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ABSTRACT

The ribosomal RNA (rRNA) is the largest and most abundant RNA in bacterial and archaeal
cells. It is also one of the best-characterized RNAs in terms of its structural motifs and sequence
variation. Production of ribosome components including over 50 ribosomal proteins (r-proteins)
consumes significant cellular resources. Thus RNA cis-regulatory structures that interact with r-
proteins to repress further r-protein synthesis play an important role in maintaining appropriate
stoichiometry between r-proteins and rRNA. Classically, such mRNA structures were thought to
directly mimic the rRNA. However, over 30 years of research has demonstrated that a variety of
different recognition and regulatory paradigms are present. This chapter will demonstrate how
structural mimicry between the rRNA and mRNA cis-regulatory structures may take many
different forms. The collection of mRNA structures that interact with r-proteins to regulate r-
protein operons are best characterized in E. coli, but are increasingly found within species from
nearly all phyla of bacteria and several archaea. Furthermore, they represent a unique
opportunity to assess the plasticity of RNA structure in the context of RNA-protein interactions.
The binding determinants imposed by r-proteins to allow regulation can be fulfilled in many
ways. Some r-protein interacting mRNAs are immediately obvious as rRNA mimics from
primary sequence similarity, others are identifiable only after secondary or tertiary structure
determination, and some show no obvious similarity. In addition, across different bacterial
species a host of different mechanisms of action have been characterized showing that there is no

simple one size fits all solution.
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Despite the many roles for RNA as a regulator in eukaryotes, archaea, and bacteria, the
ribosomal RNA (rRNA) is the most abundant cellular RNA and the size of the rRNA outstrips
nearly all other functional RNAs. Furthermore, the ribosome is also composed of over 50
ribosomal proteins (r-proteins); the majority of which directly contact the rRNA forming specific
interactions with RNA (1). Since most regulatory RNAs in bacteria appear to be relatively recent
inventions (2-5), they most certainly have evolved in the context of abundant rRNA and r-
proteins, and thus have been shaped by them. Many regulatory RNA structures contain portions
that bear strong resemblance to motifs within the rRNA. Some of this similarity is due to the role
that rRNA plays in our understanding of RNA structure, and in other cases it is due to interaction
with an r-protein. This review will first illustrate the role of the ribosome in our understanding of
RNA structures generally and subsequently examine how r-proteins may interact with RNA

outside the ribosome to act in a regulatory capacity.

THE RIBOSOMAL RNA AS A SOURCE OF RNA STRUCTURAL MOTIFS

The rRNA plays an outsized role in our general understanding of RNA structure. Despite
over a decade since publication of the initial high-resolution ribosome structures and significant
growth in the number and diversity of RNA structures in the Protein Data Bank, the rRNA still
represents a significant proportion of the three-dimensional structure information available for
RNA and RNA-protein complexes. Of the 3692 structures containing RNA, 1082 contain
segments derived from the rRNA or otherwise associated with the ribosome. The ribosome has
also significantly influenced the development of RNA structure descriptions (6). Many recurring
RNA structure motifs such as kink-turns, loop-E, and loop-C motifs (7-11) were first recognized

in the context of the ribosome and our knowledge of the sequences that may fold into many such
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features is heavily influenced by rRNA alignments (12-14). These structural motifs form the
basis of not only the rRNA but many other structured RNAs including riboswitches (15), T-
boxes (16), as well as other catalytic RNAs such as the group I and II introns (17, 18). Several

reviews specifically addressing the roles such motifs play in RNA structure are available (19-21).

RIBOSOMAL PROTEINS AS AUTOGENOUS REGULATORS

Many ribosomal proteins (r-proteins) have secondary functions (22, 23) as negative
regulators of their own synthesis. R-proteins and other protein components necessary for
translation can account for up to 40% of cellular proteins (24) and 41% of active translation in
actively growing cells in rich medium (25). Thus maintaining stoichiometry among the over 60
ribosome components is essential for efficient resource utilization, and the mRNA structures
responsible for implementing regulation are only one of several regulatory layers. In E. coli over
half of the r-protein operons are regulated by autogenous regulatory mechanisms where an
individual r-protein will bind to a portion of its own transcript to inhibit transcription or
translation. Often the mRNA will take a structure that bears significant similarity to the rRNA,
however, there are several different paradigms for RNA-protein recognition that are embodied

by the mRNA structures that mediate r-protein autogenous regulation.

Discovery of R-Protein Autogenous Regulatory mRNA Structures

The mRNA structures enabling regulation of r-protein synthesis in E. coli were among
the first mRNA regulatory sites discovered. Many distinct E. coli examples were described based
on similar observations and using the same experimental approaches. Initial studies demonstrated
that over-expression of specific r-proteins resulted in inhibited synthesis of entire r-protein

operons (26, 27), and that these effects were operon specific (28). Using in vitro
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transcription/translation systems as well as reporter gene assays, the inhibitory properties for
several r-proteins including L1, L4, S4, S7, S8 and the L10(L12)4 complex were uncovered (29-
33). Most mechanisms involve inhibition of translation (30, 34-37), however, alterations to the
mRNA decay rate (27, 38-40) and attenuation (premature transcription termination) mechanisms
also occur in conjunction with translational inhibition (41, 42).

In many cases mimicry between the mRNA regulatory sites responding to an r-protein
and its rRNA binding site was proposed as soon as a DNA sequence became available (e.g. S4,
S7, S8, L1, L4, and L10 (35, 43-46)). However, demonstration of direct RNA-protein contacts
that such similarity would imply lagged the speculation considerably (47-49). In several cases
proposed similarities were merely the result of sequence gazing and it has become apparent that
the rRNA and mRNA binding sites do not have structural similarity (e.g. S4, L4)(50, 51). In
other cases, the initially observed similarity between the mRNA and rRNA was verified when
three-dimensional structural data became available (e.g. S8, L1)(52, 53).

Since the initial discoveries of r-protein autogenous mRNA structures in E. coli, an
additional nine mRNA structures responding to r-proteins (S1, S2, S15, S20, L19, L.20 (2 sites),
L25) (54-60) or r-protein complexes (S6:S18) (61-63) have been described in E. coli and today
there are a total of 15 r-protein interacting mRNA structures described in E. coli (Figure 1A,
Table 1). Many have been extensively characterized, but for others the mechanisms of action, or
even whether a direct RNA-protein interaction occurs, remain undetermined. With some
exceptions, the complement of r-proteins and organization of r-protein operons is largely
conserved across bacterial species (64, 65). However, many of the structures allowing regulation
in E. coli are not widely distributed to organisms outside of a few orders of gammaproteobacteria

(66-71). Furthermore, most enterobacterial endosymbionts appear to have lost these structures
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during the course of genome reduction (71, 72). The only organism with significant study of r-
protein regulation other than E. coli is the gram-positive model bacterium Bacillus subtilis. This
organism shares the mRNA-binding sites that interact with r-proteins L1, L10, S2, and S6 with E.
coli (Figure 1, Table 1), but the other 11 structures known in E. coli are not apparent in B.
subtilis or its relatives. Alternative regulatory structures that respond to S4, L20, and S15 have
been described (73-75) (Figure 1B, Table 1).

With the growing number and diversity of sequenced bacterial genomes, comparative
genomics has also proved to be a powerful approach for discovery. The combination of RNA-
specific homology search tools (76) and the availability of RNA structural families
corresponding to most known r-protein responsive structures (71, 75, 77) enables accurate
annotation of these structures in bacterial genomes. In addition to characterized mRNA
structures, hundreds of novel putative cis-regulatory mRNA motifs have been identified in
bacterial genomes, many of which are associated with r-proteins or bear resemblance to the
rRNA (78-82). The low-cost of sequencing has also enabled the direct discovery of regulatory
RNAs through comparative transcriptomics (4), 5’-end sequencing (83), and RNA-protein
immunoprecipitations (84). However, relatively few such motifs have been experimentally

validated.

The S8-Interacting mRNA Structure: A Prototype R-Protein Cis-Regulatory RNA

The mRNA segment bound by r-protein S8 to regulate the spc operon is the prototype
mRNA binding motif that embodies all the properties initially hypothesized for all mRNA
structures bound by r-proteins. S8 is a primary rRNA binding protein that interacts with the

rRNA early during ribosome assembly. The interaction site for S8 on the mRNA is within the
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intergenic region between rplX and rplE (encoding L.24 and L5) and the coding region of rplE
(Figure 1A). S8 inhibits translation of several proteins following the protein binding-site (L5,
S14, S8, L6, L18, S5, L20, L15) and there is evidence that the two genes upstream of the S8
binding region (rpIN and rplX, encoding L14 and L24) are also down-regulated in response to S8
due to increased mRNA degradation (40, 85).

The initial observed sequence similarity between the rRNA and mRNA binding sites for
S8 extends to shared secondary structure (35, 86-88) and three-dimensional structure (52, 86)
(Figure 2). The S8 binding site consists of an internal loop. The motif centers on two internal
Watson-Crick base-pairs that are separated from the rest of the pairing element by bulged bases
on either side, although many of the base identities are not strongly conserved in the case of the
rRNA (Figure 2B). S8 itself directly contacts the minor groove of the internal loop. Structures of
the mRNA and rRNA are directly superimposable (Figure 2C) (52). The major difference
between the rRNA and mRNA binding sites is an additional bulged base in the mRNA structure
a few nucleotides away from the S8 recognition sites (orange). While this base decreases binding
affinity by about 10-fold, it does not directly interact with S8. Despite a highly conserved rRNA-
S8 interface across all bacteria (88-92) and archaea (93), the S8 responsive regulatory RNA
structure observed in E. coli is narrowly distributed a few orders of gammaproteobacteria (71).
What if any regulation occurs in other organisms has not yet been characterized and the causes of
the narrow distribution are unclear. The phylogenetic distribution of the S8-interacting mRNA
structure is similar to those of many r-protein mRNA regulators identified in E. coli, suggesting
that similar selective constraints influenced the evolution of all the regulatory structures. The
preponderance of known structures in E. coli is likely due to a significant discovery bias.

Ribosome assembly and stoichiometry is by far the best studied in E. coli. Similar regulators
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may be present, but as of yet unidentified in other bacteria. The narrow distribution displayed by
most of the E. coli structures makes it more difficult to utilize comparative genomic approaches
for discovery, and it is likely that several of the characterized motifs in E. coli would not be

easily re-discovered using state of the art comparative genomic tools.

The L10(L12) 4-Interacting Regulatory Structure: Homologous Binding Sites, Different
Mechanisms of Action

The L10(L12), interacting mRNA structure also represents a mimic of the rRNA (47, 48,
94-96) and participates in the regulation of translation initiation in E. coli (34, 97) directly
impacting only rplJ and rplL (Figure 1A). Sequence similarity between the mRNA and rRNA
binding sites has been described (46, 68), but the L10(L12)4 complex is typically not resolved in
ribosome crystal structures and three-dimensional data for an mRNA-L10(L12)4 complex is not
available. The L10(L12)4 binding site consists of a kink-turn motif that is four base-pairs away
from an internal loop containing a pair of adenosines. In the rRNA the internal loop is a multi-
stem junction (Figure 3), while in the mRNA the structure it is often a bulge, but may be a multi-
stem junction (71). In both the rRNA, and the mRNA the adenosines are highly conserved and
mutating them reduces binding affinity substantially (68).

In contrast to the S8-interacting mRNA structure, the RNA structure responsible for
interacting with L.10 in E. coli is widely conserved throughout many bacterial species (68, 71,
80). However, the mechanism of action is not the same across all species. In many gram-positive
species the L10-interacting structure is followed by an intrinsic transcription terminator (80) and

the mechanism of regulation in Bacillus subtilis is regulation of transcription termination (98).
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Thus, r-protein binding structures are similar to riboswitches where homologous sensor domains

may utilize different mechanisms of action in diverse species (99).

The L1-Interacting mRNA Structure: Convergence on the Same Binding Determinants

Like the L10- and S8- responsive mRNA structures, the L1-interacting mRNA structure
shows obvious similarity to the rRNA (45, 53, 100) and examples of the L1 recognition site are
found across nearly all bacterial phyla (71) as well as archaea (101-103). The binding
determinants for L1 are often accommodated in a short hairpin of < 30 nucleotides and consist of
a base-paired region containing an asymmetric internal loop closed by a non-canonical A*G
pairing (Figure 4A). In three dimensions this corresponds to two canonical helixes, one of which
is capped by the non-canonical AG pair, that are separated by a sharp turn (53). Diverse L1
homologs are able to interact with an example of the mRNA binding site from Methanocococus
vannielii (103), and structural data show that the rRNA and mRNA sites are nearly
superimposable (53).

In E. coli the binding site is within the 5’-UTR of the transcript encoding both rp/K and
rplA and L1 regulates translation initiation of L11 and L1 (45) (Figure 4). Surprisingly in the
archaea M. vannielii, M. jannaschii, and M. thermolithotrophicus the L1 binding site appears
approximately 30 nucleotides inside the coding region for L1 and regulates translation of L1,
L10, and P1 (homolog of L12 (104)) and the gene encoding L11 occurs elsewhere in the genome
(101, 103). In Sulfolobus solfataricus the L1 binding site is found within the L11 coding region,
which directly precedes genes encoding L1, L10, and P1 (Figure 4B) (103).

In addition to examples that have been explicitly examined, a systematic homology

search for L1 binding sites in bacterial genomes identified the site within transcripts encoding L1
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and L11 in many bacterial species (71). However like the examples identified in Archaea, the
location of the binding site relative to the coding regions is not consistent. In Cyanobacteria,
Actinobacteria, and Chloroflexi, the L1 binding site precedes rplA4, typically between rplK and
rplA. In Proteobacteria, Spirochaetes, Thermotogoa and Tenericutes the binding site precedes
rplK, presumably to regulate both rp/4 and rplK. Furthermore, in many species of Firmicutes, L1
binding sites appear preceding both rp/A4 and rplK. In Geobacillus kaustophilus both sites are
capable of binding L1 in vitro (71). Interestingly, there is evidence of loss for each individual
binding site within species scattered throughout Firmicutes (Figure 4B). The combination of the
wide distribution and changing position of the L1 binding site relative to the regulated genes

suggest that the site may have evolved convergently in many species.

L20-Interacting mRNA Regulatory Structures: Diverse Scaffolds Support the Same
Binding Determinants

In addition to cases where there is a single mRNA binding site that mimics the rRNA,
there are also cases where homologous r-proteins interact with distinct mRNA secondary
structures in different bacterial species. Three L20 interacting mRNA structures are known, two
in E. coli and one in B. subtilis. Each structure mimics the rRNA, but uses a different
arrangement of secondary structure to support the necessary bases in the correct geometry
required for recognition (Figure 5). In E. coli, two L20-responsive mRNA structures control the
IF3 operon (infC, rpml, and rplT, encoding IF3, L35 and L20). One structure is found within the
intergenic region between infC and rpmli (70)(Figure 5A), and consists of a relatively
straightforward bulged stem loop where the binding site includes a pair of adenosines within the

bulge and a set of consecutive G-C base-pairs just after the closing base-pair of the loop (Figure

10
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5C, mRNA-II). This arrangement is the closest mimic of the rRNA. The second structure is
comprised of a pseudoknot formed by long-range interactions between a sequence within infC
and sequence adjacent to the start of the rpm/ coding region (54, 70) (Figure 5C, mRNA-I). In
this structure the pair of adenosines is found in the single-stranded region just prior to the 3’-
most portion of the pseudoknot. Both of these structures are required for full translational
repression of the operon in vivo and L20 binds independently to each (70, 105). A high quality
alignment and phylogenetic distribution is only available for the mRNA structure preceding rpml.
The pseudoknotted binding-site is challenging to identify using RNA-specific homology search
tools (106) due to its significant overlap with coding sequence, long-range interactions, and
pseudoknotted structure. However, the structure preceding rpm/ is narrowly distributed to
gammaproteobacteria.

In addition to the two L20-responsive structures in E. coli, L20 binds to a regulatory
structure in B. subtilis that precedes infC (Figure 5B,C). While this structure shares many
features with the L.20-interacting structures identified in E. coli, the binding features present near
the multi-stem junction are supported by a different arrangement of secondary structure, and the
ordering of the elements with respect to one another in a linear sequence is distinct. A potential
intrinsic transcription terminator follows this mRNA structure, and the mechanism of action is
L20 induced structural change resulting in early transcription termination (74). In this structure
the conserved adenosines are in a single stranded region just 5’ of the first hairpin and the G-C
pairs in the second hairpin. This structure is found in most Firmicutes (75, 80), although more
frequently in the class Bacilli than in Clostridia and the transcription attenuation mechanism
appears conserved in these organisms. While infC is part of this operon, in B. subtilis IF3 levels

are decoupled from those of L20 and L35 through the presence of a second upstream promoter.

11
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The transcript produced from this promoter is cleaved by RNAseY and only allows translation of
L20 and L35 translation (107).

The three L20 sites all present the same effective binding geometry for L20 recognition
(Figure 5C). Both E. coli structures are capable of interacting with an L20 homolog from Aquifex
aeolicus to repress gene expression from rpml’- ‘lacZ reporter constructs (108), and the E. coli
homolog is able to stimulate premature transcription termination during in vitro assays with the B.
subtilis mRNA structure (74). Thus, the L20 regulators serve as an example of how the same
three-dimensional geometry may be supported by different arrangements of secondary structure
elements. This example also illuminates how challenging identification of common binding sites
may be. Despite similar binding determinants, the distinct arrangements of the necessary

recognition elements make automatic detection difficult or impossible.

S15-Interacting Regulatory Structures: Diverse Binding Determinants Produce Diverse
Structures

R-protein S15 also regulates gene expression using multiple distinct mRNA binding sites
in diverse bacterial species. To date four different S15-interacting mRNA structures spanning
several bacterial phyla have been experimentally characterized (109-112) and several additional
putative structures identified (112) (Figure 6). Each of these structures directly precedes and
controls expression of 7psO, the gene encoding S15. In E. coli the mechanism of action is
through entrapment of the translation initiation complex (110), but in other species the
mechanism has not explicitly been characterized.

The structures share very little in the way of a single recognizable sequence or structural

motif. This is partially due to the bidentate nature of the S15 binding site on the rRNA. S15
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recognizes two portions of the 16S rRNA: a multi-stem junction, and a stem containing a slight
defect characterized by a G*U/G-C set of base pairs directly adjacent to the junction (Figure 6).
The mRNA regulatory structures that interact with S15 often only partially mimic this binding
site. For example, the mRNA from Thermus thermophilus includes a three-stem junction formed
by the bases of three adjacent pairing elements. However, the pairing elements themselves show
no evidence for the G*U/G-C defect recognized by S15 in the rRNA. In contrast mRNA
structures described from E. coli, Rhizobium radiobacter (formerly Agrobacterium radiobacter),
and Geobacillus stearothermophilus (previously Bacillus stearothermophilus) include more
obvious mimics of the GeU/G-C elements, and require this element for interaction. In several
cases the mRNAs have additional recognition elements that are necessary, but do not directly
mimic the rRNA (Figure 6)(109, 113, 114).

The differences between the mRNAs are sufficiently large such that specificity of
interaction has been reported (113, 115). For example the S15 homolog from G. kaustohphilus
does not interact with the mRNA structure originating from E. coli and the S15 homolog from 7.
thermophilus does not intact with several of the mRNA structures containing only the G*U/G-C
motif and no mimic of the three-stem junction (113, 115). Mutagenesis studies indicate that the
same face of S15 appears to be used for interaction (115, 116). However, in E. coli different S15
amino acids are implicated in rRNA and mRNA binding (114, 117). Furthermore, selective
recognition of the Geobacillus and E. coli mRNA structures may be traced to specific amino
acids that are differentially conserved in S15 homologs originating from organisms containing
RNAs of each type (113). Thus, the diversity of S15-interacting structures is not only due to the
bidentate recognition site that may allow a larger set of potential interaction partners, but also to

differences in the protein homologs that change recognition. These findings suggest that despite
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very similar rRNA recognition sites across all bacteria, the r-proteins and their mRNA binding

sites are influencing each other’s evolution.

BEYOND AUTOGENOUS REGULATION: L7Ae

Archaeal r-protein L7Ae participates processes in well beyond of its role in the ribosome.
L7Ae interacts with kink-turn (k-turn) and k-loop motifs as a component of the ribosome (1),
RNase P (118), the C/D box and H/ACA box snoRNPs responsible for site-selective 2’-O-
methylation (119, 120), and in mammals a L7Ae homolog binds to the U4 snRNP of the
spliceosome (121). There is no r-protein that directly corresponds to L7Ae in prokaryotes. Two
L7Ae homologs in B. subtilis exist, and both bind to kink-turns (122), but their biological
function is unknown. The role of the k-turn as a fundamental RNA structural building block has
already been discussed. L7Ae specifically recognizes this motif, and therefore has a role in many
RNA complexes, primarily to stabilize RNA structure.

A recent RIP-seq study of L7Ae in Sulfolobus acidocaldarius identified several mRNA
fragments in addition to the expected interaction partners (84). Many of these mRNA fragments
contained sequences corresponding to the consensus sequences for a k-turn suggesting a
biologically relevant interaction. Among the mRNAs identified are those encoding L7Ae, Nop5
and fibrillarin (other components of the snoRNP), a hypothetical DNA binding protein, and a
hypothetical glycosyl transferase. Subsequent reporter gene assays and phylogenetic analysis
showed that L7Ae negatively regulates the transcript encoding L7Ae in S. acidocaldarius and
several other diverse archaea species. The presence of k-turn motifs preceding several genes and
L7Ae interaction with these motifs suggests that L7Ae may regulate not only it’s own synthesis,

but also synthesis of its interaction partners in snoRNPs, Nop5 and Fibrillarin (84).
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ENGINEERED R-PROTEIN RESPONSIVE REGULATORY RNA SYSTEMS

R-protein binding motifs have also been used to create synthetic regulatory systems.
Repressing systems designed for eukaryotic cells were created by placing the L7Ae binding site
near the translational start site (123), allowing L7Ae to prevent translation initiation. Systems
with the L7Ae binding site within the coding region proved more effective than those where the
binding site was placed in the 5’-UTR, both in an in vitro translation system and within HELA
cells. Activating systems, where L7Ae binding removes a trans-acting RNA to prevent
translation, also proved effective in vitro. In addition, L7Ae-mediated activation was achieved in
Hela cells by adding an L7Ae binding site to a synthetic shRNA (short-hairpin RNA); thus L7Ae
binding prevented shRNA-mediated mRNA degradation (124). These examples demonstrate
how the L7Ae protein-binding site may be easily transferred to an alternative context and
harnessed for gene expression in a modular manner.

Indeed, creation of synthetic regulatory systems responding to r-proteins within cells
appears to be facile in comparison to the creation of many types of synthetic regulators where the
transition from in vitro to in vivo can be challenging (125). Several synthetic regulatory systems
responding to r-protein S15 have also been created (126). Unlike the L7Ae examples, these
regulators were created through in vitro selection of RNA aptamers interacting with r-protein
S15 from Geobacillus kaustophilus rather than transplantation of a known binding site. One
striking observation from this work is that even without explicit selection for regulation, a high
proportion of aptamers enable regulation when positioned correctly relative to the start codon. A
second finding is that r-protein S15 can interact with a wide variety of different binding sites

(127). This observation is echoed in previous work where in vitro selection to r-protein S8
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yielded both aptamers similar to the natural RNA binding partners, as well as those showing

substantial differences (128).

CONCLUDING REMARKS

Regulatory RNA structures displaying motifs found in the rRNA are commonly
identified. While, in some cases similarity may be due to shared RNA tertiary structure motifs, in
other cases structural similarity can imply a shared r-protein binding partner. Many r-proteins
have a secondary role as negative regulators of their own synthesis, and while it was postulated
that all such regulatory structures would resemble the rRNA, this has proved true only in some
cases. This review illustrates a range of different regulatory mRNA structures that display
similarity to the rRNA, but it is by no means exhaustive. While the mRNA structures controlling
r-protein synthesis in E. coli remain the best characterized, r-protein responsive mRNA
structures hail from nearly all species of bacteria and several archaea. From these examples it is
apparent that r-protein responsive mRNA structures can be direct and obvious mimics of the
rRNA, but they do not have to be. Many r-protein interacting mRNA structures display no
similarity to their cognate rRNA sites (e.g. E. coli S4 regulator), while others share only partial
similarity. Second, very similar binding sites can appear in diverse organisms, but may use
alternative mechanisms regulate gene expression, or display different positioning relative to
regulated genes. Third, due to the structural plasticity of RNA, a geometrically similar binding
site may be displayed in several very different manners. Finally, from the diversity of natural
regulatory mRNA structures, in vitro selection of aptamers, and the design of r-protein
responsive regulatory mechanisms, it is clear that the sequence space that allows for r-protein

binding and subsequent gene regulation may be quite large. This conclusion combined with the
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lack of knowledge of r-protein regulation outside of E. coli suggests that many r-protein
responsive mRNA structures, including those not directly associated with r-protein operons,

remain undiscovered or unverified.
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Binding Partner Regulated Genes Position Species Distribution

L1bed rplA, rplK*, rplPO* varied Archaea/Bacteria
rpsJ, rplC, rpID, rplW, rplB,

Lg?bcd rpsS, rplV, rpsC, rplP, romC, rps) 5'-UTR Gammaproteobacteria
rpsQ

SS{LlZ)f’b'c’d rpld, rplL rpl) 5'-UTR Bacteria

L13° rpIM, rpsl! rp/M 5’-UTR Escherichia coli

L20%P<e rpml, rplT infC 5'-UTR Firmicutes

L20%bed roml, rplT infC-roml intergenic | Gammaproteobacteria

L20?bcd roml, rplT ’_nf ¢ codlng/ ) Escherichia coli

infC-roml intergenic

L25%¢ rplY rplY 5'-UTR Gammaproteobacteria

g12bcd rpsA rpsA 5'-UTR Gammaproteobacteria

S2*¢ rpsB rpsB 5'-UTR Bacteria

g42/b.cd rpsM, rpsK, rpsD, rplQ rpsM 5'-UTR Gammaproteobacteria

542< rpsD rpsD 5'-UTR Firmicutes

$6:518%"¢ rpsF, rpsR, rplL* rpsF 5'-UTR Bacteria

g72bc rpsL, rpsG, fusA rpsL-rpsG intergenic | Gammaproteobacteria
rpIN, rpiX, rplE, rpsN, rpsH,

sgbed rplF, rpIR, rpsk, romD, rplO, rplX-rplE intergenic | Gammaproteobacteria
secY, romJ

g152Pcd rpsO rpsO 5'-UTR Gammaproteobacteria

S15°¢ rpsO rpsO 5'-UTR Firmicutes

s15P°¢ rpsO rpsO 5'-UTR Thermus thermophilus

$15%P¢ rpsO rpsO 5'-UTR Alphaproteobacteria

$20%° rpsT rpsT 5'-UTR Escherichia coli

Table 1: Summary of ribosomal protein interacting mRNAs that allow regulation of r-

protein genes. * regulation demonstrated using in vitro transcription/translation system or

reporter gene assays; ® direct RNA-protein interaction demonstrated in vitro; © structure of mRNA

binding site characterized, 4 mechanism of action known, *may only be regulated in some

species. Where a single species is listed for distribution either no structure is available, or no

comparative genomic work has been conducted for the RNA and only the species of

characterization is given.
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Figure 1: Diagrams of r-protein operons from E. coli (A) and B. subtilis (B). Genes are shown in
the order in which they appear in the genome and to scale. Gray genes are subject to r-protein
autogenous regulation; white genes have no described autogenous regulation. Colored arrows
represent r-protein RNA binding structures. Red arrows indicate structures that are widely
distributed to many bacterial phyla, blue arrows indicate RNA structures that are confided to
Gammaproteobacteria, green arrows indicate RNA structures confined to Firmicutes, and purple
arrows indicate presumed r-protein binding sites where no explicit RNA secondary structure has
been described. For each operon the effector protein is colored to match the RNA site with which

it interacts.
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mRNA rRNA
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Figure 2 S8 mRNA binding site in E. coli mRNA (A) and rRNA (B) consensus structure. Green
nucleotides indicate Shine-Dalgarno sequence and translational start, red nucleotides directly
contact S8 in the three-dimensional structure (52). rRNA nucleotides conserved <90% are shown
as filled circles, nucleotides conserved >90% are indicated by letters. Numbering corresponds to
bacterial consensus sequence (129). (C) Aligning structural data for each site based on the S8
protein backbone shows that the two binding sites are superimposable. The structure of the S8
with its mRNA binding site are shown in green (1s03.cif,(52)), and the structure of S8 interacting
with the rRNA is shown in blue (4v9d.cif, (130)). Bases of the mRNA directly contacting S8 are
colored red, a bulged base in the mRNA that differentiates the rRNA and mRNA binding sites is

colored orange.
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E. coli B. subtilis

mRNA mRNA rRNA
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5—C-G—3' 5—U-A =3’ 1039 1116

Figure 3: L10(L12); mRNA binding sites from E. coli (A) and B. subtilis (B) and the rRNA
consensus structure (C). Red nucleotides are implicated in binding, rRNA nucleotides conserved
<90% are shown as filled circles, nucleotides conserved >90% are indicated by letters.

Numbering corresponds to bacterial consensus sequence (129).
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mRNA mRNA rRNA
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Figure 4: (A) L1-interacting mRNA structures from E. coli and M. jannaschii, and the L1 rRNA
binding site (bacterial consensus). Red nucleotides directly contact L1 in the three-dimensional
structure (53). rRNA nucleotides conserved <90% are shown as filled circles, nucleotides
conserved >90% are indicated by letters. Numbering corresponds to bacterial consensus
sequence (129). (B) Diagrams indicating the genomic position of L1 mRNA binding sites in two
archaea clades (several Methanococcus species and Sulfolobus solfataricus) and in bacteria.

Bacterial genomic position of L1 binding site are mapped to a 16S rRNA tree.
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Figure 5: Diagram of infC operons showing genomic positions of L20-interacting mRNA

structures (red arrows) in E. coli (A) and B. subtilis (B). Genes regulated by the RNA structure

are colored. (C) L20-interacting mRNA structures from E. coli (mRNA-I and mRNA-II) and B.

subtilis and the consensus rRNA L20 binding site. Red nucleotides are important for L20

interaction. rRNA nucleotides conserved <90% are shown as filled circles, nucleotides conserved

>90% are indicated by letters. Numbering corresponds to bacterial consensus sequence (129).
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Figure 6: S15-interacting mRNA structures in different bacterial phyla and the consensus S15
rRNA binding site. Red nucleotides correspond to the rRNA 3-stem junction and its direct
mimics. Blue nucleotides correspond to GeU/G-C helix imperfection in rRNA binding site and
its mimics in mRNA structures. Purple nucleotides are important for S15 recognition, but do not
directly correspond to any rRNA motif. Green nucleotides correspond to Shine-Dalgarno or
translational start sequences. rRNA nucleotides conserved <90% are shown as filled circles,
nucleotides conserved >90% are indicated by letters. Numbering corresponds to bacterial

consensus sequence (129)
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