

1

2

3 **Ribosomal RNA Mimicry in RNA Regulation of Gene Expression**

4

5 Michelle M. Meyer

6 Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA

7 Email: m.meyer@bc.edu

10 **ABSTRACT**

11 The ribosomal RNA (rRNA) is the largest and most abundant RNA in bacterial and archaeal
12 cells. It is also one of the best-characterized RNAs in terms of its structural motifs and sequence
13 variation. Production of ribosome components including over 50 ribosomal proteins (r-proteins)
14 consumes significant cellular resources. Thus RNA cis-regulatory structures that interact with r-
15 proteins to repress further r-protein synthesis play an important role in maintaining appropriate
16 stoichiometry between r-proteins and rRNA. Classically, such mRNA structures were thought to
17 directly mimic the rRNA. However, over 30 years of research has demonstrated that a variety of
18 different recognition and regulatory paradigms are present. This chapter will demonstrate how
19 structural mimicry between the rRNA and mRNA cis-regulatory structures may take many
20 different forms. The collection of mRNA structures that interact with r-proteins to regulate r-
21 protein operons are best characterized in *E. coli*, but are increasingly found within species from
22 nearly all phyla of bacteria and several archaea. Furthermore, they represent a unique
23 opportunity to assess the plasticity of RNA structure in the context of RNA-protein interactions.
24 The binding determinants imposed by r-proteins to allow regulation can be fulfilled in many
25 ways. Some r-protein interacting mRNAs are immediately obvious as rRNA mimics from
26 primary sequence similarity, others are identifiable only after secondary or tertiary structure
27 determination, and some show no obvious similarity. In addition, across different bacterial
28 species a host of different mechanisms of action have been characterized showing that there is no
29 simple one size fits all solution.

30

31 Despite the many roles for RNA as a regulator in eukaryotes, archaea, and bacteria, the
32 ribosomal RNA (rRNA) is the most abundant cellular RNA and the size of the rRNA outstrips
33 nearly all other functional RNAs. Furthermore, the ribosome is also composed of over 50
34 ribosomal proteins (r-proteins); the majority of which directly contact the rRNA forming specific
35 interactions with RNA (1). Since most regulatory RNAs in bacteria appear to be relatively recent
36 inventions (2-5), they most certainly have evolved in the context of abundant rRNA and r-
37 proteins, and thus have been shaped by them. Many regulatory RNA structures contain portions
38 that bear strong resemblance to motifs within the rRNA. Some of this similarity is due to the role
39 that rRNA plays in our understanding of RNA structure, and in other cases it is due to interaction
40 with an r-protein. This review will first illustrate the role of the ribosome in our understanding of
41 RNA structures generally and subsequently examine how r-proteins may interact with RNA
42 outside the ribosome to act in a regulatory capacity.

43

44 **THE RIBOSOMAL RNA AS A SOURCE OF RNA STRUCTURAL MOTIFS**

45 The rRNA plays an outsized role in our general understanding of RNA structure. Despite
46 over a decade since publication of the initial high-resolution ribosome structures and significant
47 growth in the number and diversity of RNA structures in the Protein Data Bank, the rRNA still
48 represents a significant proportion of the three-dimensional structure information available for
49 RNA and RNA-protein complexes. Of the 3692 structures containing RNA, 1082 contain
50 segments derived from the rRNA or otherwise associated with the ribosome. The ribosome has
51 also significantly influenced the development of RNA structure descriptions (6). Many recurring
52 RNA structure motifs such as kink-turns, loop-E, and loop-C motifs (7-11) were first recognized
53 in the context of the ribosome and our knowledge of the sequences that may fold into many such

54 features is heavily influenced by rRNA alignments (12-14). These structural motifs form the
55 basis of not only the rRNA but many other structured RNAs including riboswitches (15), T-
56 boxes (16), as well as other catalytic RNAs such as the group I and II introns (17, 18). Several
57 reviews specifically addressing the roles such motifs play in RNA structure are available (19-21).

58 **RIBOSOMAL PROTEINS AS AUTOGENOUS REGULATORS**

59 Many ribosomal proteins (r-proteins) have secondary functions (22, 23) as negative
60 regulators of their own synthesis. R-proteins and other protein components necessary for
61 translation can account for up to 40% of cellular proteins (24) and 41% of active translation in
62 actively growing cells in rich medium (25). Thus maintaining stoichiometry among the over 60
63 ribosome components is essential for efficient resource utilization, and the mRNA structures
64 responsible for implementing regulation are only one of several regulatory layers. In *E. coli* over
65 half of the r-protein operons are regulated by autogenous regulatory mechanisms where an
66 individual r-protein will bind to a portion of its own transcript to inhibit transcription or
67 translation. Often the mRNA will take a structure that bears significant similarity to the rRNA,
68 however, there are several different paradigms for RNA-protein recognition that are embodied
69 by the mRNA structures that mediate r-protein autogenous regulation.

70

71 **Discovery of R-Protein Autogenous Regulatory mRNA Structures**

72 The mRNA structures enabling regulation of r-protein synthesis in *E. coli* were among
73 the first mRNA regulatory sites discovered. Many distinct *E. coli* examples were described based
74 on similar observations and using the same experimental approaches. Initial studies demonstrated
75 that over-expression of specific r-proteins resulted in inhibited synthesis of entire r-protein
76 operons (26, 27), and that these effects were operon specific (28). Using *in vitro*

77 transcription/translation systems as well as reporter gene assays, the inhibitory properties for
78 several r-proteins including L1, L4, S4, S7, S8 and the L10(L12)₄ complex were uncovered (29-
79 33). Most mechanisms involve inhibition of translation (30, 34-37), however, alterations to the
80 mRNA decay rate (27, 38-40) and attenuation (premature transcription termination) mechanisms
81 also occur in conjunction with translational inhibition (41, 42).

82 In many cases mimicry between the mRNA regulatory sites responding to an r-protein
83 and its rRNA binding site was proposed as soon as a DNA sequence became available (e.g. S4,
84 S7, S8, L1, L4, and L10 (35, 43-46)). However, demonstration of direct RNA-protein contacts
85 that such similarity would imply lagged the speculation considerably (47-49). In several cases
86 proposed similarities were merely the result of sequence gazing and it has become apparent that
87 the rRNA and mRNA binding sites do not have structural similarity (e.g. S4, L4)(50, 51). In
88 other cases, the initially observed similarity between the mRNA and rRNA was verified when
89 three-dimensional structural data became available (e.g. S8, L1)(52, 53).

90 Since the initial discoveries of r-protein autogenous mRNA structures in *E. coli*, an
91 additional nine mRNA structures responding to r-proteins (S1, S2, S15, S20, L19, L20 (2 sites),
92 L25) (54-60) or r-protein complexes (S6:S18) (61-63) have been described in *E. coli* and today
93 there are a total of 15 r-protein interacting mRNA structures described in *E. coli* (Figure 1A,
94 Table 1). Many have been extensively characterized, but for others the mechanisms of action, or
95 even whether a direct RNA-protein interaction occurs, remain undetermined. With some
96 exceptions, the complement of r-proteins and organization of r-protein operons is largely
97 conserved across bacterial species (64, 65). However, many of the structures allowing regulation
98 in *E. coli* are not widely distributed to organisms outside of a few orders of gammaproteobacteria
99 (66-71). Furthermore, most enterobacterial endosymbionts appear to have lost these structures

100 during the course of genome reduction (71, 72). The only organism with significant study of r-
101 protein regulation other than *E. coli* is the gram-positive model bacterium *Bacillus subtilis*. This
102 organism shares the mRNA-binding sites that interact with r-proteins L1, L10, S2, and S6 with *E.*
103 *coli* (Figure 1, Table 1), but the other 11 structures known in *E. coli* are not apparent in *B.*
104 *subtilis* or its relatives. Alternative regulatory structures that respond to S4, L20, and S15 have
105 been described (73-75) (Figure 1B, Table 1).

106 With the growing number and diversity of sequenced bacterial genomes, comparative
107 genomics has also proved to be a powerful approach for discovery. The combination of RNA-
108 specific homology search tools (76) and the availability of RNA structural families
109 corresponding to most known r-protein responsive structures (71, 75, 77) enables accurate
110 annotation of these structures in bacterial genomes. In addition to characterized mRNA
111 structures, hundreds of novel putative cis-regulatory mRNA motifs have been identified in
112 bacterial genomes, many of which are associated with r-proteins or bear resemblance to the
113 rRNA (78-82). The low-cost of sequencing has also enabled the direct discovery of regulatory
114 RNAs through comparative transcriptomics (4), 5'-end sequencing (83), and RNA-protein
115 immunoprecipitations (84). However, relatively few such motifs have been experimentally
116 validated.

117

118 **The S8-Interacting mRNA Structure: A Prototype R-Protein Cis-Regulatory RNA**

119 The mRNA segment bound by r-protein S8 to regulate the *spc* operon is the prototype
120 mRNA binding motif that embodies all the properties initially hypothesized for all mRNA
121 structures bound by r-proteins. S8 is a primary rRNA binding protein that interacts with the
122 rRNA early during ribosome assembly. The interaction site for S8 on the mRNA is within the

123 intergenic region between *rplX* and *rplE* (encoding L24 and L5) and the coding region of *rplE*
124 (Figure 1A). S8 inhibits translation of several proteins following the protein binding-site (L5,
125 S14, S8, L6, L18, S5, L20, L15) and there is evidence that the two genes upstream of the S8
126 binding region (*rplN* and *rplX*, encoding L14 and L24) are also down-regulated in response to S8
127 due to increased mRNA degradation (40, 85).

128 The initial observed sequence similarity between the rRNA and mRNA binding sites for
129 S8 extends to shared secondary structure (35, 86-88) and three-dimensional structure (52, 86)
130 (Figure 2). The S8 binding site consists of an internal loop. The motif centers on two internal
131 Watson-Crick base-pairs that are separated from the rest of the pairing element by bulged bases
132 on either side, although many of the base identities are not strongly conserved in the case of the
133 rRNA (Figure 2B). S8 itself directly contacts the minor groove of the internal loop. Structures of
134 the mRNA and rRNA are directly superimposable (Figure 2C) (52). The major difference
135 between the rRNA and mRNA binding sites is an additional bulged base in the mRNA structure
136 a few nucleotides away from the S8 recognition sites (orange). While this base decreases binding
137 affinity by about 10-fold, it does not directly interact with S8. Despite a highly conserved rRNA-
138 S8 interface across all bacteria (88-92) and archaea (93), the S8 responsive regulatory RNA
139 structure observed in *E. coli* is narrowly distributed a few orders of gammaproteobacteria (71).
140 What if any regulation occurs in other organisms has not yet been characterized and the causes of
141 the narrow distribution are unclear. The phylogenetic distribution of the S8-interacting mRNA
142 structure is similar to those of many r-protein mRNA regulators identified in *E. coli*, suggesting
143 that similar selective constraints influenced the evolution of all the regulatory structures. The
144 preponderance of known structures in *E. coli* is likely due to a significant discovery bias.
145 Ribosome assembly and stoichiometry is by far the best studied in *E. coli*. Similar regulators

146 may be present, but as of yet unidentified in other bacteria. The narrow distribution displayed by
147 most of the *E. coli* structures makes it more difficult to utilize comparative genomic approaches
148 for discovery, and it is likely that several of the characterized motifs in *E. coli* would not be
149 easily re-discovered using state of the art comparative genomic tools.

150

151 **The L10(L12)₄-Interacting Regulatory Structure: Homologous Binding Sites, Different**
152 **Mechanisms of Action**

153 The L10(L12)₄ interacting mRNA structure also represents a mimic of the rRNA (47, 48,
154 94-96) and participates in the regulation of translation initiation in *E. coli* (34, 97) directly
155 impacting only *rplJ* and *rplL* (Figure 1A). Sequence similarity between the mRNA and rRNA
156 binding sites has been described (46, 68), but the L10(L12)₄ complex is typically not resolved in
157 ribosome crystal structures and three-dimensional data for an mRNA-L10(L12)₄ complex is not
158 available. The L10(L12)₄ binding site consists of a kink-turn motif that is four base-pairs away
159 from an internal loop containing a pair of adenosines. In the rRNA the internal loop is a multi-
160 stem junction (Figure 3), while in the mRNA the structure it is often a bulge, but may be a multi-
161 stem junction (71). In both the rRNA, and the mRNA the adenosines are highly conserved and
162 mutating them reduces binding affinity substantially (68).

163 In contrast to the S8-interacting mRNA structure, the RNA structure responsible for
164 interacting with L10 in *E. coli* is widely conserved throughout many bacterial species (68, 71,
165 80). However, the mechanism of action is not the same across all species. In many gram-positive
166 species the L10-interacting structure is followed by an intrinsic transcription terminator (80) and
167 the mechanism of regulation in *Bacillus subtilis* is regulation of transcription termination (98).

168 Thus, r-protein binding structures are similar to riboswitches where homologous sensor domains
169 may utilize different mechanisms of action in diverse species (99).

170

171 **The L1-Interacting mRNA Structure: Convergence on the Same Binding Determinants**

172 Like the L10- and S8- responsive mRNA structures, the L1-interacting mRNA structure
173 shows obvious similarity to the rRNA (45, 53, 100) and examples of the L1 recognition site are
174 found across nearly all bacterial phyla (71) as well as archaea (101-103). The binding
175 determinants for L1 are often accommodated in a short hairpin of < 30 nucleotides and consist of
176 a base-paired region containing an asymmetric internal loop closed by a non-canonical A•G
177 pairing (Figure 4A). In three dimensions this corresponds to two canonical helices, one of which
178 is capped by the non-canonical A•G pair, that are separated by a sharp turn (53). Diverse L1
179 homologs are able to interact with an example of the mRNA binding site from *Methanococcus*
180 *vannielii* (103), and structural data show that the rRNA and mRNA sites are nearly
181 superimposable (53).

182 In *E. coli* the binding site is within the 5'-UTR of the transcript encoding both *rplK* and
183 *rplA* and L1 regulates translation initiation of L11 and L1 (45) (Figure 4). Surprisingly in the
184 archaea *M. vannielii*, *M. jannaschii*, and *M. thermolithotrophicus* the L1 binding site appears
185 approximately 30 nucleotides inside the coding region for L1 and regulates translation of L1,
186 L10, and P1 (homolog of L12 (104)) and the gene encoding L11 occurs elsewhere in the genome
187 (101, 103). In *Sulfolobus solfataricus* the L1 binding site is found within the L11 coding region,
188 which directly precedes genes encoding L1, L10, and P1 (Figure 4B) (103).

189 In addition to examples that have been explicitly examined, a systematic homology
190 search for L1 binding sites in bacterial genomes identified the site within transcripts encoding L1

191 and L11 in many bacterial species (71). However like the examples identified in Archaea, the
192 location of the binding site relative to the coding regions is not consistent. In Cyanobacteria,
193 Actinobacteria, and Chloroflexi, the L1 binding site precedes *rplA*, typically between *rplK* and
194 *rplA*. In Proteobacteria, Spirochaetes, Thermotogae and Tenericutes the binding site precedes
195 *rplK*, presumably to regulate both *rplA* and *rplK*. Furthermore, in many species of Firmicutes, L1
196 binding sites appear preceding both *rplA* and *rplK*. In *Geobacillus kaustophilus* both sites are
197 capable of binding L1 *in vitro* (71). Interestingly, there is evidence of loss for each individual
198 binding site within species scattered throughout Firmicutes (Figure 4B). The combination of the
199 wide distribution and changing position of the L1 binding site relative to the regulated genes
200 suggest that the site may have evolved convergently in many species.

201

202 **L20-Interacting mRNA Regulatory Structures: Diverse Scaffolds Support the Same
203 Binding Determinants**

204 In addition to cases where there is a single mRNA binding site that mimics the rRNA,
205 there are also cases where homologous r-proteins interact with distinct mRNA secondary
206 structures in different bacterial species. Three L20 interacting mRNA structures are known, two
207 in *E. coli* and one in *B. subtilis*. Each structure mimics the rRNA, but uses a different
208 arrangement of secondary structure to support the necessary bases in the correct geometry
209 required for recognition (Figure 5). In *E. coli*, two L20-responsive mRNA structures control the
210 IF3 operon (*infC*, *rpmI*, and *rplT*, encoding IF3, L35 and L20). One structure is found within the
211 intergenic region between *infC* and *rpmI* (70)(Figure 5A), and consists of a relatively
212 straightforward bulged stem loop where the binding site includes a pair of adenosines within the
213 bulge and a set of consecutive G-C base-pairs just after the closing base-pair of the loop (Figure

214 5C, mRNA-II). This arrangement is the closest mimic of the rRNA. The second structure is
215 comprised of a pseudoknot formed by long-range interactions between a sequence within *infC*
216 and sequence adjacent to the start of the *rpmI* coding region (54, 70) (Figure 5C, mRNA-I). In
217 this structure the pair of adenosines is found in the single-stranded region just prior to the 3'-
218 most portion of the pseudoknot. Both of these structures are required for full translational
219 repression of the operon *in vivo* and L20 binds independently to each (70, 105). A high quality
220 alignment and phylogenetic distribution is only available for the mRNA structure preceding *rpmI*.
221 The pseudoknotted binding-site is challenging to identify using RNA-specific homology search
222 tools (106) due to its significant overlap with coding sequence, long-range interactions, and
223 pseudoknotted structure. However, the structure preceding *rpmI* is narrowly distributed to
224 gammaproteobacteria.

225 In addition to the two L20-responsive structures in *E. coli*, L20 binds to a regulatory
226 structure in *B. subtilis* that precedes *infC* (Figure 5B,C). While this structure shares many
227 features with the L20-interacting structures identified in *E. coli*, the binding features present near
228 the multi-stem junction are supported by a different arrangement of secondary structure, and the
229 ordering of the elements with respect to one another in a linear sequence is distinct. A potential
230 intrinsic transcription terminator follows this mRNA structure, and the mechanism of action is
231 L20 induced structural change resulting in early transcription termination (74). In this structure
232 the conserved adenosines are in a single stranded region just 5' of the first hairpin and the G-C
233 pairs in the second hairpin. This structure is found in most Firmicutes (75, 80), although more
234 frequently in the class *Bacilli* than in *Clostridia* and the transcription attenuation mechanism
235 appears conserved in these organisms. While *infC* is part of this operon, in *B. subtilis* IF3 levels
236 are decoupled from those of L20 and L35 through the presence of a second upstream promoter.

237 The transcript produced from this promoter is cleaved by RNaseY and only allows translation of
238 L20 and L35 translation (107).

239 The three L20 sites all present the same effective binding geometry for L20 recognition
240 (Figure 5C). Both *E. coli* structures are capable of interacting with an L20 homolog from *Aquifex*
241 *aeolicus* to repress gene expression from *rpmI*'-*lacZ* reporter constructs (108), and the *E. coli*
242 homolog is able to stimulate premature transcription termination during *in vitro* assays with the *B.*
243 *subtilis* mRNA structure (74). Thus, the L20 regulators serve as an example of how the same
244 three-dimensional geometry may be supported by different arrangements of secondary structure
245 elements. This example also illuminates how challenging identification of common binding sites
246 may be. Despite similar binding determinants, the distinct arrangements of the necessary
247 recognition elements make automatic detection difficult or impossible.

248

249 **S15-Interacting Regulatory Structures: Diverse Binding Determinants Produce Diverse
250 Structures**

251 R-protein S15 also regulates gene expression using multiple distinct mRNA binding sites
252 in diverse bacterial species. To date four different S15-interacting mRNA structures spanning
253 several bacterial phyla have been experimentally characterized (109-112) and several additional
254 putative structures identified (112) (Figure 6). Each of these structures directly precedes and
255 controls expression of *rpsO*, the gene encoding S15. In *E. coli* the mechanism of action is
256 through entrapment of the translation initiation complex (110), but in other species the
257 mechanism has not explicitly been characterized.

258 The structures share very little in the way of a single recognizable sequence or structural
259 motif. This is partially due to the bidentate nature of the S15 binding site on the rRNA. S15

260 recognizes two portions of the 16S rRNA: a multi-stem junction, and a stem containing a slight
261 defect characterized by a G•U/G-C set of base pairs directly adjacent to the junction (Figure 6).
262 The mRNA regulatory structures that interact with S15 often only partially mimic this binding
263 site. For example, the mRNA from *Thermus thermophilus* includes a three-stem junction formed
264 by the bases of three adjacent pairing elements. However, the pairing elements themselves show
265 no evidence for the G•U/G-C defect recognized by S15 in the rRNA. In contrast mRNA
266 structures described from *E. coli*, *Rhizobium radiobacter* (formerly *Agrobacterium radiobacter*),
267 and *Geobacillus stearothermophilus* (previously *Bacillus stearothermophilus*) include more
268 obvious mimics of the G•U/G-C elements, and require this element for interaction. In several
269 cases the mRNAs have additional recognition elements that are necessary, but do not directly
270 mimic the rRNA (Figure 6)(109, 113, 114).

271 The differences between the mRNAs are sufficiently large such that specificity of
272 interaction has been reported (113, 115). For example the S15 homolog from *G. kaustophilus*
273 does not interact with the mRNA structure originating from *E. coli* and the S15 homolog from *T.*
274 *thermophilus* does not intact with several of the mRNA structures containing only the G•U/G-C
275 motif and no mimic of the three-stem junction (113, 115). Mutagenesis studies indicate that the
276 same face of S15 appears to be used for interaction (115, 116). However, in *E. coli* different S15
277 amino acids are implicated in rRNA and mRNA binding (114, 117). Furthermore, selective
278 recognition of the *Geobacillus* and *E. coli* mRNA structures may be traced to specific amino
279 acids that are differentially conserved in S15 homologs originating from organisms containing
280 RNAs of each type (113). Thus, the diversity of S15-interacting structures is not only due to the
281 bidentate recognition site that may allow a larger set of potential interaction partners, but also to
282 differences in the protein homologs that change recognition. These findings suggest that despite

283 very similar rRNA recognition sites across all bacteria, the r-proteins and their mRNA binding
284 sites are influencing each other's evolution.

285

286 **BEYOND AUTOGENOUS REGULATION: L7Ae**

287 Archaeal r-protein L7Ae participates processes in well beyond of its role in the ribosome.
288 L7Ae interacts with kink-turn (k-turn) and k-loop motifs as a component of the ribosome (1),
289 RNase P (118), the C/D box and H/ACA box snoRNPs responsible for site-selective 2'-O-
290 methylation (119, 120), and in mammals a L7Ae homolog binds to the U4 snRNP of the
291 spliceosome (121). There is no r-protein that directly corresponds to L7Ae in prokaryotes. Two
292 L7Ae homologs in *B. subtilis* exist, and both bind to kink-turns (122), but their biological
293 function is unknown. The role of the k-turn as a fundamental RNA structural building block has
294 already been discussed. L7Ae specifically recognizes this motif, and therefore has a role in many
295 RNA complexes, primarily to stabilize RNA structure.

296 A recent RIP-seq study of L7Ae in *Sulfolobus acidocaldarius* identified several mRNA
297 fragments in addition to the expected interaction partners (84). Many of these mRNA fragments
298 contained sequences corresponding to the consensus sequences for a k-turn suggesting a
299 biologically relevant interaction. Among the mRNAs identified are those encoding L7Ae, Nop5
300 and fibrillarin (other components of the snoRNP), a hypothetical DNA binding protein, and a
301 hypothetical glycosyl transferase. Subsequent reporter gene assays and phylogenetic analysis
302 showed that L7Ae negatively regulates the transcript encoding L7Ae in *S. acidocaldarius* and
303 several other diverse archaea species. The presence of k-turn motifs preceding several genes and
304 L7Ae interaction with these motifs suggests that L7Ae may regulate not only it's own synthesis,
305 but also synthesis of its interaction partners in snoRNPs, Nop5 and Fibrillarin (84).

306

307 **ENGINEERED R-PROTEIN RESPONSIVE REGULATORY RNA SYSTEMS**

308 R-protein binding motifs have also been used to create synthetic regulatory systems.

309 Repressing systems designed for eukaryotic cells were created by placing the L7Ae binding site
310 near the translational start site (123), allowing L7Ae to prevent translation initiation. Systems
311 with the L7Ae binding site within the coding region proved more effective than those where the
312 binding site was placed in the 5'-UTR, both in an *in vitro* translation system and within HELA
313 cells. Activating systems, where L7Ae binding removes a trans-acting RNA to prevent
314 translation, also proved effective *in vitro*. In addition, L7Ae-mediated activation was achieved in
315 Hela cells by adding an L7Ae binding site to a synthetic shRNA (short-hairpin RNA); thus L7Ae
316 binding prevented shRNA-mediated mRNA degradation (124). These examples demonstrate
317 how the L7Ae protein-binding site may be easily transferred to an alternative context and
318 harnessed for gene expression in a modular manner.

319 Indeed, creation of synthetic regulatory systems responding to r-proteins within cells
320 appears to be facile in comparison to the creation of many types of synthetic regulators where the
321 transition from *in vitro* to *in vivo* can be challenging (125). Several synthetic regulatory systems
322 responding to r-protein S15 have also been created (126). Unlike the L7Ae examples, these
323 regulators were created through *in vitro* selection of RNA aptamers interacting with r-protein
324 S15 from *Geobacillus kaustophilus* rather than transplantation of a known binding site. One
325 striking observation from this work is that even without explicit selection for regulation, a high
326 proportion of aptamers enable regulation when positioned correctly relative to the start codon. A
327 second finding is that r-protein S15 can interact with a wide variety of different binding sites
328 (127). This observation is echoed in previous work where *in vitro* selection to r-protein S8

329 yielded both aptamers similar to the natural RNA binding partners, as well as those showing
330 substantial differences (128).

331

332 **CONCLUDING REMARKS**

333 Regulatory RNA structures displaying motifs found in the rRNA are commonly
334 identified. While, in some cases similarity may be due to shared RNA tertiary structure motifs, in
335 other cases structural similarity can imply a shared r-protein binding partner. Many r-proteins
336 have a secondary role as negative regulators of their own synthesis, and while it was postulated
337 that all such regulatory structures would resemble the rRNA, this has proved true only in some
338 cases. This review illustrates a range of different regulatory mRNA structures that display
339 similarity to the rRNA, but it is by no means exhaustive. While the mRNA structures controlling
340 r-protein synthesis in *E. coli* remain the best characterized, r-protein responsive mRNA
341 structures hail from nearly all species of bacteria and several archaea. From these examples it is
342 apparent that r-protein responsive mRNA structures can be direct and obvious mimics of the
343 rRNA, but they do not have to be. Many r-protein interacting mRNA structures display no
344 similarity to their cognate rRNA sites (e.g. *E. coli* S4 regulator), while others share only partial
345 similarity. Second, very similar binding sites can appear in diverse organisms, but may use
346 alternative mechanisms regulate gene expression, or display different positioning relative to
347 regulated genes. Third, due to the structural plasticity of RNA, a geometrically similar binding
348 site may be displayed in several very different manners. Finally, from the diversity of natural
349 regulatory mRNA structures, *in vitro* selection of aptamers, and the design of r-protein
350 responsive regulatory mechanisms, it is clear that the sequence space that allows for r-protein
351 binding and subsequent gene regulation may be quite large. This conclusion combined with the

352 lack of knowledge of r-protein regulation outside of *E. coli* suggests that many r-protein
353 responsive mRNA structures, including those not directly associated with r-protein operons,
354 remain undiscovered or unverified.

355

356 **ACKNOWLEDGEMENTS**

357 This material is based on work partially supported by NSF grants MCB:1411970 and 1715440 to
358 M. Meyer. Special thanks to Arianne Babina and Betty Slinger for their hard work and insightful
359 discussions of this topic.

360

361

362 **REFERENCES**

363 1. **Ban N, Nissen P, Hansen J, Moore PB, Steitz TA.** 2000. The complete atomic
364 structure of the large ribosomal subunit at 2.4 Å resolution. *Science* **289**:905–920.

365 2. **Peer A, Margalit H.** 2014. Evolutionary patterns of *Escherichia coli* small RNAs and
366 their regulatory interactions. *RNA* **20**:994–1003.

367 3. **Hoeppner MP, Gardner PP, Poole AM.** 2012. Comparative Analysis of RNA Families
368 Reveals Distinct Repertoires for Each Domain of Life. *PLoS Comput Biol* **8**:e1002752.

369 4. **Lindgreen S, Umu SU, Lai AS-W, Eldai H, Liu W, McGimpsey S, Wheeler NE,
370 Biggs PJ, Thomson NR, Barquist L, Poole AM, Gardner PP.** 2014. Robust
371 Identification of Noncoding RNA from Transcriptomes Requires Phylogenetically-
372 Informed Sampling. *PLoS Comput Biol* **10**:e1003907.

373 5. **Kacharia FR, Millar JA, Raghavan R.** 2017. Emergence of New sRNAs in Enteric
374 Bacteria is Associated with Low Expression and Rapid Evolution. *Journal of Molecular
375 Evolution* **84**:204–213.

376 6. **Leontis NB, Westhof E.** 2002. The Annotation of RNA Motifs. *Comp Funct Genom*
377 **3**:518–524.

378 7. **Klein D, Schmeing T, Moore P, Steitz T.** 2001. The kink-turn: a new RNA secondary
379 structure motif. *The EMBO Journal* **20**:4214–4221.

380 8. **Lescoute A.** 2005. Recurrent structural RNA motifs, Isostericity Matrices and sequence
381 alignments. *Nucleic Acids Res* **33**:2395–2409.

382 9. **Fox GE, Woese CR.** 1975. 5S RNA secondary structure. *Nature* **256**:505–507.

383 10. **Leontis NB, Westhof E.** 1998. A common motif organizes the structure of multi-helix
384 loops in 16 S and 23 S ribosomal RNAs. *J Mol Biol* **283**:571–583.

385 11. **Correll CC, Freeborn B, Moore PB, Steitz TA.** 1997. Metals, motifs, and recognition
386 in the crystal structure of a 5S rRNA domain. *Cell* **91**:705–712.

387 12. **Woese CR, Winkler S, Gutell RR.** 1990. Architecture of ribosomal RNA: constraints
388 on the sequence of "tetra-loops". *Proc Natl Acad Sci USA* **87**:8467–8471.

389 13. **Gutell RR, Larsen N, Woese CR.** 1994. Lessons from an evolving rRNA: 16S and 23S
390 rRNA structures from a comparative perspective. *Microbiol Rev* **58**:10–26.

391 14. **Wu JC, Gardner DP, Ozer S, Gutell RR, Ren P.** 2009. Correlation of RNA secondary
392 structure statistics with thermodynamic stability and applications to folding. *J Mol Biol*
393 **391**:769–783.

394 15. **Serganov A, Huang L, Patel DJ.** 2008. Structural insights into amino acid binding and

395 gene control by a lysine riboswitch. *Nature* **455**:1263–1267.

396 16. **Wang J, Nikonowicz EP.** 2011. Solution Structure of the K-Turn and Specifier Loop
397 Domains from the *Bacillus subtilis* tyrS T-Box Leader RNA. *J Mol Biol* **408**:99–117.

398 17. **Strobel SA.** 2004. RNA kink turns to the left and to the right. *RNA* **10**:1852–1854.

399 18. **Keating KS, Toor N, Perlman PS, Pyle AM.** 2010. A structural analysis of the group II
400 intron active site and implications for the spliceosome. *RNA* **16**:1–9.

401 19. **Garst AD, Edwards AL, Batey RT.** 2011. Riboswitches: Structures and Mechanisms.
402 *Cold Spring Harbor Perspectives in Biology* **3**:a003533–a003533.

403 20. **Huang L, Lilley DMJ.** 2016. The Kink Turn, a Key Architectural Element in RNA
404 Structure. *J Mol Biol* **428**:790–801.

405 21. **Chan CW, Chetnani B, Mondragón A.** 2013. Structure and function of the T-loop
406 structural motif in noncoding RNAs. *WIREs RNA* **4**:507–522.

407 22. **Aseev LV, Boni IV.** 2011. Extraribosomal functions of bacterial ribosomal proteins.
408 *Mol Biol (Mosk)* **45**:805–816.

409 23. **Warner JR, McIntosh KB.** 2009. How Common Are Extraribosomal Functions of
410 Ribosomal Proteins? *Molecular Cell* **34**:3–11.

411 24. **Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volkmer B, Callipo L, Knoops
412 K, Bauer M, Aebersold R, Heinemann M.** 2015. The quantitative and condition-
413 dependent *Escherichia coli* proteome. *Nat Biotech* **34**:104–110.

414 25. **Li G-W, Burkhardt D, Gross C, Weissman JS.** 2014. Quantifying Absolute Protein
415 Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources. *Cell*
416 **157**:624–635.

417 26. **Fallon AM, Jinks CS, Yamamoto M, Nomura M.** 1979. Expression of ribosomal
418 protein genes cloned in a hybrid plasmid in *Escherichia coli*: gene dosage effects on
419 synthesis of ribosomal proteins and ribosomal protein messenger ribonucleic acid. *J
420 Bacteriol* **138**:383–396.

421 27. **Fallon AM, Jinks CS, Strycharz GD, Nomura M.** 1979. Regulation of ribosomal
422 protein synthesis in *Escherichia coli* by selective mRNA inactivation. *Proc Natl Acad
423 Sci USA* **76**:3411–3415.

424 28. **Lindahl L, Zengel JM.** 1979. Operon-specific regulation of ribosomal protein synthesis
425 in *Escherichia coli*. *Proc Natl Acad Sci USA* **76**:6542–6546.

426 29. **Dean D, Yates J, Nomura M.** 1981. *Escherichia coli* ribosomal protein S8 feedback
427 regulates part of spc operon. *Nature* **289**:89–91.

428 30. **Yates J, Arfsten A, Nomura M.** 1980. In vitro expression of *Escherichia coli*
429 ribosomal protein genes: autogenous inhibition of translation. Proc Natl Acad Sci USA
430 **77**:1837–1841.

431 31. **Dean D, Nomura M.** 1980. Feedback regulation of ribosomal protein gene expression
432 in *Escherichia coli*. Proc Natl Acad Sci USA **77**:3590–3594.

433 32. **Brot N, Caldwell P, Weissbach H.** 1980. Autogenous control of *Escherichia coli*
434 ribosomal protein L10 synthesis in vitro. Proc Natl Acad Sci USA **77**:2592.

435 33. **Holowachuk E, Friesen J, Fiil N.** 1980. Bacteriophage lambda vehicle for the direct
436 cloning of *Escherichia coli* promoter DNA sequences: feedback regulation of the *rplJL*-
437 *rpoBC* operon. Proc Natl Acad Sci USA **77**:2124.

438 34. **Robakis N, Meza-Basso L, Brot N, Weissbach H.** 1981. Translational control of
439 ribosomal protein L10 synthesis occurs prior to formation of first peptide bond. Proc
440 Natl Acad Sci USA **78**:4261.

441 35. **Olins P, Nomura M.** 1981. Translational regulation by ribosomal protein S8 in
442 *Escherichia coli*: structural homology between rRNA binding site and feedback target
443 on mRNA. Nucleic Acids Res **9**:1757.

444 36. **Dean D, Yates JL, Nomura M.** 1981. Identification of ribosomal protein S7 as a
445 repressor of translation within the *str* operon of *E. coli*. Cell **24**:413–419.

446 37. **Jinks-Robertson S, Nomura M.** 1982. Ribosomal protein S4 acts in trans as a
447 translational repressor to regulate expression of the *alpha* operon in *Escherichia coli*. J
448 Bacteriol **151**:193–202.

449 38. **Singer P, Nomura M.** 1985. Stability of ribosomal protein mRNA and translational
450 feedback regulation in *Escherichia coli*. Mol Gen Genet **199**:543–546.

451 39. **Cole JR, Nomura M.** 1986. Changes in the half-life of ribosomal protein messenger
452 RNA caused by translational repression. J Mol Biol **188**:383–392.

453 40. **Mattheakis LC, Nomura M.** 1988. Feedback regulation of the *spc* operon in
454 *Escherichia coli*: translational coupling and mRNA processing. J Bacteriol **170**:4484–
455 4492.

456 41. **Friedman DI, Schauer AT, Baumann MR, Baron LS, Adhya SL.** 1981. Evidence
457 that ribosomal protein S10 participates in control of transcription termination. Proc Natl
458 Acad Sci USA **78**:1115–1118.

459 42. **Zengel J, Lindahl L.** 1990. *Escherichia coli* ribosomal protein L4 stimulates
460 transcription termination at a specific site in the leader of the S10 operon independent of
461 L4-mediated inhibition of translation. J Mol Biol **213**:67–78.

462 43. **Nomura M, Yates J, Dean D, Post L.** 1980. Feedback regulation of ribosomal protein

463 gene expression in *Escherichia coli*: structural homology of ribosomal RNA and
464 ribosomal protein mRNA. Proc Natl Acad Sci USA **77**:7084–7088.

465 44. **Olins P, Nomura M.** 1981. Regulation of the S10 ribosomal protein operon in *E. coli*:
466 nucleotide sequence at the start of the operon. Cell **26**:205–211.

467 45. **Baughman G, Nomura M.** 1983. Localization of the target site for translational
468 regulation of the L11 operon and direct evidence for translational coupling in
469 *Escherichia coli*. Cell **34**:979–988.

470 46. **Lindahl L, Zengel JM.** 1986. Ribosomal genes in *Escherichia coli*. Annu Rev Genet
471 **20**:297–326.

472 47. **Johnsen M, Christensen T, Dennis P, Fiil N.** 1982. Autogenous control: ribosomal
473 protein L10-L12 complex binds to the leader sequence of its mRNA. The EMBO Journal
474 **1**:999.

475 48. **Christensen T, Johnsen M, Fiil N, Friesen J.** 1984. RNA secondary structure and
476 translation inhibition: analysis of mutants in the *rplJ* leader. The EMBO Journal **3**:1609–
477 1612.

478 49. **Deckman I, Draper D.** 1985. Specific interaction between ribosomal protein S4 and the.
479 *alpha* operon messenger RNA. Biochemistry **24**:7860–7865.

480 50. **Tang CK, Draper DE.** 1989. Unusual mRNA pseudoknot structure is recognized by a
481 protein translational repressor. Cell **57**:531–536.

482 51. **Shen P, Zengel J, Lindahl L.** 1988. Secondary structure of the leader transcript from
483 the *Escherichia coli* S10 ribosomal protein operon. Nucleic Acids Res **16**:8905.

484 52. **Merianos H, wang J, Moore P.** 2004. The structure of a ribosomal protein S8/spc
485 operon mRNA complex. RNA **10**:954.

486 53. **Nevskaya N, Tishchenko S, Gabdulkhakov A, Nikanova E, Nikonorov O, Nikulin A,
487 Platonova O, Garner M, Nikonorov S, Piendl W.** 2005. Ribosomal protein L1
488 recognizes the same specific structural motif in its target sites on the autoregulatory
489 mRNA and 23S rRNA. Nucleic Acids Res **33**:478–485.

490 54. **Lesage P, Truong H, Graffe M, Dondon J, Springer M.** 1990. Translated translational
491 operator in *Escherichia coli* auto-regulation in the *infC-rpmI-rplT* operon. J Mol Biol
492 **213**:465–475.

493 55. **Portier C, Dondon L, Grunberg-Manago M.** 1990. Translational autocontrol of the
494 *Escherichia coli* ribosomal protein S15. J Mol Biol **211**:407.

495 56. **Parsons G, Donly B, Mackie G.** 1988. Mutations in the leader sequence and initiation
496 codon of the gene for ribosomal protein S20 (*rpsT*) affect both translational efficiency
497 and autoregulation. J Bacteriol **170**:2485–2992.

498 57. **Aseev LV, Levandovskaya AA, Tchufistova LS, Scaptsova NV, Boni IV.** 2008. A
499 new regulatory circuit in ribosomal protein operons: S2-mediated control of the *rpsB-tsf*
500 expression *in vivo*. *RNA* **14**:1882–1894.

501 58. **Aseev LV, Bylinkina NS, Boni IV.** 2015. Regulation of the *rplY* gene encoding 5S
502 rRNA binding protein L25 in *Escherichia coli* and related bacteria. *RNA* **21**:851–861.

503 59. **Skou J, Schnier J, Rasmussen M, Subramanian A, Pedersen S.** 1990. Ribosomal
504 protein S1 of *Escherichia coli* is the effector for the regulation of its own synthesis.
505 *Journal of Biological Chemistry* **265**:17044.

506 60. **Aseev LV, Koledinskaya LS, Boni IV.** 2016. Regulation of Ribosomal Protein Operons
507 *rplM-rpsI*, *rpmB-rpmG*, and *rplU-rpmA* at the Transcriptional and Translational Levels.
508 *J Bacteriol* **198**:2494–2502.

509 61. **Matelska D, Purta E, Panek S, Boniecki MJ, Bujnicki JM, Dunin-Horkawicz S.**
510 2013. S6:S18 ribosomal protein complex interacts with a structural motif present in its
511 own mRNA. *RNA* **19**:1341–1348.

512 62. **Fu Y, Deiorio-Haggard K, Soo MW, Meyer MM.** 2014. Bacterial RNA motif in the 5'
513 UTR of *rpsF* interacts with an S6:S18 complex. *RNA* **20**:168–176.

514 63. **Babina AM, Soo MW, Fu Y, Meyer MM.** 2015. An S6:S18 complex inhibits
515 translation of *E. coli rpsF*. *RNA* **21**:2039–2046.

516 64. **Fujita K, Baba T, Isono K.** 1998. Genomic Analysis of the Genes Encoding Ribosomal
517 Proteins in Eight Eubacterial Species and *Saccharomyces cerevisiae*. *Genome Inform Ser Workshop Genome Inform* **9**:3–12.

519 65. **Coenye T, Vandamme P.** 2005. Organisation of the S10, *spc* and alpha ribosomal
520 protein gene clusters in prokaryotic genomes. *FEMS Microbiology Letters* **242**:117–126.

521 66. **Allen T, Shen P, Samsel L, Liu R, Lindahl L, Zengel J.** 1999. Phylogenetic analysis
522 of L4-mediated autogenous control of the S10 ribosomal protein operon. *J Bacteriol*
523 **181**:6124.

524 67. **Allen T, Watkins T, Lindahl L, Zengel.** 2004. Regulation of ribosomal protein
525 synthesis in *Vibrio cholerae*. *J Bacteriol* **186**:5933–5937.

526 68. **Iben J, Draper D.** 2008. Specific Interactions of the L10 (L12)₄ Ribosomal Protein
527 Complex with mRNA, rRNA, and L11. *Biochemistry* **47**:2721–2731.

528 69. **Aseev LV, Levandovskaya AA, Skaptsova NV, Boni IV.** 2009. Conservation of
529 regulatory elements controlling the expression of the *rpsB-tsf* operon in γ -proteobacteria.
530 *Mol Biol* **43**:101–107.

531 70. **Guillier M, Allemand F, Raibaud S, Dardel F, Springer M, Chairutti C.** 2002.
532 Translational feedback regulation of the gene for L35 in *Escherichia coli* requires

533 binding of ribosomal protein L20 to two sites in its leader mRNA: a possible case of
534 ribosomal RNA-messenger RNA molecular mimicry. *RNA* **8**:878–889.

535 71. **Fu Y, Deiorio-Haggar K, Anthony J, Meyer MM.** 2013. Most RNAs regulating
536 ribosomal protein biosynthesis in *Escherichia coli* are narrowly distributed to
537 Gammaproteobacteria. *Nucleic Acids Res* **41**:3491–3503.

538 72. **Matelska D, Kurkowska M, Purta E, Bujnicki JM, Dunin-Horkawicz S.** 2016. Loss
539 of Conserved Noncoding RNAs in Genomes of Bacterial Endosymbionts. *Genome*
540 *Biology and Evolution* **8**:426–438.

541 73. **Grundy F, Henkin TM.** 1991. The *rpsD* gene, encoding ribosomal protein S4, is
542 autogenously regulated in *Bacillus subtilis*. *J Bacteriol* **173**:4595–4602.

543 74. **Choonee N, Even S, Zig L, Putzer H.** 2007. Ribosomal protein L20 controls expression
544 of the *Bacillus subtilis infC* operon via a transcription attenuation mechanism. *Nucleic*
545 *Acids Res* **35**:1578–1588.

546 75. **Deiorio-Haggar K, Anthony J, Meyer MM.** 2013. RNA structures regulating
547 ribosomal protein biosynthesis in bacilli. *RNA Biology* **10**:1180–1184.

548 76. **Nawrocki E, Kolbe D, Eddy S.** 2009. Infernal 1.0: inference of RNA alignments.
549 *Bioinformatics* **25**:1335–1337.

550 77. **Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR.** 2003. Rfam: an
551 RNA family database. *Nucleic Acids Res* **31**:439–441.

552 78. **Weinberg Z, Wang JX, Bogue J, Yang J, Corbino K, Moy RH, Breaker RR.** 2010.
553 Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea,
554 and their metagenomes. *Genome Biol* **11**:1–17.

555 79. **Weinberg Z, Barrick JE, Yao Z, Roth A, Kim JN, Gore J, Wang JX, Lee ER, Block
556 KF, Sudarsan N, Neph S, Tompa M, Ruzzo WL, Breaker RR.** 2007. Identification of
557 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics
558 pipeline. *Nucleic Acids Res* **35**:4809–4819.

559 80. **Yao Z, Barrick J, Weinberg Z, Neph S, Breaker R, Tompa M, Ruzzo WL.** 2007. A
560 Computational Pipeline for High- Throughput Discovery of *cis*-Regulatory Noncoding
561 RNA in Prokaryotes. *PLoS Comput Biol* **3**:e126.

562 81. **Tseng H-H, Weinberg Z, Gore J, Breaker RR, Ruzzo WL.** 2009. Finding non-coding
563 RNAs through genome-scale clustering. *J Bioinform Comput Biol* **7**:373–388.

564 82. **Weinberg Z, Lunse CE, Corbino KA, Ames TD, Nelson JW, Roth A, Perkins KR,
565 Sherlock ME, Breaker RR.** 2017. Detection of 224 candidate structured RNAs by
566 comparative analysis of specific subsets of intergenic regions. *Nucleic Acids Res* **1**–13.

567 83. **Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N, Cossart P, Sorek R.**

568 2016. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria.
569 Science **352**:187–187.

570 84. **Daume M, Uhl M, Backofen R, Randau L.** 2017. RIP-Seq Suggests Translational
571 Regulation by L7Ae in Archaea. mBio **8**:e00730–17–14.

572 85. **Mattheakis L, Vu L, Sor F, Nomura M.** 1989. Retroregulation of the synthesis of
573 ribosomal proteins L14 and L24 by feedback repressor S8 in *Escherichia coli*. Proc Natl
574 Acad Sci USA **86**:448–452.

575 86. **Gregory RJ, Cahill PB, Thurlow DL, Zimmermann RA.** 1988. Interaction of
576 *Escherichia coli* ribosomal protein S8 with its binding sites in ribosomal RNA and
577 messenger RNA. J Mol Biol **204**:295–307.

578 87. **Cerretti D, Mattheakis L, Kearney K, Vu L, Nomura M.** 1988. Translational
579 regulation of the *spc* operon in *Escherichia coli*: Identification and structural analysis of
580 the target site for S8 repressor protein. J Mol Biol **204**:309–329.

581 88. **Wu H, Jiang L, Zimmermann RA.** 1994. The binding site for ribosomal protein S8 in
582 16S rRNA and *spc* mRNA from *Escherichia coli*: minimum structural requirements and
583 the effects of single bulged bases on S8-RNA interaction. Nucleic Acids Res **22**:1687–
584 1695.

585 89. **Davies C, Ramakrishnan V, White SW.** 1996. Structural evidence for specific S8-
586 RNA and S8-protein interactions within the 30S ribosomal subunit: ribosomal protein S8
587 from *Bacillus stearothermophilus* at 1.9 Å resolution. Structure **4**:1093–1104.

588 90. **Vysotskaya V, Tischenko S, Garber M, Kern D, Mougel M, Ehresmann C,
589 Ehresmann B.** 1994. The ribosomal protein S8 from *Thermus thermophilus* VK1. Eur J
590 Biochem **223**:437–445.

591 91. **Kalurachchi K, Uma K, Zimmermann RA, Nikonowicz EP.** 1997. Structural features
592 of the binding site for ribosomal protein S8 in *Escherichia coli* 16S rRNA defined using
593 NMR spectroscopy. Proc Natl Acad Sci USA **94**:2139–2144.

594 92. **Nevskaya N, Tishchenko S, Nikulin A, Al-Karadaghi S, Liljas A, Ehresmann B,
595 Ehresmann C, Garber M, Nikonov S.** 1998. Crystal structure of ribosomal protein S8
596 from *Thermus thermophilus* reveals a high degree of structural conservation of a specific
597 RNA binding site. J Mol Biol **279**:233–244.

598 93. **Tishchenko S, Nikulin A, Fomenkova N, Nevskaya N, Nikonov O, Dumas P, Moine
599 H, Ehresmann B, Ehresmann C, Piendl W, Lamzin V, Garber M, Nikonov S.** 2001.
600 Detailed analysis of RNA-protein interactions within the ribosomal protein S8-rRNA
601 complex from the archaeon *Methanococcus jannaschii*. J Mol Biol **311**:311–324.

602 94. **Friesen J, Tropak M, An G.** 1983. Mutations in the *rplJ* leader of *Escherichia coli* that
603 abolish feedback regulation. Cell **32**:361–369.

604 95. **Climie S, Friesen J.** 1987. Feedback regulation of the *rplJL-rpoBC* ribosomal protein
605 operon of *Escherichia coli* requires a region of mRNA secondary structure. *J Mol Biol*
606 **198**:371–381.

607 96. **Climie S, Friesen J.** 1988. In vivo and in vitro structural analysis of the *rplJ* mRNA
608 leader of *Escherichia coli*. Protection by bound L10-L7/L12. *Journal of Biological*
609 *Chemistry* **263**:15166–15175.

610 97. **Yates J, Dean D, Strycharz W, Nomura M.** 1981. *E. coli* ribosomal protein L10
611 inhibits translation of L10 and L7/L12 mRNAs by acting at a single site. *Nature*
612 **294**:190–192.

613 98. **Yakhnin H, Yakhnin AV, Babitzke P.** 2015. Ribosomal protein L10(L12)₄
614 autoregulates expression of the *Bacillus subtilis* *rplJL* operon by a transcription
615 attenuation mechanism. *Nucleic Acids Res* **43**:7032–7043.

616 99. **Barrick JE, Breaker RR.** 2007. The distributions, mechanisms, and structures of
617 metabolite-binding riboswitches. *Genome Biol* **8**:R239.

618 100. **Baughman G, Nomura M.** 1984. Translational regulation of the L11 ribosomal protein
619 operon of *Escherichia coli*: analysis of the mRNA target site using oligonucleotide-
620 directed mutagenesis. *Proc Natl Acad Sci USA* **81**:5389.

621 101. **Hanner M, Mayer C, Kohrer C, Golderer G, Grobner P, Piendl W.** 1994.
622 Autogenous translational regulation of the ribosomal MvaL1 operon in the
623 archaeabacterium *Methanococcus vannielii*. *J Bacteriol* **176**:409–418.

624 102. **Kraft A, Lutz C, Lingenhel A, Grobner P, Piendl W.** 1999. Control of ribosomal
625 protein L1 synthesis in mesophilic and thermophilic archaea. *Genetics* **152**:1363.

626 103. **Köhrer C, Mayer C, Neumair O, Gröbner P, Piendl W.** 1998. Interaction of
627 ribosomal L1 proteins from mesophilic and thermophilic Archaea and Bacteria with
628 specific L1-binding sites on 23S rRNA and mRNA. *European Journal of Biochemistry*
629 **256**:97–105.

630 104. **Shimmin L, Ramirez C, Matheson A, Dennis P.** 1989. Sequence alignment and
631 evolutionary comparison of the L10 equivalent and L12 equivalent ribosomal proteins
632 from archaeabacteria, eubacteria, and eucaryotes. *Journal of Molecular Evolution* **29**:448–
633 462.

634 105. **Haentjens-Sitri J, Allemand F, Springer M, Chiaruttini C.** 2008. A Competition
635 Mechanism Regulates the Translation of the *Escherichia coli* Operon Encoding
636 Ribosomal Proteins L35 and L20. *J Mol Biol* **375**:612–625.

637 106. **Nawrocki EP, Eddy SR.** 2013. Infernal 1.1: 100-fold faster RNA homology searches.
638 *Bioinformatics* **29**:2933–2935.

639 107. **Bruscella P, Shahbabian K, Laalami S, Putzer H.** 2011. RNase Y is responsible for

640 uncoupling the expression of translation factor IF3 from that of the ribosomal proteins
641 L35 and L20 in *Bacillus subtilis*. *Molecular Microbiology* **81**:1526–1541.

642 108. **Guillier M, Allemand F, Dardel F, Royer C, Springer M, Chiaruttini C.** 2005.
643 Double molecular mimicry in *Escherichia coli*: binding of ribosomal protein L20 to its
644 two sites in mRNA is similar to its binding to 23S rRNA. *Molecular Microbiology*
645 **56**:1141–1456.

646 109. **Scott LG, Williamson JR.** 2001. Interaction of the *Bacillus stearothermophilus*
647 ribosomal protein S15 with its 5'-translational operator mRNA. *J Mol Biol* **314**:413–422.

648 110. **Philippe C, Eyermann F, Benard L, Portier C, Ehresmann B, Ehresmann C.** 1993.
649 Ribosomal protein S15 from *Escherichia coli* modulates its own translation by trapping
650 the ribosome on the mRNA initiation loading site. *Proc Natl Acad Sci USA* **90**:4394–
651 4398.

652 111. **Serganov A, Polonskaia A, Ehresmann B, Ehresmann C, Patel D.** 2003. Ribosomal
653 protein S15 represses its own translation via adaptation of an rRNA-like fold within its
654 mRNA. *The EMBO Journal* **22**:1898–1908.

655 112. **Slinger BL, Deiorio-Haggar K, Anthony JS, Gilligan MM, Meyer MM.** 2014.
656 Discovery and validation of novel and distinct RNA regulators for ribosomal protein S15
657 in diverse bacterial phyla. *BMC Genomics* **15**:657.

658 113. **Slinger BL, Newman H, Lee Y, Pei S, Meyer MM.** 2015. Co-evolution of Bacterial
659 Ribosomal Protein S15 with Diverse mRNA Regulatory Structures. *PLoS Genet*
660 **11**:e1005720.

661 114. **Mathy N, Pellegrini O, Serganov A, Patel DJ, Ehresmann C, Portier C.** 2004.
662 Specific recognition of *rpsO* mRNA and 16S rRNA by *Escherichia coli* ribosomal
663 protein S15 relies on both mimicry and site differentiation. *Molecular Microbiology*
664 **52**:661–675.

665 115. **Scott L, Williamson J.** 2005. The Binding Interface between *Bacillus*
666 *stearothermophilus* Ribosomal Protein S15 and its 5'-Translational Operator mRNA. *J*
667 *Mol Biol* **351**:280–290.

668 116. **Serganov A, Ennifar E, Portier C, Ehresmann B, Ehresmann C.** 2002. Do mRNA
669 and rRNA binding sites of *E. coli* ribosomal protein S15 share common structural
670 determinants? *J Mol Biol* **320**:963–978.

671 117. **Ehresmann C, Ehresmann B, Ennifar E, Dumas P, Garber M, Mathy N, Nikulin A,**
672 **Portier C, Patel D, Serganov A.** 2004. Molecular mimicry in translational regulation:
673 the case of ribosomal protein S15. *RNA Biology* **1**:66–73.

674 118. **Cho I-M, Lai LB, Susanti D, Mukhopadhyay B, Gopalan V.** 2010. Ribosomal protein
675 L7Ae is a subunit of archaeal RNase P. *Proc Natl Acad Sci USA* **107**:14573–14578.

676 119. **Kuhn JF, Tran EJ, Maxwell ES.** 2002. Archaeal ribosomal protein L7 is a functional
677 homolog of the eukaryotic 15.5kD/Snu13p snoRNP core protein. *Nucleic Acids Res*
678 **30**:931–941.

679 120. **Rozhdestvensky TS, Tang TH, Tchirkova IV, Brosius J, Bachellerie J-P,
680 Hüttenhofer A.** 2003. Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a
681 shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea. *Nucleic
682 Acids Res* **31**:869–877.

683 121. **Nottrott S, Hartmuth K, Fabrizio P, Urlaub H, Vidovic I, Ficner R, Lührmann R.**
684 1999. Functional interaction of a novel 15.5kD [U4/U6.U5] tri-snRNP protein with the
685 5' stem-loop of U4 snRNA. *The EMBO Journal* **18**:6119–6133.

686 122. **Baird NJ, Zhang J, Hamma T, Ferré-D'Amare AR.** 2012. YbxF and YlxQ are
687 bacterial homologs of L7Ae and bind K-turns but not K-loops. *RNA* **18**:759–770.

688 123. **Saito H, Kobayashi T, Hara T, Fujita Y, Hayashi K, Furushima R, Inoue T.** 2009.
689 Synthetic translational regulation by an L7Ae–kink-turn RNP switch. *Nature chemical
690 biology* **6**:71–78.

691 124. **Saito H, Fujita Y, Kashida S, Hayashi K, Inoue T.** 2011. synthetic human cell fate
692 regulation by protein-driven RNA switches. *Nature Communications* **2**:160–8.

693 125. **Berens C, Suess B.** 2015. Riboswitch engineering — making the all-important second
694 and third steps. *Current Opinion in Biotechnology* **31**:10–15.

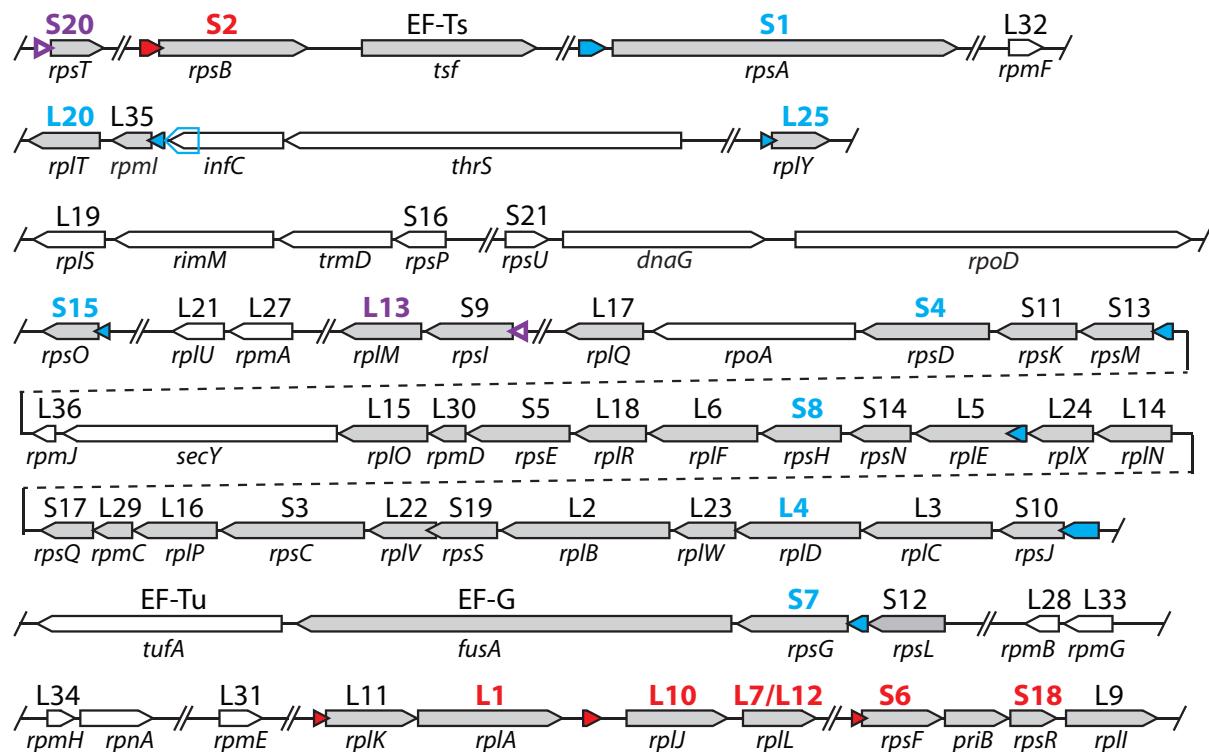
695 126. **Slinger BL, Meyer MM.** 2016. RNA regulators responding to ribosomal protein S15
696 are frequent in sequence space. *Nucleic Acids Res* **44**:9331–9341.

697 127. **Pei S, Slinger BL, Meyer MM.** 2017. Recognizing RNA structural motifs in HT-
698 SELEX data for ribosomal protein S15. *BMC Bioinformatics* **18**:298.

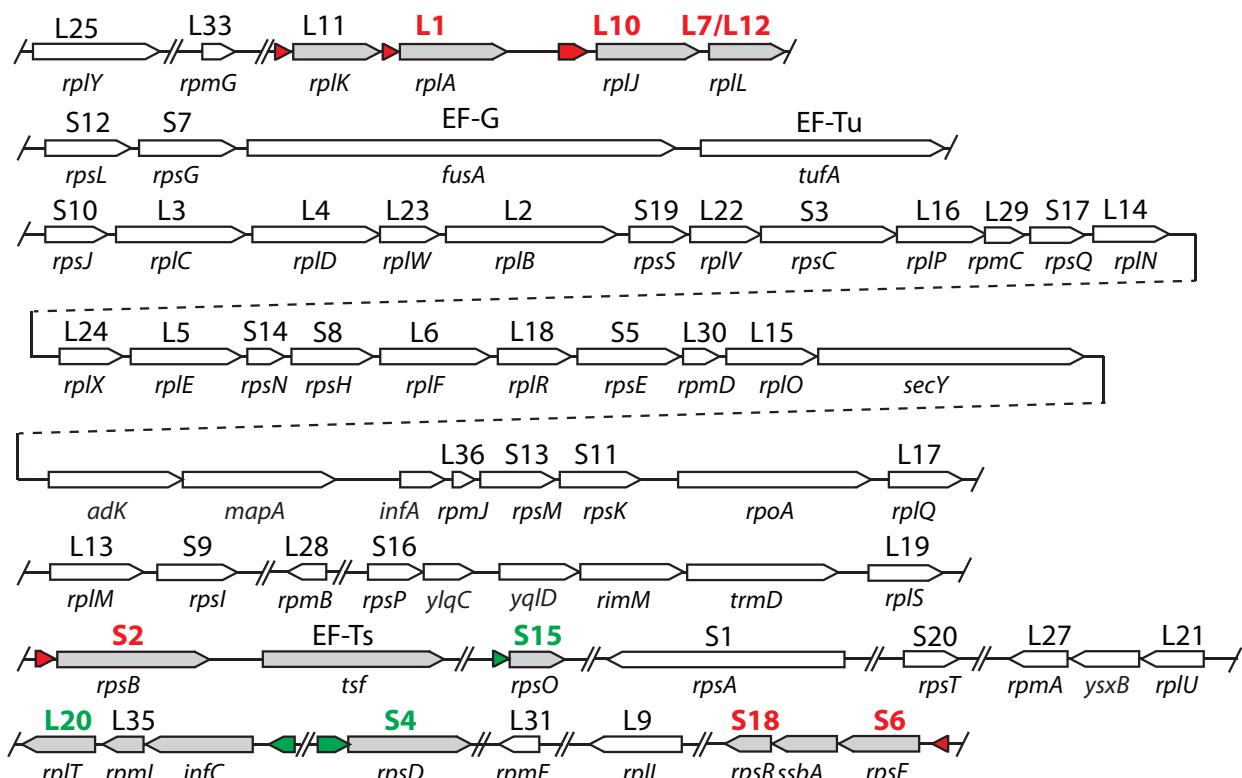
699 128. **Moine H, Cachia C, Westhof E, Ehresmann B, Ehresmann C.** 1997. The RNA
700 binding site of S8 ribosomal protein of *Escherichia coli*: Selex and hydroxyl radical
701 probing studies. *RNA* **3**:255–268.

702 129. **Cannone JJ, Subramanian S, Schnare MN, Collett JR, D'Souza LM, Du Y, Feng B,
703 Lin N, Madabusi LV, Müller KM, Pande N, Shang Z, Yu N, Gutell RR.** 2002. The
704 comparative RNA web (CRW) site: an online database of comparative sequence and
705 structure information for ribosomal, intron, and other RNAs. *BMC Bioinformatics* **3**:2.

706 130. **Dunkle JA, Wang L, Feldman MB, Pulk A, Chen VB, Kapral GJ, Noeske J,
707 Richardson JS, Blanchard SC, Cate JHD.** 2011. Structures of the bacterial ribosome
708 in classical and hybrid states of tRNA binding. *Science* **332**:981–984.

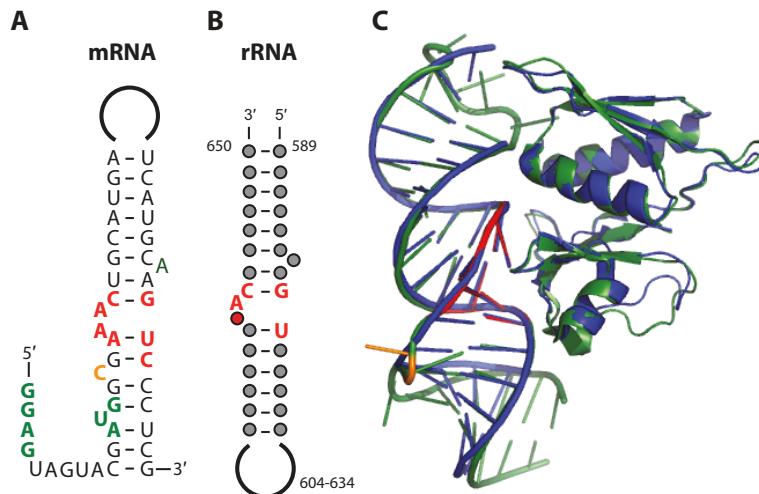


Binding Partner	Regulated Genes	Position	Species Distribution
L1 ^{a,b,c,d}	<i>rplA, rplK*, rplP0*</i>	varied	Archaea/Bacteria
L4 ^{a,b,c,d}	<i>rpsJ, rplC, rplD, rplW, rplB, rpsS, rplV, rpsC, rplP, rpmC, rpsQ</i>	<i>rpsJ</i> 5'-UTR	Gammaproteobacteria
L10/ L10(L12) ₄ ^{a,b,c,d}	<i>rplJ, rplL</i>	<i>rplJ</i> 5'-UTR	Bacteria
L13 ^a	<i>rplM, rpsI</i>	<i>rplM</i> 5'-UTR	<i>Escherichia coli</i>
L20 ^{a,b,c,d}	<i>rpml, rplT</i>	<i>infC</i> 5'-UTR	Firmicutes
L20 ^{a,b,c,d}	<i>rpml, rplT</i>	<i>infC-rpml</i> intergenic	Gammaproteobacteria
L20 ^{a,b,c,d}	<i>rpml, rplT</i>	<i>infC</i> coding/ <i>infC-rpml</i> intergenic	<i>Escherichia coli</i>
L25 ^{a,c}	<i>rplY</i>	<i>rplY</i> 5'-UTR	Gammaproteobacteria
S1 ^{a,b,c,d}	<i>rpsA</i>	<i>rpsA</i> 5'-UTR	Gammaproteobacteria
S2 ^{a,c}	<i>rpsB</i>	<i>rpsB</i> 5'-UTR	Bacteria
S4 ^{a,b,c,d}	<i>rpsM, rpsK, rpsD, rplQ</i>	<i>rpsM</i> 5'-UTR	Gammaproteobacteria
S4 ^{a,c}	<i>rpsD</i>	<i>rpsD</i> 5'-UTR	Firmicutes
S6:S18 ^{a,b,c}	<i>rpsF, rpsR, rplL*</i>	<i>rpsF</i> 5'-UTR	Bacteria
S7 ^{a,b,c}	<i>rpsL, rpsG, fusA</i>	<i>rpsL-rpsG</i> intergenic	Gammaproteobacteria
S8 ^{a,b,c,d}	<i>rplN, rplX, rplE, rpsN, rpsH, rplF, rplR, rpsE, rpmD, rplO, secY, rpmJ</i>	<i>rplX-rplE</i> intergenic	Gammaproteobacteria
S15 ^{a,b,c,d}	<i>rpsO</i>	<i>rpsO</i> 5'-UTR	Gammaproteobacteria
S15 ^{b,c}	<i>rpsO</i>	<i>rpsO</i> 5'-UTR	Firmicutes
S15 ^{b,c}	<i>rpsO</i>	<i>rpsO</i> 5'-UTR	<i>Thermus thermophilus</i>
S15 ^{a,b,c}	<i>rpsO</i>	<i>rpsO</i> 5'-UTR	Alphaproteobacteria
S20 ^{a,b}	<i>rpsT</i>	<i>rpsT</i> 5'-UTR	<i>Escherichia coli</i>

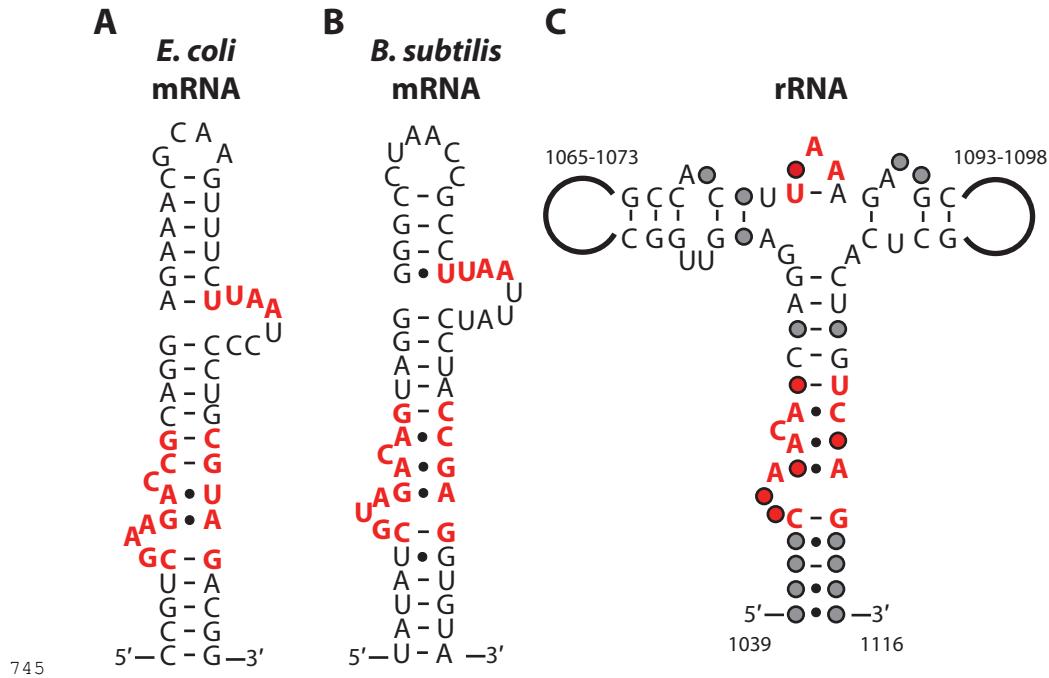

711
712 **Table 1: Summary of ribosomal protein interacting mRNAs that allow regulation of r-**

713 **protein genes.**^a regulation demonstrated using *in vitro* transcription/translation system or
714 reporter gene assays; ^b direct RNA-protein interaction demonstrated *in vitro*; ^c structure of mRNA
715 binding site characterized; ^d mechanism of action known, *may only be regulated in some
716 species. Where a single species is listed for distribution either no structure is available, or no
717 comparative genomic work has been conducted for the RNA and only the species of
718 characterization is given.

A.

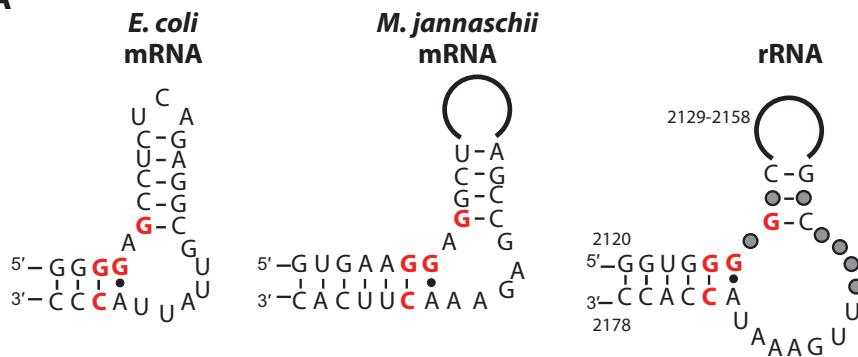


B.



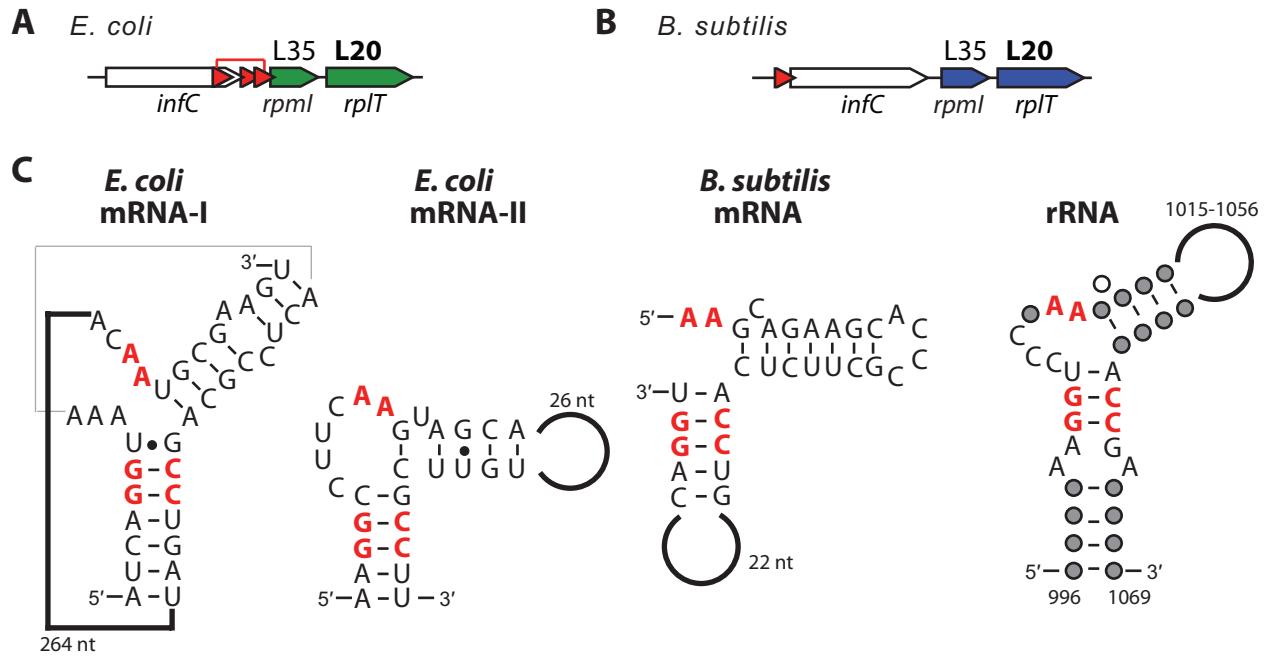
721 **Figure 1:** Diagrams of r-protein operons from *E. coli* (A) and *B. subtilis* (B). Genes are shown in
722 the order in which they appear in the genome and to scale. Gray genes are subject to r-protein
723 autogenous regulation; white genes have no described autogenous regulation. Colored arrows
724 represent r-protein RNA binding structures. Red arrows indicate structures that are widely
725 distributed to many bacterial phyla, blue arrows indicate RNA structures that are confined to
726 Gammaproteobacteria, green arrows indicate RNA structures confined to Firmicutes, and purple
727 arrows indicate presumed r-protein binding sites where no explicit RNA secondary structure has
728 been described. For each operon the effector protein is colored to match the RNA site with which
729 it interacts.

730

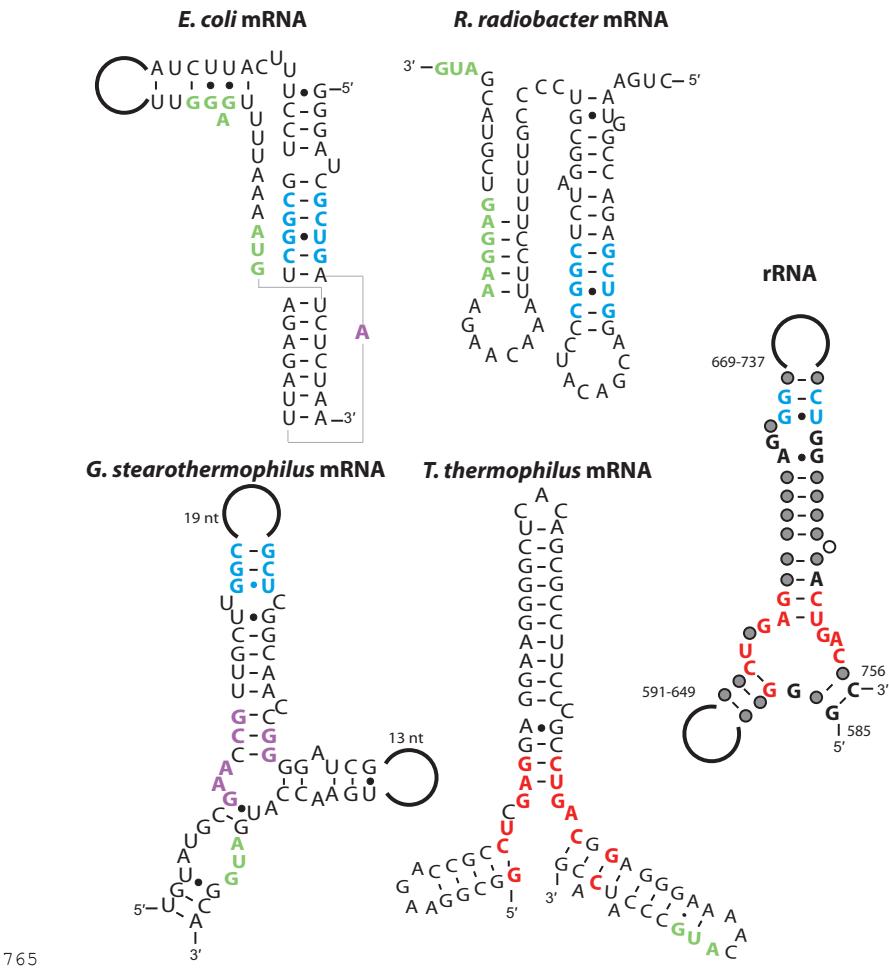


733 **Figure 2** S8 mRNA binding site in *E. coli* mRNA (A) and rRNA (B) consensus structure. Green
 734 nucleotides indicate Shine-Dalgarno sequence and translational start, red nucleotides directly
 735 contact S8 in the three-dimensional structure (52). rRNA nucleotides conserved <90% are shown
 736 as filled circles, nucleotides conserved $\geq 90\%$ are indicated by letters. Numbering corresponds to
 737 bacterial consensus sequence (129). (C) Aligning structural data for each site based on the S8
 738 protein backbone shows that the two binding sites are superimposable. The structure of the S8
 739 with its mRNA binding site are shown in green (1s03.cif,(52)), and the structure of S8 interacting
 740 with the rRNA is shown in blue (4v9d.cif, (130)). Bases of the mRNA directly contacting S8 are
 741 colored red, a bulged base in the mRNA that differentiates the rRNA and mRNA binding sites is
 742 colored orange.

746 **Figure 3:** L10(L12)4 mRNA binding sites from *E. coli* (A) and *B. subtilis* (B) and the rRNA
 747 consensus structure (C). Red nucleotides are implicated in binding, rRNA nucleotides conserved
 748 <90% are shown as filled circles, nucleotides conserved $\geq 90\%$ are indicated by letters.
 749 Numbering corresponds to bacterial consensus sequence (129).


A

B



751 **Figure 4:** (A) L1-interacting mRNA structures from *E. coli* and *M. jannaschii*, and the L1 rRNA
752 binding site (bacterial consensus). Red nucleotides directly contact L1 in the three-dimensional
753 structure (53). rRNA nucleotides conserved <90% are shown as filled circles, nucleotides
754 conserved $\geq 90\%$ are indicated by letters. Numbering corresponds to bacterial consensus
755 sequence (129). (B) Diagrams indicating the genomic position of L1 mRNA binding sites in two
756 archaea clades (several *Methanococcus* species and *Sulfolobus solfataricus*) and in bacteria.
757 Bacterial genomic position of L1 binding site are mapped to a 16S rRNA tree.

Figure 5: Diagram of *infC* operons showing genomic positions of L20-interacting mRNA

758 structures (red arrows) in *E. coli* (A) and *B. subtilis* (B). Genes regulated by the RNA structure
 759 are colored. (C) L20-interacting mRNA structures from *E. coli* (mRNA-I and mRNA-II) and *B.*
 760 structures (red arrows) in *E. coli* (A) and *B. subtilis* (B). Genes regulated by the RNA structure
 761 are colored. (C) L20-interacting mRNA structures from *E. coli* (mRNA-I and mRNA-II) and *B.*
 762 *subtilis* and the consensus rRNA L20 binding site. Red nucleotides are important for L20
 763 interaction. rRNA nucleotides conserved <90% are shown as filled circles, nucleotides conserved
 764 >90% are indicated by letters. Numbering corresponds to bacterial consensus sequence (129).

766 **Figure 6:** S15-interacting mRNA structures in different bacterial phyla and the consensus S15
 767 rRNA binding site. Red nucleotides correspond to the rRNA 3-stem junction and its direct
 768 mimics. Blue nucleotides correspond to G•U/G-C helix imperfection in rRNA binding site and
 769 its mimics in mRNA structures. Purple nucleotides are important for S15 recognition, but do not
 770 directly correspond to any rRNA motif. Green nucleotides correspond to Shine-Dalgarno or
 771 translational start sequences. rRNA nucleotides conserved <90% are shown as filled circles,
 772 nucleotides conserved ≥90% are indicated by letters. Numbering corresponds to bacterial
 773 consensus sequence (129)