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ABSTRACT

Application containers, such as those provided by Docker, have
recently gained popularity as a solution for agile and seamless soft-
ware deployment. These light-weight virtualization environments
run applications that are packed together with their resources and
configuration information, and thus can be deployed across various
software platforms. Unfortunately, the ease with which containers
can be created is oftentimes a double-edged sword, encouraging
the packaging of logically distinct applications, and the inclusion
of significant amount of unnecessary components, within a sin-
gle container. These practices needlessly increase the container
size—sometimes by orders of magnitude. They also decrease the
overall security, as each included component—necessary or not—
may bring in security issues of its own, and there is no isolation
between multiple applications packaged within the same container
image. We propose algorithms and a tool called Cimplifier, which
address these concerns: given a container and simple user-defined
constraints, our tool partitions it into simpler containers, which
(i) are isolated from each other, only communicating as necessary,
and (ii) only include enough resources to perform their function-
ality. Our evaluation on real-world containers demonstrates that
Cimplifier preserves the original functionality, leads to reduction
in image size of up to 95%, and processes even large containers in
under thirty seconds.
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1 INTRODUCTION

Containers are light-weight virtualization environments to “con-
tain” applications and provide desirable properties, like isolation,
resource provisioning, and application-specific configuration. With
recent projects, such as Docker [12], containers have become the
holy grail for agile system administration: an easy and widely-
supported specification of an application and its environment that
can be deployed across various software platforms. Indeed, reports
indicate undeniably high rates of Docker adoption [10, 37].

The status quo of application containers does have limitations.
For usability, container images often are built as layers upon other
container images. The underlying layers as well as the process of
making the images often amasses many resources (programs, files,
etc.) unnecessary for running the container. This not only leads
to enormous space requirements – a simple Python application
may for example need 675 MB (huge image sizes are a subject of
numerous articles and blog posts [11, 16, 40]) – but oftentimes also
have security implications. A best-practice principle in security
is the principle of least privilege (PLP) [21, 38], which dictates that
any module (an application, process, etc.) should be given only
privileges that are necessary to perform its functionality. Extra-
neous resources are available to the application and in an event
of a compromise only serve to escalate the possibility of further
harm. For instance, high-profile vulnerabilities like Shellshock
(CVE-2014-62711) and ImageTragick (CVE-2016-3714) can be mit-
igated to various extents by removing unnecessary files (see Sec-
tion 2.2). Frequently, a container also packs a complex application
stack consisting of multiple application components, devoted to
distinct tasks, which goes against the principle of privilege separa-
tion (PS) [32]: separating modules with different privileges so that
a compromise of one module limits the attacker to only a subset
of privileges. For example, in a wiki installation, which includes a
web server and a database server, if both the web server and the
database server have unrestricted access to each other’s resources,
a compromise of one component could escalate to the compromise
of the other. Placing the two in separate containers offers a way of
restricting access. Ideally, therefore, a container should run only one
simple application task and should pack only as many resources as
needed to fulfill its functionality requirement. Note that this ideal
fits right into current discussions, such as the FEAST workshop or-
ganized by the US Office of Naval Research (ONR) at CCS 2016 [18],
on software de-bloating and specialization to improve security and
performance of software.

This paper presents the design and implementation of Cimpli-
fier (pronounced simplifier) as a step towards automatically realiz-
ing the above-stated ideal property. Cimplifier accepts a container
and simple, succint user-defined constraints specifying which exe-
cutable programs should or should not be run in the same container.

1Vulnerabilities with CVE identifiers are described on https://web.nvd.nist.gov

https://web.nvd.nist.gov
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We use dynamic analysis to understand how resources are used by
the application executables in the container and based on the results,
partition the container while satisfying the constraints. Partitioning
happens at the granularity of individual executables (i.e., currently,
we do not partition an executable). Our output is a set of containers,
each running one or more executable programs and provided with
just the resources needed to execute them. In addition, leveraging
the fact that containers share the same kernel space, we provide
techniques for an application component residing in one container
to be able to transparently invoke another component residing in
another container, so that together these containers provide the
same functionality as the original container. Cimplifier does not
need application source code nor does it depend on applications
using a particular language or runtime stack (e.g, JVM) and hence
can handle a wide class of containers.

We evaluated our Cimplifier prototype on several real-world
containers, ranging from simple web servers and database engines
to complex applications like a wiki, a blogging engine, and a log-
analysis stack. Our evaluation shows that Cimplifier is effective
in creating functional partitions guided by simple and succinct
user-defined policies and reducing container size by up to 95%.

Our contributions can be summarized as follows:
• Resource identification. We develop techniques based on sys-

tem call logs to analyze the usage of resources and associate
them with various executables in the application container
being analyzed.

• Container partitioning. Wedevise an algorithm for partitioning
a container (based on a simple user-defined policy) and for
associating resources with the components of a partition.

• Remote process execution. We introduce remote process ex-
ecution (RPE) as a mechanism for gluing components. Our
mechanism allows a process running in one container to trans-
parently execute a program in another container without re-
laxing the separation boundaries provided by containers.

• System prototype. We implemented the above techniques in
a prototype implementation called Cimplifier, which is an
end-to-end system to partition containers and resources. Our
tool takes as input a container, system call logs, and a user
policy and outputs partitioned containers, each packing only
resources needed for functionality.

The rest of this paper is organized as follows: Section 2 provides
the requisite background, problem definition, and an overview of
our approach. Our system design is discussed in Section 3. We
present evaluation results in Section 4. Section 5 discusses related
work and is followed by a discussion on limitations and future work
in Section 6. We conclude in Section 7.

2 OVERVIEW

This section provides the relevant background, the problem state-
ment, and issues specific to the container ecosystem. We also
provide a brief overview of our solution.

2.1 Background

Containers are user-space instances that share the same OS kernel.
The Linux kernel implements namespaces to provide user-space

instantiations. A namespace is an abstraction around a global re-
source giving the processes within the namespace the illusion of
an isolated instance of the resource. Seven kinds of namespaces
are defined in Linux: IPC (inter-process communication), network,
mount, PID (process identifier), user, UTS (Unix timesharing system,
allowing separation of hostnames), and cgroup (described below).

Container implementations in Linux, such as LXC [23] and Do-
cker, employ the namespaces feature to provide a self-contained
isolated environment: resources that do not have a name in a names-
pace cannot be accessed from within that namespace. In addition,
container implementations use cgroups, another Linux kernel fea-
ture allowing for resource limiting, prioritization, and accounting.
Finally, Linux capabilities and mandatory access control (MAC)
systems, such as SELinux or AppArmor, are often used to harden
the basic namespace-based sandboxing [14].

Besides the implementation of a container itself (using the above
kernel primitives), projects such as Docker developed specifica-
tions and tools to implement and deploy containers. For example,
the files necessary for running applications (the application code,
libraries, operating system middleware services, and resources),
packed in one or more archives together with the necessary meta-
data, constitute a container image. The image metadata include
various configuration parameters, such as environment variables,
to be supplied to a running container, and network ports that should
be exposed to the host.

Systems like Docker are designed particularly to deploy appli-
cations, e.g., web servers, and hence are meant to run application
containers as opposed to OS containers. In this regard, a contai-
ner may be viewed as an application packed together with all the
necessary resources (such as files) executing in an appropriate en-
vironment. The focus of this work is such application containers
and we demonstrate our methodology in the context of Docker,
although our techniques would apply well to other application
container systems.

2.2 Problem Statement

As discussed earlier, an ideal container should satisfy two require-
ments: (A): Minimal size – it should pack no more resources than
what its functionality needs, (B): Separation – it should execute
only one simple application. Apart from the obvious space-saving
benefit, in the event of a vulnerability exploitation, such as arbi-
trary code execution or information disclosure, these requirements
reduce the harm by limiting access to resources and by confining
the exploit’s impact to a compartment smaller than the whole ap-
plication. Furthermore, a simple application is easier to harden
using systems such as SELinux and AppArmor and is also more
auditable (e.g., using existing static-analysis tools, such as Coverity
and Fortify) than a complex one. Finally, running one task per
container aligns with the microservices philosophy whereby com-
plex applications are composed of independently running simple
applications that are easier to manage and deploy.

In line with the above principles, this paper is a step towards
automatically decomposing complex application containers into
minimal simple containers. Next, we provide a running example,
which will be used at various points in the paper, and then state a
general form of the container partitioning problem.
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Figure 1: Running example. The figure shows the original

container with its application components, and a desired

partitioning of the components into different containers.

Running example. We consider a popular container from the
Docker Hub (the official repository for container images) called
appcontainers/mediawiki, which provides MediaWiki, a popular
wiki application [24]. We will discuss its standalone mode, which
allows running the entire application from just this container. The
container image has Apache HTTPD and MySQL server installed.
At startup, it performs configuration to set up the MediaWiki PHP
source code for use with HTTPD, set up a TLS certificate using
OpenSSL for serving HTTPS connections, and start and configure
MySQL and HTTPD servers.

HTTPD and MySQL server are separate tasks and should be
isolated from each other in different containers. The MediaWiki
PHP code also spawns ImageMagick to convert uploaded images to
different sizes. Since uploaded images may be maliciously crafted,
wewould like to separate their processing by ImageMagick from the
rest of the application, i.e., ImageMagick should run in a separate
container. The transformation we would like to achieve is depicted
at the right of Figure 1.

Example vulnerability mitigation. We present some examples
to demonstrate the security benefits of using Cimplifier. In line
with our running example, we consider CVE-2016-3714, which is
an ImageMagick vulnerability that allows arbitrary code execution
and information disclosure (of any file readable by the current user)
through specially crafted images. By limiting ImageMagick in its
own container and providingminimal resources, information disclo-
sure is confined to just the files that actually need to be accessed by
ImageMagick. Furthermore, the arbitrary code execution happens
through shell command injection. If, however, the ImageMagick
container does not have a shell nor any other executables, arbitrary
code execution is reduced to application crash at worst. Such isola-
tion of ImageMagick can also reduce possible harm from numerous
other vulnerabilities in ImageMagick such as CVE-2016-3715,16,17
(delete, move, and read arbitrary files), CVE-2016-4562,63,64 (buffer
overflow with unspecified impact), and CVE-2016-5118 (arbitrary
shell command execution).

Note that some of the above vulnerabilities resemble arbitrary
command execution (herein referred to as ACE), whose impact can
generally be reduced by minimizing the commands available to
the attacker. Shellshock, a family of critical vulnerabilities (CVE-
2014-6271 and related bugs) in the Unix Bash shell, allows the
execution of arbitrary shell commands encoded in environment
variables. These and similar recent vulnerabilities in other software,
e.g., CVE-2015-7611 (ACE in Apache James server), CVE-2014-8517
(ACE in tnftp FTP server), CVE-2014-7817 (ACE in glibc), can all be
mitigated to various extents by limiting the available resources.

In the original setup of our running example, a compromise
of HTTPD opens up possibilities for compromising the MySQL
database. If we separate the web server and the database engine

in different containers, the avenues of compromising the database
become limited to remote attacks only. Thus several vulnerabilities
such as CVE-2016-0546, CVE-2014-6551, and CVE-2013-0835, which
require a local user, are mitigated.

Considering another example, if a user prepared a container
with sudo and mistakenly made it accessible from a web-facing
application or if the version of sudo is vulnerable (e.g., CVE-2014-
0106 and CVE-2012-0809), Cimplifier can mitigate the risk by
simply removing sudo if it will not be executed in a deployed
container. Note that the former case is a mis-configuration rather
than a vulnerability in an application component. Cimplifier can
thus also lower the impact of misconfiguration.

Container partitioning problem. Abstractly, a container C is a set
of executables E = {e1, · · · , en }. In the context of our problem, the
set E is only the set of security-relevant executables; minor pro-
grams and simple utilities should be ignored. A resource is an entity
acted upon by a process, which is a runtime instantiation of an exe-
cutable. Examples of resources are files, socket objects, etc. Access
to a resource can be seen as a privilege; reducing access to resources
thus means reducing the privileges of a process. LetR(C) be the set
of resources used by the processes of container C . Moreover, there
are two kinds of user-specified constraints: negative constraints
UC− ⊆ E × E, which must be satisfied, and UC+ ⊆ E × E, which
should be satisfied as much as possible. Intuitively, if (ei , ej ) ∈ UC−,
then executables ei and ej should not be put in the same container.
Similarly, if (ei , ej ) ∈ UC+, then it is preferable if executables ei
and ej are put in the same container. These constraints are akin to
programmer annotations in previous work [5, 27, 42]. We further
discuss specifications of these contraints in Section 3.2.

Now the container partitioning problem (CPP) can be defined as
follows: Given a container C and constraintsUC+ andUC−, find a
set of containers {C1, · · · ,Ck }, where Ci ⊆ E, Ci ∩Cj = ∅ if i , j,
and ∪ki=1Ci = E (or in other words {C1, · · · ,Ck } is a partition of
E). Moreover, (1) for all (ei , ej ) ∈ UC− ei and ej appear in different
sets of the partition, (2) the number of partitions k is minimized, and
(3) the number of constraints corresponding to UC+ is maximized.
Note that UC+ constraints are “soft” and serve as hints to reduce
the number of containers.

In general, our problem is NP-hard. We consider the “decision
version” of CPP (where we ask if there is a partition of size less
than a positive integer k). Consider the chromatic number problem:
given a graphG = (V ,E) and a positive integer l ≤ |V |, is the graph
l-colorable (i.e., does there exist a function f : V → {1, 2, · · · , l}
such that f (u) , f (v) whenever (u,v) ∈ E. A reduction from
the chromatic number problem to our problem is straight forward.
Given a graph G = (V ,E), let C = V , UC+ = ∅, and UC− = E.
It is easy to see that there is a partition of the set of containers
{C1, · · · ,Cl } such that (ei , ej ) ∈ UC− implies that ei and ej appear
in different sets of the partition iff the graph G is l-colorable. Our
problem can solved by encoding it as an integer programming
problem. However, our problem sizes are small and we use a simple
iterative algorithm in our implementation (Section 3.2).

Our problem formulation allows the user to choose the executa-
bles that should go into the same container. While we advocate
that a container run a simple application task, a user is free to de-
cide which executables (possibly more than one) form that simple
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application task.
The task of creating partitions also requires associating the req-

uisite resources with those partitions. It is natural to associate
only the necessary resources and so the removal of redundant re-
sources comes for free in a reasonable algorithm. Such reduction
of resources is referred to as container slimming.

2.3 Our Approach

Given a container, our work partitions it at the level of application
executables so an executable binary is one atomic unit that can
be placed in a partition. Partitioning at granularities finer than
executables is not within the scope of the current work but may be
achieved by combining our work with previous work on program
partitioning and privilege separation [5, 7, 8].

Container partitioning poses three technical challenges (A) How
do we identify which resources are necessary for a container? (B)
How do we determine container partitions and associate resources
with them? (C) How do we glue the partitions so that together they
provide the same functionality as the original container?

Our approach utilizes dynamic analysis to gather information
about the containerized application’s behavior and functionality.
We collect detailed logs from executions of a given container. We
use these logs to construct resource sets for different component
executables. Based on flexible, pluggable policies, we determine
container partitions. The resulting containers are populated with
the resources needed for correct functioning of the executables.
Container mechanisms themselves provide for separation of re-
sources. Based on the resource sets identified, we relax this sepa-
ration to share some resources across containers on an as-needed
basis. Finally, we introduce a new primitive called remote process ex-
ecution to glue different containers. It relies on the availability of a
shared kernel to allow a process to transparently execute a program
in a different container. Our approach is depicted in Figure 2.

While our approach uses dynamic analysis, partitioning may
also be possible through static analysis. Both approaches have their
advantages and disadvantages. In dynamic analysis, resource set
identificationmay not be accurate if code coverage during container
executions is not complete. Static analysis does not suffer from this
limitation, but faces significant challenges in our context: in typical
containers that we studied, application components are written in
several languages (e.g., shell script, PHP, and compiled C and C++),
the application is strewn across multiple shared object libraries
and executables, and the content of the environment variables
and configuration files dictate an application’s runtime behavior.
Our dynamic analysis, instead, stays on the simple, well-defined
system call interface and is more manageable than static analysis.
Solutions combining static and dynamic analyses to incorporate the
advantages of both will be interesting to investigate in the future.

3 SYSTEM DESIGN

Our algorithm has three main steps. (1) Resource identification: In
this step we identify the accesses of different files, IPC, and network
objects by various processes in executions of the original container.
(2) Partitioning: This step utilizes the user policies and the results
of the previous step to partition the original container into several
containers. (3) Gluing: Finally, we “glue” the containers together:

we introduce remote process execution as the mechanism to glue
containers. This section details these three steps and then covers
the security and implementation aspects of our system.

3.1 Resource Identification

Resource identification is the first step in our workflow that enables
association of various resources, such as file, IPC and network
objects, to the subjects, i.e., the entities that act upon them. For
collecting this information, the system call interface serves our
purpose well because it allows complete access to the information
exchange happening between the user-space processes and the
kernel. Actual resource access, management, and so on happens
inside the kernel, and so a process must make system calls to the
kernel to perform any action related to resources. There are several
options for performing system call logging, which we discuss in
Section 3.5. Our methodology just needs system call logs and does
not depend on any specific logging infrastructure.

Analyzing system call logs. Let a system call event be defined
as a tuple s = ⟨i, c, ρ⟩, where i represents the thread ID of the
caller, c is the name of the system call (e.g., open or rename), ρ is
a sequence of parameters to the system call (the last element of
this sequence is the return value of the system call). Each system
call has an associated type which determines how to interpret a
parameter (e.g., whether a parameter should be interpreted as a
path or as an integer return code). A system call log is simply a
sequence of system calls. Given a log ⟨s1, s2, · · · , sm⟩ we define
Γj as the state of the system after the sequence of system calls
s1, s2, · · · , sj is executed (we assume an initial state Γ0; the state
tracks, for example, the current working directory). Note that the
event sk is executed in the state Γk−1. Using the semantics of system
calls we can define for each tuple of a system call s and state Γ a
pair (R,W ), where R andW are each sets of resources that system
call s reads from and writes to, respectively, when executed in state
Γ. We call this function rsrc (i.e., rsrc(s, Γ) = (R,W )). Note that this
function can be “lifted” to a log or its subsequences via the standard
collecting semantics. For example, for a log L = ⟨s1, s2, · · · , sm⟩,
we have that rsrc(L, Γ) is equal to

(∪sj ∈Lrsrc1(sj , Γj−1),∪sj ∈Lrsrc2(sj , Γj−1))

In the equation given above Γj is the state reached from Γ after
executing the sequence of system calls s1, · · · , sj and rsrci for i ∈
{1, 2} is the i-th component of the tuple. These sets play a crucial
role in deciding which resources are exclusively associated with
a container and which resources are shared between containers.
Next, we describe how different kinds of resources, such as files,
IPC and network, are handled in this framework.

Files. Files are handled through numerous system calls but all
of them map neatly to the above abstractions. Intuitively, a file
that must exist for call si to succeed is placed in the read set Ri .
Creation, modification, and modification of metadata all result in
adding the file to the write setWi .

Inter-process communication. There are many inter-process com-
munication (IPC) options available; we support an important subset
of them. Any IPC that happens without naming a resource, such as
that through channels created by pipe or socketpair system calls,
is implicitly supported in Cimplifier. Such IPC typically depends
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Figure 2: Architecture overview. We analyze system calls from model executions of the input container to identify resources.

The application together with these resources is then partitioned across several containers guided by a user-defined policy.

These containers function together through remote process execution (RPE), which acts as a glue among them.

on file descriptor inheritance, support for which is described in
Section 3.3. Named pipes (FIFOs) and Unix domain sockets exist as
named resources on the file system and are hence handled similarly
to files. There are other IPC mechanisms such as message queues,
semaphores, and POSIX/System V shared memory that require the
participating processes to share the IPC namespace. Hence we
require that such processes be placed in the same container.

Network communication. Network communication is sometimes
used within a container such as by a web server to connect to a
backend database server. We place the socket address specified in
the bind, connect, recv*, send* system calls in the write set.

3.2 Partitioning

Let E = {e1, e2, · · · , en } be the set of executables in a container. On
Linux, any run of an executable starts with the execve system call
(the other exec family functions, and system and popen functions
ultimately make this system call). Using the semantics of execve
we can associate an executable ei ∈ E to each system call in the
execution log Using this information and the result of the resource
identification step on the system call log subsequence of ei , we can
associate a set of resources read and written by an executable. We
next describe our partitioning algorithm.
Partitioning algorithm. Let E = e1, · · · , en be the set of executa-
bles in a container. With each executable ei we associate a tuple
(R(ei ),W (ei )), where R(ei ) andW (ei ) are the resources read and
written by ei , respectively. Note that given a subset of executables
E ′ ⊆ E, the tuple associated with it is (∪e ∈E′R(e),∪e ∈E′W (e)).

LetG = (E,X ) be a directed graph whose vertices are executables
E and the set of edges X ⊆ E × E is such that (ei , ej ) ∈ X iff ei
executes ej . In other words, G is the call graph at the executable
level. Our partitioning algorithm takes G as an input and does not
depend on how it was constructed (our implementation constructs
it from the execution logs).

LetUC+ ⊆ E × E andUC− ⊆ E × E be the positive and negative
constraints provided by the user. For each executable ei , letC(ei ) be
the current index of the container in the partition. Our algorithm
works in two steps as follows:
Initial partition based on user constraints: Each executable is
in a single container, i.e., C(ei ) = i . For each, constraint (ek , ej ) ∈
UC+ we merge the containers that have ek and ei (i.e., we merge
the containersC(ei ) andC(ej ) into one container. Note that this can
be performed by using a simple re-indexing). However, we do not
perform amerge corresponding to a constraint in (ei , ej ) ∈ UC+ if it
will violate any negative constraintUC− (i.e., there is (ei , ej ) ∈ UC−

such that ei and ej will be in the same container after themerge). We
keep merging containers using this rule, until we reach a fix-point

(i.e., the partition induced by C(·) does not change). Our algorithm
may not result in a global optimum but suffices in practice as the
number of constraints and containers are small.
Updating the partition based on the call graph: Intuitively, if
(ei , ej ) ∈ X (ei executes ej ), then ei and ej should be in the same
partition as long as the given constraints are not violated. For each
edge (ei , ej ) ∈ X we merge the containers C(ei ) and C(ej ) as long
as any negative constraint inUC− is not violated. We keep merging
containers based on the call graph until we reach a fix point.

In our partitioning algorithm we have experimented with three
types of user defined policies, which can be easily specified using
our formalism.
All-one-context. This policy places all executables into a single
container. Thus, it does not perform any container partitioning.
However, since only the resources accessed during test run are
placed in the container, this policy is tantamount to container slim-
ming. This policy corresponds toUC+ = E × E andUC− = ∅.
One-one-context. This policy places each executable into a separate
container so that no two executables share containers. While this
policy is useful for testing Cimplifier, it is not practical for reason-
ably complex containers that may involve tens or even hundreds of
executables: the container of our running example uses 49 different
executables, including simple utilities like cat and tail as well
as related executables, which together can be considered as one
component, like HTTPD. Putting each executable in a separate
context is unnecessary in these cases. Moreover, in some cases, exe-
cutables may need to remain in the same namespaces. For example,
apachectl controls the main HTTPD process by using its PID: if
it is placed in a different PID namespace, such control will not be
possible. This policy corresponds toUC+ = ∅ andUC− contains all
pairs (ei , ej ) such that i , j.
Disjoint-subsets-context. In this policy, the user specifies disjoint
subsets of executables, not necessarily covering all executables. The
subsets correspond to different containers. That is, a container cor-
responding to a given subset contains executables in that subset but
in no other subset. Some executables may not have been specified
and are considered don’t cares; they can be placed in any container.

This policy is particularly useful. In our running example, one
can specify the HTTPD-related executables in one subset, MySQL-
related ones in another and ImageMagick-related ones in another.
More concretely, the policy is specified as {{convert}, {mysql,

mysqld, init.d/mysqld, mysqladmin, mysqld safe, mysql

install db}, {httpd, init.d/httpd, apachectl, openssl}} (path
prefixes omitted for brevity). Other executables such as cat, mv,
and chmod are not considered security-sensitive and hence can
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be placed anywhere as needed. Currently, these “don’t care” exe-
cutables are treated like any other resources and, if necessary, are
duplicated as read-only resources are (see the following discussion
in this section). Given the list of executables (our tool can prepare
such a list from execution logs), a user can come up with the policy
in seconds without any expertise: the only knowledge we used to
create our policy was which applications the executables belonged
to and that openssl is used by the container to perform one-time
configuration of SSL keys for HTTPD.

Resource placement. To associate resources with containers
(we call this resource placement), we begin with resources read
by its executables. There are some tricky issues that arise here.
For example, before placement, this “read” set must be extended to
cover all dependencies. In particular, if a file indicated by a given
path is placed in a container, we must ensure that all the directory
components in the path leading up to the file are also placed in
the container. In addition, we ensure that the files’ metadata (e.g.,
permissions, ownership, and modification times) are preserved.

A resource may need to be placed in multiple containers. In
such a case, the nature of resource access determines the placement
strategy. A read-only resource can be safely duplicated: each cont-
ainer gets its own copy of the resource. If a resource is modified
or created by one or more of the containers, it should be shared.
Docker provides volumes: file mounts that may be shared between
containers. For file resources as well as named pipes and Unix sock-
ets, we use shared volumes for shared resources. Note that in case a
resource is created by a container at runtime and is used by another
container, the parent directory of the resource must be shared. This
is because Docker volumes may only be mounted when a container
is started and Linux does not allow mounting of non-existent files.
Sharing parent directories can result in over-sharing of resources;
this compromise appears necessary, however, as volumes appear to
be the only way to share such resources among containers.

For sharing network resources, we match socket addresses from
the write set according to the socket address specification semantics.
For example, the bound, listening TCP/IP address ⟨0.0.0.0 : 3306⟩
and the connecting TCP/IP address ⟨127.0.0.1 : 3306⟩ match. Based
on such matches, we determine the containers that need to com-
municate over the network and allow the requisite channels with
Linux kernel-level network address translation.

3.3 Gluing

The remaining technical challenge in obtaining functional parti-
tioned containers is to “glue” them together to maintain the original
functionality. Our technique to handle this challenge is remote pro-
cess execution (RPE). RPE transparently allows a process to execute
an executable in a container different from the one in which it re-
sides. By transparency, we mean that neither of the two executables
(caller and the callee) need to be modified or made aware of RPE.

Returning back to our running example, MediaWiki uses Im-
ageMagick to create thumbnails of uploaded images. Since Media-
wiki’s PHP code runs in the HTTPD container and ImageMagick,
corresponding to the convert executable, runs in a separate cont-
ainer, simply executing convert from PHP code will fail because
the executable file convert does not exist in the HTTPD contai-
ner. We need a technique that allows the PHP code to execute

Figure 3: Remote process execution (RPE). The executable

e1 in container C1 executes e2 in container C2 with our RPE

mechanism. Dark lines indicate processes; time progresses

downwards. Dotted lines indicate socket communication

and dashed lines indicate signal and exit code propagation.

convert and yet the actual execution of convert should happen
along with its resources in the ImageMagick container. In the same
running example, the need to execute processes in other containers
arises elsewhere as well: the startup script invokes executables to
start the HTTPD and MySQL servers in their respective containers.
In general, RPE serves as the fundamental glue primitive among
partitioned containers and is crucial for preserving functionality.

Our solution works as follows: consider the scenario in which
an executable image e1 in container C1 needs to execute another
executable image e2 that actually resides in container C2. Our
solution is to place a stub e ′2 corresponding to the actual executable
e2 in container C1. We also run a “server” in C2 to accept RPE
requests. When e1 executes e2, it is actually e ′2 that is executed (e ′2
is on the same path as e2). e ′2 marshalls the command arguments,
its environment, and some process attributes and sends an RPE
request to the server running on C2, which then executes e2 on
behalf of e1. This scenario is described in Figure 3. The concept
of RPE strongly resembles remote procedure calls (RPCs) where a
process invokes a stub procedure, which marshalls the arguments
supplied and sends them to the remote server, which unmarshalls
the arguments and calls the actual procedure with those arguments.
The key difference in our context is that instead of shipping just the
arguments, we also need to ship the process environment as well
as low-level process attributes. This subsequently allows for a zero-
overhead communication of information for the lifetime of process
e2. Our key insight is that the local and remote processes share a
kernel and thus appropriate shipping of process attributes and file
descriptors can make RPE transparent to the participating programs.
RPCs cannot assume a shared kernel and therefore cannot provide
the rich features and transparency of RPE. When the process ends,
we ship the return code of the process to the executing process. In
addition, we provide for asynchronous signaling (i.e., passing POSIX
signals) between processes. All these aspects require a detailed
understanding of the specification of a process. To highlight the
difference between RPE and RPC we describe one mechanism (i.e.,
how attributes are replicated at command execution). Due to lack
of space we will not describe other details.
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Attribute replication at command execution. e ′2 obtains the at-
tributes to be replicated through the relevant system calls while
the server side sets those attributes through another set of rele-
vant system calls just before executing e2. Some of the attributes,
specifically the user and group IDs, are security-relevant and are
obtained using Unix domain sockets’ mechanisms of obtaining pro-
cess credentials so that they cannot be faked. If the user and group
IDs could be faked, a client could escalate privileges by performing
RPE. Some attributes, such as the user and group IDs, may be set
only by a privileged user. Therefore, S runs as root. The arguments
and environment arrays are readily available to e ′2, and thus easily
copied over, and the remote side can execute e2 supplying the same
arrays. The replication of file descriptors (henceforth called fds)
needs further discussion. Although fds are ints, they have a special
meaning associated to them by the kernel and thus have to be trans-
ferred to other processes using the functionality provided by the
kernel (this highlights one of the key differences with RPC). Trans-
ferring fds is accomplished through ancillary messages feature of
Unix domain sockets. Some readers might legitimately wonder
why replication of file descriptors is necessary. The answer is that
file descriptor inheritance is behind the functioning of numerous
mundane tasks such as input/output stream redirection and piping
offered by shells; a general replication of file descriptors makes the
execution transparent in such situations.

3.4 Security of Cimplifier

Security is a key design goal of Cimplifier. The runtime of Cimp-
lifier is simple and small enough that the security of its runtime
components can be argued for and the resultant container system
is at least as secure as the original container.

The only additional code that executes during runtime is the
glue code. In our threat model, the RPE server must defend itself
from a compromised client, which can send arbitrary messages to it,
and prevent a privilege escalation. As already mentioned, The RPE
server uses Unix sockets’ mechanism (obtaining socket options
through SO PEERCRED flag) to obtain process credentials so that
they cannot be faked. As an additional line of defense, we apply
least privilege: the Unix socket of the server is made available only
to containers that need to run commands through it.

As mentioned above, our RPE server is small (∼400 LOC) and is
easily auditable against vulnerabilities like memory corruption. We
have also performed a static analysis-based audit of both the RPE
client and server programs using Parasoft C/C++ test [31] provided
through the SWAMP project [39].

It is also our goal that Cimplifier remains compatible with tra-
ditional access control frameworks. We have tested our implemen-
tation to remain interoperable with the default Docker container
policies of both SELinux and AppArmor. Among other protections,
these policies protect the kernel interfaces from attacks in the con-
tainers, thus preventing consequences like container breakouts.

3.5 Implementation

We have implemented a prototype of Cimplifier. Our implemen-
tation consists of about 2,000 lines of Python and C code, with C
being used to implement RPE. To collect the system call logs, we
relied on the strace utility, which depends on ptrace system call,

as it offers out-of-the-box support decoding system call arguments
(such as flags). Other mechanisms for collecting these logs could
readily replace strace in our system.

4 EVALUATION

This section presents our experiments to evaluate Cimplifier and
the results thereof. Our evaluation seeks to answer the following
questions:

• Does Cimplifier work on real-world containers and do its
output containers preserve the functionality of the input con-
tainers?

• How effective is Cimplifier at slimming and partitioning real-
world containers?

• How much time does Cimplifier take to analyze the inputs
and produce the outputs?

• What is the runtime overhead of the output container ensem-
ble produced by Cimplifier?

Our experiments are divided into two parts: experience with real-
world, popular containers and experiments to measure runtime
performance. We summarize the findings from our experiments
and then describe them in detail later.

• Cimplifier succeeded in creating functional containers in all
case studies on real-world containers.

• Cimplifier produced the desired partitions as specified by
the user constraints. As for slimming, Cimplifier reduces
container sizes by up to 95% in our experiments.

• Given input containers, their system call logs, and partitioning
policies, Cimplifier produces output containers in under 30
seconds, for even the most complex containers we examined.
It is thus fast enough for real-world use to partition and slim
containers.

• The running time overhead is negligible for realistic programs.
Further, the memory overhead is small at about 1 MB per
output container.

4.1 Case Studies

We tested Cimplifier on nine popular containers from Docker
Hub. Six of these containers were chosen from the Docker official
images (the Docker project directly provides over hundred cont-
ainer images providing popular applications), which are simple
but highly used containers. As each of these run one simple appli-
cation only, we did not expect Cimplifier to partition them but
only to perform slimming. The remaining containers are popular
community-contributed containers and run multiple application
components that should be partitioned.

Cimplifier is guided by the application behavior demonstrated
during test runs and captured as system call logs (Section 3.1).
This allows the user to customize their containers by only exercis-
ing the behavior they desire. In a deployment setting, Cimplifier
can use logs captured from pre-production environment to cre-
ate containers for the next-stage pre-production or production. In
our experiments, we executed the containers normally to exercise
their specific configurations. Furthermore, we also ran application-
provided tests to ensure we exercised all application functionality.
These tests are provided by the application developers and aim to
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provide comprehensive application code coverage. (In our experi-
ence, running tests in containers requires container modification
and amounts to additional but not large user effort.) Assuming
the tests are complete for the deployment scenario, the created
containers will preserve functionality. Unfortunately, running the
same tests on reduced containers—in order to verify that they main-
tain their functionality after slimming—is often not feasible, as such
containers lack the environment necessary to run the tests. In order
to circumvent this issue, where necessary we run non-trivial test
cases that we created instead. It should be noted that these checks
are only for verifying that Cimplifier is implemented correctly,
and would not be needed in a production environment. We assume
in these experiments that user data is stored in named volumes;
since user data can vary across deployments, we do not remove
any resources from named volumes. A preprocessing run through
system call logs shows the executables and their invocation graph;
we use this output to write our partitioning policies.

The rest of this subsection will cover several container case stud-
ies and then present a discussion highlighting noteworthy lessons.
The case studies are divided into those of simple applications and
application stacks consisting of multiple tasks. Due to space limita-
tions, we provide general details in Table 1 and discuss only specific,
interesting details in the text. All the experiments were conducted
on a VirtualBox virtual machine running Fedora 23 and configured
with a single CPU core and 2GB of memory. The base hardware
was a 2013 MacBook Pro with 2.3 GHz Intel Core i7-4850HQ CPU
and a solid state drive.

4.1.1 Simple Applications. We first discuss containers that each
run a single application only are slimmed by Cimplifier. In this
category, we considered Nginx [28], a web server; Redis [34]; an
in-memory data structure store; MongoDB [25], a NoSQL database
engine; Docker Registry [35], a server-side application for storing
and distributing Docker images; HAProxy [20], a load balancing
proxy for HTTP and TCP; and the Python runtime running a web-
site. All these applications are highly popular. For all cases, we used
test cases provided with the application code for test runs. Test
cases for registry and HAProxy were not possible to run on release
binaries, so we used our own tests and then ensured that the pre-
pared containers included all the resources they would ever need
(e.g., the registry app needs only a configuration file, libc/linker,
and a busybox binary; of course, we also include the registry binary,
which alone is 27 MB of the 28 MB final size). Cimplifier could
produce functional slim containers for all the applications.

The Python container warrants further discussion. This container
should be used as a base for a Python application. To find our
candidate web application, we explored the list of websites powered
by Flask, a popular Python web application framework (the list
is curated by the Flask project), and selected the list’s first open-
source website. We thus selected www.brightonpy.org. Using logs
from our tests, which exhaustively crawled the website, Cimplifier
could reduce the container size from 119 MB to 30 MB. We point
out that our Python container from the Docker Hub is focused on
reducing image size. Our case study shows that Cimplifier can
perform slimming on an already space-efficient container.

4.1.2 Application Stacks. Having discussed single-application
containers, we now switch to containers that run a full stack of

applications, which should be partitioned.

Mediawiki. This study considers appcontainers/mediawiki,
the container of our running example. We would like to split this
container into separate Apache HTTPD, MySQL, and ImageMagick
partitions as well as an initial configuration partition, as depicted
in Figure 1. The user constraints and policy used to derive these
containers are given in Section 3.2. For our test runs, we used the
MediaWiki acceptance tests and unit tests. Cimplifier was able
to produce a functionality-preserving system of four containers
as tested by executing acceptance tests and some test cases that
we wrote ourselves using Selenium IDE [1] (our test cases include
adding tables and images, which the acceptance tests do not do).

As expected, ImageMagick is separated from HTTPD but shares
some volumes: /var/www/html and /tmp. These directories are
used for images that Mediawiki asks ImageMagick to process. Since
only a few files are shared the attack surface for CVE-2016-3714
(Section 2.2) is partially mitigated. In fact, ImageMagick needs ac-
cess to only an images directory in /var/www/html. However, this
directory is only dynamically created at container startup; since vol-
ume mount points must be present in container images, we end up
sharing the whole of /var/www/html. We emphasize that this over-
sharing is purely due to the configuration of this specific container,
particularly the excessive files movement and setup during startup
in this container. A different configuration can use much smaller
shared volumes. For instance, another popular Mediawiki contai-
ner, nickstenning/mediawiki (this container requires an external
MySQL server) has the images directory packed in the container
image, resulting in the sharing of just the images directory.

The ImageMagick-HTTPD sharing in this case study demon-
strates that slight configuration changes could result in much better
isolation. As another example, HTTPD and MySQL partitions need
to share /var/lib/mysql (this directory contains MySQL database
files) because of MySQL server’s socket there. If however, the socket
is created at a different location, as in our next case study, this shar-
ing could be avoided. When building their own containers, system
administrators can tweak the containers in simple ways to avoid
excessive sharing. It is our future work to investigate finer-grained
file sharing between containers.

Wordpress. eugeneware/docker-wordpress-nginx is a cont-
ainer for Wordpress [41], a blog engine. It contains Nginx, MySQL,
PHP-FPM (a PHP engine), and Supervisord (a process control sys-
tem), each of which we would like place in different partitions. The
Nginx frontend server connects via a Unix socket to PHP-FPM,
which runs Wordpress code and communicates with MySQL for
storage through another Unix socket. Our user constraint pol-
icy is {{supervisord}, {nginx}, {php5-fpm}, {mysqld safe,

sbin/mysqld, libexec/mysqld, mysql, mysqladmin,

mysql install db}}.
Our test runs included unit tests and also performing actions such

as creating blog posts, adding comments, changing user profiles,
and signing in and out to ensure we exercised container-specific
configuration. Cimplifier produced the desired partitions that
would together be able to serve Wordpress just like the original
container did. It is noteworthy that the configuration of this cont-
ainer allows for better isolation than the previous Mediawiki one:
the MySQL socket is created in a MySQL-specific directory, which

www.brightonpy.org
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Table 1: Containers studied.

Container # Downloads Size Languages Analysis time Result size Size reduction

nginx 502 M 133 MB C 5.5 s 6 MB 95%
redis 153 M 151 MB C 5.5 s 12 MB 92%
mongo 45 M 317 MB C++ 14.0 s 46 MB 85%
python 12 M 119 MB Python 5.3 s 30 MB 75%
registry 57 M 33 MB Go 2.9 s 28 MB 15%
haproxy 9 M 137 MB C 4.3 s 10 MB 93%
appcontainers/mediawiki 180 K 576 MB C, PHP, Shell 16.8 s 244 MB 58%
eugeneware/docker-wordpress-nginx 43 K 602 MB C, PHP, Shell, Python 16.2 s 207 MB 66%
sebp/elk 330 K 985 MB Java, Shell, Ruby, JavaScript 26.1 s 251 MB 75%

Each row specifies the container identifier on Docker Hub, the number of downloads (an indicator of popularity), the container image size, the source code language of the
applications, the Cimplifier analysis time, the combined size of output containers, and the percentage reduction in size. The languages indicate the diversity of containerized
applications analyzed. Only the applications’ languages are listed; libraries may have been written in additional languages. The first six containers are simple and hence not

partitioned but only slimmed. The containers produced by Cimplifier are functionally identical to the original containers.

needs to be present in the MySQL container only.
ELK. The Elasticsearch-Logstash-Kibana (ELK) stack [17] is an

application stack for collecting, indexing, and visualizing informa-
tion from logs, such as those from Syslog or HTTP server. Elastic-
search is used for indexing. Logstash provides network interfaces
for receiving logs. Kibana is the web frontend for searching and
visualizing logs. We use sebp/elk for our ELK stack. Our de-
sired partitions would be one each of Elasticsearch, Logstash, and
Kibana, and one of the startup script, represented in the simple pol-
icy {{kibana}, {elasticsearch}, {logstash}} (the startup script
is implicit and is put in its own partition).

To exercise this container, we used tests accompanying Logstash
and Kibana. Elasticsearch tests are not feasible to be run in a
deployable codebase but in our setup we could exercise it through
Kibana and our own test cases. Cimplifier produced four functional
partitions, which were tested by feeding logs from Linux Audit [36]
and running queries and plotting results on Kibana. Except for a log
file, there is no file sharing among the partitions; this is expected
as the three main components communicate via network only.

4.1.3 Discussion. We note several points from our experience
above. First, container configuration highly influences the degree
of isolation possible among partitions. This is aptly demonstrated
by the location of MySQL socket in the Mediawiki and Wordpress
containers. Second, the different container partitions sometimes
have duplicated read-only resources. For example, the linker and
libc are required by all containers and are currently duplicated
across partitions. Cimplifier could save space by sharing a layer of
files common among partitions (Docker container images consist
of read-only layers that can be shared between containers [13]).
Finally, as much as 35-67% of the analysis time shown in Table 1
is spent in recovering a file tree from a Docker image and not in
actual analysis. This time can be saved if the file tree were readily
available, such as when using the Btrfs storage driver [6].

4.2 Runtime Overhead

The only overhead in Cimplifier is due to the RPE glue, which we
expect to be small for any realistic programs. While we did not
perceive any overhead in our case studies, we performed systematic
microbenchmarking to quantify the running time and memory
overheads.

For runtime overhead, we wrote a microbenchmark consisting
of several iterations of fork/exec calls. Cimplifier results in par-
titioning at these calls and adding the glue in between, so we can
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Figure 4: Runtime overhead of RPE as number of open file

descriptors and arguments length varies

compare the overhead of the glue over the original fork/exec setup.
Among the artifacts replicated across containers, the number of
open file descriptors and the number of bytes in the command
arguments and environment are variable. We show the results of
our microbenchmark in Figure 4. The RPE overhead increases lin-
early with these variables. This is intuitive because we replicate
these variables in the remote process in userspace. Nevertheless,
programs do not use extremely long command arguments for porta-
bility reasons, and even if a program opens a large number of files,
the files will typically be closed at the time of exec to prevent
file descriptor leakage issues. The overhead per fork/exec is thus
only about 1-4 ms for all practical purposes and is easily amortized
for programs that run for more than a few milliseconds. Develop-
ers should nonetheless be careful not to partition containers on
boundaries involving a large number of process executions.

We also measured the memory overhead due to additional pro-
cesses that arise from RPE by measuring the resident set size (RSS)
of those processes. The RSS of the RPE server peaks at 1084 KB
while that for other processes (client and controlling processes), it
peaks at about 80 KB. The overhead is thus only about 1 MB per
container, which we consider low as even simple utilities like ls
from Coreutils reach RSS of over 2 MB.
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5 RELATEDWORK

A few works in the past have used resource identification for vari-
ous purposes. In the Docker ecosystem itself, some blog posts and
projects have developed automatic container slimming as a solution
to the big size of Docker images. All these works [2, 22, 33] have
relied on fanotify to identify necessary file resources. This tech-
nique is simpler than system call-based identification but does not
record crucial file system events like creation and moving of files.
We have observed behavior such as file moves in real-world con-
tainers (such as MediaWiki container that we examined) that would
break fanotify-based solutions. Our approach is more complete
and goes beyond slimming to provide container partitioning.

CDE [19] is a tool developed before application containers; it
uses ptrace to identify file resources needed for running an ap-
plication and packs them so as to provide a portable runtime for
running the application on any Linux host. While our resource
identification is similar, we offer a more formal treatment in a new
domain. Furthermore, the challenges with respect to container
partitioning are unique to our work.

Our work draws its motivation from previous work on least
privilege and privilege separation. Krohn et al. [21] observe that
mainstream operating systems do not provide easy support for im-
plementing least privilege in programs despite wide acceptance of
the principle. The evolving container ecosystem also faces this prob-
lem, which our work helps address. Provos et al. [32] performed
privilege separation of the SSH service manually. Cimplifier is
automatic and so can scale better. Brumley and Song [5] developed
automatic techniques based on static analysis for automatic priv-
ilege separation. Bittau et al. [3] provide operating system-level
primitives to allow developing applications in a privilege-separated
manner. Others have used specialized programming languages and
compilers to ensure flow control across program parts [26, 27, 42].
Because of the need to analyze real-world containers running on
stock Linux, we can assume neither specialized programming lan-
guages nor special OS-level primitives, nor is our problem very
amenable to static analysis alone (i.e., without any dynamic analy-
sis) (see Section 2.3). Blankstein and Friedman [4] perform dynamic
analysis-based privilege separation for Python web services. Their
problem is, however, different from ours. They perform fine-grained
privilege separation on web services specifically (even more specifi-
cally, Django applications) and are able to mold their solution to the
specific architecture (e.g., model-view-controller) and specific im-
plementation (e.g., Django and database backends like Postgres and
SQLite). We allow performing a more general, albeit more coarse-
grained privilege separation on arbitrary containers. Nonetheless,
these works were valuable in inspiring our approach to container
partitioning and may in the future be used with our approach to
offer finer partitions than what we currently achieve.

Remote process execution may be compared to live migration.
Live migration of processes [15, 30] or virtual machines [9] includes
saving all the relevant state, including memory, and replicating it
somewhere else with kernel or hypervisor support. In contrast,
RPE is a light-weight technique to transfer execution right when
it begins. Instead of needing kernel support, it takes advantage of
a shared kernel state to enable low-overhead, transparent remote
execution.

6 LIMITATIONS AND FUTUREWORK

Cimplifier provides an important first step in container partition-
ing and slimming. In this section, we point out limitations of our
approach and discuss directions for future research.

Cimplifier inherits the usual drawbacks of dynamic analysis: if
test runs do not cover all relevant scenarios, resource identification
will be incomplete and applications may fail in unexpected and
arbitrary ways at runtime. With static analysis not appearing feasi-
ble (Section 2.3), we resort to dynamic analysis. There are several
ways of addressing the coverage issue with dynamic analysis. Our
evaluation used test cases curated in the program’s source reposi-
tories with the expectation that they provide high coverage. Users
could provide additional input generation techniques, e.g., fuzzing –
Cimplifier is agnostic to the techniques used to drive the programs.
In practice, we envision Cimplifier to be integrated into the soft-
ware deployment life cycle: software deployment passes through
multiple stages, such as development, testing, pre-production, and
production. Runs in the testing and pre-production stages would
provide Cimplifier enough information for accurately performing
resource identification.

Slimming containers can also affect debuggability as debug tools
and utilities may no longer be available. For example, to debug a
misbehaving application, one may wish to get a shell in the contai-
ner and look at file-system contents. However, utilities like sh and
lsmay not be present. Host-based tools that switch to a container’s
namespace are a possible direction toward solving this problem.
Existing tools [29] already provide some support for this.

7 CONCLUSION

While application containers are becoming tremendously popu-
lar, they often pack unnecessary resources, which not only results
in excessive space usage but also potential vulnerabilities. More-
over, complex containers can be further partitioned into simpler
containers to provide privilege separation. We designed and imple-
mented Cimplifier, which partitions a container into many simple
ones, enforcing privilege separation between them, and eliminates
the resources that are not necessary for application execution. To
achieve our goal, we developed techniques for identifying resource
usage, for performing partitioning, and for gluing the partitions
together to retain original functionality. Our evaluation shows that
Cimplifier creates functionality-preserving partitions, achieves
container image size reductions of up to 95% and processes even
big containers in less than thirty seconds.
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