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ABSTRACT
We focus on data fusion, i.e., the problem of unifying conflicting
data from data sources into a single representation by estimating
the source accuracies. We propose SLiMFast, a framework that ex-
presses data fusion as a statistical learning problem over discrimi-
native probabilistic models, which in many cases correspond to lo-
gistic regression. In contrast to previous approaches that use com-
plex generative models, discriminative models make fewer distri-
butional assumptions over data sources and allow us to obtain rig-
orous theoretical guarantees. Furthermore, we show how SLiMFast
enables incorporating domain knowledge into data fusion, yielding
accuracy improvements of up to 50% over state-of-the-art base-
lines. Building upon our theoretical results, we design an optimizer
that obviates the need for users to manually select an algorithm
for learning SLiMFast’s parameters. We validate our optimizer on
multiple real-world datasets and show that it can accurately predict
the learning algorithm that yields the best data fusion results.

1. INTRODUCTION
Integrating information from multiple data sources is crucial for

maximizing the value extracted from data. Different data sources
can provide information about the same object, e.g., a real-world
entity or event, but this information can be inconsistent. That is,
data provided by different sources may be in conflict. Thus, data
fusion—the task of resolving conflicts across sources by estimating
their trustworthiness—has emerged as a key element of many data
integration pipelines [14].

Interacting with collaborators from a medical school—who are
currently engaged in extracting information from scientific articles
to populate a structured data repository—we find that using data fu-
sion can be challenging for users despite the numerous approaches
proposed in the literature [9, 15, 22, 23, 29, 39]. We demonstrate
some challenges in current data fusion methods by example, and
argue that expressing data fusion as a statistical learning problem
over discriminative probabilistic models leads to methods which
solve data fusion more accurately than existing approaches, and
come with rigorous theoretical guarantees.

We use the application of our collaborators as an example to
demonstrate challenges that users face due to limitations of current
data fusion approaches, and thereby motivate our approach.

Example 1. A genomics expert wants to extract gene mutations as-
sociated with genetic diseases from a corpus of 22 million PubMed
articles. The expert’s goal is to use this data to diagnose patients
with Mendelian disorders. To this end, the expert uses information
extraction techniques over scientific articles to collect (gene, dis-
ease, associated) triples where the field “associated” takes on val-
ues in {true, false}. An article can be thus viewed as providing
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Figure 1: A schematic diagram of data fusion when extracting
gene-disease associations from scientific articles.

a set of triples that make claims about gene-disease associations.
In many cases, the extracted triples may contain conflicts. For in-
stance, the sentences “Variation in GIGYF2 is not associated with
Parkinson disease”1 and “These data strongly support GIGYF2 as
a PARK11 gene with a causal role in familial Parkinson Disease”2

will yield conflicting extractions. The expert wants to use data fu-
sion to resolve such conflicts and obtain only gene-disease associ-
ations most likely to be correct according to the literature.

For exposition, we view articles as data sources. Other notions of
sources, such as research labs or journals, can be naturally captured
in the framework described below. The extracted (gene, disease, as-
sociated) tuples from each article can be viewed as observations for
a collection of objects with a gene-disease pair being the object’s
id and associated the object’s value. Data fusion resolves conflicts
by estimating the trustworthiness of data sources and uses that to
estimate the true value of each object. The trustworthiness of a
data source is quantified via the notion of source accuracy, i.e., the
probability that an observation made by the source is correct. Fig-
ure 1 shows an overview of the input and output of data fusion.
The input is a set of source observations and the output consists
of the estimated source accuracies and the true values of objects.
In certain cases, limited ground truth on the correctness of source
observations may be available and can be used to obtain an initial
estimate on the accuracy of data sources.

The Need for Guarantees. Continuing with our example, the do-
main expert wants to use the extracted data for patient diagnosis.
Due to the critical nature of the diagnosis application, formal guar-
antees on the correctness of the objects in the final knowledge base
are required. As a result, data fusion should also provide formal
guarantees that the returned gene-disease associations are correct
within a certain margin of error.

One approach to obtain guarantees is having access to a siz-

1http://www.neurology.org/content/72/22/1886.abstract
2http://www.ncbi.nlm.nih.gov/pubmed/18358451
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able amount of labeled (ground truth) data and use that to estimate
source accuracies. However, obtaining large volumes of labeled
data can be prohibitively expensive due to the monetary cost as-
sociated with human annotators. Hence, most existing data fusion
approaches assume no ground truth data. This forces them to rely
on procedures such as expectation maximization (EM) to estimate
the accuracy of data sources. These procedures come with few the-
oretical guarantees on their convergence and may yield suboptimal
solutions [38]. The above raises the key technical question we seek
to address, i.e., how much ground truth is actually needed to obtain
high-quality results with formal guarantees? We show that under
certain conditions, which match our target applications, only a sur-
prisingly small amount of ground truth data is sufficient to obtain
data fusion techniques that simultaneously (i) identify the correct
values of objects with high-confidence, and (ii) obtain low-error
(in many cases less than 2%) estimates of source accuracies. Low-
error accuracy estimates of sources are crucial in intelligence appli-
cations [32, 34] and can also help users minimize the monetary cost
of data acquisition by purchasing only accurate data sources [12].
Finally, in certain cases, the presence of ground truth eliminates
the need for iterative procedures such as EM and allows us to use
highly-efficient techniques for solving data fusion, thus, leading to
overall scalable methods for free.

The Need for Domain Knowledge. The expert believes that find-
ings in some articles may not be trustworthy altogether and wants
to use additional external knowledge about the sources themselves
to estimate their accuracy better and further improve the quality of
the data fusion result. Information such as the citation count or
publication year can be informative of the accuracy of an article’s
claims: the expert believes that highly-cited or more recent arti-
cles are more trustworthy. More fine-grained information such as
the experimental design of a study can also be informative. For in-
stance, the genomics expert trusts results of gene-knockout studies,
but is skeptical about genome-wide association studies (GWAS).

Current data fusion methods do not consider domain knowledge
but only use the conflicting observations across sources to estimate
their accuracy. Moreover, existing methods rely on complex mod-
els that are not easily extensible to incorporate domain-specific fea-
tures. In this paper, we demonstrate how domain knowledge can be
integrated in data fusion in the form of domain-specific features
that are indicative of a data source having high or low accuracy.

Apart from the expert in genomics, we also interviewed experts in
applied micro-economic theory, and a consumer electronics com-
pany, all engaged in extracting facts from the scientific literature
to support analytic applications. The requirements outlined above
were unanimously identified as important across all domains. These
requirements were also outlined in a recent survey by Li et al. [25]
as open problems for data fusion. We show how our data fusion
approach can address these open problems.

Our Approach. To address the above challenges, we introduce
SLiMFast, a framework that uses discriminative probabilistic mod-
els to perform data fusion. At its simplest form, SLiMFast’s model
corresponds to logistic regression. This formulation separates data
fusion into two tasks: (i) performing statistical learning to compute
the parameters of the graphical model—used to estimate the accu-
racy of data sources—and (ii) performing probabilistic inference
to predict the true values of objects. Using probabilistic models for
data fusion is not new [6, 9, 15, 29, 39]. However, SLiMFast comes
with several advancements over previous work:

(1) SLiMFast is the first data fusion approach to combine cross-
source conflicts with domain-specific features—integrated as addi-
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Figure 2: The tradeoff space SLiMFast’s optimizer captures to
select the best algorithm for learning the source accuracies.

tional variables in SLiMFast’s probabilistic model—to solve data
fusion more accurately. We show that, for real-world applications,
combining these two signals can yield accuracy improvements of
up to 50% at identifying the true value of objects and can lead up
to 10× lower error in source accuracy estimates.

(2) While not obvious at first glance, we show that many existing
data fusion approaches correspond to a special case of SLiMFast
which uses a logistic regression model. In turn, this allows us to use
standard techniques from statistical learning theory [28] to provide
strong guarantees for data fusion when limited ground truth data is
available; in our experimental evaluation we show that in certain
cases as few as 10 training examples are sufficient to obtain an
accuracy higher than 0.9 when estimating the true value of objets.

(3) To learn the parameters in SLiMFast, we can either use expec-
tation maximization (EM) or empirical risk minimization (ERM)
if ground truth is available. The performance of the two algo-
rithms depends on different aspects of the input data. ERM relies
on ground truth data, while EM is affected by the overlap across
source observations and the average accuracy of sources. This in-
troduces a tradeoff (Figure 2) between the two algorithms in terms
of which can estimate the source accuracies better. To automate
the decision between EM and ERM, we design an optimizer that
determines which algorithm will lead to more accurate data fusion
results. Internally, our optimizer uses the notion of units of infor-
mation: assuming that one labeled example for the true value of
an object has one unit of information, we design a statistical model
that estimates the equivalent units of information in source obser-
vations used by the EM algorithm. We evaluate our optimizer on
multiple real-world datasets with varying properties, and show that
in almost all cases it selects the best performing algorithm correctly.

Summary of Contributions. We propose SLiMFast, a frame-
work that expresses data fusion as a statistical learning problem
over discriminative probabilistic models. We show how SLiMFast
answers several open problems in data fusion, outlined in a recent
survey [25]. In Section 2, we review data fusion. Then, in Sec-
tion 3, we describe SLiMFast and show that many existing data
fusion methods are captured by SLiMFast, thus, obviating the need
for model selection. In Section 4, we provide a series of guaran-
tees for the output of SLiMFast. We present a series of theoretical
guarantees for data fusion and design an optimizer that automati-
cally selects the best algorithm for learning SLiMFast’s parameters.
In Section 5, we evaluate SLiMFast and its optimizer on multiple
real-world datasets. We also demonstrate how domain-specific fea-
tures unlock additional functionalities, such as obtaining insights
on the accuracy of data sources and solving the problem of source
reliability initialization.



2. PRELIMINARIES
We review data fusion in the context of data integration and intro-

duce the main terminology and notation used in the paper. In SLiM-
Fast, we consider integrating data from a set of data sources S that
follow a common representation (e.g., they have the same schema
in the case of relational data). Sources provide data describing
different objects (e.g., named entities or real-world events). As
in existing approaches, SLiMFast assumes that different objects
described in the data sources are already identified and aligned
across data sources. We point the reader to a survey by Bleiholder
and Naumann [6] that describes how common schema matching
and duplicate detection techniques can be used to address these
two problems. We use O to denote the set of distinct objects that
sources in S describe. We use the genomics example from Sec-
tion 1 to demonstrate this.

Example 2. In the genomics application, data sources S corre-
spond to scientific articles. After information extraction techniques
are applied, a collection of tuples describing objects that corre-
spond to gene-disease pairs, e.g., (GIGYF2, Parkinson), is extracted
from each article. Each object is described by the attribute “asso-
ciated” that takes values in {true, false} and indicates if the gene
and disease associated with the object are truly associated or not
according to the article. The set of all distinct gene-disease pairs
from all available articles corresponds to the set of objects O.

After alignment and duplicate detection, multiple, possibly in-
consistent observations of the same objects are found across data
sources. That is, the values assigned to an attribute of a real-world
object by different sources may not agree. Informally, the goal
of data fusion is to combine conflicting source observations for
the same object into a single representation while inconsistencies
across data sources are resolved.

Example 3. In the genomics application (Figure 1), three articles
provide information for object (GIGYF2, Parkinson). Two of them
state that gene GIGYF2 is not associated with Parkinson, i.e., the
attribute “associated” for object (GIGYF2, Parkinson) takes the
value “false”. In contrast to the first two articles, the third one
that gene GIGYF2 is associated with Parkinson (i.e., the attribute
“associated” takes the value “true”).

We focus on inconsistencies for a single object-attribute. Ex-
tending to multiple attributes is straightforward. Given a source
s ∈ S and an object o ∈ O, we denote vo,s the value that source s
assigns to the attribute of object o. We refer to each vo,s as a source
observation and use Ω to denote the set of all source observations
for all objects. Furthermore, we assume that, for the attribute under
consideration, each object o ∈ O has a true latent value v∗o . Given
the observations Ω from a set of sources S for a set of objects O,
the goal of data fusion is to estimate the latent true values v∗o for
all objects in O and output the estimates to the user. We use vo to
denote the estimated true value of an object o ∈ O. Similarly to
existing data fusion methods [9, 25, 40], we consider setups that
follow single-truth semantics, i.e., there is only one correct value
for each object o and at least one source provides it. This assump-
tion is related to closed-world semantics. Nonetheless, the models
introduced in the remainder of the paper can support open-world
semantics, i.e., allow for the true value of objects to not be reported
by any source. This can be modeled by allowing variables v∗o to
take a wildcard value corresponding to the unknown truth. For sim-
plicity of presentation we do not study such extensions here.

In fusing data from multiple sources, one can distinguish be-
tween a variety of strategies. Simple strategies that estimate the true
object values by assigning vo to the most often occurring value or

the average value reported by different sources are widely adopted
in data integration [6]. However, strategies that reason about the
trustworthiness of data sources to resolve inconsistencies across ob-
servations have been shown to be more accurate in estimating the
true values of objects [24]. Intuitively, instead of treating source
observations in a uniform manner, the aforementioned approaches
consider values reported for an object by more trustworthy sources
to be more probable. We focus on such strategies.

To measure the trustworthiness of a data source SLiMFast uses
the notion of accuracy. The true accuracy of a data source s ∈ S,
denoted A∗s , is defined as the probability that the information pro-
vided by s for an object is correct [9, 39]. For modeling pur-
poses, the accuracy of a data source is assumed to be the same
across all objects, thus, the probability that an observation vo,s
from a source s ∈ S for an object o ∈ O is correct is given by
P (vo,s = v∗o) = A∗s . This assumption is typical for data fusion
and can be easily relaxed by allowing a source to have multiple
accuracy parameters for different object classes [10, 17, 23].

Given the above probabilistic semantics, data fusion in SLiMFast
is expressed as a statistical learning problem whose goal is to infer a
function, parameterized by the unknown source accuraciesA∗s , that
maps the input source observations Ω to output true value estimates
vo for each object o ∈ O. Since the true source accuracies are un-
known, SLiMFast needs to estimate the unknown accuracy of each
source s ∈ S, denoted byAs, and use that to estimate the unknown
true values v∗o for objects in O. Similar probabilistic formulations
are adopted by many data fusion frameworks [9, 15, 29, 39]. We
follow probabilistic semantics as they promote interpretability. In
the next section, we describe the components of SLiMFast in detail
and compare it with existing data fusion methods.

3. THE SLiMFast FRAMEWORK
An overview of SLiMFast is shown in Figure 3. The core input

to SLiMFast is a collection of source observations Ω. Users also
have the option to provide a set of labeled ground truth data, de-
noted G, corresponding to the true values for a subset of objects.
Ground truth data (usually limited) is commonly used in data fusion
to obtain initial estimates of the accuracy of data sources [12, 22,
40] before using iterative procedures to obtain the final estimates
of source accuracies and the latent true values of objects.

Example 4. In the genomics application (Figure 1), we have ground
truth data that gene GBA is associated with Parkinson. This pro-
vides partial evidence that Article 1 and Article 3 are trustworthy
since they state that GBA is truly associated with Parkinson.

Finally, in SLiMFast, users have the option to specify a set of
domain-specific features they deem to be informative of the accu-
racy of data sources. We useK to denote the set of domain-specific
features and fs,k to denote the value a data source s ∈ S takes for
a feature k ∈ K. We denote the collection of all fs,k values as F .

Example 5. Examples of features characterizing the sources in the
genomics application are shown in Figure 3. Since data sources
correspond to scientific articles, examples of domain-specific fea-
tures provided include the number of citations and the publication
year of articles. For instance, source A1 is characterized by the
features “publication year = 2009 ” and “citations = 34” while
source A2 by “publication year = 2008” and “citations = 128”.

As a next step, SLiMFast compiles the input source observations
Ω, ground truthG, if provided, and the feature values F to a proba-
bilistic graphical model, and casts data fusion as a learning and in-
ference problem over that model. Before learning and inference are



Inference

Learning

3. Data Fusion

Analyze ground truth, 
observations, and 

select between EM & 
ERM for learning  

2. Optimizer 

convert input to 
probabilistic model

1. Compilation 
User-specified Input

Source Observations 
Feature

Citations=128
Study=GWASA3

PubYear=2009
Source

A2
A2 PubYear=2008

A1
Citations=34A1

Domain Features
Output

Object ID True Value
False
True

GIGYF2, Parkinson
GBA, Parkinson

Truth Discovery

A1

A3

0.94
A2 0.71

0.85

FeatureSource
Source Accuracy

Source Accuracy Analysis

Fe
at

ur
e 

W
ei

gh
t

Regularization Penalty

SLiMFast Framework

True
True

False

False

True

ValueObject ID

GIGYF2, Parkinson
GBA, ParkinsonA3

GIGYF2, Parkinson
Source

A3
A2 GIGYF2, Parkinson

A1
GBA, ParkinsonA1

Value
GBA, Parkinson True

Object ID
Ground Truth

Figure 3: An overview of SLiMFast’s core components. The provided source observations and domain-specific features are compiled
into a probabilistic model used to solve data fusion via statistical learning and probabilistic inference.

performed, SLiMFast’s internal optimizer analyzes (i) the structure
of the graphical model obtained by the compilation step, and (ii) the
available ground truth to determine the best learning algorithm to
be used for estimating the accuracy of data sources. Finally, learn-
ing and inference are performed to solve data fusion. In addition to
the traditional output of data fusion, SLiMFast leverages the pres-
ence of domain-specific features to provide additional functionali-
ties to users, such as explanations as to which features are the most
informative of source accuracies (Section 5.3.1). Next, we discuss
the role of domain-specific features in data fusion, introduce SLiM-
Fast’s probabilistic graphical model, and describe SLiMFast’s con-
nections to existing data fusion models.

3.1 The Role of Domain-Specific Features
Existing data fusion methods rely on conflicting or overlapping

source observations to estimate the accuracy of data sources and
to estimate the true values of objects. In addition to source obser-
vations, SLiMFast can also leverage user-specified domain-specific
features as an additional signal to estimate the accuracy of sources.
Combining these two signals has been identified as a promising di-
rection for data fusion in prior work [11]. Indeed, our analysis (Sec-
tion 4.2) shows that in large part due to domain features SLiMFast
can provably obtain low-error estimates of the source accuracies
and can determine the true values of objects accurately using a lim-
ited amount of ground truth. Thus, the presence of domain-specific
features makes the use of ground truth in data fusion practical.

Obtaining the values of domain-specific features for data sources
requires significantly lower effort than obtaining ground truth. This
is because one can use automated techniques to collect informative
metadata for data sources. To name a few examples, consider dif-
ferent types of data sources ranging from web pages to even crowd
workers, e.g., workers from Amazon Mechanical Turk3, and sci-
entific articles. For web pages, it is easy to collect traffic statis-
tics, such as the number of daily visitors, PageRank, and the page’s
bounce rate from third party portals. Such statistics can be infor-
mative of the web page’s accuracy. For crowd workers, features
such as the number of tasks performed or the average time required
per task can be indicative of the accuracy of a worker’s answers.
Finally, for scientific articles, the publication venue, author, publi-
cation year and readability ease can be important. To promote flex-
ibility across different domains, SLiMFast allows users to specify
the features most relevant to their task.

3.2 SLiMFast’s Data Fusion Model
SLiMFast expresses data fusion as a learning and inference prob-

lem over a probabilistic graphical model. For each object o ∈ O,
SLiMFast introduces a latent random variable To modeling the ob-
ject’s unknown true value v∗o . Each source observation vo,s is mod-

3https://www.mturk.com

eled as an observed random variable Vo,s. We denote Do the set of
distinct values that sources in S assign to object o. To determine
the estimated true value vo of an object, SLiMFast computes the
posterior probability P (To = d|Ω) for all values d ∈ Do, and
assigns vo the value that maximizes the probability of variable To.

SLiMFast follows a discriminative approach, i.e., it models the
posterior P (To|Ω) directly considering the observations reported
by sources in S for object o ∈ O. For simplicity’s sake, we con-
sider that SLiMFast uses a logistic regression model over the source
observations for object o. More elaborate models can be expressed
in SLiMFast as we discuss in Section 3.3. We have:

P (To = d|Ω) =
1

Z
exp

∑

(o,s)∈Ω

σs1vo,s=d (1)

where Z =
∑
d∈Do

exp
∑

(o,s)∈Ω σs1vo,s=d is a normalization
constant, parameter σs denotes the trustworthiness score of source
s providing observation vo,s, and 1 corresponds to the 0,1-indicator
function. As in the mixture of expert models [19], σs can be defined
as the log odds that the observation provided by source s ∈ S
agrees with the unknown true value v∗o of object o:

σs = log(
P (vo,s = v∗o)

1− P (vo,s = v∗o)
) = log(

A∗s
1−A∗s

) (2)

SLiMFast estimates the unknown accuracy of each data source via
a logistic function model that is parameterized by the domain-specific
featuresK and an additional source-indicator feature for each source
in S. For the estimated accuracy As of data source s ∈ S we have:

As = 1/(1 + exp(−ws −
∑

k∈K
wkfs,k)) (3)

Model parameters 〈wk〉k∈K capture the importance of domain-
specific features for determining the accuracy of data sources. Pa-
rameters 〈ws〉s∈S offer SLiMFast the flexibility to capture the het-
erogeneity of data sources and enable SLiMFast to recover existing
data fusion models when no domain-specific features are specified.
Combining Equations 1-3 gives us SLiMFast’s final model:

P (To = d|Ω;w) =

=
1

Z
exp(

∑

(o,s)∈Ω

(ws +
∑

k∈K
wkfs,k)1vo,s=d) (4)

with w = (〈ws〉s∈S , 〈wk〉k∈K).

Compilation. SLiMFast uses a factor graph representation to
encode the above logistic regression model. Any declarative factor
graph framework (e.g., Alchemy [1], DeepDive [2, 36], PSL [5])
can by used. Declarative factor graph frameworks allow one to
easily expand SLiMFast’s logistic regression model with additional
features. For example, in Appendix D, we extend SLiMFast’s model
to capture pairwise correlations across copying data sources.



Data Fusion with SLiMFast. To solve data fusion SLiMFast
needs to (i) learn the parameters w of the logistic regression model
in Equation 4 by optimizing the likelihood `(w) = logP (T |Ω;w)
where T corresponds to the set of all variables To, and (ii) infer the
maximum a posteriori (MAP) assignments to variables To.

When sufficient ground truth is available—we formalize this in
Section 4—SLiMFast uses empirical risk minimization (ERM) to
compute the parameters of its logistic regression model [27]. ERM
sets SLiMFast’s parameters w in Equation 4 to values that max-
imize the likelihood of the object values provided in the ground
truth. The optimization objective of ERM corresponds to the like-
lihood ` taken over the observed variables To in the ground truth
data. As no latent variables are involved in this step, the optimiza-
tion objective is convex and efficient methods such as stochastic
gradient descent (SGD) can be used to learn w. Afterwards, prob-
abilistic inference is used to estimate the value vo of objects not
present in the ground truth data. Variables vo are assigned to the
maximum a posteriori (MAP) estimates of variables To.

If ground truth is limited or not available, SLiMFast uses expec-
tation maximization (EM) to compute the parameters w that max-
imize the likelihood of the source observations Ω. EM estimates
w and vo iteratively by alternating between two steps: (i) the ex-
pectation step (E-step), where given an assignment to parameters
w the estimated true values of objects vo are assigned to the MAP
estimates of variables To, and (ii) the maximization step (M-step),
where given an assignment to variables vo the model parameters
w are estimated via their maximum likelihood values. When EM
is used, variables To associated with ground truth data correspond
to observed random variables in the compiled factor graph. The
value of the remaining latent variables is estimated using the above
iterative procedure. This corresponds to a typical semi-supervised
learning scenario. For EM, optimizing likelihood ` corresponds to
a non-convex objective as EM jointly learns the parameters w and
the distribution of To that maximizes `. The above iterative proce-
dure can be expensive and may converge to local optima.

After the compilation phase is over, SLiMFast’s optimizer deter-
mines which of the two algorithms (ERM or EM) should be used
and then learning and inference are performed within the frame-
work used to express SLiMFast’s probabilistic model. We used the
DeepDive framework [2, 36]. Probabilistic inference is performed
via Gibbs sampling. All ERM, EM and Gibbs sampling are imple-
mented over DeepDive’s sampler [41].

3.3 SLiMFast and Existing Fusion Methods
Several existing approaches express data fusion as a learning and

inference problem over probabilistic graphical models [9, 15, 29,
39]. The core difference between SLiMFast and previous methods
is that SLiMFast uses a discriminative probabilistic model while
existing data fusion methods use generative probabilistic models.
As a result, SLiMFast does not make strong distributional assump-
tions on how the source observations are generated but estimates
the conditional probability of the unknown true values of objects
directly given the source observations. As we show in Section 5,
the lack of strong distributional assumptions allows SLiMFast to
solve data fusion more accurately.

In particular, certain data fusion models [9, 43] rely on Naive
Bayes and assume that source observations are conditionally inde-
pendent. On the other hand, SLiMFast uses logistic regression—
Naive Bayes’ discriminative equivalent [28]—which does not as-
sume that observations are conditionally independent. When the
dependent variables (in data fusion the latent true values of ob-
jects) are Boolean, then Naive Bayes and logistic regression are
the same [27]. The latter implies that in certain cases, data fu-

sion approaches designed around Naive Bayes can be expressed in
SLiMFast. Finally, as we discuss in the next section, discrimina-
tive models allow us to obtain formal guarantees for data fusion by
adapting standard tools from statistical learning theory.

The fact that we build SLiMFast over a declarative factor graph
framework, gives us with the flexibility to express many of the ex-
isting data fusion methods in it. In general, one can follow the dis-
criminative relaxation procedure introduced by Patel et al. [31] to
convert data fusion methods that use sophisticated generative mod-
els to their discriminative counterparts, which, in turn, can be rep-
resented as a factor graph. While simple, this realization, combined
with SLiMFast’s optimizer, obviates the need for users to select a
data fusion model for different data fusion tasks, thus, shedding
light to the problem of model selection introduced by Li et al. [25].

4. DATA FUSION WITH GUARANTEES
We describe how SLiMFast yields data fusion solutions that come

with rigorous error guarantees. In SLiMFast, we must choose be-
tween ERM and EM to solve data fusion. Below, we describe the
key factors that determine the quality of data fusion results obtained
by SLiMFast for these two algorithms. We then provide formal er-
ror bounds on SLiMFast’s output estimates and build upon those to
design an optimizer that analyzes SLiMFast’s input and automati-
cally selects which of the ERM and EM to use so as to maximize
the quality of the returned data fusion solution.

4.1 Overview of SLiMFast’s Guarantees
Empirical risk minimization and expectation maximization were

described in Section 3.2. When ERM is used, the main factor that
determines the quality of SLiMFast’s is (i) the amount of ground
truth. For EM, the main factors are (ii) the average accuracy of data
sources, and (iii) the density of source observations, i.e., the aver-
age fraction of data sources providing observations for an object.
To illustrate the impact of these factors we use a simple example:

Example 6. We use a synthetic dataset with observations from
1,000 sources for 1,000 objects. We consider independent sources
for simplicity. We measure how accurately SLiMFast estimates the
true values of objects when ERM and EM are used.4 We vary the
average source accuracy in [0.5, 0.8], the percentage of training
data in [.1%, 60%], and the density in [0.005, 0.02]. The results
are shown in Figure 4. ERM is indeed affected only by the amount
of ground truth and remains stable as the other two factors vary.
The opposite is observed for EM.

Motivated by Example 6, we study SLiMFast’s probabilistic model
to obtain guarantees for SLiMFast’s data fusion solutions. We pro-
vide error bounds on the estimated true values of objects as well as
the estimated accuracy of data sources. Our results support the ex-
perimental evidence from Example 6. We now provide a summary
of our results and state them in detail in Section 4.2:
• When ground truth is available and ERM is used, standard

tools from learning theory give us that the error for both the
estimated object values and the estimated source accuracies

is proportional to
√
|K|
|G| where |G| is the number of ground

truth examples and |K| the number of features in SLiMFast.
• When no ground truth is available and EM is used, we show

that the error in estimated source accuracies is bounded by

Õ( 1
|S|δ +

√
|K|
|S||O|p ) where |K| is the number of features

4The methodology and metrics are the same as in Section 5. EM
and ERM correspond to Sources-EM and Sources-ERM.
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in SLiMFast, p is the probability of a source providing an
observation for an object, thus, determining density, and δ ∈
(0, 0.5] is a parameter such thatA∗s ≥ 0.5+δ for each source
s ∈ S.5 This is a novel bound that does not rely on existing
learning theory results.6

Our theoretical analysis reveals a tradeoff in the quality of solu-
tions obtained by ERM and EM as the ground truth, average source
accuracy, and density of a given data fusion instance vary. This
tradeoff is evident in Figure 4. For sufficient ground truth ERM
outperforms EM, but when ground truth is limited (as expected in
real applications) the best algorithm varies. For fixed ground truth,
EM can outperform ERM for dense instances (Figure 4(b)) or in-
stances where the average source accuracy is high (Figure 4(c)).
Figure 5 shows the tradeoff space. In summary, determining the
most accurate algorithm is not trivial, thus, we develop an informa-
tion theoretic optimizer for comparing the performance of EM and
ERM. SLiMFast’s optimizer is described in Section 4.3.

4.2 SLiMFast’s Theoretical Foundations
We present the results summarized above in detail. Our analysis

uses results and tools from learning theory, such as Rademacher
complexity. A background discussion on those and the proofs for
all theorems can be found in the Appendix of the paper.

5Notation Õ subsumes logarithmic factors.
6While we do not obtain a bound for object values, previous
work [16, 42] has shown that under strong generative assumptions
such a bound can be obtained. Nevertheless, these assumptions are
hard to evaluate in practice.

4.2.1 Guarantees with Ground Truth Data
We use standard generalization bounds based on Rademacher

complexity [26] to obtain guarantees on the estimated true values of
SLiMFast’s output. Given a parameter assignment w for SLiMFast
and a set of source-observations Ω, SLiMFast computes the poste-
rior probability for each variable To using Equation 4. We have the
following theorem bounding the risk of SLiMFast’s model:

Theorem 1 ([26]). Let w be a parameter assignment to SLiMFast.
Fix distribution D to be the true distribution from the object values
and source observations are generated. Fix parameter δ ∈ (0, 1).
Let L(w) be the expected log-loss under distributionD when infer-
ring the unknown values of objects using SLiMFast parameterized
via w. Moreover, let G correspond to a random sample of ground
truth data on object values given as input to SLiMFast and LG(w)
be the expected log-loss with respect to that ground truth sample.
Then with probability ≥ 1− δ over the draw of G:

L(w)− LG(w) ≤ O(
√
|K|/|G| log(|G|))

This theorem states that the log-loss over all objects is not much
larger than the log-loss over ground truthG. Thus, if we used ERM
to learn the model parameters w by optimizing over the log-loss
LG(w) and if

√
|K|/|G| is small, we will infer the correct true

values of all objects with high-probability.
We now turn our attention to the estimated accuracy of data

sources. We state the way we measure SLiMFast’s performance.
SLiMFast’s model is parameterized by a parameter vector w of
length |K|. We assume that source-object pairs (s, o) (and a cor-
responding true object value v∗o and observation vs,o) are drawn
from some unknown distribution D. Let DS denote the probability
distribution over sources obtained from D. Let L(w) denote the
loss of a model with weight vector w which quantifies how bad its
source accuracy estimates are with respect to distribution D. We
use again use the log-loss for this purpose:

Definition 7 (Accuracy Estimate Loss). The loss of a weight vector
w, denoted Lw, is defined as:

Lw = E(s,o)∼D[Lw(s, o)]

where

Lw(s, o) = 1Vo,s=v∗o log(As(w)) + 1Vo,s 6=v∗o log(1−As(w))

and 1 is the indicator function, and As is estimated by Equation 3.

Loss Lw can also be written as:

Lw = Es∼DS [A∗s log(As(w)) + (1−A∗s) log(1−As(w))]



whereA∗s denotes the true unknown accuracy of a data source. This
quantity is minimized whenAs(w) = A∗s for each s, and the differ-
ence from its optimal value is the expected Kullback-Leibler (KL)
divergence between the true accuracy A∗s and the predicted accu-
racy As(w) if the two accuracies are viewed as Bernoulli random
variables. We can bound the accuracy estimation error as:

Theorem 2. Fix distribution D and a parameter δ ∈ (0, 1). Let G
be a sample of training examples from distribution D. Let

w∗ = argminwLw and w = argminw
∑

(s,o)∈G
Lw(s, o)

Then with probability ≥ 1− δ over the draw of G,

Lw − Lw∗ ≤ O(
√
|K|/|G| log(|G|))

This theorem also follows from results on Rademacher complex-
ity. While similar to generalization bounds, here, the loss L is
parameterized by w. Our bound states that the estimation error
for source accuracies is proportional to

√
|K|. This suggests that

adding extra, potentially uninformative features to our model can
worsen our source accuracy estimates. A user has no way of know-
ing which features are informative and which are not. Fortunately,
it is possible for a user to add many features, without incurring
a large increase in accuracy estimation error, as long as we regu-
larize our model appropriately. L1-regularization is a well-known
method to induce sparsity in the solution [4], i.e., to yield only a
small number of non-zero values in the parameter vector w. If the
user provides a large number of features, of which only a few are
predictive of source accuracies, then using L1-regularization will
obtain a vector w that only assigns non-zero weights to the predic-
tive features. Moreover, the error in the accuracy estimate is pro-
portional to the square root of the number of predictive features,
rather than the square root of the total number of features. For-
mally, if k of the |K| features get non-zero weight, then we have:

Lw − Lw∗ ≤ O(
√
k log(|K|)/|G| log(|G|))

4.2.2 Guarantees without Ground Truth
We now assume no ground truth and rely only on source ob-

servations for estimating the source accuracies. To simplify our
theoretical analysis, we assume that:
• The true accuracy of each source A∗s takes values in [0.5 +
δ/2, 1− δ/2] for some 0 < δ ≤ 0.5.
• Sources have uniform selectivities, i.e., for each source-object

pair (s, o), the probability that source s provides an observa-
tion for o is p. We also assume that p ≥ 2/|S|, i.e., in expec-
tation, at least two sources give observations for an object.
The expected number of observations is |S||O|p.
• We consider a set of K features that are predictive of the

accuracies of data sources.

Theorem 3. If all above conditions hold we can obtain an estimate
As for the accuracy of source s such that

1

|S|
∑

s∈S
DKL(As||A∗s) ≤ O

(
log |O|
|S|δ +

√
|K|
|O||S|p

log2(|O||S|)
δ

)

where DKL stands for the KL divergence.

This theorem offers two important insights on unsupervised data
fusion methods: their error depends on two properties of a fusion
instance (i) the accuracy of sources, and (ii) the overlap across
source observations. The higher source accuracies are (i.e., the
higher δ is) the lower the estimation error will be. The same holds

for the source overlap (controlled via p). The aforementioned as-
sumptions were only used to simplify our analysis and are not in-
herent to SLiMFast. We only leverage the above insights to design
a general model that allows SLiMFast to identify when EM can be
used to solve data fusion accurately. In Section 5 we show that this
model is accurate even when certain of the modeling assumptions
do not hold (e.g., when most sources’ accuracy is lower than 0.5).

4.3 SLiMFast’s Optimizer
Considering the main steps performed by ERM and EM, de-

scribed in Section 3.2, we see that while ERM uses the object val-
ues provided as ground truth to estimate parametersw in SLiMFast,
EM uses the estimated object values output from its E-step. Based
on this observation, we can compare the performance of ERM and
EM if we compare the information in the output of the E-step for
EM with the information in the ground truth used in ERM.

Comparing EM with ERM. We consider the information in
ground truth data: Given an object o and its estimated true value vo,
we define a Boolean random variable Co taking the value “true” if
vo obtains the correct value for o and the value “false” otherwise.
If we have no access to ground truth data the maximum value of
Co’s entropy is H(Co) = 1. Given ground truth information on vo
the entropy of Co becomes H(Co) = 0, thus, we gain 1-unit of in-
formation. If we have m sources providing observations for object
o, the total information gain is m-units for this object. Summing
units over all objects in ground truth, we obtain the total units of
information gain. We apply a similar procedure to EM. We use an
example to illustrate the intuition behind our approach:

Example 8. Consider 10 sources providing binary observations
for an object o whose true value is unknown. We assume that all
sources have the same accuracy 0.7 and assume majority vote is
used to resolve conflicts. Since, the number of distinct values as-
signed by sources to object o is two, majority vote will retrieve the
correct value for o only when more than 5 sources provide the cor-
rect value. The probability pe of this event occurring is given as a
function of the CDF of a Binomial distribution:

pe = 1−
5∑

i=0

(
10

i

)
0.7i(1− 0.7)10−i = 0.8497

We now consider the random variable Co from above. Given pe
the probability that variable Co becomes true is pe and we have
H(Co) = −pe log2(pe)− (1− pe) log2(1− pe) = 0.611. Thus,
after applying the majority vote model during the E-step, object o
contributes 0.389-units of information. Multiplying that with 10 we
have that object o contributes a total of 3.89-units.

Generalizing the above example, we use the following model to
estimate the information we gain after the E-step of EM: For an
object o, letm be the number of sources providing observations for
it, and |Do| the number of distinct values assigned to o by these
sources. Our optimizer makes the assumption that all sources have
the same accuracy A and conflicts are resolved via majority vote.
This model is used only in our optimizer to make a quick decision
between EM and ERM as we discuss below. The probability that
this model will obtain the correct value for an object is measured
via the CDF of a Binomial distribution parameterized by A, m,
andm/|Do|. To estimate the total number of information units, we
iterate over all objets. Algorithm 1 shows this procedure.

Estimating the Average Source Accuracy. Algorithm 1 re-
quires the average accuracy of sources as input. To estimate this



Algorithm 1: EMUnits: Estimating Information Units for EM
Input: Objects O, Source Observations Ω, Average Source Accuracy

A
Output: EM Information Units
totalUnits = 0;
for each object in O do

m = # of sources with observations for o;
|Do| = # of distinct values assigned to o by sources;

pe = 1−
bm/|Do|c∑

i=0

(m
i

)
Ai(1−A)m−i;

if pe ≥ 0.5 then
totalUnits += 1− pe log2(pe)− (1− pe) log2(1− pe);

return totalUnits;

unknown quantity, we rely on matrix completion. Given the set
of source observations Ω, we define X to be an |S| × |S| ma-
trix capturing the agreement rate of data sources. Given a data
source s let Os denote the set of objects for which s provides
an observation. We define entry Xi,j for sources si and sj as
Xi,j = 1

|Osi
∩Osj

|
∑

o∈Osi
∩Osj

1vo,si=vo,sj
− 1vo,si 6=vo,sj . We as-

sume that all data sources have the same accuracy A and that they
are not adversarial, i.e.,A > 0.5. GivenA, the expected agreement
rate between sources si and sj is A2 + (1−A)2 − 2A(1−A) =
(2A − 1)2. Let µ = 2A − 1. The expected agreement rate be-
tween sources si and sj is E[Xi,j ] = µ2. Therefore, we estimate
µ as µ̂ = arg min 1

2
||X − µ2||2. This optimization problem cor-

responds to a matrix completion problem. Setting the derivative of
the optimization objective to zero gives as the closed form solution

µ̂ =
√∑

i,j Xi,j

|S|2−|S| . Given µ̂ the average accuracy of data sources
A is A = (µ̂ + 1)/2. This setup can be extended to a different
accuracy per source via a more general matrix completion prob-
lem. Matrix completion comes with optimality guarantees [7] and
variants of SGD can be used to solve it efficiently [35].

Algorithm 2: SLiMFast’s Optimizer
Input: Objects O, Source Observations Ω, Source Features K,

Ground Truth G, Threshold τ
Output: Learning Algorithm
if
√
|K|/|G|log(|G|) < τ then
return ERM;

totalERMUnits = |G|;
Estimate Average Source Accuracy A ;
totalEMUnits = EMUnits(O,Ω,A);
if totalERMUnits < totalEMUnits then

return EM;

else
return ERM;

Overall Algorithm. SLiMFast’s optimizer uses Algorithm 2 to
decide between ERM and EM. First, the algorithm examines if the
bound in Equation 2 is below a threshold τ . If so, then it always
chooses the ERM algorithm. Otherwise, it compares the amount of
ground truth with the estimated EM units (Algorithm 1) to decide
between EM and ERM. In Section 5 we evaluate our optimizer on
different real world datasets and show that it selects the best algo-
rithm almost every time. Our optimizer runs in 2% of the total time
required to solve data fusion.

Table 1: Parameters of the data used for evaluation. For ge-
nomics the true average accuracy of data sources cannot be es-
timated reliably due to the sparsity of the dataset.

Parameter Stocks Demos Crowd Genomics
# Sources 34 522 102 2750
# Objects 907 3105 992 571

Available GrdTruth 100% 100% 100% 100%
# Observations 30763 27736 19840 3052

# Domain Features 7 7 4 4
# Feature Values 70 341 171 16358
Avg. Src. Acc. < 0.5 0.604 0.540 -

Avg. Obsrvs per Obj. 33.9 15.703 20 5.345
Avg. Obsrvs per Src. 904.79 53.13 194.51 1.11

Discussion. When the number of labeled data is large, one can
estimate the accuracy of sources as the empirical fraction of er-
roneous observations per source. Standard error guarantees apply
here. Nonetheless, SLiMFast still uses ERM, as the above empiri-
cal estimator corresponds to Naive Bayes and the conditional inde-
pendence assumption may not apply in practice (see Section 5).

5. EXPERIMENTAL EVALUATION
We compare SLiMFast against state-of-the-art data fusion tech-

niques on four diverse real-world datasets. We show that SLiMFast
yields accuracy improvements of up to 50% over state-of-the-art
baselines for estimating the true values of objects and 2× to 10×
lower error estimates for source accuracies.

The main points we seek to validate are: (i) how much train-
ing data is needed to obtain high-quality data fusion models, (ii)
what is the impact of domain-specific features on data fusion, and
(iii) how effective is SLiMFast’s optimizer in selecting between EM
and ERM for learning the parameters of SLiMFast’s probabilistic
model. Finally, we investigate how SLiMFast’s output can be used
to provide insights on source accuracies and study how more com-
plex fusion methods can be expressed in SLiMFast.

5.1 Experiment Setup
We describe the datasets, metrics, and experimental settings used

to validate SLiMFast against competing data fusion methods.

Datasets. We use four datasets, one from the finance domain,
one from the intelligence domain, a crowdsourcing dataset, and a
genomics dataset corresponding to typical data fusion scenarios.
For the first two datasets we seek to integrate information from web
pages on real-world objects including stocks and demonstration-
events. In the third dataset the goal is to integrate answers provided
by crowd-workers for a popular sentiment analysis task. The fourth
dataset corresponds to the Genomics application from Section 1.
Table 1 shows statistics for these datasets. All datasets follow the
single-truth semantics, i.e., objects have one correct value and at
least one source provides that.

Stocks. This is a popular data fusion dataset [24] where sources
provide information on the volume of stocks, i.e., the total number
of shares that trade hands from sellers to buyers, for July 2011. The
dataset contains information on multiple stock-attributes. We focus
on stock volumes as they exhibit the most conflicts across sources.
We removed sources that are no longer active and for which no traf-
fic statistics could be obtained (see discussion on domain-specific
features below), and removed highly-accurate sources (e.g., NAS-
DAQ) used to obtain ground truth data.

Demonstrations. This dataset contains reports of demonstrations in
Africa from January, 2015 to April, 2015 from GDELT [21], a cat-



alogue with extractions of real-world events from online news arti-
cles. The same demonstration can be reported by multiple sources
but the corresponding GDELT entries can contain conflicts (e.g., re-
port different dates or lat-long coordinates) due to extraction errors.
Each extraction is treated as an object taking values in {true, false}
and our goal is to determine the correct extractions. Sources cor-
respond to online news domains. GDELT data can be particularly
challenging for data integration and data cleaning tasks [3, 33] due
to the heterogeneity of data sources and noisy extractions. Ground
truth was obtained using the ACLED dataset7. ACLED is a human-
curated database of demonstrations in Africa. To generate ground
truth data, we mapped each GDELT entry to an ACLED entry con-
sidering the date and location of the two entries. Any demonstration
not in ACLED is assumed to be false.

Crowd. This is the “weather sentiment” dataset from Crowdflower 8.
The dataset contains crowd evaluations for the sentiment of weather-
related tweets corresponding to positive, negative, neutral, and not
weather related. It contains 1,000 tweets and contributions from 20
workers per tweet. Our goal is to detect the true sentiment for each
tweet. Ground truth evaluations are provided with the raw data.

Genomics. This dataset was obtained from the Genetic Association
Database (GAD). 9 The dataset contains gene-disease associations
reported in the scientific literature. Each association is annotated by
human experts as positive or negative if the authors claim a positive
or a negative association respectively. Ground truth was obtained
from human-curated datasets available at DisGeNet. 10 From the
full dataset we only considered gene-phenotype associations that
have conflicting observations from at least two sources.

Domain-specific Features. For the first two datasets, sources
correspond to web-domains. For each domain we obtained traffic
statistics from Alexa.com: (i) global rank, (ii) country rank, (iii),
bounce rate, (iv) daily page views per visitor, (v) daily time on site,
(vi) search visits, and (vii) total sites linking in. All metrics take nu-
meric values and are discretized to get Boolean features. We found
that discretization does not affect SLiMFast’s performance signifi-
cantly. For Crowd, features are (i) the channel of each worker, i.e.,
the particular market used to hire the worker, (ii) the country and
(iii) city of the worker, and (iv) the fraction of tweets labeled by
the worker. For Genomics, we extracted the (i) journal, (ii) citation
count, (iii) publication year, and (iv) author list from PubMed.

Methods. We compare three variations of SLiMFast against base-
lines. First, we focus on methods using discriminative models:
• SLiMFast-ERM, SLiMFast-EM, SLiMFast: The first two

always use ERM and EM respectively. The last uses SLiM-
Fast’s optimizer to select between EM and ERM.
• Sources-ERM: Same as SLiMFast but without domain-specific

features. ERM is always used.
• Sources-EM: The same as Sources-ERM but EM is always

used. This approach can be viewed as the discriminative
equivalent of the generative model proposed Zhao et al. [43].

We also consider methods that use generative models:
• Counts: This corresponds to Naive Bayes. Source accura-

cies are estimated as the fraction of times a source provides
the correct value for an object in ground truth.

7http://www.acleddata.com
8http://www.crowdflower.com/data-for-everyone
9https://geneticassociationdb.nih.gov/

10http://disgenet.org/

• ACCU: This is the Bayesian data fusion method introduced
by Dong et al. [9]. We do not consider source copying.

Finally, we compare SLiMFast against two state-of-the-art itera-
tive optimization data fusion methods [22, 39]. Iterative optimiza-
tion methods do not rely on probabilistic semantics but measure the
trustworthiness of data sources via a reliability weight:
• CATD: This data fusion method was introduced by Li et

al. [22] and extends source reliability scores with confidence
intervals to account for sparsity in source observations.
• SSTF: This data fusion method by Yin et al. [40] leverages

semi-supervised graph learning to exploit the presence of
ground truth data.

Different Methods and Ground Truth. ERM-based methods use
ground truth to learn the model parameters. For EM-based meth-
ods, ground truth is used as evidence in the factor graph and EM is
executed until convergence, thus, corresponding to a semi-supervised
approach. For ACCU and CATD, any available ground truth is used
to initialize the source accuracy estimates, as suggested in [9] and
[22]. Both algorithms are executed until convergence.

Evaluation Methodology. All datasets come with ground truth
for all objects. In our experiments, we focus on small amounts of
training data up to 20%. We vary the percentage of training data
in {0.1, 1, 5, 10, 20}. The splits are generated randomly, thus, for
each fraction of training data we run each method five times and re-
port the average performance. To measure performance we use:
• Accuracy for True Object Values: the fraction of objects for

which the data fusion method identifies the correct true value
over the total number of objects. The accuracy is computed
with respect to objects present in the testing data.
• Error for Estimated Sources Accuracies: a weighted-average

of the absolute estimation error across all source accuracies.
For each source we take the absolute error between its esti-
mated accuracy and its true accuracy. The true accuracies are
computed using all ground truth data. Errors are weighted by
the number of observations per source to penalize wrong esti-
mates for sources that provide many observations. A similar
weighting scheme is used by existing approaches [22, 23].

Implementation Details. SLiMFast, Sources-ERM and Sources-
EM, are implemented over DeepDive v0.7. EM and ERM are im-
plemented on top of DeepDive’s sampler using SGD to optimize
the likelihood objective. All other methods are implemented in
Python. All experiments were executed on a machine with four
CPUs (each CPU is a 12-core 2.40 GHz Xeon E5-4657L), 1TB
RAM, running Ubuntu 12.04. While all methods run in memory,
their footprint is significantly smaller than the available resources.

5.2 Experimental Results
We provide a comparison to competing data fusion methods on

the quality of the data fusion output. We demonstrate that in most
cases SLiMFast outperforms state-of-the-art data fusion methods.
We also evaluate our optimizer and show that it enables SLiMFast
to correctly choose between EM and ERM (in all but one cases) so
that it obtains the best output for data fusion. A comparison of the
running time of different methods is provided in Appendix C.

5.2.1 Identifying the True Value of Objects
We evaluate how accurately different data fusion methods esti-

mate the true object values, and report the relative difference be-
tween SLiMFast and competing approaches. The results are shown



Table 2: Accuracy for predicting the true object values with
varying training data (TD). Bold indicates the best performing
method. Sources-ERM(-EM) is reported as S-ERM(-EM).

Panel A: Accuracy for different types of data fusion methods.
Discriminative Generative Iterative

Dataset
TD
(%) SLiMFast S-ERM S-EM Counts ACCU CATD SSTF

Stocks

0.1 0.856 0.780 0.691 0.628 0.754 0.724 0.754
1 0.914 0.909 0.824 0.831 0.755 0.836 0.755
5 0.925 0.875 0.897 0.849 0.760 0.897 0.753
10 0.922 0.908 0.881 0.846 0.755 0.911 0.757
20 0.922 0.912 0.918 0.817 0.765 0.915 0.757

Demos

0.1 0.732 0.694 0.663 0.525 0.554 0.511 0.678
1 0.793 0.754 0.679 0.523 0.587 0.538 0.678
5 0.826 0.804 0.813 0.555 0.587 0.538 0.679
10 0.851 0.859 0.858 0.556 0.683 0.558 0.678
20 0.900 0.899 0.897 0.503 0.708 0.564 0.679

Crowd

0.1 0.843 0.549 0.560 0.78 0.873 0.855 0.769
1 0.926 0.872 0.837 0.911 0.914 0.888 0.781
5 0.946 0.927 0.877 0.945 0.946 0.898 0.784
10 0.945 0.931 0.914 0.954 0.956 0.935 0.783
20 0.952 0.945 0.932 0.967 0.959 0.945 0.839

Genomics

0.1 0.567 0.542 0.543 0.557 0.546 0.532 0.556
1 0.586 0.532 0.534 0.583 0.554 0.532 0.528
5 0.613 0.534 0.536 0.586 0.559 0.549 0.537
10 0.687 0.544 0.548 0.588 0.571 0.561 0.526
20 0.720 0.563 0.571 0.5968 0.575 0.576 0.556

Panel B: Relative difference (%) between SLiMFast and other methods.
TD
(%) SLiMFast S-ERM S-EM Counts ACCU CATD SSTF

Average
Accuracy
across
Datasets

0.1 0.749 -14.4 -18.04 -16.94 -9.04 -12.54 -8.04
1 0.805 -4.72 -10.71 -11.52 -12.71 -13.20 -14.81
5 0.827 -5.13 -5.64 -11.32 -13.83 -12.93 -16.82
10 0.851 -4.78 -5.99 -13.53 -12.92 -12.92 -19.41
20 0.874 -5.00 -5.03 -17.46 -13.93 -14.13 -18.97

in Table 2. For SLiMFast, we report the results obtained when us-
ing our optimizer with the threshold τ in Algorithm 2 set to 0.1.
The effect of τ on our optimizer is studied in Section 5.2.3. As
shown in Table 2 Panel B, on average, SLiMFast outperforms other
data fusion methods significantly with relative accuracy differences
of more than 10% in many cases.

Comparing SLiMFast against methods that make strong inde-
pendence assumptions, i.e., Counts, ACCU, and CATD, we see
that SLiMFast yields accuracy improvements of more than 10%
for almost all amounts of training data. In some cases, e.g., for
Demonstrations, the absolute accuracy improvements are ∼ 0.3—
a relative improvement of more than 50%. This is because sources
in the Demonstrations dataset are not independent as they corre-
spond to online news media exhibiting correlations (Appendix D).
In such cases, SLiMFast can effectively identify source correlations
as it makes no assumptions over sources.

On the other hand, when sources are truly independent, as in
Crowd, ACCU exhibits marginally better performance–especially
for extremely small amounts of training data. This is due to the
modeling assumptions of ACCU matching the way source observa-
tions were actually generated. For extremely sparse datasets, like
Genomics, SLiMFast can yield accuracy improvements of up to
25% since domain-specific features allow it to recover source cor-
relations more effectively than previous methods.

We now turn our attention to Sources-ERM and Sources-EM
that use discriminative models. In most cases, SLiMFast outper-
forms both methods, thus, providing evidence that domain-specific
features allow us to solve data fusion more accurately. SLiM-
Fast yields an average accuracy improvement of 9.82% for small
amounts of training data (≤ 5%). For larger amounts of training
data, i.e., 10% and 20%, all models yield comparable results.

Table 3: Error for estimated source accuracies for varying
training data. We focus on methods that use probabilistic se-
mantics. Bold indicates the best performing method. Sources-
ERM and Sources-EM are shown as S-ERM and S-EM.

Discriminative Generative

Dataset
TD
(%) SLiMFast S-ERM S-EM Counts ACCU

Stocks

0.1 0.009 0.023 0.025 0.166 0.107
1 0.01 0.008 0.006 0.021 0.108
5 0.009 0.003 0.003 0.008 0.107
10 0.002 0.008 0.004 0.012 0.096
20 0.004 0.003 0.004 0.007 0.084

Demos

0.1 0.093 0.093 0.093 0.253 0.308
1 0.093 0.093 0.093 0.218 0.298
5 0.093 0.094 0.093 0.104 0.202
10 0.094 0.094 0.094 0.074 0.183
20 0.096 0.095 0.097 0.046 0.164

Crowd

0.1 0.027 0.102 0.112 0.292 0.013
1 0.009 0.017 0.025 0.138 0.013
5 0.008 0.009 0.016 0.051 0.012
10 0.008 0.009 0.010 0.036 0.011
20 0.008 0.007 0.009 0.031 0.009

Finally, we focus on SSTF which leverages semi-supervised learn-
ing to exploit the presence of labeled data. As shown in Table 2,
SLiMFast always gives 13% more accurate results than SSTF on
average. In certain cases, we observe accuracy improvements of
more than 30%. We see that ACCU and CATD also outperform
SSTF when altered to exploit the presence of labeled data.

Takeaways. Domain-specific features allow SLiMFast to obtain
accurate data fusion results with a notably small amount of training
data. In some cases ground truth data on only 1% of the objects
allow SLiMFast to retrieve results that are more than 90% accu-
rate. In datasets where source observations are not independent,
such as Demonstrations, SLiMFast can identify the true value of
objects more accurately (with absolute accuracy improvements of
more than 0.3 in certain cases) than existing data fusion models.
This is because, SLiMFast’s discriminative model does not make
any distributional assumptions over data sources, while existing
data fusion approaches (e.g., ACCU and CATD) make strong inde-
pendence assumptions for data sources. In general improvements,
as the ones above, enable us to switch from data fusion outputs of
moderate accuracy, i.e., 70%, to outputs that are 90% accurate.

5.2.2 Estimating the Accuracy of Data Sources
We now evaluate the ability of different data fusion methods to

obtain low-error estimates of the true, unknown accuracy of data
sources. We focus on models that follow probabilistic semantics,
i.e., the trustworthiness of data sources is quantified via the notion
of accuracy. The results are reported in Table 3.

For all configurations SLiMFast yields an average error for source
accuracies less than 0.1. The error by other discriminative mod-
els (i.e., Sources-ERM and Sources-EM) are comparable to that of
SLiMFast. On the other hand, the estimation-error obtained by gen-
erative Counts and ACCU is significantly higher for cases where
either the available ground truth is very limited or the conditional
independence assumption of their generative models does not hold.

Takeaways. In addition to estimating the true values of objects
accurately, SLiMFast can also estimate the true accuracy of data
sources with low-error. In fact, SLiMFast exhibits estimation-errors
that are 2× to 10× lower than competing techniques.



Table 4: Evaluating SLiMFast’s optimizer at choosing between
EM and ERM as we vary the amount of training data (TD). We
report the accuracy score of SLiMFast-ERM and SLiMFast-
EM, their relative difference and SLiMFast’s optimizer deci-
sion. Bold entries indicate the best performing algorithm.

Dataset
TD
(%)

Optimizer’s
Decision Correct

Diff.
(%)

SLiMFast
ERM

SLiMFast
EM

Stocks

0.1 EM Y 0.0 0.856 0.856
1 ERM Y 7.8 0.914 0.848
5 ERM Y 3.6 0.925 0.893
10 ERM Y 2.2 0.922 0.902
20 ERM Y 3.8 0.922 0.888

Demos

0.1 EM Y 2.7 0.713 0.732
1 EM Y 6.6 0.744 0.793
5 EM Y 3.8 0.796 0.826
10 EM Y 0.0 0.851 0.851
20 EM N 2.3 0.921 0.900

Crowd

0.1 EM Y 2.18 0.825 0.843
1 ERM Y 0.15 0.926 0.912
5 ERM Y 0.74 0.946 0.939
10 ERM Y 0.32 0.945 0.942
20 ERM Y 0.42 0.952 0.948

Genomics

0.1 EM Y 12.1 0.506 0.567
1 EM Y 12.2 0.522 0.586
5 EM Y 4.4 0.587 0.613
10 EM Y 19.3 0.576 0.687
20 EM Y 8.9 0.661 0.720

Omitted Comparison. We omit CATD and SSTF from the com-
parisons since the former does not follow probabilistic semantics—
source trustworthiness is measured via normalized weights across
data sources—and the latter does not estimate the accuracy of sources.
We also do not use Genomics as sources have a low number of ob-
servations, thus, their true accuracies cannot be estimated reliably.

5.2.3 Optimizer Evaluation
We measure the accuracy of SLiMFast-ERM, SLiMFast-EM at

predicting the true values of objects and also report the algorithm
that SLiMFast’s optimizer chooses using the statistical model intro-
duced in Section 4.3. For Algorithm 2 in the optimizer we set the
threshold parameter τ to 0.1. The results are reported in Table 4. As
shown, SLiMFast’s optimizer can accurately choose the algorithm
(EM or ERM) that yields the best data fusion output. While in most
cases the accuracy scores of SLiMFast-EM and SLiMFast-ERM
are comparable—the average accuracy improvement obtained by
using the optimizer is 2.4%— there are cases where selecting cor-
rectly between EM and ERM yields a relative accuracy improve-
ment of more than 7%, which in turn leads to results that are more
than 90% accurate. Such accuracy improvements can be signifi-
cant in sensitive applications where an accuracy of above 90% for
the estimated true values of objects is required. The error for esti-
mated source accuracies of SLiMFast-EM and SLiMFast-ERM is
comparable and similar to that of SLiMFast (see Table 3).

Our experimental results indicate that the simple model in Sec-
tion 4.3 is effective at analyzing heterogeneous datasets and cor-
rectly predicts the relative performance between expectation max-
imization (EM) and empirical risk minimization (ERM). For in-
stance, we observe that SLiMFast’s optimizer correctly selects to
use the ERM algorithm for all amounts of ground truth in the Stocks
dataset, where the density, i.e., the probability of a source providing
an observation for an object, of this dataset is 0.99, and the average
accuracy of data sources is below 0.5. In contrast, for Demon-
strations and Genomics, SLiMFast’s optimizer estimates a higher
source accuracy and chooses to run EM, corresponding to the cor-
rect choice in almost all cases. Finally, for Crowd it can correctly
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Figure 6: Lasso path for features used in Stocks. Higher x-axis
values correspond to lower regularization penalties.

.

identify the crossover point between EM and ERM as we increase
the amount of available ground truth.

Finally, to evaluate the robustness of our optimizer, we vary the
threshold parameter τ ∈ {0.01, 0.1, 0.5, 1.0}. For Stock, our op-
timizer correctly selects to always run ERM for all values of τ .
Similarly for Genomics it always selects to run EM. For Crowd
it makes no mistakes as it correctly switches to ERM after 1%
of training data is revealed for all values of τ . For Demonstra-
tions and τ ≥ 0.5 our optimizer selects to run EM for ≤ 5% of
ground truth and ERM afterwards, thus, making no mistake. For
τ = {0.01}, our optimizer switches to ERM only for 40% of train-
ing data, hence, making two mistakes.

Takeaways. SLiMFast’s optimizer can effectively choose between
EM and ERM, thus, obviating the need for non-expert users to rea-
son about which learning algorithm to use. Our experimental eval-
uation reveals that the simple model described in Section 4.3 can
accurately detect which of learning algorithms, EM or ERM, will
perform better for heterogeneous data fusion instances.

5.3 Studying Additional Functionalities
We now show how domain-specific features can be used in SLiM-

Fast to obtain insights about the accuracy of sources and to estimate
the quality of sources for which no observations are available.

5.3.1 Important Features of Source Accuracies
Users are often interested not only in how accurate a source is

but the factors or features that affect its accuracy. We describe
how domain-specific features in SLiMFast can be used to evaluate
the accuracies of data sources. We describe how coupling SLiM-
Fast with a standard statistical technique, called the Lasso path,
both recovers insights about source accuracies stated in previous
work and can be used to provide novel insights. Lasso path [37]
is a standard technique to inspect the importance of features in dis-
criminative probabilistic models. The idea is to examine how the
feature-weights of an L1-regularized model change as the regular-
ization penalty varies: a high penalty means that fewer features
obtain non-zero weights, thus, are used in the model, while a low
regularization penalty allows more features to be used.

In lasso path, important features obtain non-zero weights for
high regularization penalties and at the same time their absolute
weight keeps increasing as the penalty decreases. Typically, the
results of a lasso path are displayed as a plot; an example for the
Stocks dataset is shown in Figure 6. On the x-axis we have a param-
eter µ ∈ [0, 1] that is inversely related to the regularization penalty
and on the y-axis the weights of features in the model.
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Figure 7: Using features to estimate source accuracy.

For Stocks, the most important features correspond to daily us-
age statistics, such as the “Bounce Rate” (with low bounce rate
implying higher accuracy), and the “Daily Time on Site” (with low
implying low accuracy). On the other hand, the number of “Total
Sites Linking In”, i.e., a proxy for PageRank, is not found to be
important. This recovers a recent experimental result showing that
PageRank is not correlated with the accuracy of web-sources [11].
Lasso path can be applied to any input provided to SLiMFast. In
Appendix E, we show the Lasso path for the Crowd dataset, and we
make the observation that the labor-channel via which workers are
hired at CrowdFlower can be predictive of a worker’s accuracy.

5.3.2 Source Quality Initialization
We examine how the output of SLiMFast, can be used to answer

the problem of source quality initialization [25], i.e., the task of
estimating the accuracy of newly available sources, from which no
observations are available. The key idea is to just use the domain-
specific features to predict the accuracy of sources. We use the
learned weights of domain-specific features to predict the accuracy
of new sources and measure the average absolute error between the
estimated source accuracy and the true accuracy of sources.

We conduct the following experiment: for Stock, Demonstra-
tions and Crowd, we restrict the number of sources given as in-
put to SLiMFast, varying the percentage of used sources to be in
{25%, 40%, 50%, 75%}. After learning the model parameters the
feature weights are used to predict the accuracy of unseen sources.
The results are shown in Figure 7. We see that the estimation error
decreases as more sources are revealed to SLiMFast. For Stocks
and Demonstrations, the error is larger compared to the case when
we have access to the data of a source. For Crowd we can reliably
predict the accuracy of unseen data sources even when only 25%
of all sources are available.

6. RELATED WORK
The prior work related to this paper can be placed in a few cate-

gories; we describe each of them in turn:

Data fusion. There has been a significant amount of work on data
fusion methods, including approaches that follow probabilistic se-
mantics [9, 11, 30, 43], optimization-based techniques [22, 23],
and iterative models [15, 29, 39]. All these methods only use the
available source observations to estimate the trustworthiness of data
sources and solve data fusion. On the other hand, SLiMFast can
also use domain knowledge to solve data fusion more accurately.

Quality guarantees for data fusion. Several data fusion methods
come with convergence guarantees [9] or confidence intervals for
the estimated source trustworthiness [22]. Nevertheless, no existing
method comes with guarantees on how close the estimated source
accuracies are to the true accuracies of data sources. In contrast to
them, SLiMFast comes with rigorous guarantees on its error rate for
the estimated source accuracies, as well as its object truth estimates.

The only work prior to ours that comes with theoretical guarantees
on the error rate of accuracy estimates is from the crowdsourcing
community [8, 17, 20, 18] where data sources correspond to human
workers. Moreover, recent work in crowdsourcing [16, 42] showed
that EM-based Bayesian data fusion models can retrieve the true
accuracies of data sources. Nevertheless, these results come with
strong generative assumptions that only hold for restricted data fu-
sion instances. Also, none of the proposed approaches consider
exogenous features characterizing human workers. Our techniques
might be of independent interest to the crowdsourcing community.

Explanations for data fusion. Understanding the output of data
fusion is crucial for non-expert users [25]. Recent work [13] has
considered the problem of providing explanations on the output
of data fusion algorithms. The generated explanations correspond
to compact summaries of the decisions made by the fusion algo-
rithm during its execution. The summaries are also coupled with
examples from the input source data to promote interpretability. In
our work we follow an orthogonal direction. Instead of relying on
source data and presenting the user with a trace of the fusion al-
gorithm, we leverage the presence of domain specific features, and
use techniques like L1-regularization [37] to present users with the
most informative features that affect source accuracies.

Efficiency of data fusion. Most existing data fusion methods adopt
iterative procedures like EM to estimate the quality of sources and
compute the true values of objects [25]. This can be time consum-
ing, especially when data fusion is applied on large scale data [24].
To address this challenge, recent literature has proposed the use
of Map-Reduce based techniques [11] and has introduced stream-
ing data fusion methods [44]. We show that when sufficient ground
truth is available, we can avoid time consuming iterative algorithms
entirely by using empirical risk minimization and efficient algo-
rithms such as stochastic gradient descent.

7. CONCLUSION
We expressed data fusion as a learning and inference problem

over discriminative probabilistic graphical models. This formula-
tion enabled us to obtain data fusion models with rigorous guar-
antees and answer a series of open-problems in data fusion. We
introduced SLiMFast, the first model that combines cross-source
conflicts with domain-specific features for data fusion. Our theo-
retical and experimental analysis showed that domain-specific fea-
tures not only lead to better source accuracy estimates but also al-
low us to identify the true value of objects more accurately. We also
studied the tradeoff space between the quality of data fusion re-
sults when expectation maximization (EM)—a standard technique
for learning the parameters of data fusion models—and empirical
risk minimization (ERM) are used to learn SLiMFast’s parameters.
Extending this analysis to semi-supervised settings is an exciting
future direction. We also proposed a simple model for estimating
the performance of each algorithm and built an optimizer that auto-
matically selects the best algorithm for learning the parameters of
a given data fusion model. Our experiments confirmed the effec-
tiveness of our optimizer for a variety of real-life setups. Finally,
we showed that SLiMFast can be used to address open-problems in
data fusion such as source reliability initialization.
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APPENDIX
A. RADEMACHER COMPLEXITY

We provide a discussion on Rademacher complexity [26], one
of the main tools used to derive the theoretical results presented
in Section 4.2. The notion of Rademacher complexity [26] mea-
sures the richness of a class of functions and is used for excess risk
bounds and generalization bounds. The Rademacher complexity of
a set of functionsH and a training set size n is given by:

Rn(H) = (2/n)Eσ1,...σn [suph∈H(|
n∑

i=1

σih(zi)|)]

where σi for 1 ≤ i ≤ n are independent random variables that
take value 1 or −1 with probability 1/2 each, and zis are n i.i.d
training samples drawn from a distribution D. We let L denote the
set of Lw for all |K|-dimensional vectors w. For our setting, H
is simply L, and the zi’s are source-object pairs. h(zi) is simply
Lw(s, o). Since our loss is a function of a linear function of pa-
rameters w and those of the source object pairs, we can use a well
known bound on the Rademacher complexity of our class of loss
functions. Specifically:

Rn(L) = O(
√
|K|/n log(n)) (5)

Now we state an excess risk bound that uses Rademacher com-
plexity. For any function class H, for a set S of n i.i.d training
samples z1, z2, . . . zn from distribution D, the empirical risk mini-
mizer is defined as:

herm = argminh∈H
n∑

i=1

h(zi)

Moreover, let the optimal function be

h∞ = argminh∈HEz∼D[h(z)]



Then with high probability (over the draws of zis), we have [26]:

Ez∼D[herm(z)] ≤ Ez∼D[h∞(z)] +O(Rn(H)) (6)

Rademacher complexity also lets us quantify the rate of uniform
convergence. Specifically, for any h ∈ H, let

h(S) = (1/|S|)
∑

z∈S
h(z) and hE = Ez∼D[h(z)]

When S ∼ Dm, we would like to upper bound maxh∈H |h(S) −
hE | as a function of m. For any δ in (0, 1), we have with probabil-
ity ≥ 1− δ,

max
h∈H
|h(S)− hE | ≤ 2Rn(H) +

√
log(1/δ)/2n (7)

B. PROOFS
We provide the proofs for the theorems in Section 4.2.

B.1 Proof of Theorem 1
This theorem follows from the uniform convergence result in

Equation 7. For any constant δ, and |G| = n, the
√

log(1/δ)/2n
term is subsumed by theRn(H) term, because for our case,

Rn(H) = O(
√
|K|/n log(n))

due to Equation 5. Thus we simply have, for any h′ ∈ H,

|h′(S)− h′E | ≤ max
h∈H
|h(S)− hE | ≤ O(

√
|K|/n log(n))

Replacing h(S) by LG(w) and hE by L(w) gives us our theorem.

B.2 Proof of Theorem 2
In our setting, Ez∼D[herm(z)] from Equation 6 is simply Lw,

while Ez∼D[h∞(z)] is Lw∗ , and H is the family of losses for all
weight vectors. Then applying Equation 5 to theRn(H) term gives
us Theorem 2.

B.3 Proof of Theorem 3
We consider |G| = n. We consider two cases based on the prob-

ability p of a source observing an object. If p = Ω(log(n)/δ),
then with high probability, the majority value of observations on
each object equals the true value of the object. In this case, we can
just compute the majority and treat it as ground truth, and apply
Theorem 2. The number of labeled source-object pairs in this case
is O(|S||O|p), substituting n = |S||O|p that value gives us our
required result. The second case is where p = O(log(n)/δ). In
this case we drop objects that have < 2 observations, and for other
objects, randomly drop all but two observations. This reduces the
problem to a slightly different problem, which is easier to solve.
We now solve the reduced problem in the rest of the section.

The reduced problem is as follows: We have n = |O| objects.
For each object, we choose a pair of sources uniformly at random,
and both the chosen sources make an observation on the object. In
this case, we show that we can estimate source accuracies such that
1
|S|
∑
s∈S DKL(As||A∗s) ≤ O( log |O|

|S|δ +
√

|K|
|O||S| log(|O||S|)).

This, along with p = O(
√
n/δ), will prove our theorem.

For each object 0, we randomly designate one of its two observ-
ing sources as ‘primary’, denoted S(o). For any source s, le Os
denote the set of objects such that S(o) = s. For any object o, let
Agree(o) equal 1 if the two sources observing o agreed on it, and 0
otherwise. Our accuracy estimation algorithm has three steps:

1. Estimate AE =
∑
s∈S(2A∗s − 1). Let A′E denote our esti-

mate.

2. For each source s, compute as = (
∑
o∈Os

(2|S|Agree(o) −
(|S| −A′E)))/2A′E .

3. Choosew to minimize
∑
s∈S as log(logistic(w·Fs))+(|Os|−

as) log(1− logistic(w · Fs)).

Then we prove that the chosen w from the third step must be such
that accuracy estimatesAs = logistic(w·Fs) satisfy our guarantee.

Step 1: We first show that step 1 can be carried out, such that our
estimate A′E has a relative error of O(1/|S|δ + 1/

√
n), with high

probability. Relative error of ε here means that A′E is in interval
((1− ε)AE , (1 + ε)AE).

To begin with, note that 2A∗s − 1 ∈ [δ, 1 − δ] for all s. For any
o ∈ O, the expected value E[Agree(o)] is

(1/|S|(|S| − 1))
∑

s1,s2∈S,s1 6=s2
A∗s1A

∗
s2 + (1−A∗s1)(1−A∗s2)

since the pair of sources is chosen randomly, and sources s1 and s2

agree on an object if they are both correct or both wrong. Moreover,
A∗s1A

∗
s2 + (1−A∗s1)(1−A∗s2) equals 1/2 + (2A∗s1 − 1)(2A∗s2 −

1)/2. Thus expected value of 2|S|(|S| − 1)Agree(o) is

2
∑

s1,s2∈S,s1 6=s2
A∗s1A

∗
s2 + (1−A∗s1)(1−A∗s2)

=
∑

s1,s2∈S,s1 6=s2
1 + (2A∗s1 − 1)(2A∗s2 − 1)

=
∑

s1,s2∈S
1 + (2A∗s1 − 1)(2A∗s2 − 1)−

∑

s∈S
1 + (2A∗s − 1)2

=|S|(|S| − 1) +
∑

s1,s2∈S
(2A∗s1 − 1)(2A∗s2 − 1)−

∑

s∈S
(2A∗s − 1)2

=|S|(|S| − 1) +

(∑

s∈S
(2A∗s − 1)

)2

−
∑

s∈S
(2A∗s − 1)2

=|S|(|S| − 1) +A2
E −

∑

s∈S
(2A∗s − 1)2

Thus expected value of |S|(|S|−1)(2Agree(o)−1) equalsA2
E−∑

s∈S(2A∗s − 1)2. Moreover, AE ≥ |S|δ and 2A∗s − 1 ≤ 1 for all
s, so

A2
E =

∑

s∈S
(2A∗s − 1)AE ≥

∑

s∈S
(2A∗s − 1)|S|δ

≥
∑

s∈S
(2A∗s − 1)|S|δ(2A∗s − 1) =

∑

s∈S
(2A∗s − 1)2|S|δ

This gives usA2
E ≥ A2

E−
∑
s∈S(2A∗s−1)2 ≥ A2

E(1−1/(|S|δ)),
so we can estimate AE by computing

|S|(|S| − 1)/|O|(
∑

o∈O
2Agree(o)− 1)

and taking it’s square root. Since the sum over o ∈ O involves i.i.d
variables, we can use the Chernoff bound, showing that the sum,
and hence estimate of AE , has a relative error of O(1/(|S|δ) +
1/
√
n). Let A′E denote our noisy estimate of AE obtained above.

This completes step 1.
Step 2, 3: Step 2 is simple, and is used to compute the loss

function in Step 3. We now show that the w’s computed in step
3 give accurate estimates. For that, we need to define two loss
functions, L1 and L2. L1 will be the loss function we actually care
about (log-loss of source accuracies). However, we cannot directly
estimate L1 without ground truth. So we will define another loss



function L2, which will be shown to be close to L1, and which can
be estimated from samples of source conflicts.

First, we defineL1(w) = (1/|S|)∑s∈S A
∗
s log(logistic(w·Fs))

+(1 − A∗s) log(1 − logistic(w · Fs)). The weights w∗ that mini-
mize this loss function are precisely the weights that give us A∗s =
logistic(w∗ · Fs) for all s. Unfortunately, we cannot empirically
estimate this loss directly.

In step 3, we minimize the ‘empirical’ loss function Lemp(w)
given by

∑
s∈S as log(logistic(w · Fs))+ (|Os| − as) log(1 −

logistic(w · Fs)).
Lemp(w) can also be written as

∑
o∈O ao log(logistic(w·FS(o)))

+(1− ao) log(1− logistic(w · FS(o))) where

ao = (2|S|Agree(o)− (|S| −A′E)))/2A′E

We now define a loss L2 such that the Lemp(w) is a ‘sampled’
version of L2. Specifically, define L2(w) to be:

E[ao log(logistic(w·FS(o)))+(1−ao) log(1−logistic(w·FS(o)))]

where the expectation is taken over objects (random choices over
the sources that observe the object, and over the observations of
those sources). For any object o ∈ Os, we define B∗s such that

B∗s = (1/(2|S| − 2))(|S| − 1 + (2A∗s − 1)(AE − 2A∗s + 1))

Thus, we have E[Agree(o)] = B∗s . So

Eo∈Os [ao] = (2|S|B∗s − (|S| −A′E)))/2A′E

Moreover, we now have

L2(w) =

(1/|S|)(
∑

s∈S
(2|S|B∗s − (|S| −A′E))) log(logistic(w · Fs))/2A′E

+ (1− (2|S|B∗s − (|S| −A′E)))/2A′E) log(1− logistic(w · Fs)))

Our proof now proceeds in two steps. (a) We show that L1 and
L2 are very close, upto scaling (b) We show that the weight vector
w chosen to minimize Lemp(w), also achieves a very low value for
L2, using standard Rademacher complexity bounds.

We show (b) first, since it is straightforward. We choose we to
minimize Lemp, i.e. we = argminw

∑
o∈O ao log(logistic(w ·

FS(o))) +(1−ao) log(1− logistic(w ·FS(o))). Now L2 is simply
the expected value of this quantity. Let L denote the family of
L2(w) over all w. Then, since each member of the family consists
of a function of a linear function of w, the Rademacher complexity
Rn(L) = O(

√
k/n log(n)). Thus,

L2(we) ≤ L2(w′) +O(
√
k/n log(n))

where w′ is the weight vector that minimizes L2(w).
Now we show (a). To begin with, we will show that B∗s is

very close to (1/2|S|)(|S| + (2A∗s − 1)(AE)). We have B∗s =
(1/(2|S| − 2))(|S| − 1 + (2A∗s − 1)(AE − 2A∗s + 1)), so

|B∗s − (1/2|S|)(|S|+ (2A∗s − 1)(AE))|
=1/(2|S|(|S| − 1))|(|S|(|S| − 1) + |S|(2A∗s − 1)(AE − 2A∗s + 1))

− |S|(|S| − 1) + (|S| − 1)(2A∗s − 1)(AE))|
=1/(2|S|(|S| − 1))(2A∗s − 1)|(|S|(AE − 2A∗s + 1)− (|S| − 1)AE)|
=1/(2|S|(|S| − 1))(2A∗s − 1)|(AE − |S|(2A∗s − 1))|
≤1/(2|S|(|S| − 1))(2A∗s − 1)|S|
≤1/(2|S| − 2)

Since B∗s ≥ 1/2, it means that B = (1/2|S|)(|S| + (2A∗s −
1)(AE)) estimates all B∗s with a relative error of ≤ 1/(|S| − 1).

Moreover, we saw earlier that A′E estimates AE with relative error
of O(1/(|S|δ) + 1/

√
n). Also note that if we replace B∗s with B

and A′E with AE in L2, then it would become equal to L1:

(2|S|B − (|S| −AE))/2AE

=2|S|((1/2|S|)(|S|+ (2A∗s − 1)(AE))− (|S| −AE))/2AE

=((|S|+ (2A∗s − 1)(AE))− (|S| −AE))/2AE

=(|S|+ 2A∗sAE −AE − |S|+AE)/2AE

=(2A∗sAE)/2AE = A∗s

Similarly, the other term (corresponding to 1 − ao) becomes
1 − A∗s . With this insight, we can show that L1 and L2 are close.
The numerator, as seen above, was equal to 2A∗sAE ≥ 2(1/2)|S|δ
(since AE ≥ |S|δ). The multiplicative error in the 2|S|B term is
1/(|S| − 1), thus absolute error is O(1) since B < 1. This will
cause a relative error of O(1/(|S|δ)) in numberator 2A∗sAE . Sim-
ilarly, relative error in A′E is 1/(|S|δ) + 1/

√
n, which causes a

relative error of 1/(|S|δ) + 1/
√
n in 2A∗sAE . Thus the total rel-

ative error in 2A∗sAE is at most O(1/(|S|δ) + 1/
√
n). We can

show a similar result for the second terms of L1 and L2. Thus
L2 approximates L1 with a relative error of O(1/(|S|δ) + 1/

√
n).

Moreover, any w we consider for learning with n samples will sat-
isfy log(logistic(w · Fs)) = O(log(n)). Thus for any such w,
|L1(w)− L2(w)| = O(log(n)/(|S|δ) + log(n)/

√
n).

Now, letw∗ be the weights that give us true accuracies i.e. A∗s =
logistic(w · Fs) and, we is the weight chosen by our algorithm:

L1(we) ≤ L2(we) +O(log(n)/(|S|δ) + log(n)/
√
n)

≤ L2(w′) +O(
√
k/n log(n)) +O(log(n)/(|S|δ) + log(n)/

√
n)

≤ L2(w∗) +O(
√
k/n log(n)) +O(log(n)/(|S|δ) + log(n)/

√
n)

≤ L1(w∗) +O(
√
k/n log(n)) +O(log(n)/(|S|δ) + log(n)/

√
n)

The first and last step uses the closeness of L1 and L2. The sec-
ond step uses the Rademacher complexity excess risk bound given
earlier. The thid step is because w′ is defined as the w that mini-
mizes L2. This shows that our chosen we will L1 loss value which
is not much worse than that of the best weights w∗.

Moreover,L1(w)−L1(w∗) is simply the average KL divergence
with true accuracies. i.e.

L1(we)− L1(w∗) = (1/|S|)
∑

s∈S
KL(As||A∗s)

where As = logistic(we · Fs). This gives us

(1/|S|)
∑

s∈S
KL(As||A∗s) = O(log(n)/(|S|δ) +

√
k/n log(n))

This proves our claim, and using p = O(log(n)/δ) finishes our
proof for the theorem.

C. RUNTIME ANALYSIS
We measure the total wall-clock runtime of each data fusion

methods for all datasets in Table 5. Reported runtimes correspond
to end-to-end execution with data pre-processing and loading. For
DeepDive-based methods, this includes loading data into a database,
compiling the input data to a factor graph and then running in-
ference and learning. For python methods, pre-processing corre-
sponds to only loading input data from raw files.

We compare SLiMFast with Sources-ERM and Sources-EM. We
see that: (i) when SLiMFast’s optimizer switched from EM to ERM,
SLiMFast’s runtime is reduced significantly (see Crowd for TD =
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Table 5: Wall-clock runtimes (in seconds) for data fusion meth-
ods. We report end-to-end execution including data loading for
each method.

Discriminative Generative Iterative

Dataset
TD
(%) SLiMFast S-ERM S-EM Counts ACCU CATD SSTF

Stocks

0.1 60.71 40.12 102.53 2.77 5.04 7.04 150.39
1 62.51 41.91 108.97 3.03 5.70 5.48 174.31
5 64.51 41.76 99.32 3.3 6.4 6.21 168.92
10 68.51 40.82 105.67 3.59 6.4 6.96 156.31
20 68.41 44.51 104.94 4.97 6.3 6.66 144.40

Demos

0.1 170.13 41.46 94.45 3.01 6.61 9.05 109.39
1 180.42 41.76 109.76 2.32 6.29 10.01 102.75
5 168.06 47.63 98.62 2.27 5.66 9.11 104.94
10 171.39 62.26 106.25 2.51 5.71 10.18 101.74
20 189.23 75.90 128.69 2.41 5.10 9.18 120.59

Crowd

0.1 104.03 46.41 83.61 4.06 6.41 6.22 37.31
1 56.45 50.92 88.79 3.57 5.72 5.53 37.21
5 66.22 50.38 109.74 3.33 7.18 5.84 37.55
10 66.13 50.08 89.47 2.57 6.14 5.39 38.08
20 78.9 51.44 89.35 3.44 6.18 6.92 37.36

Genomics

0.1 67.60 60.07 67.76 1.11 7.01 29.41 6.94
1 65.48 62.52 65.70 1.14 7.17 29.03 7.04
5 65.66 61.63 66.65 1.26 6.33 27.42 7.05
10 65.63 63.48 65.71 1.35 6.97 28.34 6.04
20 65.61 61.16 65.93 1.15 6.78 28.14 6.46

0.1% versus TD= 1%), (ii) incorporating domain-specific features
does not incur drastic runtime changes as SLiMFast’s runtime is
comparable to that of Sources-ERM and Sources-EM depending
on the learning algorithm used. We see that in most cases, the end-
to-end runtime is around a minute. For Demonstrations we observe

increased runtimes due since SLiMFast’s optimizer selects to run
EM for most cases. Nonetheless, the overall runtime is still around
3 minutes. While SLiMFast’s runtime is higher than that of base-
line methods the accuracy improvements obtained by using SLiM-
Fast (up to 44% as shown in Table 2) justify the use of SLiMFast.

Table 6: End-to-end v.s. learning-and-inference-only runtime
(in seconds) for DeepDive-based methods on Genomics.

End-to-end Learning and Inference Only
TD
(%) SLiMFast S-ERM S-EM SLiMFast S-ERM S-EM

0.1 67.60 60.07 67.76 8.87 6.63 8.91
1 65.48 62.52 65.70 8.79 6.73 8.83
5 65.66 61.63 66.65 8.79 6.49 8.78
10 65.63 63.48 65.71 8.70 6.78 8.90
20 65.61 61.16 65.93 8.75 6.78 8.79

Comparing SLiMFast with Python-based models we observe sig-
nificant differences in the end-to-end runtime. To understand if
this difference is due to data loading or due to the learning and in-
ference algorithm used by SLiMFast, we compared the end-to-end
runtime of SLiMFast, Sources-ERM, and Sources-EM against their
learning-and-inference-only runtime. We report the results for Ge-
nomics in Table 6. As shown, most of the time is spent in compiling
the input data to a factor graph and the time spent in learning and
inference, i.e., solving data fusion, is comparable to python-based
methods. Similar results were observed for all datasets.

D. COPYING SOURCES
We present how more complex data fusion methods can be im-

plemented in SLiMFast. We examine data fusion methods that
identify data sources that copy from each other when solving data
fusion. Source copying can be modeled via the following intuition:
if two sources make the same mistakes they have a higher proba-
bility of copying from each other [9].

To model this in SLiMFast, we extend its probabilistic model
with a set of Boolean features for all source pairs, such that each
feature takes the value “True” only when the two sources in it agree
on their observations for an object o ∈ O but variable vo is set to
a value different than the one reported by the sources. SLiMFast’s
probabilistic model remains a logistic regression model.

To evaluate how well the above model captures source copying,
we use the Demonstrations dataset for which sources correspond to
online news portals, thus, copying is expected to occur. We com-
pare the accuracy for object values obtained by SLiMFast when
copying is modeled and when it is not. For simplicity, no domain-
specific features were used. The results are shown in Figure 8.
For very small amounts of training data modeling copying leads
to better performance. We also provide examples of sources that
are found to be copying from each other in Demonstrations. As
shown, sources providing news for the same region (e.g., Egypt)
or the same categories (e.g., business) exhibit high weights for the
features modeling copying.

E. LASSO PATH FOR CROWD
Figure 9 shows the lasso path plot for features used in Crowd.

We show the paths for the first two features from channel, city and
coverage that activated. The first feature that activates is channel
“clixsense”. Also it is interesting to observe that “coverage=0.6”
(relatively high coverage) has a high positive weight while “cover-
age=0.2” (low coverage) has a high negative weight.


