analysis will be concerned with the limit case where @ — 400,
so that the factor 1 — e~*“~%) = 1 can be omitted. We thus obtain the following evolution
equation for points on the stem:

9 ps) = /Sp,e*ﬁ(’*") (k(t, ) x €3) X (P(t,s) — P, a)) do. (111
at 0
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This is supplemented by the boundary condition (1.5), stating that the curvature vanishes at
the tip of the stem.

Numerically computed solutions of (1.11) are shown in Fig. 2. For small values of 8 > 0,
a highly oscillatory behavior is observed. Yet, it appears that some kind of stability is always
achieved. To make this more precise, we introduce a concept of stability for stem growth
(Fig. 1, right). Given a point x = (x1, x2, x3) € IR, its horizontal projection is here defined
as Tporx = (X1, X2).

Definition 1 We say that the equations of growth (1.11), (1.5) are stable in the vertical
direction if, for every 9 > 0 and 7y > 0, there exists § > 0 such that the following holds. If

< & forall s € [0, tp] (1.12)

’ﬂhork(t()s s)
then
|Thor P(t,5)| < &0 and |mpork(r,s)| < &9 forallt > 1, s €[0,¢]. (1.13)

Roughly speaking, if at the initial time 7y the stem is almost vertical, then at all later times
t > ty the stem should remain inside a vertical cylinder with radius . Notice that, because of
the exponential stiffening term, asymptotic stability cannot be expected. Indeed, as t — 400
the stem will not approach a vertical line.

Our main goal is to analyze the Egs. (1.11), (1.5), and prove that they are indeed stable
in the vertical direction, at least for certain values of the parameters n, 8. The proof will
be achieved by writing an evolution equation for the first two components of the tangent
vector k = (ky, k2, k3), and proving that these are stable in the space L! (IR4) as well as in
L>®(Ry).

The remainder of the paper is organized as follows. In Sect. 2 we derive a linearized version
of the growth equations. Section 3 provides a linearized stability analysis in a non-oscillatory
regime, with g suitably large. Roughly speaking, this means that if the stem initially bends
only on one side, then it will keep bending on the same side for all future times (Fig. 2, right).
Here the analysis is based on pointwise estimates, obtained by comparison arguments. In
Sect. 4 we study linearized stability in the oscillatory regime (Fig. 2, left and center). For
a somewhat wider range of the stiffening constant 8 > 0, linearized stability can now be
proved relying on integral estimates. Finally, in Sect. 5 we prove that the nonlinear system
(1.11) is stable in the vertical direction, according to Definition 1, for suitable values of the
stiffening constant S.

Itis worth noting that, following a standard approach [4, 8], one first proves the asymptotic
stability of a linearized system, and then shows that stability remains valid in the presence
of a small nonlinear perturbation. For our Eq. (1.7), however, asymptotic stability in L* or
L! never occurs. For this reason, a more careful analysis is needed. The required estimates
will be obtained by representing the solution of the nonlinear equation as a fixed point of a
suitable transformation, which maps a particular set of functions (depending on the initial
datum) into itself.

Readers who are interested in a general description of plant development from a biological
point of view are referred to [5].

2 The Linearized Equations

Taking the limit ¢ — 400, (1.7) reduces to

@ Springer
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%k(r, 5) = /S we PU=9 (k(t, 0) x e3) x k(z, 5) do. 2.1)
0

Remark 1 (coordinate rescaling) Let k = k(z, s) be a solution to (2.1). Consider the variable
rescaling
t=At, s = ArE,  k(r.&) = KkG@,ys).
Then the rescaled function k satisfies
N
ki(1.8) = Aki(t,s) = u ( / e P (k(t,0) x e3) da) x K(t, s)
¢ 0 i 2.2)
= u ( / e P (k(x, ) x es)dn) < k(. £)
0

where we performed the change 7 = Ao in the variable of integration. By a variable rescaling,

itis thus not restrictive to assume . = 1. Of course, if 4 # 1, we need to replace 8 by n2.
Set k = (ky, k3, k3). From (2.1) with © = 1 we obtain
N
Kk (t,s) = (/ e PUmK(1,0) x e3 do) x Kk(t, )
0
N
= — / e Pl—) (k] (t,0)er — ka(t, O)G])d(i

0

x[es + ki (1, )er +kalt, s)ex + (s, 5) = Des). 2.3)

A stem growing exactly in the vertical direction corresponds to k(z, s) = (0, 0, 1). Lineariz-
ing around this trivial solution one obtains

N
kig(t,s) = — / e Pk (1, 0) do + Q1(1.5),
OS
koa(t,s) = — / POt 0) do + 021, 5), 24
0
k3,t(t7 S) = Q3(ta S)a
where Q1, Q2, O3 denote quadratic terms. More precisely,
s
Qi(t.s) = (1 —ks(t, s))/ e Pkt 0) do, i=1.2,
0 (2.5)

s N
03(t,s) = kl(t,s)/ e—ﬁ<f—“>kl(z,a)da+k2(t,s)/ e P11, 0)do .
0 0

Notice that in the linearized equations the three components are decoupled. Setting 6 = k;
or 8 = kp, we thus focus on the scalar integro-differential equation

8 S
—0(t,s) = —/ e P9, o) do, (2.6)
ot 0

with boundary condition

0,(t,s)] = 0. 2.7)

s=t

Introducing the variable u (¢, x) = 6(¢,t — x), the Eq. (2.6) becomes

o0
Uy +u, = —/ e Pu(y)ydy for x>0, (2.8)
X
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with Neumann boundary condition at x = 0
uy(t,0) = 0. (2.9)

A major portion of our analysis will focus on the stability of the linear system (2.8) with
boundary condition (2.9). Notice that this linear evolution equation does not generate a
continuous semigroup on L1([0, +00[). Indeed, for a sequence of smooth initial data such
that

lif0<x<nl,

0if x >2n1, (2.10)

up(0,x) = uy(x) = {
the corresponding sequence of solutions u, (¢, -) is smooth but does not converge to zero in
L ([0, +o0), for any t > 0.
To achieve continuity of the flow, one needs to use the norm [Ju|| = [u(0)| + [l L1 0,00 -
Equivalently, one can consider the evolution equation

o0
wtuy = — f e Pru(y)dy, @.11)
max{0,x}
on the space
X = {u €L (=1, 400l); u(x)=u(0) forall x [—1,0]}. 2.12)

We regard X as closed subspace of L!([—= 1, +00[]), with the same norm. In the following,
for an initial datum

u@©,) = u € X, (2.13)
we shall denote by
t = u(t,-) = Su (2.14)

the corresponding solution to (2.8), (2.9), or equivalently (2.11). On the other hand, the
solution of (2.8) with Dirichelet boundary condition

u(t,0) = 0 (2.15)
will be denoted by
t > () = Spii. (2.16)

One can still regard (2.8), (2.15) as an evolution equation on the space X in (2.12), where i
now satisfies

[e.¢]
— -Byg i
i+, = /X e Pu(y)dyif x >0, 2.17)
0 if xe[-1,0]

The existence and uniqueness of these two solutions u, & can be proved by standard techniques
[6-8], relying on the contraction mapping principle.

We remark that, when the boundary condition (2.15) is used, the constant value of the
initial datum u(x) for x € [— 1, 0] is irrelevant. However, this value does play a role when
the Neumann condition (2.9) is used.
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There is a close relation between the solutions # and # in (2.14) and (2.16). Indeed, call
U = U(t, x) the particular solution of (2.11) with initial data

1if x e[-1,0],

0if x > 0. (2.18)

U@,x) = {

Comparing (2.17) with (2.11), one derives the representation formula

u(t,x) =u(t,x)+u0) Ut x)

t oo
+/ (/ e By ﬁ(s,y)dy> U(t—s,x)ds. (2.19)
0 0

We shall refer to the function U (-, -) in (2.18), (2.19) as the fundamental solution of (2.11). In
the next section we will prove that, if 8 is sufficiently large, then U remains always positive.
In this case, which we call the “non-oscillatory regime”, the proof of linearized stability can
be achieved by a simple argument. In Sects. 4 and 5 we shall consider smaller values of 3, so
that the function U can change sign. This we call the “oscillatory regime”. The motivation
for these names becomes apparent, looking at Fig. 2.

3 Linearized Stability in the Non-oscillatory Regime

In this section we consider the case where the stiffening constant 8§ > 0 in (1.11) is large.
Our first result shows that in this case the fundamental solution U remains always positive.

Lemma 3.1 Assume that the stiffening constant satisfies B* — B3 > 4. Then the solution U
of (2.11), (2.18) is non-negative, i.e. U(t,x) > 0 for allt > 0,x > 0. Moreover, its norm
satisfies the uniform bound

. B
UG o rocp < M = 1 7———p  forall 120, 3.1)

Proof 1. Integrating along characteristics, it is clear that

(t,t) =1, U(,x) =0 forall x >¢. 3.2)
Moreover, the map x +— U (¢, x) is Lipschitz continuous on [— 1, #] and constant for x €
g_Al;sOu]me that U(¢, x) > O for all (¢, x) € [0, T] x [— 1, +00[ . We begin by showing that,

forallt € [0, T]and O < x < t, one has

U =0, U <0, (3.3)

Uxx > 0, Ugw < 0. (34)
(i) Differentiating (2.11) w.r.t. x we obtain

Uy + Uy = e PU. (3.5)
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Integrating along characteristics and using the Neumann boundary condition, for 0 <
X <t we obtain

t
U, (t, x) :/ e P (s, x —t +5)ds
t—x

X
:/ e’ﬂyU(t—x+y,y)dy > 0. (3.6)
0

This proves the first inequality in (3.3).

(ii) In turn, the inequality U, > 0 is an immediate consequence of the Eq. (2.11).

(iii) To prove the first inequality in (3.4), fixt € [0, T]and let 0 < x; < x2 < . By (3.6) it
follows

X1
Uy (t, x1) 2/ e UG —x1+y,y)dy
0
X
5/ ePUG—x2+y, y)dy
0

x
+/ UG —x2+y, y)dy = Uslt, x2), (3.7
X

1

showing that the map x +— U, (¢, x) is nondecreasing for 0 < x < t.
(iv) To prove the second inequality in (3.4), fix 0 < x < #; < 5. Since U; < 0, we have

X
Ux(tr, x) = / e UMt —x+y,y)dy
0

< /Ox e PUM —x+y, y)dy = Ui, x).
3. By (3.4), the function U (t, -) is convex on the interval x € [0, ¢]. Hence
Ut,0) < Ut,x) < ; + ’_%U(r, 0) < U@0)+ ; . (3.8)
Inserting (3.8) in (2.11) one obtains
U,(0,x) > — /OI ey (U(t, 0) + %) dy. (3.9)

From (3.6) and the fact that U decreases along characteristics, it now follows

X

X
1
Up(t,x) = f ePUGC—x+y,y)dy < / e PUGC—x,00dy < EU(; —x,0).
0 0
Hence
1 X
U, x) < U(t,O)—i—E/ Ut —y,0)dy. (3.10)
0
4. Call Z(t) = U(t,0). By (3.10) the scalar function Z satisfies the differential inequality

t t *
_/ e U@, x)dx > —/ e hr (Z(r)+1/ Z(t—y)dy) dx
0 0 ,8 0

Z(1)

> —% Z(t)—%/OIZ(t—y) (/yte_’sxdx>dy
— z(t)_i/’e—ﬂyzu_ yd @3.11)
> -7 2 ) y)dy. :
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Introducing the variable

t
1) = / e Pz dy,
0

by (3.11) we obtain the system of differential inequalities

Z) = —p7Zw) = L), Z(0) = 1, (3.12)
I(ty = Z(t) — B1(1), 1(0) = 0, '
where the upper dot denotes a derivative w.r.t. time. This implies
d <Z(t)> _ZOI) — Z(1) (1)
a\10) ~ (1)
a=27204 _ —1\ 72
. B -+~ )27 + B Z() (3.13)
(1)
Recalling the assumption p* — B3 —4 >0, when Z/I = B/2 we have
_p—272 _ —1\~72 2 2
i(£>z B I-—(1+p7HZ +,BIZ:_L_(1+1>/37+/37
dr \ 1 12 B2 B) 4 2
4 _ p3 _
_ % > 0.

As a consequence, if Z(t) > (8/2)I(t), then Z(t) > (B/2)I(¢) for all t > t. The initial
data in (3.12) imply

2
I(t) < EZ(I) forallz > 0. (3.14)
Inserting this in the first inequality in (3.12) we obtain

. 1 2
Zt) = — (f + —) Z(1).
BB
This yields the lower bound

242
Z(t) > exp {—ﬂ ﬂ-; t} .
By the first inequality in (3.3), this implies
2
2
U(t,x) > exp{—ﬂﬂ—g t} (3.15)

forallt € [0,7T] and 0 < x < t. The above analysis shows that, if U > 0 on the domain
{(z,x); t €]0,T], 0 <x < t}, then U satisfies the strictly positive lower bound (3.15).
Since the lower bound of U (¢, -) on [0, ¢] depends continuously on 7, we conclude that U
can never take negative values.

5. Next, to establish an upper bound for Z we observe that for # > 1 one has

1 1
Ui, 0) < — / UGy dy < — / P dy UG, 0)
0 0

1 —e P

Z(1)

IA

Z(1).
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l—e™

Setting y = _ﬂ ’ , we thus have

Z@t) < eV za) < 7D for 1> 1.
6. By (3.3) we trivially have

0<UO0 <1, forall # > 0, (3.16)

{U(t,x) e [0,1]if x € [0, 1],

Ut.x) = 0 if x> 1. forall r € [0, 1]. (3.17)

Moreover, for 7 > 1 an upper bound for the norm ||U (2, ) ||t ({0,+ocf) 1S NOW obtained from

t t t—1 1
/ Ut,x)dx < / Z(t —x)dx < 1+/ eV Dy < 14— (3.18)

0 0 0 Y
O

Based on the representation formula (2.19), we now prove the stability of the linear semigroup
S, in the non-oscillatory regime. We recall that S is defined on the space X C Li([—1, +00])
introduced at (2.12).

Theorem 3.1 Assume f* — > > 4. Then the semigroup S defined at (2.11)—(2.14) is stable.

Proof 1. Notice that the assumption implies 8 > 1, hence we can choose 1 < y < f. Fix an
initial datum iz € X and let i be the corresponding solution of (2.8) with Dirichelet boundary
conditions (2.15). Consider the weighted integral

J(@) = /ooe_” lu(z, y)|dy. (3.19)
0

Differentiating (3.19) w.r.t. time and using (2.8) one obtains

—yJ@) +/ P aa, ) (/ e vE dg) dy < <—y + 7> J(1).
0 0 Y

Setting k = y — (1/y) > 0 one obtains

J(@)

IA

J(t) < e ¥ J(0).

In turn this yields a uniform bound on || ut,-) ||L1, namely
t o0
[ o =t < [ [T ye P s, ayas

t o0
< C-/ / e_”|ﬁ'(s,y)|dyds
o Jo
! c
= C-/ J(s)ds < — J(0). (3.20)
0 K

Here C is a constant depending only on y and S.
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2. Next, let u = u(t, x) be the solution to (2.11) with the same initial datum u. Recalling the
representation formula (2.19) and the bound (3.1), we conclude

u, ')”Ll([_l’oo[) - Hb_‘HLl([—l,OO[)
= [ I wrgo.0on = 1L go.0on + 1FOT- U L1 00p

t +o00 5
.

+/0 (fo e 'Iu(s,y)ldy>ds-ryggllU(r,-)llLl([-l,oon

C+M

IA

t
%J(O)+M|ﬁ(0)|+M/ J(s)ds < J(0) + M |a(0)]. (3.21)
0

Since J(0)

IA

||ﬁ ||L1([0’00D, we conclude that, for every r > 0,

cC M _
””(’7 ')”Ll([—l,oo[) = (; + ;s +M+ 1) : ”“”Ll([—l,oo[) :

4 Stability in the Oscillatory Regime

We consider again the linear equation (2.8) with Neumann boundary condition (2.9) atx = 0.
We shall use the equivalent formulation (2.11) on the space X at (2.12).
Solutions # = u(t, x) of (2.11) will be considered, with an arbitrary initial data

u@,) = up € X. 4.1)

Our goal is to obtain a priori estimates on the L! norm of u(z, -), uniformly valid for all t > 0.
The next theorem shows that the stability result in Theorem 3.1 remains valid for somewhat
smaller values of the stiffening constant 8. The proof is entirely different, and we believe it
has independent interest.

Theorem 4.1 The semigroup S generated by (2.11), on the space X at (2.12), is stable for
all B > B* = (48 + +/9504)/160.

We remark that Theorem 3.1 yields stability for 8 > B ~ 1.7485, while Theorem 4.1
extends the stability result for all 8 > B* ~ 0.9093. It remains an open question whether
linearized stability holds for 0 < 8 < B*. The remainder of this section is devoted to a proof
of Theorem 4.1.

4.1 Estimates on u(z, 0)

We use the notation Uy(t) = u(¢, 0). For y > 0, we write

Ty (@) i/ e "u(t,x)dx.
0
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Differentiating w.r.t. time, one obtains
o0 o0
j;(t) = / e V* I:—axu(t,x) —/ e Pu, y) dy] dx
0
s poo
=Up(t) —y T, (1) —/ / eV, y)dydx,
0
o0 ! y
=00 =y 2,0 = [ e Pute.y ( [ dx) dy,
0 0

1 1
=Uo(®) —yJy () — ;jﬂ(f) + ;jy+ﬂ(t)-

In particular we have for all n > 1:

1 1
Tng = Uo = nBJnp — ﬁjﬁ + ﬁkﬁn-&-l)ﬂ- “4.2)
By (2.8) and (2.9) it follows
Uy = —Jp. 43)
Hence, for n = 1 we have
1 T
Ul + (ﬂ—l—E) Uy+Uo = =222, (4.4)

Next, we would like to express [/ in terms of U and U(’). Fora > 0, consider the convolution
operator

t
I[f1@) = / e~ £(s) ds. (4.5)
0

Notice that I[ f] = f * p, is obtained by taking the convolution with the kernel p, (t) =
1r, (t)e~®'. In particular, recalling that for any a, b € L' (R, ) one has

lla bl < llallplblie, (4.6)
we see that I, is a bounded linear operator from L! (IRy) into itself:
1
Ll F ey = M I ()

We shall also use the weighted Lebesgue space L; (IR4), with norm

oo
1Al oryy = /0 e f()ldx. (4.8)
Relying on the identity

/ e V! dt :/
Ry Ry

valid for any two functions a, b € L! (IR4), we deduce that the same inequality (4.6) holds
for the weighted L' norm:

t
/ a(t — s)b(s)ds
0

1
/ e VI q(t — 5)e " b(s) ds| dt,
0

lla bl =< llaliyy 151y - 4.9)

Thus, for any & > y one has

1
< . 4.10
Lk ~ a—y 1ALy (me (4.10)
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Finally for « > 0 we will denote by e, : IRy +— IR, the function
ey(x) = e %%, 4.11)

Integrating (4.2) one obtains

1
Ligl Tt ppl(0),  (4.12)

1
—1 + —
plTpl(1) np

Tnp() = Tup(0)e ™" 4 Lg[Up](r) — e

which, in the case n = 2, yields

1 1
26 —DhglTslt) + — 25 — hplT3p1(1). (4.13)

Relying on (4.12), (4.13), and proceeding by induction on n > 2, we obtain

Jop(t) = Jop0)e 2P + Lyg[Upl(r) —

Jp(t) = ka(t) +Z (AxlUo)(t) — BrlTl(1)) + hgo---olglTu+1)pl®),

pn—1
k=2 k=2 "3”
4.14)
with
Jop(0) e=2B1 ifk =2,
Je(@) = hpo---olg_1pleslt) . 4.15)
Jkp(0) G otherwise,
. Dpo--olglUpl(?)
ArlUpl(t) = , 4.16
k[Uol(2) k=) g2 (4.16)
. Dhgo---0 Ikﬁ[jﬁ](t)
BelJpl(t) = k'ﬂk : 4.17)
The series with general term f; converges in L!(IR}) to
o0
=Y f (4.18)
k=2
The series with general term Ay and By, k > 2, converge to
oo o
A=Y A ad B =) B, (4.19)
k=2 k=2

in the space B(L! (IR, )) of bounded linear operators from L! (IR ) into itself. In fact, thanks
to (4.7) one has the bounds

(vl <§:—1 flu(0, )l (4.20)
L= _ %3 Lt :
£ (k= DIkIp
> 1
IAlswim,y < EW’
> 1
IBlsw vy < D o gas - “.21)
2 ()2 B
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Concerning the last term in the right hand side of (4.14), a similar argument yields that, for
any T > 0,

1

leﬂ o0 lug[Tm+1)pl

1
< 5t 1 TarnsliLigo.r) -
L!([0,T]) (nh)?2 p2n—1 (n+DBILI[0,T])

Forany T' > 0, observing that || Tn+1)gllL! 0,77 < lullL o, 71x R 1) and letting n — +00

in (4.14), one deduces that, whenever u € L}o (R y; L! (IR+)), the function J>g admits the
representation

Jp = f+ AlUo] — B[Jgl. (4.22)
Here f, A, B are the functions defined at (4.15)—(4.19). Consequently, the Eq. (4.4) can be
written as
U\ U0> 1 (0) 1 ( 0 )
=M )= - = , 4.23
(U()) (Uo s \r) "~ B \awwo - B 29
with
m= : (4.24)
T \-1-B+p) '
Recalling (4.3), we thus have
Uy _ =(Uo
(U{)) =17 <U(;) 0, (4.25)

with

~ (Vo . Up(0)y 1 7 B (0)
T(Vé) () = exp(tI:/l) <U6(0)) 5, exp((t —s)M) £(s) ds

. (4.26)
—*/ exp((t — s)M) (
B Jo

AlVol(s) + B[v(;](s)) ds.

Notice that the matrix M has negative eigenvalues —f and — 1/8.

Next, consider the space L' (IR ) x L' (IR4.) with norm [|(f, )|l = max{|| I, Iglly}-
We will show that, for 8 > 1 and even for some § < 1 sufficiently close to 1, the operator
7T defined in (4.26) is contractive. For this purpose, it is of course sufficient to prove the
contractivity of the linear part, defined by

80 = =5 L= (o d )
T(‘/(;) (1) = 5, exp((t —s)M) A[Vo](s)—l—B[Vé(s)] ds. 4.27)

Lemma 4.1 There exists a continuous function k : (0, 4+00) — (0, 400) such that:
() Forany B >0, IT|gwi <Ly < k(B).
(ii) Forall B > B* = (48 + +/9504)/160 ~ 0.9093, one has k(B) < 1.

Proof For any B # 1 we have

| (BB — =B Bet/P _ ge—Pr
exp(tM) = ﬁ <ﬂefﬁz —Be !B omt/B ﬂzeﬂst> )

andfor g =1
e '(t+1) te™!
exp(tM) = ( —te~t —(t — l)e*’>'
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The mapping (¢, §) — exp(tM) is smooth w.r.t. both variables # > 0 and 8 > 0. One has

’ 0  ((AIVOI(s) + BIVY()D % mra
fo exp((t = $)M) (A[VO](S) +B[V(;<s)]> ds = ((A[Vo]<s)+3[v5(s>]) *m22>’

where, for ¢t > 0,

iy = | = AL
te”! if p=1,

my = [T =B i p L,

—(t— e if =1,

and where the functions m 7, my; and A[Vp(s) + B[V(; (s)] are defined to be zero for s < 0.
When (U, U’) = T(U, U'), one has

UL < Alsay lmlig 1T + 1B lsan Imillp 10
1U I < ALy lmoa i 1Tl + 1Bl g Ima2 i 10 -
Consequently
17wy = max {lmal, Imaz o f (1A Tswy + 1B lswn).

Defining

> 1 > 1
K(B) = max<||mn||L1,||m22||L1><Z DI +Z(k,)252“>, (4.28)

k=2 k=2

by (4.21) we obtain part (i) of the Lemma.
Next, for 8 # 1 one has

o0
lmiallyr = '82/3 lf (e P — BZe Pydr = 1,
—1Jo

1 t* o0
Imz2llus = 25— ( / (Be P — e Pydr + f e'f—pB e—ﬂ’mr),
- 0 r*

where * = 21n /(B — 1/p) is chosen so that e */# = 2e~P" Hence

2p2 . . 2411 2
Imxlly = ﬂzﬂ_l(e" 1B _ o'y = 2exp (%) S

On the other hand, if 8 = 1 one has ||m 2|1 = 1 and [|maa |1 = 2/e.

‘We now observe that, if u; = d iy then for every k one has

—  _an =

(k—D'k! (k)2
w1 _ 1 7P 1
up ~— 6’ iy — 9

Using the above inequalities, for every 8 > 1 we obtain

o0 o0

Z% -3 3 1 <0
(k— Dk =3 = 5g° (k)2 p%*—2 = 382

k=2 k=2

@ Springer



J Dyn Diff Equat

Recalling (4.21), we conclude

3 9
IAlBLI R,y + IBlBMLI (R, = 58 + 25 (4.29)

An elementary computation now shows that the right hand side is < 1 provided that 8 > 8*.
]

As a consequence of the above lemma, for any 8 > B* we obtain that (4.25) has a unique
solution in L! (IRy) x L! (IR4). (Actually, our analysis shows that, for any 8 > 0, (4.25)
has a unique solution. However, when 8 < B* the first component of this solution may only
lie in the space le/ (IR4) defined at (4.8), for some y < 0.) Moreover, due to the contraction
property, the norm of this solution is measured by II% (0, 0) ||t x1,1 - Therefore, for some
C = C(p), one has

1Tl + 11Ul < € (ULl + 1 £1lLr) s

where
N Up(0)
Ur(t) = exp(tM) <U{)(0)> .
Finally, observing that
Up@)| = [T = [u©. )], (4.30)

recalling that the matrix M has negative eigenvalues and using (4.3), (4.20), we deduce that
for all B > B* there is some C(B) > 0 such that

1ol + 175l = C(B) (1UoO)] + (0, L1 )- *31)

In the same way, we can obtain uniform estimates on 7, j > 2, as well. Indeed, it suffices
to replace (4.14) with

n

Jip = kX: (fj,k + Aj «[Uol — Bj,k[J,s]) + %[w o0 LplTusnpl. (4.32)
=J
where
fix = Jkﬁ(O)( 1)( Ljg O)!‘Bkcijkﬂ[ekﬁ] 7
A;4lUo] = (Jj— 1)('k1,_ﬁ lo)!-,-B-kijIkﬁ[UO] 7 BjxlJs] = (- 1)!2,':,3}3;;].': kgl Tp]

We thus obtain
o0 o0 o0
Jip = Z Sik+ Z A;jx[Uo] — Z B [ Jg],
k=j k=j k=j
with

Zf]k
k=j

3 kp(@ I =D
LRy | = w (k — 1) k! p2k=2j+1

< Z ,)zﬂzmﬂ (0, )l

@ Springer



J Dyn Diff Equat

and similarly

D A = D DB < Y —aaE
' = 2 g2m+1 Js = PRSI,
i IBwiary) (DT AT = sk Tz (b7 A

To obtain the above estimates, we used the identity (j — 1)!/(k —1)! < 1/(k — j)! and made
the change of variable m = k — j. In turn, this yields

1Tl < CB(IUoO)] + u(0,)lly1),  j =2, (4.33)

for some constant C () independent of j (which may differ from the above C () used in
(4.31), a convention that we use from now on). We underline that we do not need to reduce
the range of § in this argument.

4.2 Exponential Decay

The above estimates can be slightly improved, choosing some ¢ > 0 and working in the
weighted space Lé (IRy), with norm defined as in (4.8). This will imply the exponential
decay of the solutions.

Proposition 4.1 For any B > B*, there exists ¢ > 0 and C > 0 such that

Vol +max 1Tl < € (1UoO)]+ (0. ) ys)- (4.34)

Proof Forany 8 > B*, we claim that there exists ¢ > 0 such that operator T (or equivalently
T) is still a contraction on Lé X Lgl. Indeed, using (4.10) repeatedly (instead of (4.7)), one
can replace (4.21) with the statement that, for ¢ < 2, A and B are continuous operators on
L;, with norms

— 1
IAN @ oryy = /; G- D22 =2 (B —5)

[ee}

1
1Bl caioryy = Z Kl Bk=1 2B —¢e)--- (kB — &)’

k=2

Moreover, in place of (4.20), we can estimate f by

e 1

R By Y ps e sy puped LRI PR

k=2

Relying on (4.9), it follows that 7 is continuous in L; for ¢ < min(B, 1/8), with

17wy < max {lmalyy, Imazy )

> 1 > 1
,; k=DIF2 2 —e)-- (kB —e) +;k!ﬂ"“ @B—e)-UkBp—e))
For B > 0 and ¢ > 0, we define k (8, €) to be the right-hand side in the above formula. We
observe that this is a continuous function of (8, €) and that k (8, 0) = «(8), with « defined
as in (4.28). Together with Lemma 4.1, this proves the existence of ¢ = ¢(8) > 0 such that
the operator 7 is a contraction on L! x L.

Then we can argue as in (4.31)—(4.33) and obtain the estimate (4.34). ]
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4.3 Estimates on u(z, x)

All the previous analysis was concerned with the function Uy (t) = u(t, 0), where u = u(t, x)
is a solution to (2.8 ). To derive estimates on u(z, x) for x > 0 we use similar arguments,
along characteristics. Given y > 0 and t € IR, for all 1 > max{z, 0} we define

jyt () = /00 e Y u(t,x)dx. (4.35)
t

-7

By (2.8) one has

%u(r,t—‘r) = (u +u)t,t —1) = = J5(1).

Hence jﬂf is related to the characteristic issued from (¢, x) = (t, 0) when 7 > 0 and to the
one issued from (¢, x) = (0, |t|) when T < 0.
Differentiating (4.35) w.r.t.  we obtain

o0

0 == ut -0+ [

-7

o0
e vr |:—8xu(t,x) —/ e Pui, y) dy:| dx
X

o0 o0
=-vJ, () - f / eV PYu(t, y)dy dx
1—7JXx

00 y
= — yj)f(t) — / </ eV TPy, y) dx) dy
-7 -7

e~ Y1) 1
= - ijf(t) - Tjg(t) + ;j)f+ﬁ(t).

In particular, for n > 1 and # > max{z, 0} one has

/ T T @®
__ _-npa-1)YB (n+1)B
(J,fﬂ) D+ npTup(0) = — = e b —— (4.36)
To obtain estimates on JnTB, we treat the cases T > 0 and 7 < 0 separately.
Case I T > 0. In this case we deduce from (4.36) that
AN 73 I A VAN
BB LY (n+1)B
Ty = Tlg(Dery — = B + - nﬂ , (4.37)
where, for @ > 0 and ¢t > 7, we define
el(r) = ¢ @D, (4.38)
t
A1) = / e ) f(s)ds,
T
t
i = wieg 1w = e [ roas, (4.39)
T

An important fact is that INDf is a compact operator on L!([t, 400)). Notice also that, by
(4.35),

T5(@) = Tup(0). (4.40)

Using induction we obtain that, for alln > 1,

n n

- 1

Ty = YN = AT + sl oo Il Ty
k=1 k=1
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where
Jp(1) e ifk=1,
fkr = IEo-oll | |ef 4.41)
Tk (1) %M otherwise,
ey
- . B k=1 ° kp |YB
Ar[ T] = : 4.42
£ [Jp (k — 1)1pF (4.42)

The series with general terms A,Z and f converge normally in L(L'([z, +00))) and
Li([z, 400)) respectively to

[e.¢] [e.¢]
A" = YA and  fT = ) fF,
k=1 k=1

with
| Tkp (T)]

o0
L L rgooy S D T - (4.43)
’ ] _ | R2k—1
k(= 1)!p

For t > t, we can now obtain Jﬁf as a fixed point in L!([z, +00)) of
Jp = — AT+ [T

The main difference with Sect. 4.1 is that here the operator AT is compact, being a strong
limit of compact operators. Hence Id + A’ is a Fredholm operator. That its kernel is trivial
is a direct consequence of Gronwall’s lemma. Indeed, one has a bound of the form

Flo = e [ (o 1ren) as

Therefore Id+ AT is invertible. Moreover the norm I (Id—I—AT I L(L! ([r,+00))) 18 independent
0~f T because, as seen from (4.42), for different T and t’, the operator A7 is obtained from
AT by a simple translation. As a consequence we deduce that, for 7 > 0,

1T ML ooy = CONST LI e +00)- (4.44)

We underline that we did not reduce the range of § in this step either.
Case 2 t < 0. In this case, instead of (4.37), we deduce from (4.36) that for all t > 0

= T (0)ens — ir?ﬁn[gg] N Lnp ['Z(:;H)ﬂl

The operators /;5 and il?ﬂ were defined in (4.5) and in (4.39) respectively. By induction we
obtain that, foralln > 1,

n n
. 1
Th= 2K - A I:jﬁr:l—'—in!ﬂn Igo--olwy [*7(;+l)ﬁ]’
k=1 k=1

with
¢ - oy 180 o lu—nplers]
~ . . Iﬁo"'OI(kfl)ﬁOilgg I:jﬂr]
A [jﬂ] = D . (4.45)
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We notice that the above quantities are continuous at T = 0.
Defining A = Y72, A in L(L'(IR})) and f7 = Y22, f7 in LI(IR), with £ as in
(4.45), and arguing in a similar way as in (4.44), we obtain

175 It ryy < CONFIILir,)
< CBIu©. g r,e P, (4.46)

for any 7 < 0. Notice that here the last inequality follows from (4.35) and (4.45).

Going back to (2.11) we see that, for all r > 0,

d o0 © :
—lu(t, )l < Iu(t,0)|+/ / eﬁyu(t,y)dy’ dx.
dt 0 x

For ¢t > 0 and x > 0 one has

oo
/ e Pu, yydy = J57 ),

hence .

|75 ()] d.

d
e, = |u<r,0>|+/_

Using (4.44) and (4.46) we deduce

e ¢]
lu, ir,) < CB) (||U0”L1(IR+) + 110, )L (g, +/0 I (7,400)) dT) ,
for a constant C () uniformly valid for all # > 0. Using (4.43) we have

/oo 00 1 00

£ IL) (400 AT = C§ —/ | Tkg (D) d.
s | — 1) B2k—1
0 = kl'(k—D!'B 0

Recalling (4.31) and (4.33), we finally obtain an estimate on «, uniformly valid for all # > 0:

lutt, Yl < CB) (1U6O)] + [1u(0, )p1)- (4.47)

This completes the proof of Theorem 4.1. O
Thanks to Proposition 4.1, we can also prove the following exponential decay estimate.

Proposition 4.2 For any given B > B* and 0 < A < 1, letting ¢ > O be the constant
provided by Proposition 4.1, there exists a constant C (B, €) such that, for every solution u
of (2.8) and every 0 < v < (1 — X)g, one has

lu(t, Lo,y = C(B, 5)<|U0(0)| + [lu(0, ')||L1(m+)>€_w forall t > 0. (4.48)

Proof Tracing the solution along characteristics, for any x € [0, Af] one has
t
u(t,x) = ut —x,0) — / jé_x(s) ds.
r—x
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Integrating over x € [0, A7] we get
aopt
N, Lo = N0l =y, 1) +/0 / |75 ()] ds dx
t—x
At

< 0ol (q1=nyt, 11y +/0 ||«7é7x||L1([t—x,+00[) dx
t

= UollLt q1=nyz, 1) +/
(-2

We now choose ¢ > 0 as in Proposition 4.1. Using (4.44) we obtain

: 175 It (e, +o0p) 4T
t

t
lu(e, Lo < 1ol qa—ny, ) +C/(-1 N £ L) (400 AT
—A)t

IA

t
e e( )\)IHUO”LEI:((]_}\)L[)+Ce e(1-n)t /(l ) eST”fT”Ll([-[’_A,_OO)) dr.
—A)t

Recalling (4.41) and (4.43) we see that
t 0 1 t
S s 4T £ Y o | ¢l
/(‘I—A)z L {7 +00)) ]; k! (k— D21 J oy P

In view of (4.34), this yields the desired conclusion, with v < (1 — X)e. O

In particular, relying on (4.47), we see that for any fixed interval [0, M] there exist some
positive constants C and v such that

lutt, Moy < CB Mo + 110, Hlipsry))e ™

5 Nonlinear Stability

Based on the previous results on the stability of the linearized equation (2.6), in this section
we prove the stability of the full nonlinear system (2.4).

Theorem 5.1 Assume B > f* = (48 4+ +/9504)/160. Then the nonlinear growth equation

9 pus) = /Se—ﬂ(’—f” (Py(t.0) x €3) x (P(t, s)— P(1. a)) do (5.1)
dt 0

with boundary condition
P(t,t) = 0 forall t >ty 5.2)

is stable in the vertical direction.

As in Sect. 2, let k(¢, s) = (k1, k2, k3)(¢, s) be the unit tangent vector to the stem, at the
point P(z, s). According to Definition 1, the above theorem can be established by proving.

Theorem 5.2 Assume B > B* = (48 + +/9504)/160. Then, for any given to, ¢ > 0, there
exists § > 0 such that the following holds. If

{ [k1(t0, )| + |k2(t0. x)| < 8 if x €[0,10],

ki (to. )| = [kato.0)| =0 if x> 1o, G-
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then for all t > ty one has the bounds
k1@ ) oy + M2 ) e,y = & (5.4)
[kr (. ) ||L°°([0,t]) + k2, ')”LOC([O,I]) =& (-5)

Proof 1. Let tp > 0 and ¢ > 0 be given. In order to use the previous results on linearized
stability, we define

(. x) = ki(t,t —x) if x €]0,¢],
ujt,x) =
0 if x>t.

As long as the unit vector (ki, k2, k3) = (u1, uz, u3) remains close to (0, 0, 1), we have

ks = J1—k}—k3. (5.6)
In particular, from |u1|, |uz| < 1/4 it follows

1 —usl < |ui| + luzl. (5.7)

By (2.4), (2.5) and (1.9), on the domain {r > 75, x > 0} the first two components u|, u»
satisfy the equations

o0
wip i = —/ e Pui(y)dy + gi(t, x), i=1,2, (5.8
X

o0
git.0) = (1- J1— i - w3t 0)) / e Pui(t, y)dy.  (5.9)
X
with Neumann boundary conditions at x = 0
u;x(,0) = 0. (5.10)

We define S(¢) the semigroup associated with the Eq. (2.11) on the space X defined in (2.12).
Then (4.47) yields

IS@all g,y < CB lallx = CB Nl r,) + [@O)]), (5.11)

for any given initial data u € X.
2. We now observe that all the estimates performed in Sect. 4 in the spaces L'(R}), L)l, (IRy),
can be performed in L°° (/R ) and in the weighted Lebesgue space L)‘jo(ﬂhr), with norm

I fllse(ry) = ess- sup e[ f(x)]. (5.12)

xelRy
Indeed, we perform convolutions with L!(IR) functions, and the inequalities
llaxbllLe < llallpr 1BlLee, la*blluse =< llaliyy 15l (5.13)

are valid in the same way as (4.6) and (4.9), for functions a, b in the corresponding spaces.
Hence, in particular, for any o > y

1
I H < . 5.14
ol f] LRy = a—y IfllLee(r.) (5.14)

holds as (4.10). As a consequence, all estimates of Sect. 4.1 remain valid when replacing
L! with L. The same can be done in Sects. 4.2 and 4.3. Notice that I7 is also compact in
L (actually, it sends L°°(IR ) in the space Cy of continuous functions converging to 0 as
X — 400, and one can use the Ascoli—Arzela theorem), and consequently 7 + AT is again a
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Fredholm operator on L>° (IR ). Thus, viewing again S as an operator acting on the Banach
space X at (2.12), we obtain an estimate uniform in #:

HS(t)ﬁHLoo([,l,ﬂo)) < CB)(lullu=r,) + 1@©0)]) . (5.15)
In particular, this implies
[S®u)| < CB)luliomr,) forall > 0.

Moreover, an estimate analogous to (4.34) holds in the weighted norm:

ISOT ezl = C(FO) + [Tlxry) ) - (5.16)

As a consequence, an exponential estimate such as (4.48) can be established also the L
norm:

ISOulleq—1,27 < C(B, 8)(|ﬁ(0)| + ||ﬁ||L°°(1R+)>€_W forall t > 0. (5.17)

Without loss of generality (possibly reducing its value), we can assume that v in (4.48)
and (5.17) satisfies

.| B e
< L 5.18
v < min { 3 2 ( )
where ¢ is the constant in (4.34).
3. We shall construct the solution of the nonlinear system (5.8)—(5.10) as a fixed point of

a suitable operator. We will prove that the solution satisfies the claimed stability. To this
purpose, we introduce the following functional space:

A, = {u c L°°<H€+; L' NL®)([—1, +oo))) /

llull.a, = ess- sup e [lu(z, ')||(L10L°°)([—1,t/4])‘ = —l—oo}.

t>0

Next, in connection with any fixed u = (uy, u3) € X x X, consider the closed, bounded set

ST = [(ul, 1) € Ay x A, /
max (||u; ||L0<>(m+;(1,1mLOO)([fl,Jroo))), lluilla,)
= 20 (Il winw v, ) + @ O)]) . (5.19)

Here and throughout the following, the constant C* denotes the maximum of all constants
C(B) in (5.11), (5.15), C(B, ¢) in (4.48), (5.17) with A = 1/2, and C in (4.34), (5.16).
Moreover we adopt the notation || - [|g,1qpeey = max([| - I, || - [lLee).

In particular, if (11, up) € SY, then the above definition implies

lu;j(t,0)] < 2C*(||ﬁi||(L1mLoo)(R+) + Iﬁi(0)|)e_”' fora.e.t > 0, i=1,2.

Notice that A, is complete w.r.t. the norm max{L>° L'NL®), || -] A, }. Moreover, by (5.7),
if ||u; || x are sufficiently small, we can assume that

1= 1= 0 ~ 36 0| < 0|+ |we0|  foraes>0, x> -1.
(5.20)
4. An operator

F:(up,up) —> (uy,un) (5.21)
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mapping S¥ into itself is constructed as follows.
e Given (uy, u) € S*, we first define the pair (g1, g2) as in (5.9).
e We then define (&1, ii7) in terms of Duhamel’s formula [3,6,7] by setting

t
ﬁiiS(t)Ei—i—/ St —s)gi(s)ds  i=12. (5.22)
0

In the forthcoming steps, we perform estimates relative to the L (L' N L°°)-norm, in order
to prove that F' admits a fixed point.

5 - Estimates on g; in L' N L™ Given (u1, uz) € S*, the integral [ e™#u;(t, y) dy can
be estimate as follows.

e If x > t/4, by definition of S¥ we simply have

o0
/ Pt y) dy‘ < e PPt
X

2C*e P (il @iy vy + 1 O)]).

IA

o If x < t/4, we write
oo ! t/4 00
| ePuendy = [ ePuanay+ [ ePue .
X x t/4
Then, using the definition of the set S*, we deduce

(e ¢]
/ e Puit, y)ydy| < 2C* e (1l 1 ooy () + 18 (O)])
X

+ e P, ),

< 2C* (e + e PN (i | iy, ) + 1 (0)]).

In both cases, recalling (5.18) we obtain

oo
/ e—ﬂ»“ul-a,y)dy‘ < 4C* e (1Tl winweymy) + T O]).  (5.23)
X

Next, going back to the functions g;, and using (5.20), we find

lgi (1, )| < C(Jur (e, )| + luz(t, X))

/ - e Pui(r, y)dy| . (5.24)

X

By (5.24), and thanks to the definition of the set S we now estimate the (L! N L*)-norm
of gi (¢, -) as follows.

e Integrating (5.24) w.r.t. x over the interval [0, /4], for a.e. > 0 one obtains
vt = _ 2
llgi(, ')||L1(o,;/4) = SC[C*e U[(||1'ii||(leL<><>)(1R+) + |Mi(0)|)]
_ _ _ 2
< Ke ™ (1@l 1 ooy () + 18 (O)]) (5.25)
e Integrating (5.24) for x € [t/4, +oo[ and recalling(5.18), for a.e. t > 0 we obtain
_ _ 2
18i (t. Lt /4,100y < 2C[2C* (1 | wirwee) () + 17 (O))] e P74
_ _ _ 2
< Ke " ([ | i)y + @ O)]) (5.26)
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e Finally, (5.20) together with (5.23) yields, fora.e. t > O and x > —1,

o0
/ e Puie, y)dy
0

_ — — 2
< Ke 2" (1l winws)r,y + 1 (0)])°. (5.27)

lgi (£, x)| < C(Jui(t, x)| + luz(z, x)|)

6 - Estimates on i1; in L' N L™ Relying on (4.47) and (5.15), we have

IS L AL 1,400y < CT U | @winLoey k. + 15 (0)]) . (5.28)
uniformly in ¢. Hence, using (5.25), (5.26) and (5.27), we deduce

In turn, recalling (5.22), from (5.28)—(5.29) we deduce an estimate uniform in #:

IA

t t
/ S(t - 5)gi(s) ds c* f (18565 )l ey e + 18165, 1) ds
0 0

L!NL*>®([—1,+00))

IA

_ _ 2
K (115 Lot ey (ry ) + 171 (0)])
(5.29)

Hﬁi(ta MLiALe (=1, 400)) = (C* + 2K (luill winpeeyr,) + 14 (O)D)
X (1l 1 ey my ) + 17 (0)]). (5.30)
7 - Estimates on i; in A, Observe first that (4.48), (5.17) with A = 1/4 give us directly
ISO i L L.y < CF (1%l @iy, ) + 17 (0)]). (5.31)
We estimate the second term on the right hand side of (5.22) by writing

< A+B, (5.32)
(LlﬂLOO)(O,t/4)

t
H[ St —s)gi(s)ds
0
where

)

(L'NL®®)(0,t/4)

12
A= H/ St —s)gi(s)ds
0

B =

)

t
/ S —s)gi(s)ds
t (L'NL%®)(0,1/4)

/2

The two terms A, B are estimated as follows.

e Using again (4.48) and (5.17) with A = 1/2, one obtains
12
Az [ISC =m0 ds
0
12
< [ 156 - 98O laia.0nm s
0

1/2
< / C*e "9 (|| gi (s, Mty r,) + 18i (s, 0)]) ds.
0

Now (5.25), (5.26) and (5.27) imply that, for almost every s > 0, there holds
18i (5. Il wirLoey(r, ) + 18i (5. 0 < 2K ([ | 1 ooy, ) + [T (0)]) e

Therefore )
A < K' (@il g + @ (0)]) e
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e Relying on (5.28) together with (5.25)—(5.27), we obtain

t
B < f IS0 =8O lwirns .
t

t
=< C* //2(||gi(s, ')“(LIQLOO)(R+) —+ |gi(s, 0)|) ds
t

t
— — 2 _
< 2K (I | wrroyk,) + 17 O)]) f/ze 2 4
t

< 2K (il iy, ) + 7 O)]) e
Hence, recalling again (5.22), we deduce from (5.31), (5.32) the uniform estimate in ¢:
N2 (¢, )Nl ALy 0,0 /4)
< e7(CT + 2K (1 Nl ook, ) + T (O)])
X (1 1l ey ) + 17 (0)]) - (5.33)
8 - Estimates on i1; at x = 0
e Relying on (5.16) and recalling (5.18), we deduce
|S@itie=0| = C*e™* (Iluillwirwe) (i, ) + 17 (0)])
C*e™ (@il qLirneoy(r, ) + i (0)])

e Concerning the term involving g;, using (5.17) together with (5.25), (5.26) and (5.27),
we obtain

IA

t t
| se=sawas| et [ g wnmm, + lai6.0l) ds
0 0

|x=0
t

_ Y

< 2K (Il | ey v ) + 7 (0)]) /O VI8 g

_ _ 2 _
< 2K (1% [l 1 ey, + 17 (0)]) e
Hence, relying again on Duhamel’s formula (5.22), we obtain

i (2, 0)] < e (C* + 2K ([will Loy (k) + 17 (O)D) X (1% | @w1pwee)r, ) + 112 O)]).
(5.34)
Together with (5.33), this yields

lailla, < (C*+2K (1@l @1 nooyr, ) + 17 O)D) X (17 |11 L)y v, + 17 (0)]) - (5.35)

9 - Conclusion of the proof For a given initial data k(zg, -), the local existence and uniqueness

of a solution to the equations (2.3) follows from classical theory [6,8]. Equivalently, in terms

of the variables (u1, u3, u3), the fixed point of the transformation F in (5.21) must be unique.
On the other hand, putting together all the above estimates we see that

F(S" c S, (5.36)

provided that the norms [|u; || (1,1 ALy (R ot [#;(0)], i = 1,2, are small enough. Given
to, ¢ > 0, we now choose § > 0 such that, if the initial datum (uy, u,) satisfies (5.3), then
(5.36) holds together with

2C* (il g ey (k) + 17 (0)]) < €, i=1,2. (5.37)

@ Springer



J Dyn Diff Equat

Now consider any initial data (i1, u7) satisfying (5.3). Since the unique soLution of (5.8)—
(5.10) provides a fixed point of F', we conclude that this solution remains in S*. In particular,
by the definition (5.19), for every ¢t > ty we have

||ui(tv')||Ll(m+) < ¢, ||Lti(t, ')||Loc(m+) < &, i = 1,2

Going back to the original variables ki, k7, this proves Theorem 5.2. O
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