
 1 

 1 

 2 

Ribosomal RNA Mimicry in RNA Regulation of Gene Expression 3 

 4 

Michelle M. Meyer 5 

Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA  6 

Email: m.meyer@bc.edu 7 

 8 

  9 



 2 

ABSTRACT 10 

The ribosomal RNA (rRNA) is the largest and most abundant RNA in bacterial and archaeal 11 

cells. It is also one of the best-characterized RNAs in terms of its structural motifs and sequence 12 

variation. Production of ribosome components including over 50 ribosomal proteins (r-proteins) 13 

consumes significant cellular resources. Thus RNA cis-regulatory structures that interact with r-14 

proteins to repress further r-protein synthesis play an important role in maintaining appropriate 15 

stoichiometry between r-proteins and rRNA. Classically, such mRNA structures were thought to 16 

directly mimic the rRNA. However, over 30 years of research has demonstrated that a variety of 17 

different recognition and regulatory paradigms are present. This chapter will demonstrate how 18 

structural mimicry between the rRNA and mRNA cis-regulatory structures may take many 19 

different forms. The collection of mRNA structures that interact with r-proteins to regulate r-20 

protein operons are best characterized in E. coli, but are increasingly found within species from 21 

nearly all phyla of bacteria and several archaea. Furthermore, they represent a unique 22 

opportunity to assess the plasticity of RNA structure in the context of RNA-protein interactions.  23 

The binding determinants imposed by r-proteins to allow regulation can be fulfilled in many 24 

ways. Some r-protein interacting mRNAs are immediately obvious as rRNA mimics from 25 

primary sequence similarity, others are identifiable only after secondary or tertiary structure 26 

determination, and some show no obvious similarity. In addition, across different bacterial 27 

species a host of different mechanisms of action have been characterized showing that there is no 28 

simple one size fits all solution.  29 

  30 
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Despite the many roles for RNA as a regulator in eukaryotes, archaea, and bacteria, the 31 

ribosomal RNA (rRNA) is the most abundant cellular RNA and the size of the rRNA outstrips 32 

nearly all other functional RNAs.  Furthermore, the ribosome is also composed of over 50 33 

ribosomal proteins (r-proteins); the majority of which directly contact the rRNA forming specific 34 

interactions with RNA (1). Since most regulatory RNAs in bacteria appear to be relatively recent 35 

inventions (2-5), they most certainly have evolved in the context of abundant rRNA and r-36 

proteins, and thus have been shaped by them. Many regulatory RNA structures contain portions 37 

that bear strong resemblance to motifs within the rRNA. Some of this similarity is due to the role 38 

that rRNA plays in our understanding of RNA structure, and in other cases it is due to interaction 39 

with an r-protein. This review will first illustrate the role of the ribosome in our understanding of 40 

RNA structures generally and subsequently examine how r-proteins may interact with RNA 41 

outside the ribosome to act in a regulatory capacity. 42 

 43 

THE RIBOSOMAL RNA AS A SOURCE OF RNA STRUCTURAL MOTIFS  44 

 The rRNA plays an outsized role in our general understanding of RNA structure. Despite 45 

over a decade since publication of the initial high-resolution ribosome structures and significant 46 

growth in the number and diversity of RNA structures in the Protein Data Bank, the rRNA still 47 

represents a significant proportion of the three-dimensional structure information available for 48 

RNA and RNA-protein complexes. Of the 3692 structures containing RNA, 1082 contain 49 

segments derived from the rRNA or otherwise associated with the ribosome. The ribosome has 50 

also significantly influenced the development of RNA structure descriptions (6). Many recurring 51 

RNA structure motifs such as kink-turns, loop-E, and loop-C motifs (7-11) were first recognized 52 

in the context of the ribosome and our knowledge of the sequences that may fold into many such 53 
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features is heavily influenced by rRNA alignments (12-14). These structural motifs form the 54 

basis of not only the rRNA but many other structured RNAs including riboswitches (15), T-55 

boxes (16), as well as other catalytic RNAs such as the group I and II introns (17, 18). Several 56 

reviews specifically addressing the roles such motifs play in RNA structure are available (19-21). 57 

 RIBOSOMAL PROTEINS AS AUTOGENOUS REGULATORS  58 

 Many ribosomal proteins (r-proteins) have secondary functions (22, 23) as negative 59 

regulators of their own synthesis. R-proteins and other protein components necessary for 60 

translation can account for up to 40% of cellular proteins (24) and 41% of active translation in 61 

actively growing cells in rich medium (25). Thus maintaining stoichiometry among the over 60 62 

ribosome components is essential for efficient resource utilization, and the mRNA structures 63 

responsible for implementing regulation are only one of several regulatory layers. In E. coli over 64 

half of the r-protein operons are regulated by autogenous regulatory mechanisms where an 65 

individual r-protein will bind to a portion of its own transcript to inhibit transcription or 66 

translation.  Often the mRNA will take a structure that bears significant similarity to the rRNA, 67 

however, there are several different paradigms for RNA-protein recognition that are embodied 68 

by the mRNA structures that mediate r-protein autogenous regulation.  69 

 70 

Discovery of R-Protein Autogenous Regulatory mRNA Structures 71 

The mRNA structures enabling regulation of r-protein synthesis in E. coli were among 72 

the first mRNA regulatory sites discovered. Many distinct E. coli examples were described based 73 

on similar observations and using the same experimental approaches. Initial studies demonstrated 74 

that over-expression of specific r-proteins resulted in inhibited synthesis of entire r-protein 75 

operons (26, 27), and that these effects were operon specific (28).  Using in vitro 76 
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transcription/translation systems as well as reporter gene assays, the inhibitory properties for 77 

several r-proteins including L1, L4, S4, S7, S8 and the L10(L12)4 complex were uncovered (29-78 

33). Most mechanisms involve inhibition of translation (30, 34-37), however, alterations to the 79 

mRNA decay rate (27, 38-40) and attenuation (premature transcription termination) mechanisms 80 

also occur in conjunction with translational inhibition (41, 42).  81 

In many cases mimicry between the mRNA regulatory sites responding to an r-protein 82 

and its rRNA binding site was proposed as soon as a DNA sequence became available (e.g. S4, 83 

S7, S8, L1, L4, and L10 (35, 43-46)). However, demonstration of direct RNA-protein contacts 84 

that such similarity would imply lagged the speculation considerably (47-49). In several cases 85 

proposed similarities were merely the result of sequence gazing and it has become apparent that 86 

the rRNA and mRNA binding sites do not have structural similarity (e.g. S4, L4)(50, 51). In 87 

other cases, the initially observed similarity between the mRNA and rRNA was verified when 88 

three-dimensional structural data became available (e.g. S8, L1)(52, 53).  89 

Since the initial discoveries of r-protein autogenous mRNA structures in E. coli, an 90 

additional nine mRNA structures responding to r-proteins (S1, S2, S15, S20, L19, L20 (2 sites), 91 

L25) (54-60) or r-protein complexes (S6:S18) (61-63) have been described in E. coli and today 92 

there are a total of 15 r-protein interacting mRNA structures described in E. coli (Figure 1A, 93 

Table 1). Many have been extensively characterized, but for others the mechanisms of action, or 94 

even whether a direct RNA-protein interaction occurs, remain undetermined. With some 95 

exceptions, the complement of r-proteins and organization of r-protein operons is largely 96 

conserved across bacterial species (64, 65). However, many of the structures allowing regulation 97 

in E. coli are not widely distributed to organisms outside of a few orders of gammaproteobacteria 98 

(66-71). Furthermore, most enterobacterial endosymbionts appear to have lost these structures 99 
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during the course of genome reduction (71, 72). The only organism with significant study of r-100 

protein regulation other than E. coli is the gram-positive model bacterium Bacillus subtilis. This 101 

organism shares the mRNA-binding sites that interact with r-proteins L1, L10, S2, and S6 with E. 102 

coli (Figure 1, Table 1), but the other 11 structures known in E. coli are not apparent in B. 103 

subtilis or its relatives. Alternative regulatory structures that respond to S4, L20, and S15 have 104 

been described (73-75) (Figure 1B, Table 1).  105 

With the growing number and diversity of sequenced bacterial genomes, comparative 106 

genomics has also proved to be a powerful approach for discovery. The combination of RNA-107 

specific homology search tools (76) and the availability of RNA structural families 108 

corresponding to most known r-protein responsive structures (71, 75, 77) enables accurate 109 

annotation of these structures in bacterial genomes. In addition to characterized mRNA 110 

structures, hundreds of novel putative cis-regulatory mRNA motifs have been identified in 111 

bacterial genomes, many of which are associated with r-proteins or bear resemblance to the 112 

rRNA (78-82). The low-cost of sequencing has also enabled the direct discovery of regulatory 113 

RNAs through comparative transcriptomics (4), 5’-end sequencing (83), and RNA-protein 114 

immunoprecipitations (84). However, relatively few such motifs have been experimentally 115 

validated. 116 

 117 

The S8-Interacting mRNA Structure: A Prototype R-Protein Cis-Regulatory RNA  118 

The mRNA segment bound by r-protein S8 to regulate the spc operon is the prototype 119 

mRNA binding motif that embodies all the properties initially hypothesized for all mRNA 120 

structures bound by r-proteins. S8 is a primary rRNA binding protein that interacts with the 121 

rRNA early during ribosome assembly. The interaction site for S8 on the mRNA is within the 122 
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intergenic region between rplX and rplE (encoding L24 and L5) and the coding region of rplE 123 

(Figure 1A).  S8 inhibits translation of several proteins following the protein binding-site (L5, 124 

S14, S8, L6, L18, S5, L20, L15) and there is evidence that the two genes upstream of the S8 125 

binding region (rplN and rplX, encoding L14 and L24) are also down-regulated in response to S8 126 

due to increased mRNA degradation (40, 85).  127 

The initial observed sequence similarity between the rRNA and mRNA binding sites for 128 

S8 extends to shared secondary structure (35, 86-88) and three-dimensional structure (52, 86) 129 

(Figure 2). The S8 binding site consists of an internal loop. The motif centers on two internal 130 

Watson-Crick base-pairs that are separated from the rest of the pairing element by bulged bases 131 

on either side, although many of the base identities are not strongly conserved in the case of the 132 

rRNA (Figure 2B). S8 itself directly contacts the minor groove of the internal loop. Structures of 133 

the mRNA and rRNA are directly superimposable (Figure 2C) (52). The major difference 134 

between the rRNA and mRNA binding sites is an additional bulged base in the mRNA structure 135 

a few nucleotides away from the S8 recognition sites (orange). While this base decreases binding 136 

affinity by about 10-fold, it does not directly interact with S8. Despite a highly conserved rRNA-137 

S8 interface across all bacteria (88-92) and archaea (93), the S8 responsive regulatory RNA 138 

structure observed in E. coli is narrowly distributed a few orders of gammaproteobacteria (71). 139 

What if any regulation occurs in other organisms has not yet been characterized and the causes of 140 

the narrow distribution are unclear. The phylogenetic distribution of the S8-interacting mRNA 141 

structure is similar to those of many r-protein mRNA regulators identified in E. coli, suggesting 142 

that similar selective constraints influenced the evolution of all the regulatory structures. The 143 

preponderance of known structures in E. coli is likely due to a significant discovery bias. 144 

Ribosome assembly and stoichiometry is by far the best studied in E. coli. Similar regulators 145 
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may be present, but as of yet unidentified in other bacteria. The narrow distribution displayed by 146 

most of the E. coli structures makes it more difficult to utilize comparative genomic approaches 147 

for discovery, and it is likely that several of the characterized motifs in E. coli would not be 148 

easily re-discovered using state of the art comparative genomic tools. 149 

 150 

The L10(L12) 4-Interacting Regulatory Structure: Homologous Binding Sites, Different 151 

Mechanisms of Action 152 

 The L10(L12)4 interacting mRNA structure also represents a mimic of the rRNA (47, 48, 153 

94-96) and participates in the regulation of translation initiation in E. coli (34, 97) directly 154 

impacting only rplJ and rplL (Figure 1A). Sequence similarity between the mRNA and rRNA 155 

binding sites has been described (46, 68), but the L10(L12)4 complex is typically not resolved in 156 

ribosome crystal structures and three-dimensional data for an mRNA-L10(L12)4 complex is not 157 

available. The L10(L12)4 binding site consists of a kink-turn motif that is four base-pairs away 158 

from an internal loop containing a pair of adenosines. In the rRNA the internal loop is a multi-159 

stem junction (Figure 3), while in the mRNA the structure it is often a bulge, but may be a multi-160 

stem junction (71). In both the rRNA, and the mRNA the adenosines are highly conserved and 161 

mutating them reduces binding affinity substantially (68).  162 

In contrast to the S8-interacting mRNA structure, the RNA structure responsible for 163 

interacting with L10 in E. coli is widely conserved throughout many bacterial species (68, 71, 164 

80). However, the mechanism of action is not the same across all species. In many gram-positive 165 

species the L10-interacting structure is followed by an intrinsic transcription terminator (80) and 166 

the mechanism of regulation in Bacillus subtilis is regulation of transcription termination (98). 167 
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Thus, r-protein binding structures are similar to riboswitches where homologous sensor domains 168 

may utilize different mechanisms of action in diverse species (99). 169 

 170 

The L1-Interacting mRNA Structure: Convergence on the Same Binding Determinants 171 

Like the L10- and S8- responsive mRNA structures, the L1-interacting mRNA structure 172 

shows obvious similarity to the rRNA (45, 53, 100) and examples of the L1 recognition site are 173 

found across nearly all bacterial phyla (71) as well as archaea (101-103). The binding 174 

determinants for L1 are often accommodated in a short hairpin of < 30 nucleotides and consist of 175 

a base-paired region containing an asymmetric internal loop closed by a non-canonical A•G 176 

pairing (Figure 4A). In three dimensions this corresponds to two canonical helixes, one of which 177 

is capped by the non-canonical A•G pair, that are separated by a sharp turn (53). Diverse L1 178 

homologs are able to interact with an example of the mRNA binding site from Methanocococus 179 

vannielii (103), and structural data show that the rRNA and mRNA sites are nearly 180 

superimposable (53). 181 

In E. coli the binding site is within the 5’-UTR of the transcript encoding both rplK and 182 

rplA and L1 regulates translation initiation of L11 and L1 (45) (Figure 4). Surprisingly in the 183 

archaea M. vannielii, M. jannaschii, and M. thermolithotrophicus the L1 binding site appears 184 

approximately 30 nucleotides inside the coding region for L1 and regulates translation of L1, 185 

L10, and P1 (homolog of L12 (104)) and the gene encoding L11 occurs elsewhere in the genome 186 

(101, 103). In Sulfolobus solfataricus the L1 binding site is found within the L11 coding region, 187 

which directly precedes genes encoding L1, L10, and P1 (Figure 4B) (103).  188 

In addition to examples that have been explicitly examined, a systematic homology 189 

search for L1 binding sites in bacterial genomes identified the site within transcripts encoding L1 190 
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and L11 in many bacterial species (71). However like the examples identified in Archaea, the 191 

location of the binding site relative to the coding regions is not consistent. In Cyanobacteria, 192 

Actinobacteria, and Chloroflexi, the L1 binding site precedes rplA, typically between rplK and 193 

rplA. In Proteobacteria, Spirochaetes, Thermotogoa and Tenericutes the binding site precedes 194 

rplK, presumably to regulate both rplA and rplK. Furthermore, in many species of Firmicutes, L1 195 

binding sites appear preceding both rplA and rplK. In Geobacillus kaustophilus both sites are 196 

capable of binding L1 in vitro (71). Interestingly, there is evidence of loss for each individual 197 

binding site within species scattered throughout Firmicutes (Figure 4B). The combination of the 198 

wide distribution and changing position of the L1 binding site relative to the regulated genes 199 

suggest that the site may have evolved convergently in many species.  200 

 201 

L20-Interacting mRNA Regulatory Structures: Diverse Scaffolds Support the Same 202 

Binding Determinants  203 

In addition to cases where there is a single mRNA binding site that mimics the rRNA, 204 

there are also cases where homologous r-proteins interact with distinct mRNA secondary 205 

structures in different bacterial species. Three L20 interacting mRNA structures are known, two 206 

in E. coli and one in B. subtilis. Each structure mimics the rRNA, but uses a different 207 

arrangement of secondary structure to support the necessary bases in the correct geometry 208 

required for recognition (Figure 5). In E. coli, two L20-responsive mRNA structures control the 209 

IF3 operon (infC, rpmI, and rplT, encoding IF3, L35 and L20). One structure is found within the 210 

intergenic region between infC and rpmI (70)(Figure 5A), and consists of a relatively 211 

straightforward bulged stem loop where the binding site includes a pair of adenosines within the 212 

bulge and a set of consecutive G-C base-pairs just after the closing base-pair of the loop (Figure 213 
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5C, mRNA-II). This arrangement is the closest mimic of the rRNA. The second structure is  214 

comprised of a pseudoknot formed by long-range interactions between a sequence within infC 215 

and sequence adjacent to the start of the rpmI coding region (54, 70) (Figure 5C, mRNA-I).  In 216 

this structure the pair of adenosines is found in the single-stranded region just prior to the 3’-217 

most portion of the pseudoknot. Both of these structures are required for full translational 218 

repression of the operon in vivo and L20 binds independently to each (70, 105). A high quality 219 

alignment and phylogenetic distribution is only available for the mRNA structure preceding rpmI. 220 

The pseudoknotted binding-site is challenging to identify using RNA-specific homology search 221 

tools (106) due to its significant overlap with coding sequence, long-range interactions, and 222 

pseudoknotted structure. However, the structure preceding rpmI is narrowly distributed to 223 

gammaproteobacteria. 224 

In addition to the two L20-responsive structures in E. coli, L20 binds to a regulatory 225 

structure in B. subtilis that precedes infC (Figure 5B,C). While this structure shares many 226 

features with the L20-interacting structures identified in E. coli, the binding features present near 227 

the multi-stem junction are supported by a different arrangement of secondary structure, and the 228 

ordering of the elements with respect to one another in a linear sequence is distinct. A potential 229 

intrinsic transcription terminator follows this mRNA structure, and the mechanism of action is 230 

L20 induced structural change resulting in early transcription termination (74). In this structure 231 

the conserved adenosines are in a single stranded region just 5’ of the first hairpin and the G-C 232 

pairs in the second hairpin. This structure is found in most Firmicutes (75, 80), although more 233 

frequently in the class Bacilli than in Clostridia and the transcription attenuation mechanism 234 

appears conserved in these organisms. While infC is part of this operon, in B. subtilis IF3 levels 235 

are decoupled from those of L20 and L35 through the presence of a second upstream promoter. 236 
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The transcript produced from this promoter is cleaved by RNAseY and only allows translation of 237 

L20 and L35 translation (107). 238 

 The three L20 sites all present the same effective binding geometry for L20 recognition 239 

(Figure 5C). Both E. coli structures are capable of interacting with an L20 homolog from Aquifex 240 

aeolicus to repress gene expression from rpmI’-‘lacZ reporter constructs (108), and the E. coli 241 

homolog is able to stimulate premature transcription termination during in vitro assays with the B. 242 

subtilis mRNA structure (74). Thus, the L20 regulators serve as an example of how the same 243 

three-dimensional geometry may be supported by different arrangements of secondary structure 244 

elements. This example also illuminates how challenging identification of common binding sites 245 

may be. Despite similar binding determinants, the distinct arrangements of the necessary 246 

recognition elements make automatic detection difficult or impossible. 247 

 248 

S15-Interacting Regulatory Structures: Diverse Binding Determinants Produce Diverse 249 

Structures  250 

R-protein S15 also regulates gene expression using multiple distinct mRNA binding sites 251 

in diverse bacterial species. To date four different S15-interacting mRNA structures spanning 252 

several bacterial phyla have been experimentally characterized (109-112) and several additional 253 

putative structures identified (112) (Figure 6). Each of these structures directly precedes and 254 

controls expression of  rpsO, the gene encoding S15.  In E. coli the mechanism of action is 255 

through entrapment of the translation initiation complex (110), but in other species the 256 

mechanism has not explicitly been characterized.  257 

The structures share very little in the way of a single recognizable sequence or structural 258 

motif. This is partially due to the bidentate nature of the S15 binding site on the rRNA. S15 259 
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recognizes two portions of the 16S rRNA: a multi-stem junction, and a stem containing a slight 260 

defect characterized by a G•U/G-C set of base pairs directly adjacent to the junction (Figure 6).  261 

The mRNA regulatory structures that interact with S15 often only partially mimic this binding 262 

site. For example, the mRNA from Thermus thermophilus includes a three-stem junction formed 263 

by the bases of three adjacent pairing elements. However, the pairing elements themselves show 264 

no evidence for the G•U/G-C defect recognized by S15 in the rRNA. In contrast mRNA 265 

structures described from E. coli, Rhizobium radiobacter (formerly Agrobacterium radiobacter), 266 

and Geobacillus stearothermophilus (previously Bacillus stearothermophilus) include more 267 

obvious mimics of the G•U/G-C elements, and require this element for interaction. In several 268 

cases the mRNAs have additional recognition elements that are necessary, but do not directly 269 

mimic the rRNA (Figure 6)(109, 113, 114). 270 

The differences between the mRNAs are sufficiently large such that specificity of 271 

interaction has been reported (113, 115). For example the S15 homolog from G. kaustohphilus 272 

does not interact with the mRNA structure originating from E. coli and the S15 homolog from T. 273 

thermophilus does not intact with several of the mRNA structures containing only the G•U/G-C 274 

motif and no mimic of the three-stem junction (113, 115). Mutagenesis studies indicate that the 275 

same face of S15 appears to be used for interaction (115, 116). However, in E. coli different S15 276 

amino acids are implicated in rRNA and mRNA binding (114, 117). Furthermore, selective 277 

recognition of the Geobacillus and E. coli mRNA structures may be traced to specific amino 278 

acids that are differentially conserved in S15 homologs originating from organisms containing 279 

RNAs of each type (113). Thus, the diversity of S15-interacting structures is not only due to the 280 

bidentate recognition site that may allow a larger set of potential interaction partners, but also to 281 

differences in the protein homologs that change recognition. These findings suggest that despite 282 
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very similar rRNA recognition sites across all bacteria, the r-proteins and their mRNA binding 283 

sites are influencing each other’s evolution.  284 

 285 

BEYOND AUTOGENOUS REGULATION: L7Ae 286 

 Archaeal r-protein L7Ae participates processes in well beyond of its role in the ribosome. 287 

L7Ae interacts with kink-turn (k-turn) and k-loop motifs as a component of the ribosome (1), 288 

RNase P (118), the C/D box and H/ACA box snoRNPs responsible for site-selective 2’-O-289 

methylation (119, 120), and in mammals a L7Ae homolog binds to the U4 snRNP of the 290 

spliceosome (121). There is no r-protein that directly corresponds to L7Ae in prokaryotes. Two 291 

L7Ae homologs in B. subtilis exist, and both bind to kink-turns (122), but their biological 292 

function is unknown. The role of the k-turn as a fundamental RNA structural building block has 293 

already been discussed. L7Ae specifically recognizes this motif, and therefore has a role in many 294 

RNA complexes, primarily to stabilize RNA structure.  295 

A recent RIP-seq study of L7Ae in Sulfolobus acidocaldarius identified several mRNA 296 

fragments in addition to the expected interaction partners (84). Many of these mRNA fragments 297 

contained sequences corresponding to the consensus sequences for a k-turn suggesting a 298 

biologically relevant interaction. Among the mRNAs identified are those encoding L7Ae, Nop5 299 

and fibrillarin (other components of the snoRNP), a hypothetical DNA binding protein, and a 300 

hypothetical glycosyl transferase. Subsequent reporter gene assays and phylogenetic analysis 301 

showed that L7Ae negatively regulates the transcript encoding L7Ae in S. acidocaldarius and 302 

several other diverse archaea species. The presence of k-turn motifs preceding several genes and 303 

L7Ae interaction with these motifs suggests that L7Ae may regulate not only it’s own synthesis, 304 

but also synthesis of its interaction partners in snoRNPs, Nop5 and Fibrillarin (84).   305 
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 306 

ENGINEERED R-PROTEIN RESPONSIVE REGULATORY RNA SYSTEMS  307 

R-protein binding motifs have also been used to create synthetic regulatory systems. 308 

Repressing systems designed for eukaryotic cells were created by placing the L7Ae binding site 309 

near the translational start site (123), allowing L7Ae to prevent translation initiation. Systems 310 

with the L7Ae binding site within the coding region proved more effective than those where the 311 

binding site was placed in the 5’-UTR, both in an in vitro translation system and within HELA 312 

cells. Activating systems, where L7Ae binding removes a trans-acting RNA to prevent 313 

translation, also proved effective in vitro. In addition, L7Ae-mediated activation was achieved in 314 

Hela cells by adding an L7Ae binding site to a synthetic shRNA (short-hairpin RNA); thus L7Ae 315 

binding prevented shRNA-mediated mRNA degradation (124). These examples demonstrate 316 

how the L7Ae protein-binding site may be easily transferred to an alternative context and 317 

harnessed for gene expression in a modular manner.  318 

Indeed, creation of synthetic regulatory systems responding to r-proteins within cells 319 

appears to be facile in comparison to the creation of many types of synthetic regulators where the 320 

transition from in vitro to in vivo can be challenging (125). Several synthetic regulatory systems 321 

responding to r-protein S15 have also been created (126). Unlike the L7Ae examples, these 322 

regulators were created through in vitro selection of RNA aptamers interacting with r-protein 323 

S15 from Geobacillus kaustophilus rather than transplantation of a known binding site. One 324 

striking observation from this work is that even without explicit selection for regulation, a high 325 

proportion of aptamers enable regulation when positioned correctly relative to the start codon. A 326 

second finding is that r-protein S15 can interact with a wide variety of different binding sites 327 

(127). This observation is echoed in previous work where in vitro selection to r-protein S8 328 
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yielded both aptamers similar to the natural RNA binding partners, as well as those showing 329 

substantial differences (128).  330 

 331 

CONCLUDING REMARKS 332 

Regulatory RNA structures displaying motifs found in the rRNA are commonly 333 

identified. While, in some cases similarity may be due to shared RNA tertiary structure motifs, in 334 

other cases structural similarity can imply a shared r-protein binding partner. Many r-proteins 335 

have a secondary role as negative regulators of their own synthesis, and while it was postulated 336 

that all such regulatory structures  would resemble the rRNA, this has proved true only in some 337 

cases. This review illustrates a range of different regulatory mRNA structures that display 338 

similarity to the rRNA, but it is by no means exhaustive. While the mRNA structures controlling 339 

r-protein synthesis in E. coli remain the best characterized, r-protein responsive mRNA 340 

structures hail from nearly all species of bacteria and several archaea. From these examples it is 341 

apparent that r-protein responsive mRNA structures can be direct and obvious mimics of the 342 

rRNA, but they do not have to be. Many r-protein interacting mRNA structures display no 343 

similarity to their cognate rRNA sites (e.g. E. coli S4 regulator), while others share only partial 344 

similarity. Second, very similar binding sites can appear in diverse organisms, but may use 345 

alternative mechanisms regulate gene expression, or display different positioning relative to 346 

regulated genes. Third, due to the structural plasticity of RNA, a geometrically similar binding 347 

site may be displayed in several very different manners. Finally, from the diversity of natural 348 

regulatory mRNA structures, in vitro selection of aptamers, and the design of r-protein 349 

responsive regulatory mechanisms, it is clear that the sequence space that allows for r-protein 350 

binding and subsequent gene regulation may be quite large. This conclusion combined with the 351 
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lack of knowledge of r-protein regulation outside of E. coli suggests that many r-protein 352 

responsive mRNA structures, including those not directly associated with r-protein operons, 353 

remain undiscovered or unverified.  354 
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Binding	Partner	 Regulated	Genes	 Position	 Species	Distribution	
L1a,b,c,d	 rplA,	rplK*,	rplP0*	 varied	 Archaea/Bacteria	

L4a,b,c,d	
rpsJ,	rplC,	rplD,	rplW,	rplB,	
rpsS,	rplV,	rpsC,	rplP,	rpmC,	
rpsQ	

rpsJ	5'-UTR	 Gammaproteobacteria	

L10/	
L10(L12)4a,b,c,d	

rplJ,	rplL	 rplJ	5'-UTR	 Bacteria	

L13a	 rplM,	rpsI	 rplM	5’-UTR	 Escherichia	coli	
L20a,b,c,d	 rpmI,	rplT	 infC	5'-UTR	 Firmicutes	
L20a,b,c,d	 rpmI,	rplT	 infC-rpmI	intergenic	 Gammaproteobacteria	

L20a,b,c,d	 rpmI,	rplT	 infC	coding/	
infC-rpmI	intergenic	 Escherichia	coli	

L25a,c	 rplY	 rplY	5'-UTR	 Gammaproteobacteria	
S1a,b,c,d	 rpsA	 rpsA	5'-UTR	 Gammaproteobacteria	
S2a,c	 rpsB	 rpsB	5'-UTR	 Bacteria	
S4a,b,c,d	 rpsM,	rpsK,	rpsD,	rplQ	 rpsM	5'-UTR	 Gammaproteobacteria	
S4a,c	 rpsD	 rpsD	5'-UTR	 Firmicutes	
S6:S18a,b,c		 rpsF,	rpsR,	rplL*	 rpsF	5'-UTR	 Bacteria	
S7a,b,c	 rpsL,	rpsG,	fusA	 rpsL-rpsG	intergenic	 Gammaproteobacteria	

S8a,b,c,d	
rplN,	rplX,	rplE,	rpsN,	rpsH,	
rplF,	rplR,	rpsE,	rpmD,	rplO,	
secY,	rpmJ	

rplX-rplE	intergenic	 Gammaproteobacteria	

S15a,b,c,d	 rpsO	 rpsO	5'-UTR	 Gammaproteobacteria	
S15b,c	 rpsO	 rpsO	5'-UTR	 Firmicutes	
S15b,c	 rpsO	 rpsO	5'-UTR	 Thermus	thermophilus		
S15a,b,c	 rpsO	 rpsO	5'-UTR	 Alphaproteobacteria	
S20a,b	 rpsT	 rpsT	5'-UTR	 Escherichia	coli	

 711 

Table 1: Summary of ribosomal protein interacting mRNAs that allow regulation of r-712 

protein genes. a regulation demonstrated using in vitro transcription/translation system or 713 

reporter gene assays; b direct RNA-protein interaction demonstrated in vitro; c structure of mRNA 714 

binding site characterized; d mechanism of action known, *may only be regulated in some 715 

species. Where a single species is listed for distribution either no structure is available, or no 716 

comparative genomic work has been conducted for the RNA and only the species of 717 

characterization is given. 718 
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Figure 1: Diagrams of r-protein operons from E. coli (A) and B. subtilis (B). Genes are shown in 721 

the order in which they appear in the genome and to scale. Gray genes are subject to r-protein 722 

autogenous regulation; white genes have no described autogenous regulation. Colored arrows 723 

represent r-protein RNA binding structures. Red arrows indicate structures that are widely 724 

distributed to many bacterial phyla, blue arrows indicate RNA structures that are confided to 725 

Gammaproteobacteria, green arrows indicate RNA structures confined to Firmicutes, and purple 726 

arrows indicate presumed r-protein binding sites where no explicit RNA secondary structure has 727 

been described. For each operon the effector protein is colored to match the RNA site with which 728 

it interacts.  729 
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731 

 732 

Figure 2  S8 mRNA binding site in E. coli mRNA (A) and rRNA (B) consensus structure. Green 733 

nucleotides indicate Shine-Dalgarno sequence and translational start, red nucleotides directly 734 

contact S8 in the three-dimensional structure (52). rRNA nucleotides conserved <90% are shown 735 

as filled circles, nucleotides conserved ≥90% are indicated by letters. Numbering corresponds to 736 

bacterial consensus sequence (129).  (C) Aligning structural data for each site based on the S8 737 

protein backbone shows that the two binding sites are superimposable. The structure of the S8 738 

with its mRNA binding site are shown in green (1s03.cif,(52)), and the structure of S8 interacting 739 

with the rRNA is shown in blue (4v9d.cif, (130)). Bases of the mRNA directly contacting S8 are 740 

colored red, a bulged base in the mRNA that differentiates the rRNA and mRNA binding sites is 741 

colored orange. 742 
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 745 

Figure 3: L10(L12)4 mRNA binding sites from E. coli (A) and B. subtilis (B) and the rRNA 746 

consensus structure (C). Red nucleotides are implicated in binding, rRNA nucleotides conserved 747 

<90% are shown as filled circles, nucleotides conserved ≥90% are indicated by letters. 748 

Numbering corresponds to bacterial consensus sequence (129). 749 
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 750 

Figure 4: (A) L1-interacting mRNA structures from E. coli and M. jannaschii, and the L1 rRNA 751 

binding site (bacterial consensus). Red nucleotides directly contact L1 in the three-dimensional 752 

structure (53). rRNA nucleotides conserved <90% are shown as filled circles, nucleotides 753 

conserved ≥90% are indicated by letters. Numbering corresponds to bacterial consensus 754 

sequence (129). (B) Diagrams indicating the genomic position of L1 mRNA binding sites in two 755 

archaea clades (several Methanococcus species and Sulfolobus solfataricus) and in bacteria. 756 

Bacterial genomic position of L1 binding site are mapped to a 16S rRNA tree. 757 
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758 

Figure 5: Diagram of infC operons showing genomic positions of L20-interacting mRNA 759 

structures (red arrows) in E. coli (A) and B. subtilis (B). Genes regulated by the RNA structure 760 

are colored. (C) L20-interacting mRNA structures from E. coli (mRNA-I and mRNA-II) and B. 761 

subtilis and the consensus rRNA L20 binding site. Red nucleotides are important for L20 762 

interaction. rRNA nucleotides conserved <90% are shown as filled circles, nucleotides conserved 763 

>90% are indicated by letters. Numbering corresponds to bacterial consensus sequence (129). 764 
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 765 

Figure 6: S15-interacting mRNA structures in different bacterial phyla and the consensus S15 766 

rRNA binding site. Red nucleotides correspond to the rRNA 3-stem junction and its direct 767 

mimics. Blue nucleotides correspond to G•U/G-C helix imperfection in rRNA binding site and 768 

its mimics in mRNA structures. Purple nucleotides are important for S15 recognition, but do not 769 

directly correspond to any rRNA motif. Green nucleotides correspond to Shine-Dalgarno or 770 

translational start sequences. rRNA nucleotides conserved <90% are shown as filled circles, 771 

nucleotides conserved ≥90% are indicated by letters. Numbering corresponds to bacterial 772 

consensus sequence (129) 773 
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