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Abstract

Dielectric elastomer (DE) is a type of soft actuating material, the shape of which can be changed
under electrical voltage stimuli. DE materials have promising usage in future’s soft actuators and
sensors, such as soft robotics, energy harvesters, and wearable sensors. In this paper, a stripe DE
actuator with integrated sensing capability is designed, fabricated, and characterized. Since the
strip actuator can be approximated as a compliant capacitor, it is possible to detect the actuator’s
displacement by analyzing the actuator’s impedance change. An integrated sensing scheme that
adds a high frequency probing signal into actuation signal is developed. Electrical impedance

changes in the probing signal are extracted by fast Fourier transform algorithm, and nonlinear
data fitting methods involving artificial neural network are implemented to detect the actuator’s
displacement. A series of experiments show that by improving data processing and analyzing

methods, the integrated sensing method can achieve error level of lower than 1%.
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1. Introduction

Many soldiers and civilians lose their hands, arms and legs on
battlefields, in accidents, and as the result of natural disasters.
Also, many senior people partially or completely lose the
functioning of a limb due to the aging process. To help these
handicapped people, many researchers have spent years of
effort on developing prosthetic or exoskeleton devices to
restore limb’s functions. Although recent technologies and
theories are far from fully simulating the functions of legs and
arms [1, 2], the prosthetic research is capturing the attention
of researchers. Most research is based on electrical motor-
driven prosthetic limbs, varying from a single finger to a full
arm [3, 4]. Companies such as DEKA have developed com-
mercial robotic arms controlled by electric motors [5]. For a
more compact structure and higher efficiency, many
researchers, inspired by biological muscles, used a tendon-
driven structure in their designs [6]. Although of this work
shows great potential for a bio-inspired design of prosthetic
arm or leg, a compliant actuator is still missing.

In order to overcome the limits of an electrical motor,
many researchers turn to investigate the feasibility of using
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smart materials in traditional applications. Dielectric elasto-
mer (DE) is a kind of important electro active polymer, which
has unique combination of flexibility, light weight, high
energy density, and direct generation of movement [7]. A
typical DE actuator is usually made into membrane shape
with two compliant electrodes coated on both sides, then it
can be stretched, stacked, or rolled into multiple configura-
tions [8]. When voltage (higher than 1000 V) is applied to the
electrodes, the Maxwell stress between the two electrodes will
compress the elastomer membrane in the direction of elec-
trical field [8]. Pelrine studied DE actuators and electro-
magnetics in terms of energy density (energy per unit mass).
He reported that DE material has an energy density that is
about eight times greater than that of electro-magnetics, and is
also capable of performing more than 100% strain [7, 9-12].
Many studies have also shown that with DE artificial muscles,
artificial limbs are capable of generating enough force for
humans’ daily usage [9, 13].

In existing researches on DE material, many of them are
focusing on the modeling, and control of the actuator in
applications [8, 13-16]. Moreover, due to the actuator’s
capacitive structure, a number of researchers attempt to study
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Figure 1. Design of bio-inspired artificial muscle.

the actuators’ integrated sensing capabilities and their reali-
zation in applications [17-20]. Most of the reported approa-
ches are focused on the analysis of the actuators’ impedance
changes during the displacement period. The existing meth-
ods usually require additional component in the circuit loop,
such as serial or parallel connected resistance, or a DE
actuator with special structure. The integrated sensing func-
tion is practiced in the output feedback control of the DE
actuator, however, due to the noise of the capacitive reading
and the drift of the capacitance-strain rate, it is challenging to
achieve satisfactory control performance [21].

In this paper, a DE artificial muscle with integrated
sensing and actuation is developed. Inspired by biological
muscle, this DE artificial muscle has the similar shape and
movement generating style as natural muscle. In addition, its
electrical impedance changes as its voltage-driven strain
changes, which leads to integrated sensing of the actuator. By
doing this, it is possible to detect the actuator’s displacement
without using external sensors. The proposed method does
not require additional circuit component, or specially
designed actuator structure, which will reduce the need for
additional hardware, relating impact on actuator performance,
and give more freedom to the usage of self-sensing function.
The designed method to perform integrated sensing function
is to add a probing signal to the actuator’s base driving
voltage. The actuator’s driving voltage is a low frequency
signal with large magnitude, in the contrast, the probing
signal has high frequency and small magnitude. By adjusting
the probing signal’s frequency to a proper value, the probing
signal can be well separated from the base driving voltage.
System identification also shows that the actuator plays as an
low-pass filter which can minimize the probing signal’s
impact on the actuation result. The effect of probing fre-
quency on integrated sensing has been investigated and an
optimal probing frequency has been found out based on the
experimental data. Fast Fourier transform (FFT) is used to
extracted the probing signal, and artificial neural network
(ANN) tool is introduced to analyze the changes probing
signal. Experimental results show that ANN can handle this
nonlinear data fitting task well, and ANN based estimation
makes the integrated sensing method more robustness to
sensing noise, and disturbance in applications.
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Figure 2. Mechanism of integrated sensing.

The rest of the paper is organized as follows: design and
fabrication of the actuator is shown in section 2. Experimental
results are discussed in section 3. Section 4 shows how to
improve the accuracy of displacement prediction with ANN
network. Conclusions and future work are discussed in
section 5.

2. Design and fabrication of bio-inspired artificial
muscle

A cross-sectional view of the actuator design is shown in
figure 1. The actuator presents a typical sandwiched structure
with two compliant electrodes. A variety of conductive
materials, including carbon particle, carbon grease, metal
powder, can be used in the fabrication of compliant electrode.
3M VHB tape, cured polymer material, and other sticky
material, which can join the strip and connector together, and
sustain displacement strain is a candidate for the bonding
material. On the other side of bonding material’s area, a rigid
plate is attached to maintain the actuator’s strip shape.

A 3M VHB 4905 tape strip of 15 x 7.5 cm size was cut
from a tape roll. The strip was stretched in the longitudinal
direction by 100%, and fixed on a holding frame. Two wood
plates of 10 x 1 cm size were attached on the middle edge of
the stretched tape. The edges of the tape strip were covered
with insulating material to avoid short circuit between two
electrode. Then graphite powder (Hillman Inc.) was pasted
uniformly on both sides of the tape strip. After the electrodes
were well established, the actuator was cut off from the tape
strip. Since weight load was attached on the wood plate which
were fixed to the vertical edges of DE membrane, vertical
prestretch was caused by the attached weight load, which is
nearly 150% with a 100 g load. The device’s size was nearly
9.4 x 10cm, and the elliptical shape in the middle was due to
the one-directional pre-stretching before cutting off from the
original strip.

When the strip generated a movement, its length increase
led to a higher surface resistance, and its compressed thick-
ness resulted in a higher capacitance. Hence, the actuator’s
displacement caused the impedance change of the actuator,
and this change could reflect the displacement of the actuator.
Figure 2 is showing the mechanism of the proposed integrated
sensing function.
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Figure 3. The first test of self-sensing capability:

3. Experimental results

3.1. Actuation dynamics

The weight load’s position was controlled by the applied
voltage. The high voltage caused Maxwell stress between the
two electrodes, and led to compression effect in the VHB
tape’s thickness direction. This compression made the tape
strip expand in its planar directions, then the weight load was
lowered down. In the first test, the actuation voltage was a
sinusoidal wave of 100-4900 V range and 0.1 Hz frequency.
The probing signal was also a sinusoidal wave, whose
amplitude and frequency were set as 100 V and 50 Hz,
respectively. The actuator has a capacitor structure, which
means AC input will go through the actuator. An AC input
with very high frequency may cause excessive load on the
power supply, and large amplitude may damage the mem-
brane. As shown in the figure 3(a), one end of the actuator
was fixed to a metal frame. A calibration weight of 100 g was
attached to the other end of the actuator, and the weight load
was allowed to move vertically. The two electrodes were
connected to a high voltage amplifier (SHVA24-BPI-F,
UltraVolt Inc.), which was controlled by a dSPACE (DS1104,
dSPACE Inc.) control board. A displacement laser sensor
(Baumer OADM 2016441/S14F) was placed under the
weight load to capture load movements. Here an actuation
voltage was set between 100 and 4900 V, and a sinusoidal
wave with a magnitude of 100 V and high frequency (50-100
Hz) was added to the actuation voltage. Both voltage and
current were measured by a dSPACE’s real-time control
system. The sampling rate of the dSSPACE’s ADC unit was set
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(a) experimental setup; (b) experimental result.

to 1 kHz. Figure 3(b) shows the experimental results, where
the first row of the figure was the total input voltage given to
the actuator. The second row is the measured current
response, the third row showed the displacement measured by
the laser sensor, and the last row was the magnitude of
probing signal’s current extracted during the experiment.
From figure 3(b), one can see that there existed a relationship
between the actuator’s displacement and the magnitude of
probing signal’s current.

In order to evaluate the impact of high frequency probing
signal in the actuator’s actuation performance, an empirical
method was used to find a transfer function, which could
approximate the actuation dynamics of the actuator. In order
to measure the actuator’s frequency responses, driving vol-
tages (100-4900 V) with different frequencies were given to
the actuator, where the full voltage input range (05000 V)
was normalized between 0 and 1. Then the magnitude of the
actuator’s response was measured (in mm unit), and was
calculated in dB unit. A frequency response of the actuator
without probing signal was collected, and a third-order
transfer function with a cut-off frequency of 10.5 rads™' was
used to approximate it, which is shown in figure 4(a). Then in
the following step, a sinusoidal signal with 100 V amplitude
and 50Hz frequency was added to the input channel.
Similarly, a third-order transfer function was used to
approximate the response points, which was showing in
figure 4(b). By comparing figures 4(a) and (b), one can
conclude that the frequency responses with and without
probing signal are very close and the probing signal does not
impact the actuation response significantly. The transfer
function for approximation of the actuator is shown as
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Figure 5. (a) Second-order polynomial fitting curve of 50 Hz probing signal; (b) comparison of measured displacement and self-sensed

displacement with polynomial fitting.

following equation:

~ 0.09537s> + 1.681s + 11.05
0.0022865% + 0.1159s2 + 1.509s + 1

G(s) ey

The probing signal’s frequency should be higher than
21rads™!, which was two times of the actuator’s cut-off
frequency.

3.2. Integrated sensing with polynomial curve-fitting method

Polynomial curve fitting is a useful tool to obtain the mapping
relationship. Based on former experimental settings, data over
a continuous 4 min was collected. A polynomial curve-fitting
function was extracted form this 4 min of data. Another one
minute of data was collected with the same experimental
setup and used to verify the mapping function that was
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Figure 6. Comparison of fitting curves.

obtained from former experiments. Figure 5(a) shows a sec-
ond-order polynomial curve-fitting result of the 4 min of data.
The measured and estimated displacements are plotted in
figure 5(b).

To investigate the impact of probing frequency on the
self-sensing performance, a series of probing signals with the
same magnitude but different frequencies (30-100Hz, in
10 Hz steps) were tested in experiments. The fitting curves are
plotted in figure 6. These fitting curves with different probing
frequencies have some differences, but the average estimation
errors are similar. Table 1 shows the average error with dif-
ferent probing frequencies. Some data sets had an unusually
high error level, which was probably due to some issues
(disturbance, noise) occurring during the data collection
process. But other data sets also had a close error level.
Hence, the probing frequency does not have a significant
effect on the self-sensing accuracy. In order to minimize
power consumption, the probing frequency should be as low
as possible. But it is also very important to keep the frequency
of sensing signal higher than a reasonable value to separate it
from the driving signal. From table 1, one can conclude that
50 Hz was the best probing frequency in terms of both low
estimation error and low power consumption.

4, Self-sensing with ANN

In order to reduce the estimation error of the self-sensing, an
ANN was employed to estimate the displacement output
based on the magnitude of probing current signal. ANN is a
powerful tool for nonlinear fitting. An ANN consists of one or
several layers of artificial neurons. In a typical three-layer
ANN, the first layer is referred to as the input layer, a hidden
layer connects the input layer, and the last layer is called the

output layer. Neurons in the hidden layer are connected to
neurons in the first and last layers. Each neuron has its weight,
bias, and transfer function, and with the help of training data
and a specific training algorithm, all neurons are changing
their weight and bias values to achieve the nonlinear fitting
goal [22].

ANN is a computational model which can handle mul-
tiple tasks such as classification, nonlinear mapping, pattern
recognition [23-25]. An ANN consists a numbers of simple
units which are called artificial neuron, figure 7(a) is showing
a scheme of artificial neuron, where function ¢(.) is the
neurons transfer function. An artificial neuron has a bias q,
input X, and each of the input has a weight coefficient w
respectively. With the inputs and bias, the artificial neurons
output y can be calculated as following equation:

y(X) = ¢[Z(szl + a)]. 2)

=1

In a typical layered ANN, the network contains n input
sites in its input layer, k neurons in the hidden layer, and m
neurons in its output layer, figure 7(b) is showing the structure
of a layered ANN. An artificial neuron in the input layer is
connected to each neuron in the hidden layer, and the neurons
in the hidden layer have individual bias. Here treats the bias in
hidden layer neurons as a weighted input of value 1, so the
weight from for ith input layer neuron to jth hidden layer
neuron is wS". Then the weight matrix between input layer
and hidden layer is W;, which is a n 4+ 1 by k matrix. Simi-
larly, the weight matrix between hidden layer and output layer
is W,, which is a k + 1 by m matrix.

The ANN must be trained with training data before using
in a specific task. A training data set is required for training,
which contains vector(s) with correct input and output values
as its elements. For example, the ith training vector
7 = [0, ], where & is the input vector and 7 is the target
vector. Back-propagation (BP) algorithm is a widely used
method to train an ANN. The main steps of BP algorithm
including 3 steps: feed-forward computation, BP to layers,
and weight updates.

Take the former layered ANN as an example, in feed-
forward step, the input values of a training vector o are input
into the ANN, and the inputs of each layer after input layer
are obtained through the neurons mathematical equations.
Here uses o'V for the outputs of hidden layer, and 0 for the
outputs of output layer.

Then the BP step is done in the reversed direction. First
the quadratic error of output layer E is computed as equation:

E- 350

1 (o — 12
— — 1) 3
5 3)
The algorithm wants to find the weight w® which can

minimize the error E, Then the partial derivatives W is
Wy~

needed. By defining the multiplicative terms 6(1»2) as:

@ _ ,@ (2) (2)
(5j =0 (1 —0;7)(0;” — t)). 4)



Smart Mater. Struct. 26 (2017) 095056

Z Ye and Z Chen

Xn

(a)

Figure 7. (a) A schematic view of artificial neuron; (b) structure of a layered artificial neural network.

Table 1. Integrated sensing error of different probing frequencies.

Probing frequency (Hz) 30 40 50 60 70 80 90 100
Error (%) 777 731 643 844 10.63 730 7.65 9.12
One can get the partial derivative as: 4.1. Fitting results with ANN
OE NP (5) In this subsection, two types of ANN, normal ANN and
ow? o enhanced ANN, were employed for estimating the displace-

ij

Now use chain rule to get the partial derivatives for hidden
layer, since each neuron in hidden layer is connected to the
neurons in output layer, the BP error can be calculated as:

m

@1 _ (D (1) (2) £(2)

07 =071 = o )Zwii 67, (6)
=1

where wﬁz) is the weight form jth hidden layer neuron to I/th
output layer neuron. And the wanted partial derivatives %
Wif

can be obtained as:

— 0.6M

EWORE 0;65". )
ij

Now the weights for each layer can be updated in the negative

gradient direction. Set a small learning rate «, then the

weights can be updated as:

2 2 2 2 D e
wi;-)—wi;)—FAwi;)—wi;)—aoi()é(j), ®)

1 1 1 1 1
wi;»)—wi;-)—i—Awi})— i;»)—aoié(j). )

If a training data set contains p vectors, then the update
directions are calculated for each vector, and the final gradient
direction is:

Aw = AgywiD + Agywd + .+ Apywih (10)

ment output. Same data sets were used again for training the
ANNSs to fit the curve between the measured magnitude and
the displacement. In the first test, a two-layer BP neural
network, which is a normal ANN, was built and trained by 4
min of data. Then another one minute of data was used to
verify the network. Figure 8(a) shows the fitting curve done
by the neural network, and figure 8(b) shows the displacement
curve, the sensed value of displacement peak were not very
ideal, but the overall error level was much better than poly-
nomial curve fitting. With the neural network, the error level
was 2.74%, less than half of the former fitting result. Probing
signals with different frequencies were also tested with neural
network. In addition to some data sets being largely affected
by noise or disturbance, all data sets showed a decreasing
error level. Figure 9(a) shows the fitting curves of all fre-
quencies, and the average error level is shown in table 2.

In order to obtain more accurate and robust self-sensing
results, an enhanced ANN with additional data-handling
methods were used in following calculation: first, the FFT
window was changed. In the former tests, each FFT window
contained 1000 data points and was separated, which means
60 data could only give 60 data points. For more data points
from a data set of the same length, a rolling window was
employed during data extraction. The length of the FFT
window was still 1000 points, but each time the window was
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Figure 8. (a) Neural network fitting curve of 50 Hz probing signal; (b) comparison of measured displacement and self-sensed displacement
with ANN fitting.
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Figure 9. (a) Comparison of ANN fitting curves. (b) Comparison of enhanced ANN fitting curves.

Table 2. ANN integrated sensing error of different probing frequencies.

Probing Frequency (Hz) 30 40 50 60 70 80 90 100

Error of normal ANN (%) 467 313 274 631 1154 456 690 4.80
Error of enhanced ANN (%) 4.18 232 2.62 3.25 530 248 272 475
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Figure 10. (a) Input output structure of proposed NARX network; (b) detection result of NARX network with 50 Hz probing signal.

moved 500 points forward, the number of data point was
doubled. Second, the input of the neural network did not have
only one value but rather included one current magnitude
value and one latest historical magnitude value. In this way,
the neural network could discern the trend of the device’s
displacement. The neural network had four neurons in this
case, and worked with at least two magnitude-displacement
data points. The fitting results of the 50 Hz probing signal has
an average error level of 2.62% (compared to 2.74%);
therefore, for well-collected data, these additional data pro-
cessing methods would not give obvious enhancement of the
fitting accuracy. But when it came to heavily compromised
data, such as data with a 70 Hz probing signal, the average
error was diminished by nearly half of its former level. The
error was 11.54% before, and in this case it was only 5.30%.
In summary, the overall fitting results with extra processing
methods are shown in figure 9(b). By comparing these results
with the former fitting results, it can be seen that the pattern of
each fitting curve is more unified, which means that the fitting
result is more robust than previously. In table 2, the accuracy
improvement of compromised data is also apparent.

4.2. Integrated sensing using nonlinear auto-regressive
network with exogenous input

Nonlinear auto-regressive network with exogenous input
(NARX) is widely used in prediction of time series, such as
economic behavior, chemical process and identification of
dynamic systems [26, 27]. In an NARX network, a system’s
output time series y(¢) is considered as a function of the past
values of the time series, and a second time series x(7):

y@O) =fy@ =1,y =2),....y(t = p),

x@—1,x(t—2),...,x(t —p)), an

where y(# — p) is the system’s output at sampling time ¢ — p,
and x(t — p) is the system’s input at sampling time ¢ — p.
Specifically, in this integrated sensing case, the system’s
sensing result y(¢) is supposed to satisfy following equation:

yO) =f@— 1, x@®), x — 1), 12)

30 56 60
Time (s)
(b)

12 ‘

Il Polynomial fitting
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Figure 11. Comparison of all fitting methods.

where y(t — 1) is the system’s previous output, x(f — 1) is
the previous input, and x(7) is the newest extracted magnitude
of probing signal. Hence, the new ANN’s input output
structure is showing in figure 10(a). This NARX network has
3 input terminals, 7 artificial neurons in hidden layer, and 1
neuron in output layer. Before input data into this ANN, the
same data pre-processing method for enhanced ANN pre-
diction is used here. The fitting result based on 50 Hz probing
signal is showing in figure 10(b), one can see that the pre-
dicted curve fits the actual curve well, since this NARX
network method can well address the nonlinearity of the
actuator’s displacement in the peak range. For a clear view of
the improvement, the error level of all fitting methods are
shown in figure 11.

Since NARX network has better fitting accuracy in this
case, more simulations were practiced to find out the impact
of network’s parameters on the fitting result. Based on the
former NARX network, where input was sinusoidal wave
with 100-4900 V magnitude and 0.1 Hz frequency, and
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probing signal was sinusoidal wave of 100 amplitude and
50 Hz frequency. The size of hidden layer was changed from
5 to 15 neurons, and the fitting error is shown in figure 12(a).
From the figure one can see too small or too large hidden
layer size are not helpful for a better fitting result, only set the
hidden later with a proper size will give good fitting accuracy.
Since the complexity of the network did not increase too
much in this simulation, all the training steps are finished in
3 s. The effect of input series’ length was also tested with a
NARX network of 7 hidden neurons, and the same input and
probing signal. By changing the input time series’ length from
2 to 10, the corresponding error levels are shown in
figure 12(b). One can see that longer input series generally
gives better fitting result, but that also requires more com-
putation resource, longer training time, and longer initial time
for the network to output detection result. It is recommended
to make a proper trade off between fitting accuracy and
resources requirements.

5. Conclusions and future work

In this paper, a strip DE actuator with integrated sensing and
actuation capability has been developed, whose actuation and
integrated sensing capabilities have been characterized. An
integrated sensing method has been performed with the
consideration of the actuator’s high frequency impedance
changes. Experimental results have shown that the integrated
sensing mechanism can be simultaneously performed when
the actuator is generating displacement. With the help of
integrated sensing function, the actuator’s displacement can
be detected without using of external sensors. Further results
show that the software method has significant impact on the
detection accuracy. Second-order polynomial fitting, normal
ANN, enhanced ANN and NARX network have been used to

o
3

Error rate (%)

0.4

0.2

2 3 4 5 6 7 8 9 10 11 12
Length of input series.

(b)

Figure 12. (a) Fitting error level with different hidden layer size; (b) detection error rates with different lengths of input series.

estimate the displacement, of which the NARX network
achieved the lowest error level (less than 1%).

In the future’s work, one important part is to improve the
accuracy of integrated sensing function. In addition, how the
shape of the DE actuators affect the integrated result is also an
interesting aspect. Since a proper data processing method has
significant impact on the sensing accuracy, developing
advanced data processing method is another important
research direction. The application of integrated sensing in
feedback control is the most fascinating goal in the future’s
research.
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