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Abstract— With the wide adoption of smart mobile devices,
there is a rapid development of location-based services. One key
feature of supporting a pleasant/excellent service is the access
to adequate and comprehensive data, which can be obtained by
mobile crowdsourcing. The main challenge in crowdsourcing is
how the service provider (principal) incentivizes a large group
of mobile users to participate. In this paper, we investigate the
problem of designing a crowdsourcing tournament to maximize
the principal’s utility in crowdsourcing and provide continuous
incentives for users by rewarding them based on the rank
achieved. First, we model the user’s utility of reward from
achieving one of the winning ranks in the tournament. Then,
the utility maximization problem of the principal is formulated,
under the constraint that the user maximizes its own utility by
choosing the optimal effort in the crowdsourcing tournament.
Finally, we present numerical results to show the parameters’
impact on the tournament design and compare the system
performance under the different proposed incentive mechanisms.
We show that by using the tournament, the principal successfully
maximizes the utilities, and users obtain the continuous incentives
to participate in the crowdsourcing activity.

Index Terms— Mobile crowdsourcing, incentive mechanism,
contract theory, moral hazard, tournament.

I. INTRODUCTION

OWING to the wide adoption of embedded sensors in
smartphones and the fast development of big data tech-

nologies, various locations based services have been intro-
duced to bring convenience in every aspect of our daily
lives [1]. There are mobile applications available that can
detect WiFi hotpots and upload related information to cloud
within a certain distance of the userâŁ™s current location.
Smartphone users help to collect the WiFi hotpot information
which includes the location, router name, etc. for the service
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provider which is denoted as principal hereafter [2]. The
location based service market led to a profit of $12.2 billion
in 2014, and is expected to reach $43.3 billion in revenue
by 2019 [3]. With the drastic growth in the location based
service market, more complicated and comprehensive data are
required to support more sophisticated services [4].

One possible solution for such a data crunch is crowdsourc-
ing, in which a large group of users (with sensors embedded
smartphones) regularly collect and transmit data required from
the principal [5]. The users’ participation and cooperation
are essential in crowdsourcing [1]. While a conflict is that
when participating in such crowdsourcing, users consume
their resources such as battery and computing capacity [6].
Such a conflict leads to an inevitable fact that, many users
may be reluctant to participate, which is a major impediment
to the development of mobile crowdsourcing [7]. Therefore,
appropriate incentive mechanism designs are needed to ensure
users’ participation. In the literature, it has already been
noticed that there is an urgent need to alleviate the conflict
by introducing incentive mechanism for users [8], [9]. A clear
motivation can potentially lead to higher commitment of users
and better quality of received data [10]. There are many
types of incentives such as monetary rewards, social approval,
self-esteem [11].

Meanwhile, [10], [12], and [13] found that there are possi-
bilities of “free-riding” and “false-reporting” in crowdsourc-
ing if an inefficient incentive mechanism has been applied.
“Free-riding” happens when rewards are paid before the task
starts, since users usually have the incentive to take the reward
while dislike placing efforts [1]. On the other hand, if the
rewards are paid after the task is complete, the problem of
“false-reporting” arises since the principal has the incentive to
lower the reward for the users by lying about the outcome
of the task [1]. Methodologies such as game theory and
auction theory have been applied to forbid those dishonest
behaviors [14]. Additionally, [10], [13], [15], and [16], take
user’s reputation into consideration, which relies on the user’s
past behavior, to design the incentive mechanism. On the
other hand, inspired by the effort based reward from the labor
market, several works have been proposed to address this
problem by providing users with the reward that is consistent
with their performance. Examples are the works in [17]–[19],
as well as one of our previous works [20].

The previously mentioned works capture the fundamental
aspect of providing necessary and efficient incentives for users
to participate in crowdsourcing. Yet, they mainly assume that
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the principal employs only one user and rewards it on the
basis of the absolute performance. However, when rewarding
users based on the absolute performance, the principal still
has a strong incentive to cheat by claiming that users had
poor performances and deserved low rewards, so that the
principal can pay less, as the “false-reporting” problem [21].
Apparently, this will result in a decrease of all users’ utili-
ties. Another example is that when there is a positive mean
measurement error at users’ performances, every user’s per-
formance will result in an abnormal increase at the principal’s
observation [22]. Thus, users are rewarded more than they
should be, while the principal encounters a loss of utility
since more rewards have to be paid. Green and Stokey [23]
name this case that affects both sides as common shock, which
usually appears in economic study to denote macro-economic
conditions such as economic boost or depression [24], [25].
Common shock can be either positive or negative to user’s
performance and reward. If both users and principal are aware
of this common shock, we can regard the trading between them
as trading with full information. However, in the general case,
this common shock is unobservable to either or both sides [26].

It has been proven in [23] and [27] that contract based on the
absolute performance can be easily affected, while the tour-
nament design can filter out this common shock problem and
dominate the mechanism based on the absolute performance.
One salient advantage of rank-order tournament over absolute
performance rewards is that the ordinal ranking is easy to
measure and hard to manipulate [28]. In a tournament, the
principal has to offer the fixed amount of rewards no matter
who wins [29]. The other advantages of tournaments include
lower monitoring costs for the principal since only the rank-
order of participating users needs to be monitored [30], and
non-monetary utilities for the users derived from a high rank
such as self-esteem [31], and [32] benefits received from the
content they have collected.

In this paper, we will propose a multi-user design that
rewards users’ performance in crowdsourcing by a tournament
reward structure. We will incentivize users to participate in
crowdsourcing by providing them with fixed prizes based
on their performance rank orders. A brief illustration of
crowdsourcing tournament rewarding mechanism is shown in
Fig. 1. The principal first designs the optimal tournament
prizes which increase with the ranks. After obtaining the data
from the users, the principal will sort users’ performances in
an ascending list. Then, each user will receive a reward in
consistent with their ranks in the tournament. Here, user 1
achieves the highest performance and will be rewarded the
highest amount reward 4, while user 2 performs worst with
the smallest amount of reward 1.

The main contributions of this paper are as follows. First
we consider a tournament-based incentive mechanism that
rewards users by their rank orders, which can overcome the
common shock problem in mobile crowdsourcing. To the best
of our knowledge, this formulation in mobile crowdsourcing
is rarely tackled by other works. Second, we introduce the
tournament model together with the contract model under full
information, which rewards users based on their absolute per-
formance. The contract model serves as the ideal comparison

Fig. 1. Crowdsourcing incentive mechanism by tournament.

case, and is also used to derive the solution of the tour-
nament. Third, we give further analysis about how the key
features in a tournament design: the optimal effort exerted
by users, the number of winners, and the inter-rank spread
are affected by three parameters: the number of participating
users, the variance of measurement error, and the risk tolerance
degree of users. Furthermore, in the simulation part, we
present numerical results to show the impact of the parameters
settings on the tournament design. Last, we introduce another
well-known tournament mechanism for comparison purposes
and demonstrate the effectiveness of tournament mechanisms
in terms of improving the principal’s utility. The proposed
mechanisms allow the principal to successfully maximize
the utilities and the users to obtain continuous incentives of
participating in the mobile crowdsourcing.

The remainder of this paper is organized as follows. First,
we will introduce the contract and tournament model in
Section II. Then, the design of the tournament is described
in Section III, in which we also give the analysis of the
optimal contract with full information. The detailed analysis
of key features in the tournament is given in Section IV. The
performance evaluation is conducted in Section V. Finally,
conclusions are drawn in Section VI.

II. SYSTEM MODEL

In this section, we will first propose the incentive mech-
anism by the tournament design. As we have mentioned in
the introduction part, the tournament can filter out the impact
from common shock, which can easily affect the incentive
mechanism by the absolute performance. Thus, the contract
which rewards users based on their absolute performance
under full information will be a perfect comparison for the
tournament design. In the later part of this section, we will
also provide the incentive mechanism by the contract design
when the common shock is observable.

We refer to the model in [33] and consider a mobile
crowdsourcing network in which one risk neutral principal
employs a fixed group of identical risk averse users, i =
1, . . . , n, to collect data. The output data quality is a general
link to the incentive mechanism. The principal rewards users
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based on their relative performances which can be referred to
the quality of the received data (e.g., quantity, correctness, and
importance).

A. Common Shock Problem

When users help collect data for the principal, the user
exerts an effort a. Note that the user’s effort a is a hidden
information, since the principal can only observe the perfor-
mance level q of the users, i.e., the quality of the received
data. Therefore, the performance of user i , qi , depends
stochastically on the user’s effort level, ai . In particular,

qi = zi + ε, (1)

where ε is a random variable representing the common shock
that affects all of the users and zi is a random variable whose
distribution depends on ai . Due to the common shock, such as
the measurement error at the principal, the quality of received
data qi cannot reflect the user’s actual performance or effort
exactly. Therefore, the performance of the user is a noisy
signal of its effort.

Let G denote the distribution function for the common shock
(μ, σ ′2), where σ ′2 is the variance. Obviously, ε has zero mean
when no common shock presents:∫

εdG(μ, σ ′2) = 0. (2)

Otherwise, there exists a common shock which can be either
positive or negative. It has been proved by [23] that, no matter
what value this integration has, the rewards in the tournament
will not be affected.

In our model, we assume the contract model is under
full information. By this assumption, we can normalize the
distribution to μ = 0 regardless of its assessment of μ. Thus,
every user believes that its performance and that of every other
user have the same mean if they take the same effort.

B. Tournament Model

In a n-user tournament, the users’ performances are sorted
in an ascending order, and the fixed prizes (W1, W2, . . . , Wn)
are rewarded. We use the numbering conventional in the study
of order statistics: “first place” is the lowest performance.
So, W1 is the prize received by the user with the lowest
performance, and Wn is rewarded to the user with the highest
rank.

1) Rank Order Statistic: Let F(zi ; ai ) denote the cumula-
tive distribution function (CDF) for zi , given ai . F(zi ; ai) has
a continuous probability distribution function (PDF) f (zi ; ai)
which is positive everywhere and continuously differentiable
in ai . Since the users are identical ex-ante, F does not depend
on i . The value of zi is not known to the user until its choice
of ai is made. We assume that zi and (μ, σ 2) independent,
since the term zi is independently and identically distributed
for every common value of ai and qi .

Assume that the principal observes only the performance
levels of the users, q = (q1, q2, . . . , qn), but cannot directly
observe the users’ effort levels. Under the tournament, user i ’s
prize depends only on the rank order of qi in q , instead of the

performance level qi . According to user’s performance given
by (1), we can easily obtain zi ≥ z j from qi ≥ q j . That is,
the rank order of the performances depends only on zi and
not on ε. Therefore, the realization of (μ, σ 2) does not affect
the game played by the users, and the equilibrium effort level
will be independent of σ 2. Hence, we can analyze the game
in terms of just zi . In a n-user tournament, user i wins prize
W j if and only if zi , is the j th-order statistic of (z1, . . . , zn).
The density function φ j n(z; a) for the j th-order statistic in a
sample of size n drawn from the distribution F(z; a) is [23]

φ j n(z; a)

= (n − 1)!
(n − j)!( j − 1)! f (z; a)F j−1(z; a)[1 − F(z; a)]n− j . (3)

This density function denotes that the user i ’s performance
outperforms j − 1 number of users, and falls behind n − j
number of users.

Given that the other users exert the optimal effort, we can
have the probability that the user is in the j th place among
all n users at the measured performance level q = z + ε as

P(rank = j) =
∫

φ j n(z; a)dz,

=
∫

(n − 1)!
(n − j)!( j − 1)! f (z; a)F j−1(z; a)

× [1 − F(z; a)]n− j dz. (4)

2) Utility of the Users: The realized performance of each
user then is a stochastic function of its effort and the value of
the common shock. Here, we consider the user’s reward from
the principal’s prize in terms of utility, as well as the cost of
exerting effort. The preferences of each user i over the prize,
Wi , and the exerted effort, ai , are represented by the utility
function

Ut (Wi , ai ) = u(Wi ) − γ (ai ), Wi ≥ 0, ai ≥ 0, (5)

for i = 1, . . . , n, where u is a strictly increasing and concave
function of Wi , and γ is strictly increasing and convex with ai .
The user’s utility is the prize minus the exerting effort.

For convenience, the principal can also consider the user’s
reward function in terms of utility w = (w1, w2, . . . , wn) by
defining wi = u(Wi ), ∀i . We have the user’s expected utility
is the expected value of rewards minus the cost,

Ut (w, a) =
n∑

j=1

w j P(rank = j) − γ (a). (6)

Given the density function φ j n(z; a), the probability can be
obtained by an integration of the density function φ j n(z; a).
Thus, the user’s utility function can be rewritten as

Ut (w, a) =
n∑

j=1

w j

∫
φ j n(z; a)dz − γ (a). (7)

In the symmetric equilibrium all users spend the same
amount of effort ā and expect an equal probability 1/n of
reaching any of the n ranks. Given the effort choice of ā, we
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can derive the users’ expected utility from (7) as

Ut (w, ā) = 1

n

n∑
j=1

w j − γ (ā). (8)

3) Utility of the Principal: The principal’s problem is to
design a prize structure for n users. We assume that the
principal is constrained to offer a fixed minimum level of
expected utility to each user, so that we can judge the relative
performance of tournaments by examining the expected utility
of the principal. The risk neutral principal’s utility is the
summation of all the users’ performances minus the total
prizes to the users:

Vt (W, a) = E

[
n∑

i=1

(qi − Wi )

]
. (9)

Given that the performance q follows a conditional distrib-
ution f (q − ε, a) and under a common shock, the principal’s
expected utility can be written as:

Vt (w, a) =
∫ ∫

q f (q − ε, a)dG(μ, σ 2)dq −
n∑

j=1

W j , (10)

=
∫

z f (z, a)dz −
n∑

j=1

W j , (11)

where (10) is resulting from our previous conclusion that z
is independent from the common shock (μ, σ 2), and thus we
can simply replace q with z.

C. Contract Model

In the contract model, the principal rewards users based on
the absolute performance. We define the reward function R(q)
as a linear and increasing function of q . Thus, the utility user
obtained from the reward is u(R(q)), and denoted as v(q) here
after for simplicity. As u is a strictly increasing and concave
function, so is v. The contract that the principal offered to a
given user is (v, A), where A is the effort in the contract to
distinguish it from a in the tournament. As we have mentioned
previously, in this full information case, we simply assume
G is given by μ = 0 with probability 1, i.e., the principal
knows ε.

1) Utility of the User: Thus, for i = 1, . . . , n, the user i ’s
utility under contract is represented by

Uc(vi , ai ) = v(qi ) − γ (ai ), qi ≥ 0, ai ≥ 0. (12)

The utility of a user is also the prize minus the cost. As we can
see, v(qi ) is a piecewise continuous utility which is related to
the quantity of qi instead of its rank. As noted above, F(z; a)
denotes the conditional distribution function for z given a, and
f (z; a) is the continuous density function of F(z; a). As ε = 0
with probability 1, we can rewrite the user’s expected utility
function as

Uc(v, a) =
∫

v(z) f (z; a)dz − γ (a), (13)

which is positive everywhere and continuously differentiable
in a.

TABLE I

SYSTEM MODEL PARAMETERS

2) Utility of the Principal: Followed by user’s expected
utility function in contract, the principal’s expected utility can
be written as

Vc(v, a) = E

[
n∑

i=1

(qi − R(qi ))

]
. (14)

Similarly, the expected utility of the principal from the contract
(v, a) is

Vc(v, a) =
∫

{z − R(z)} f (z; a)dz. (15)

The notations of all parameters are summarized in Table I.

III. PROBLEM FORMULATION

In this section, we are going to formulate the principal’s
utility maximization problem in both tournament and contract
models. Afterwards, we will solve the tournament design by
deriving from the optimal contract with full information.

A. Optimization Problem of Tournament

Given the number of users n that participate in this
crowdsourcing, the principal’s problem is to design (w, ā) to
maximize (10) subject to the two constraints that ā is an
optimal decision rule for the user given w and that the expected
utility of the user is at least ū, i.e.,

max
(w,ā)

∫
z f (z; a)dz −

n∑
j=1

W j ,

s.t .

(a) ā = argmax
a

n∑
j=1

w j

∫
φ j n(z; a)dz − γ (a),

(b)
1

n

n∑
j=1

w j − γ (ā) ≥ ū. (16)
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(a) is the incentive compatible (IC) constraint; it represents that
given any reward structure, the problem facing each user is to
choose a level of effort that maximizes own utility. (b) is the
individual rationality (IR) constraint; it provides the necessary
incentive for users to participate. We must have the utility no
less than the reservation utility when a user is not taking any
effort (a = 0). Here, we define St (n) as the set of feasible
n-user tournaments that satisfy the IC and IR constraints. The
set of feasible tournaments is always nonempty, since it always
contains the “no incentive” tournament, [(ū, ū, . . . , ū), 0] ∈
St (n), for all n.

From the problem formulation, we see that the optimal tour-
nament depends on the number of users n, and the distribution
function F , but not on the distribution function G. In other
words, the tournament approach is robust against the lack of
information or the lack of agreement about G.

B. Optimal Contract Under Full Information

Similar to the problem formulation in the tournament model,
in the contract model with full information, the principal’s
problem is to design (v, A) to maximize (15) subject to the
two constraints that A is an optimal decision rule for the user
given v and that the expected utility of the user is at least ū.
With the user and principal’s utility functions in the contract
model, we can formulate the contract which rewards users by
their absolute performance as

max
(v,A)

∫
{z − R(z)} f (z; a)dz,

s.t .

(a) A = argmax
a

∫
v(z) f (z; a)dz − γ (a),

(b)

∫
v(z) f (z; A)dz − γ (A) ≥ ū. (17)

As in the tournament, (a) is the IC constraint and (b) is the
IR constraint. The principal’s problem is to choose (v, A) to
maximize its expected utility subject to the two constraints
that A is the optimal decision rule for the user given prize v,
and that the expected utility of the user is at least ū. Here, we
define Sc(G) as the set of feasible contracts that satisfy the IC
and IR constraints.

C. Tournament Design

To obtain the tournament design, we can utilize the design of
the optimal contract with full information. Next, we will show
that with a feasible contract (v, A) be given under optimal
condition, we can approximate it by constructing a sequence
of contracts {(vk, Ak)}∞k=1, where vk is a step function with
k steps, Ak is a constant function, and vk → v in measure.

Given the definition of utility function, cost function, CDF
F(z; a), and PDF f (z; a), the first thing we need to do is
to approximate the continuous utility function v(z) by a step
function. Let Ik1, . . . , Ikk be the intervals corresponding to
quantized values of the cumulative distribution F(z; A):

Ikj = {z|( j − 1)/k < F(z; A) ≤ j/k},
j = 1, . . . , k, k = 1, 2, 3, . . . (18)

Then, define v̄k1, . . . , v̄kk as the expected utility of the user
under (v, A) on each of these intervals:

vkj =
∫

Ikj

v(z) f (z; A)dz,

j = 1, . . . , k; k = 1, 2, 3, . . . . (19)

Thus, with vkj , we can define the step function v̂k(z) by

v̂k(z) = v̄kj , z ∈ Ikj . (20)

If k → ∞, we will have v̂k(z) = v(z) in measure. Thus, we
can replace v(z) with v̂k(z) in (17), and solve the optimization
problem by the following steps.

First, taking the values of v̂k(z) into the integral, the optimal
effort Ak is obtained by

Ak = argmax
a

∫
v̂k(z) f (z; a)dz − γ (a), ∀k. (21)

The detailed steps to obtain Ak are presented in Appendix B.
Second, taking Ak into the condition density function f (z; a),
and calculate the error ek encountered with the given
contract (v, A). Here we must notice that, the user’s utility
must be equal to the reservation utility ū in the optimal
contract and tournament. Thus, we have the error term ek as

ek = ū + γ (Ak) −
∫

v̂k(z) f (z; Ak)dz, ∀k, (22)

where ū is the user’s reservation utility under (v, A). Then,
correct the value of the step function vk(z) by adding up the
error term,

vk(z) = v̂k(z) + ek, ∀z, k. (23)

By now, we have the step function approximated optimal
contract with full information {(vk, Ak)}∞k=1. Next, we can con-
struct a sequence of tournaments (wni , ān) that approximate
the contract (v, A) ∈ Sc(G) obtained from the previous steps,
where wni is a step function with n steps, ān is a constant
function.

The first thing we need to do is to approximate the contin-
uous utility function v(z) by a step function. We notice that,
the probability that a user achieves a specific rank is equal
to the probability that the user’s performance level falls into
a corresponding interval of the CDF. Thus, given a specific
rank, we can find the effort value qni by the inverse CDF of
F(qni ; A) = i/(n + 1) [23]. Then, we can have the expected
reward utility ŵni with performance qni , by

ŵni = 1

n
v(qni ), i = 1, . . . , n. (24)

Thus, we can replace the w j in (16) with this approxima-
tion ŵni . The optimal effort under tournament can be solved
by

ān = argmax
a

n∑
i=1

ŵni

∫
φin(z; A)dz − γ (A). (25)

Again, we calculate the error term ēn in this tournament
design, and have

ēn = ū + γ (ān) − 1

n

n∑
i=1

ŵni . (26)
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Finally, the utility in tournament is obtained by adding up the
approximated ŵni and error ēn:

wni = ŵni + ēn, i = 1, . . . , n. (27)

By now, we have the tournament (wni , ān) that is close to
the optimal contract with full information. To summarize,
we employ the probability of a user in achieving a certain
rank in backward induction algorithm and derive the optimal
effort. Then, by making use of the optimal effort derived from
the optimal contract, we successfully use step functions to
derive the tournament design through approximation. In [23],
it is proved that each of these step-function contracts can
be approximated arbitrarily close by a tournament with a
sufficiently large number of users. Hence, the principal’s
expected utility is approximately unchanged. Moreover, the
tournament’s efficiency is unaffected by changes in G (the
distribution of ε and the user’s information about ε), so that
the same tournament’s utility remains arbitrarily close to the
full information utility for any G as well as if the users can
observe ε directly.

IV. TOURNAMENT DESIGN PARAMETERS

AND PROPERTIES

In this section, we will give further analysis to the struc-
ture of an optimal tournament. First, we will provide the
specific form of the conditional distribution, utility and cost
functions we have defined in the system model to simplify
our mathematical analysis. Then, we will show that the three
parameters, i.e., the number of participating users, the variance
of measurement errors, and the risk tolerance degree of users,
can affect the three key features in a tournament, i.e., the
optimal effort exerted by users, the number of winners, and
the inter-rank spread.

A. Model Setup

We assume that the conditional distribution f (z; a) follows
the logistic distribution. The logistic distribution is a symmet-
ric and bell shaped distribution, like the frequently used normal
distribution. The PDF of a logistical distribution is

f (z; a) = exp(− z−a
β )

β[1 + exp(− z−a
β )]2 , (28)

and the CDF is

F(z; a) = 1

1 + exp(− z−a
β )

, (29)

where β is the coefficient related to the variance σ 2 of
logistic distribution, which is π2β2/3. As β is positively
correlated with the variance σ 2, we will use β to represent
the variance σ 2 in the sequel.

In the system model, we have defined the evaluation func-
tion u as a concave function. Thus, here, we set up the
evaluation function u in a form of power function as

u(W ) = Wρ

ρ
, (30)

where ρ is the power coefficient and 0 < ρ < 1. Here we
further define the user’s risk tolerance degree as

τ = −u′′

u′ = W

1 − ρ
, (31)

and the user’s risk averse degree as

η = − u′

u′′ = 1 − ρ

W
. (32)

We see that, as ρ and τ are positively correlated with each
other, we use ρ to denote risk tolerance hereafter. Under
the same amount of reward, the larger the risk tolerance
degree τ/ρ, the smaller the risk averse degree η, the less
conservative and sensitive is user towards risk, and vice versa.
When ρ approaches 1, the user is risk neutral.

In the system model, we have assumed that the reward func-
tion R is a linear function of performance q . For simplicity,
here we define the reward function as R(q) = q . Thus, the
utility function in the contract model becomes

v(q) = u[R(q)] = u(q) = qρ

ρ
. (33)

Furthermore, we have defined the cost function in the
system model as a convex function. Thus, we set up the cost
function γ in a quadratic form as

γ (a) = 1

2
a2. (34)

We assume that the reservation utility, when the user does not
participate in the crowdsourcing, is ū = 0.

B. Analysis

In this section, we will give an analysis of three key features
that determine the rewards structure of a tournament, which
includes the optimal effort, number of winners, and inter-rank
spread.

1) Optimal Effort: In the optimization problem (16), each
user must choose a level of effort that maximizes own utility.
We can solve the optimal effort by taking the first derivative
of the IC constraint, which is given by

n∑
j=1

w j
∂ P(rank = j)

∂a
− γ ′(a) = 0. (35)

For easier notation, we define the partial derivative of the
probability for the j th-order with respect to effort a as ψ( j).
With the PDF and CDF of logistic distribution, we can
simplify the partial derivative to

ψ( j) = 2 j − n − 1

β[n(n + 1)] . (36)

The detail of the derivation can be found in Appendix A.
Take the partial derivative ψ( j) with the definition of the

cost function given in (34) into (35), we can derive the optimal
effort exerted by user as

a =
n∑

j=1

w j
2 j − n − 1

β[n(n + 1)] . (37)
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The optimal effort can be affected by the number of partic-
ipating users n, and is decreasing with the variance of the
conditional distribution β. In addition, from the definition of
the utility function w j = u(W j ), we see that the optimal effort
increases with the risk tolerance ρ.

2) Maximum Number of Winners: According to (35), where
w j and γ ′(a) are all positive, so we must have ψ( j) > 0
in order to have a positive prize. For the negative elements
in ψ , we can set up them as 0, since it is meaningless to
have a negative prize. From the inequality ψ( j) > 0 we see
that in order to receive a prize, users must achieve a rank
j > (n − 1)/2. As a result, the maximum number of prize
recipients will not be more than half of the participating users.
The prize recipients should be the users whose rank is higher
than (n + 1)/2. While the users whose rank is lower than
(n + 1)/2, will only receive a zero reward.

The maximum number of winners increases with the num-
ber of participating users n. Similar to the optimal effort a,
the maximum number of winners is also impacted by the vari-
ance of the conditional distribution β, and the risk tolerance
degree ρ.

3) Inter-Rank Spread: The inter-rank spread is defined as
the difference of rewards between the j th and j +1th winners:

d j = W j+1 − W j , (38)

where j = m + 1, . . . , n. m is defined as the smallest integer
that is larger than or equal to (n + 1)/2.

Considering two ranks j and k, there is a condition that
must be satisfied so that all reward prizes are guaranteed to
be positive [34]:

u′(W j )(2 j − n − 1) = u′(Wk)(2k − n − 1). (39)

To analyze the spread between two ranks, we can set k = j+1.
Then, we have the following equality that must be met for two
adjacent ranks,

u′(W j+1)

u′(W j )
= 2 j − n − 1

2 j − n + 1
. (40)

According to the prize utility function u which is defined
in (30), we can further derive

[
W j+1

W j

]ρ−1

= 2 j − n − 1

2 j − n + 1
, (41)

W j+1

W j
=

[
2 j − n + 1

2 j − n − 1

] 1
1−ρ

. (42)

Since 0 < ρ < 1 and 2 j−n+1
2 j−n−1 > 1, the ratio between W j+1 and

W j is larger than 1 and grows exponentially as j increases,
and thus the inter-rank spread d j , as well. In other words,
the higher the rank, the larger inter-rank spread between the
adjacent prizes. We also see that, the factors that impact the
inter-rank spread also include the number of participating
users n, the variance of effort and performance correlations β,
and the risk tolerance degree of users ρ.

Fig. 2. Approximation of optimal contract by tournament.

V. SIMULATION RESULTS AND ANALYSIS

In this section, we will give numerical simulations to
illustrate our results. First, we will show the tournament and
contract obtained by the step function. Then, we will show
the three parameters’ impact on the features in a tournament.
Finally, we will analyze the system performance by varying
different parameters, and conduct a comparison with other
incentive mechanisms.

A. Prizes Structure

In Fig. 2, we show the optimal contract and tournament with
19 users participating in crowdsourcing following the steps in
Section III, with x axis representing the rank of the users
in an ascending order. As we can see, the prize obtained by
the tournament is close to the prize from the optimal contract
with full information. If we increase the number of users to
infinity, the tournament can approximate the optimal contract
arbitrarily close. In addition, we see that, only users with rank
larger or equal to 14 received a positive reward, which is
consistent with our conclusion previously that no more than
half of the users should be rewarded. Another observation from
Fig. 2 is that, the higher the user rank, the larger the spread,
that is W j − W j−1 < W j+1 − W j . This result is consistent
with our conclusion in the previous section, and is due to the
power function form of the evaluation function u. If we change
the evaluation function u to a log function, the spread will
be the same for all ranks. While if the evaluation function u
follows the exponential form, the spread will become smaller
for higher ranks.

B. Parameters Effect on Tournament Design

In the previous sections, we have shown that the number
of participating users, the variance of effort and performance
correlations, and the risk tolerance degree of users are the
factors that impact the tournament design. This part, we will
show how the optimal effort, the number of winners, and
the inter-rank spread in a tournament vary when the three
parameters change.

1) Number of Users: In Fig. 3, we increase the number of
participating users from 2 to 10, and observe that the optimal
effort decreases in Fig. 3a, the number of winners increases
in Fig. 3b, and the inter-rank spread decreases in Fig. 3c.
These results are consistent with the analysis in Section IV-B.
The reason for this phenomenon can be explained since the
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Fig. 3. The impact of the number of users on tournament design.

Fig. 4. The impact of the variance on tournament design.

probability of winning the contest decreases with the number
of participating users, and thus, the users will lower their
effort. However, this is not preferred by the principal. So, to
provide more incentives and attract users exerting effort, the
principal must increase the number of winners. But in order to
compensate for the cost of rewarding more users, the principal
decreases the inter-rank spread between rewards.

2) Variance: In Fig. 4, we fix the number of participating
users as 10, and increase the variance β of measurement error
from 0.2 to 1. A larger variance β indicates a weaker relation
between effort levels and the observed performance, and the
expected rank achieved. In the simulation results, we see that
the optimal effort decreases in Fig. 4a, as well as the number
of winners in Fig. 4b, but the inter-rank spread is increasing
in Fig. 4c. Since we only consider 10 users in this simulation,
we cannot see a steep decrease in Fig. 4b. It is intuitive that
users do not want to waste their efforts if the strength of the
performance-effort relation is weak. But the decrease of the
number of winners and increase of inter-rank spread is counter
intuitive. The reason is that, with the increase of variance, the
utility that users obtain will increase, which will be proved
by the simulation results in the next subsection. As the users
have higher participation incentives, the principal can attract
enough users without offering too many rewards. In order to
achieve higher utility, the principal should thus decrease the
number of winners when the variance is high.

3) Risk Tolerance Degree: In Fig. 5, we fix the number
of participating users and the variance of measurement error,
but increase the risk tolerance degree from 0.2 to 1. From

the definition of risk tolerance degree we see that when ρ
increases, users become less conservative to risk and evaluate
prizes more, thus more willing to participate in crowdsourcing.
Thus, we see that the optimal effort increases in Fig. 5a. Also
due to the same reason, the principal can attract enough users
without offering too many rewards. Thus, we see a decrease
of the number of winners in Fig. 5b. However, the principal
is able to induce more help by using larger prizes for top
ranks and larger inter-rank spread. So the inter-rank spread is
increasing in Fig. 5c.

C. Comparison

In this part, we are going to analyze user and principal’s
utilities by varying the three factors impacting the design of
the contest including the number of users for whom the contest
is conducted, the degree of performance uncertainty in the
environment (i.e., the strength of the relation between effort
and performance realized), and the user’s risk tolerance degree
towards the crowdsourcing activity. Furthermore, we are going
to do comparisons between different tournament designs.

In the tournament we have proposed, there are many
winners and the amount of reward is based on the rela-
tive rank achieved, with larger amounts rewarded to higher
ranks. We refer to this tournament design as the Rank-Order
Tournament (ROT). We will compare the results from the ROT
with that from the optimal contract with full information, and
another special case of ROT: the Multiple-Winners (MW).
In the MW tournament, several top winners share the reward
equally, i.e., the inter-rank spread d j = 0.
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Fig. 5. The impact of the risk tolerance degree on tournament design.

Fig. 6. The utility per user as parameters vary.

Fig. 7. The utility of the principal as parameters vary.

1) Utility of Users: In Fig. 6 we show the utility per user
when varying different parameters. First, we see that the user’s
utility decreases with the number of users in Fig. 6a. The rea-
son is that when the number of users n increases, the marginal
change in the probability of achieving any rank decreases.
Consequently, as the pool of users increases, the user will be
less likely to induce higher effort levels and less incentive
to participate. Thus, we see the user’s utility decreases with
the increase of n. Second, we see from Fig. 6b that the user’s
utility is increasing as the variance increases. In Section V-B.2
we have mentioned that increasing of variance leads to a lower
optimal effort, which occurs regardless of the tournament
design. Thus, as the expected utility of the tournament keeps
the same as rewards remain unchanged, the users encounter
lower cost and receive higher utility. Third, we see from

Fig. 6c that the user’s utility increases with the risk tol-
erance degree τ . As we have explained in Section V-B.3,
when τ increases, users become less conservative and will
exert more effort. Thus, the user’s utility will result in an
increase.

2) Utility of Principal: In Fig. 7 we show the three factors’
impacts on the utility of the principal. First, we see that the
principal’s utility increases with the number of users in Fig. 7a.
It is an intuitive result that with more users participating in
the crowdsourcing, more data are collected, which brings a
higher utility for the principal. This also proves the importance
of a larger number of users’ participation in crowdsourcing.
Second, from Fig. 7b we see that the principal’s utility is
decreasing as the variance increases. As we have mentioned
previously, users are reducing their effort in this scenario,
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and less data is obtained from the user. But as the rewards
offered by the principal remain unchanged, the principal’s
utility will certainly decrease. Last, from Fig. 7c we see
that the principal’s utility also increases with the user’s risk
tolerance degree τ . This scenario is similar to the previous
case, with more data obtained from the user, the principal’s
utility will certainly increase.

3) Comparisons: Overall, we see that the optimal
contract serves as the upper bound of the principal’s utility,
and the lower bound of the user’s utility for the other two
tournament mechanisms in most of the cases. This is intu-
itive since the optimal contract solves the optimal contract
based on the absolute performance. While in tournament,
we only have a limited number of users in the simulation.
Thus, tournaments lose accuracy during the approximation.
The optimal contract provides the principal with a maximum
utility while extracting as much utility from the users as
possible.

From Fig. 6 and Fig. 7, we also see that the MW outper-
forms ROT in many cases. In addition, MW outperforms both
the optimal contract and ROT when users are risk neutral in
Fig. 6c and Fig. 7c. The reasons for both results can be inspired
from the conclusions drawn in [34]. First, when the number of
participating users is small, MW is a better mechanism for the
principal rather than ROT. As we only consider no more than
10 participating users due to the computation capacity of the
computer. With such a small group of users in our simulation,
we see MW outperforms ROT in all simulation results. In real
cases, with the larger number of users, the ROT will be a better
mechanism for the principal than the MW. Second, when users
are risk neutral, it is optimal to give the entire reward to the
highest rank user rather than offering contract with positive
spread in ROT and optimal contract. In this special case of
MW, the utility that the principal obtained is higher than that
from the ROT and optimal contract.

VI. CONCLUSIONS

In this paper, we have investigated the problem of providing
incentives for users to participate in mobile crowdsourcing
by applying the rank order tournament as the incentive
mechanism. We have solved the rank order tournament by
approximating the absolute performance based optimal con-
tract with full information using step functions. We have
also analyzed and proven how the tournament is affected by
different parameters. Finally, through numerical simulations,
we have compared the user’s and principal’s utilities under
the optimal contract and different tournament mechanisms.
We have shown that by using the tournament, the principal
successfully maximizes the utilities regardless of common
shock. The principal’s utility benefits from a large number
of users and higher risk tolerance of users, but deteriorates
with weaker relationship between exerted and observed effort
levels.

APPENDIX A

To obtain the simplified form of ψ( j) which is the first
derivative of the probability of ranking j , we can make use of

convenient form of the logistic distribution by the following
procedures. First, we take the first derivative of the probability
of ranking j with respect to effort result z, and rewrite ψ( j)
as

ψ( j) = ∂ P(rank = j)

∂a

=
∫

(n − 1)!
(n − j)!( j − 1)!

× {(n−j)[1−F(z; a)]n− j(−f (z; a))F j−1(z; a)f (z; a)

+ [1 − F(z; a)]n− j ( j − 1)F j−2(z; a) f 2(z; a)}dz,

=
∫

(n − 1)!
(n − j)!( j − 1)!

× [1 − F(z; a)]n− j−1F j−2(z; a) f 2(z; a)

× [( j − 1) − (n − 1)F(z; a)]dz,

= (n − 1)!
(n − j)!( j − 1)!

× {( j −1)
∫

[1−F(z; a)]n− j−1F j−2(z; a) f 2(z; a)dz

− (n−1)
∫

[1−F(z; a)]n− j−1F j−1(z; a) f 2(z; a)dz}.

(43)

Taking the specific form of the logistic distribution into ψ( j),
we have

ψ( j) = ∂ P(rank = j)

∂a

= (n − 1)!
(n − j)!( j − 1)!

{( j − 1)
∫ exp(− x

β )n− j−1+2

[1 + exp(− x
β )]n− j−1+ j−2+4 dz

− (n − 1)
∫ exp(− x

β )n− j−1+2

[1 + exp(− x
β )]n− j−1+ j−1+4 dz},

= (n − 1)!
(n − j)!( j − 1)! {( j −1)

∫ exp(− x
β )n− j+1

[1 + exp(− x
β )](n−1)+2

dz

− (n − 1)
∫ exp(− x

β )n− j+1

[1 + exp(− x
β )]n+2 dz}, (44)

For the logistic distribution, there is a property that∫ exp(− x
β )k

[1 + exp(− x
β )]n+2 dx = (k − 1)!(n − k + 1)!

(n + 1)! β, (45)
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when k ≥ 2. With this property, we can simplify a inte-
gration to a fraction. Thus, we are able to simplify ψ( j) as
follows:

ψ( j) = ∂ P(rank = j)

∂a

= (n − 1)!
(n − j)!( j − 1)!
{ ( j −1)

β

(n− j + 1 − 1)![n − 1 − (n − j + 1) + 1]!
(n − 1 + 1)! β

− (n − 1)

β

(n − j + 1 − 1)![n − (n− j + 1) + 1]!
(n + 1)! β},

= (n − 1)!
(n − j)!( j − 1)! {

( j − 1)

β

(n − j)!( j − 1)!
n! β

− (n − 1)

β

(n − j)! j !
(n + 1)! β},

= 2 j − n − 1

β[n(n + 1)] . (46)

Now, we obtain the simplified form of the partial
derivative ψ( j).

APPENDIX B

To obtain the value of Ak , we can follow the following steps.
First, we rewrite the user’s utility maximization function here:

Ak = argmax
∫

v̂k(z) f (z; a)dz − γ (a), ∀k. (47)

To find the optimal Ak , we can take the fist derivative regarding
a in (47), and have

d[∫ v̂k(z) f (z; a)dz − γ (a)]
da

=
n∑

k=1

v̂k(z)
d

∫
Ikj

(z; a)dz

da
− γ ′(a). (48)

As v̂k is a step function, and is a constant value since we have
obtained from the previous equations. Thus, we can take v̂k

out of the integral.
Next, with the PDF and CDF of the logistic distribution, we

now have∫
f (z; a)dz = F(z; a) = 1

1 + exp(− z−a
β )

. (49)

Thus,

d
∫

f (z; a)dz

da
= d F(z; a)

da
= − 1

β exp(− z−a
β )

[1 + exp(− z−a
β )]2 . (50)

Thus, we can integrate the function with the summation of
each interval of the step function as

d[∫ v̂k(z) f (z; a)dz − γ (a)]
da

,

=
n∑

k=1

v̂k(z)
d[∫Ikj

f (z; a)dz]
da

− γ ′(a),

=
n∑

k=1

v̂k(z)[d F(zk+1; a)

da
− d F(zk; a)

da
] − γ ′(a). (51)

By setting this partial derivative equal to 0, we can obtain the
optimal effort Ak in the contract.
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