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A variety of large-scale pharmacogenomic data, such as perturbation experiments and sensi-
tivity profiles, enable the systematical identification of drug mechanism of actions (MoAs),
which is a crucial task in the era of precision medicine. However, integrating these comple-
mentary pharmacogenomic datasets is inherently challenging due to the wild heterogeneity,
high-dimensionality and noisy nature of these datasets. In this work, we develop Mania,
a novel method for the scalable integration of large-scale pharmacogenomic data. Mania
first constructs a drug-drug similarity network through integrating multiple heterogeneous
data sources, including drug sensitivity, drug chemical structure, and perturbation assays.
It then learns a compact vector representation for each drug to simultaneously encode
its structural and pharmacogenomic properties. Extensive experiments demonstrate that
Mania achieves substantially improved performance in both MoAs and targets prediction,
compared to predictions based on individual data sources as well as a state-of-the-art in-
tegrative method. Moreover, Mania identifies drugs that target frequently mutated cancer
genes, which provides novel insights into drug repurposing.

Keywords: data integration, drug mechanisms of action, drug target, drug similarity net-
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1. Introduction

Accurate identification drug mechanism of actions (MoAs) and drug targets is of great im-
portance for developing new drug as well as repurposing existing drugs. During the past
decades, many computational approaches have been developed to identify drug MoAs and
targets according to molecular docking analysis,1 annotated target profiles,2 adverse drug re-
actions,3 and scientific literature.4 However, these methods were limited to the prediction for
drugs that are well-studied either in literature or existing biological experiment assays. Con-
sequently, computational approaches that can be generalized to all drugs are a pressing need
in the field.

Fortunately, with the recent advances in sequencing technology, large-scale pharmacoge-
nomic data offers us exciting opportunities to systematically identify drug MoAs and targets.
For example, chemical structure has been used to predict drug-target interaction.5,6 The moti-
vation behind this is that drugs that are structurally similar tend to interact with similar genes,
thus sharing similar MoAs. Another notable dataset, drug perturbation data has also been
widely used to identify MoAs.7 Drug perturbation data, such as Connectivity Map (CMap)
Library8 and the L1000 dataset from the Library of Integrated Network-based Cellular Signa-
tures (LINCS),9 reveals drug-induced transcriptional profiles. It measures the gene expression
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change in the presence of a drug and these gene signatures enable the comparison between
drugs. Moreover, high-throughput in vitro drug screening over large panels of tumor cell lines
have been shown to be useful in identifying clinically relevant drugs. For example, the recent
developed Cancer Therapeutics Response Portal (CTRP) project10 contains the drug sensi-
tivity profiles of 481 small-molecule compounds across 860 cancer cell lines, which provides
additional insights into the MoA of small-molecule compounds and novel therapeutic hy-
potheses. Since drugs with the same MoAs tend to exhibit similar transcriptional and cellular
responses, these more accessible pharmacogenomic collections can be used to systematically
infer drug MoAs and targets.7

Intuitively, integrating these datasets can further improve the identification of drug MoAs
and targets. However, the sheer amount and heterogeneity of these multi-omics data pose
great challenges in the integration process: (i) the mixed formats, scales, and metrics, (ii) the
complementary but high-dimensional information, and (iii) the incomplete and noisy nature
of these datasets. As far as we know, Drug Network Fusion (DNF) 11 was the only previous
attempt to simultaneously integrate the drug structure, perturbation and sensitivity data.
Notably, DNF used a similarity network fusion approach,12 in which a similarity network is
constructed for each input data sources, and these similarity networks are then iteratively
fused together until convergence to obtain a single similarity network. The major drawback
of this approach is that the context-specific similarity measures were mixed together in the
collapsed single network, where the context-specific information may be lost or obscured.

In this work, we introduce Mania (prediction of mechanism of action by network
integration), a novel method for characterizing drug-drug relationships and predicting drug
mechanism of actions (MoAs) and drug targets through integrating multiple large-scale phar-
macogenomic data, including drug structure, sensitivity, and perturbation data. Mania takes
full advantage of the fine-grained inherent structure in the individual data source and in-
tegrates heterogeneous information by learning low-dimensional vector representations for
drugs, which best explain the relationships among drug across all pharmacogenomic data. We
demonstrate that, unlike DNF which directly produces a drug-drug similarity matrix, Mania
is a versatile method in that the low-dimensional vector representations of drugs not only cap-
ture more accurate similarity measure with any type of distance metric, but can also be used
as plug-in feature vectors of many off-the-shelf machine learning algorithms for the predic-
tion of drug MoAs and targets. Experiment results suggested that Mania outperforms DNF,
the state-of-the-art method, with substantial improvements in MoAs/targets prediction. In
addition, based on the low-dimensional vector representations of drugs, Mania consistently
identified functionally-enriched drug clusters, in which drugs within the same cluster are in-
teracting with same targets. Moreover, we show that Mania found new drugs that may target
significantly mutated cancer genes, which provides potential insights into drug repurposing.
Overall, our experiment results suggested the superior ability of Mania in integrating multi-
ple pharmacogenomic data for drug MoAs and targets prediction, and also demonstrated its
potential as a practical tool to support network pharmacology.
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gene expression in response to different concentrations of a drug), and characterizes the prop-
erties of drugs from various aspects. To extract the information of drug-drug relationships
encoded in the heterogeneous data, we construct a similarity network for each type of the
data sources.

Drug perturbation. We obtained the drug perturbation data from the L1000 dataset9

from the Integrated Network-Based Cellular Signatures (LINCS) Program (http://www.
lincsproject.org/). The L1000 dataset produced over one million gene expression profiles
of 1,000 landmark genes in response to the treatment of 20,413 unique compounds across
many cancer cell lines, subject to various perturbation conditions. We used the PhamacoGx
package13 to download the transcriptional profiles, and compute a “signature” for each drug
that quantifies the effect of drug concentration on the gene expression with a linear regres-
sion model. To characterize the relationships between a pair of drugs based on whether they
perturb the same set of genes with similar patterns, we compute the pairwise drug similarity
using the Pearson correlation between their drug perturbation signatures.

Drug structure. We collected the canonical SMILES strings for the small molecules
in the L1000 dataset from the PubChem database.14 We used the RDKit15 library to parse
the SMILES strings, generate fingerprints, and compute structure similarity. We generated
the Morgan fingerprint16 (also known as circular fingerprints) with radius 2 for each drug,
which takes into account both the atomic properties and the neighborhood information of
each atom. Given the fingerprints of a pair of drugs, the structure similarity between them
was then calculated using the Dice coefficient,17 which is a real value in [0, 1] that measures
the extent to which pairs of drugs share similar structure features.

Drug sensitivity. We used the drug sensitivity data released in a recent work,18

which is also available at the Cancer Cancer Therapeutics Response Portal (http://www.
broadinstitute.org/ctrp/). The dataset contains sensitivity patterns for 481 compounds
(including FDA-approved drugs and clinical candidates) spanning 842 different human can-
cer cell lines encompassing 25 lineages. We extracted the area under curve (AUC) of the
concentration-response curve as the metric of sensitivity, which measures the cellular response
to individual compound. To quantify the relationships between a pair of drugs based on
whether they cause similar responses to same cancer cell lines, we calculate the pairwise drug
similarity using the Pearson correlation between their drug sensitivity profiles.

Drug MoAs and targets. The recently released Drug Repurposing Hub19 is a repository
that contains a drug screening collection of 4,707 compounds with extensively curated anno-
tations (e.g., mechanism of action, target, SMILES string, drug indication, and disease area)
for each drug. Drug Mechanism of actions and targets were exported from the repository and
used as the ground truth in the experiments of this work.

Intersection of drugs in multi-omic data. Overlapping the drugs in the drug pertur-
bation data (20,413 drugs) and sensitivity data (481 drugs), we obtained a common set of 277
drugs that are shared in the two types of data. The drug structures of these 277 drugs were
collected from the PubChem database. Each of the 277 drugs was then searched in the Drug
Repurposing Hub, and 170 of them were found to have annotated MoA and target information.
The MoAs and targets of these drugs were extracted for evaluation in our experiments.
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2.2. Integration of multi-omics data

Multi-omics data provide drug-related information from diverse data sources and integration
methods can shed light on the properties of less-characterized drugs. Here, we used our recently
developed network integration algorithm Mashup20,21 to integrate three types of multi-omics
data, including drug structure, drug sensitivity and drug perturbation profiles. Mashup has
been demonstrated to achieve significantly improved prediction for protein function predic-
tion, gene ontology reconstruction, genetic interaction prediction, and drug-target interaction
prediction.20–23 It takes one or more networks as input, performs random walk with restart
(RWR)24 and extracts topological information from the diffusion distributions using informa-
tive but low-dimensional vector representations of drugs.

Formally, letA denote the weighted adjacency matrix of a certain type of similarity network
of n drugs (for example, let Ai,j be the chemical structure similarity between drugs i and j).
The transition matrix of the RWR can then be calculated as Bi,j = Ai,j/

∑

j′ Ai,j′ . Let sti be an
n-dimensional distribution vector in which each element stores the probability of a node being
visited from node i after t iterations of the random walk, the RWR process is then defines
as st+1

i = (1 − pr)s
t
iB + prei, where ei stands for an n-dimensional vector with ei(i) = 1 and

ei(j) = 0, ∀j 6= i, and pr is the restart probability controlling the relative influence between
local and global topological information in the diffusion process. At this fixed point of the
RWR, we can obtain the “diffusion state” s∞i for drug i (i.e., si = s∞i ), in which the jth
element sij of the diffusion state stores the probability of RWR starting node i and ending up
at node j in equilibrium.

The diffusion states resulting from the aforementioned RWR process may not be entirely
accurate, partially due to the low-quality and high-dimensionality of biological data. One of
the strengths of Mashup is that it teases functionally relevant topological patterns apart from
noise in the diffusion states and jointly integrates heterogeneous information from L similarity
networks by learning low-dimensional vector representations of drugs. With the goal of denoise
and dimensionality reduction, Mashup approximates each the diffusion state s

(l)
i of drug i in

network l with a multinomial logistic model parameterized by low-dimensional feature vectors:

ŝ
(l)
ij =

exp
(

xT
j w

(l)
i

)

∑

j′ exp
(

xT
j′w

(l)
i

) , (1)

where ∀i, w(l)
i ,xi ∈ R

d for d � n. For drug i, We refer to w
(l)
i as the context feature which is

network-specific for network l, and xi as the node feature which is shared globally across all
networks. Finally, Mashup uses the Kullback-Leibler (KL) divergence to guide the learning of
the two low-dimensional vectors,

min
w,x

C(s, ŝ) =
1

n

L
∑

l=1

n
∑

i=1

DKL

(

s
(l)
i ‖ ŝ

(l)
i

)

. (2)

The vectors {xi} are subsequently used as the low-dimensional vector representations of drugs.
If two drugs have similar vector representations, it generally implies that they have similar
positions with respect to other drugs in the network, and thus probably share similar functions.
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2.3. Prediction of MoAs and drug targets

To predict the MoAs and drug targets, Mania first identifies similar drugs based on the low-
dimensional vector representations of drugs. In the experiments throughout this work, we used
the cosine distance between the feature vectors as the distance metric for a pair of drugs i

and j, following the previous work:21

Dcos(i, j) = 1−
xT
i xj

‖xi‖‖xj‖
, (3)

where xi and xj are the feature vectors of drugs i and j, respectively.
After computing the distances, Mania is able to predict the MoAs and targets for drugs

that are less well-characterized using a k-nearest neighbor approach, i.e., predicting the MoAs
and targets for a drug by transferring the knowledge of its k most similar drugs based on the
distances computed above. Specifically, Mania calculates the affinity score of drug i and MoA
(or target) j as a weighted majority voting by the k most similar drugs of drug i:

si,j =
∑

d∈Ni

cos(xi,xj)I[d ∈ Mj ], (4)

where Ni is the set of the k most similar drugs of drug i, I[·] is the indicator function, and Mj

is the set of drugs that are annotated with MoA j in the training data. We set k = 10 in our
experiments.

3. Results

We evaluate the ability of our Mania framework on uncovering the drug-drug relationships
and predicting drug MoAs and drug targets by integrating multi-omics data. The integrated
drug-drug similarity network given by Mania achieved an AUPRC score of 0.892, which is
a substantial improvement over DNF11 (0.838), the state-of-the-art integration method for
drug taxonomy. The low-dimensional vector representations of drugs learned by Mania can
also be used as plug-in features for off-the-shelf machine learning algorithms. We show that
by using its learned feature vectors as the input of a k-nearest neighbor (kNN) algorithm,
Mania successfully recovering around 75% true MoAs associated with drugs when evaluated
with five-fold cross-validation on the list of its top 10 predictions, which is remarkably 20%
higher than the DNF method. The details of our experiments are described below.

3.1. Mania improves the quantification of drug-drug similarity

Accurate quantification of drug similarity can help elucidate the drug-drug relationships and
predict new targets for existing drugs. To assess the ability of Mania on quantifying the drug
similarity, we calculated the cosine similarity among the low-dimensional vector representa-
tions between pairs of drugs. The cosine similarity matrix was compared to a binary drug
similarity matrix, where an entry was set to 1 if the pair of drugs shares at least one MoA,
and 0 otherwise. We filtered the MoAs to retain only those MoAs that are associated with at
least two drugs before computing the binary similarity matrix. We evaluate the performance
by computing the area under the receiver operating characteristic curve (AUROC) and the
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area under the precision-recall curve (AUPRC). Note the whole process is unsupervised and
no MoA information was available to Mania when learning the low-dimensional vector repre-
sentations and computing the similarity metric. We implemented Mania based on Mashup20

(http://mashup.csail.mit.edu/). We set the dimensionality of the low-dimensional vector
representations of drugs as d = 10. The restart probability pr of RWR was set to 0.8. We
observed stable performances a wide range of values of d and pr in our experiments.

We first compared the integrated similarity network by Mania’s integration of multi-omics
data with three similarity networks that were computed based on individual omics data, in-
cluding the drug structure, drug sensitivity and drug perturbation (Fig. 2). We noticed that
although the individual similarity networks of drug structure and drug sensitivity achieved
roughly the same AUROC score (around 0.80), there was a 20% gap between their perfor-
mances and that of the similarity network computed based on drug perturbation, which means
there was a 20% fraction of drug-drug relationships (i.e., drug pairs that share same MoAs)
that cannot be accurately predicted by drug perturbation data only. The similar effects were
also observed for the AUPRC scores, where there were noticeable gaps between the individual
networks of drug structure, drug sensitivity, and drug perturbation. These findings suggested
that each omics data are not redundant. Instead, these multi-omics data are complementary
and an integration of them would improve the quantification of drug-drug similarities. Even if
sensitivity data and structure data have roughly the same AUROC score, the similar drug pairs
identified by these two data sources were inherently different, thus motivating us to further
integrate them. The performance of the integrated similarity network by Mania confirmed this
hypothesis, where the AUROC score was substantially improved to 0.892, an 11% improve-
ment over the best individual similarity network, and the AUPRC score was also significantly
improved to 0.423, 43% higher than the best individual similarity network. We also observed
similar results for the evaluation on the target data, in which the binary drug similarity matrix
was computed based on whether two drugs share at least one common target. Notably, the
performance of perturbation-based network was the worst among all three similarity networks,
possibly due to the noisy and batch effect in large-scale perturbation experiments.

Furthermore, we compared Mania with DNF,11 a state-of-the-art integration method for
drug taxonomy. DNF was built upon the similarity fusion network (SNF) method, which
takes individual networks as input, iteratively updates every network by message passing un-
til convergence to a single network. Unlike our method that outputs low-dimensional vector
representations that can be used to compute any kind of similarity of distance metric, the
DNF method directly outputs the converged single network as a similarity network. We found
that although both DNF and Mania improved the performance over individual networks, the
performances of Mania were substantially higher than that of DNF when evaluated on the
binary similar matrices based on both MoA and drug target data (one-sided Wilcoxon rank-
sum test P < 0.001). For example, on the MoA data, Mania achieved a 25% improvement
on AUPRC over DNF (AUPRC of 0.423 and 0.339 for Mania and DNF, respectively) and a
5% improvement on AUROC over DNF (AUPRC of 0.892 and 0.849 for Mania and DNF, re-
spectively). Further comparisons suggested that Mania also outperformed a recently proposed
matrix factorization-based integration framework, Collective-Matrix Factorization (CMF).25

Pacific Symposium on Biocomputing 2018

50







TAMOXIFEN
IFOSFAMIDE

PROCHLORPERAZINE

CEDIRANIB

DASATINIB
SONIDEGIB

AFATINIB

OLAPARIB

TANDUTINIB

PAZOPANIB

MGCD265

NINTEDANIB

FORETINIB

QUIZARTINIB

OBATOCLAX

LINIFANIB

GEFITINIB

BARASERTIBHQPA

SARACATINIB

LAPATINIB

CANERTINIB

ERLOTINIB

WZ4002

TOZASERTIB

NERATINIB
MASITINIB

PACLITAXEL

GSK461364

GW843682X

AXITINIB

MK1775

NILOTINIB

IMATINIB

RIGOSERTIB

EVODIAMINE

ALISERTIB

TIVANTINIB

PARBENDAZOLE

YK4279

LY2183240

SB225002

TIPIFARNIB

MG132

TIGECYCLINE

BORTEZOMIB

IXAZOMIB

CD437

GOSSYPOL

TW37
ERASTIN

ISOLIQUIRITIGENIN

GW405833

LE135
PAC1

SORAFENIBSKIII
VALDECOXIB

PHLORETIN

BRIVANIB
BIBR1532

BAXCHANNELBLOCKER

NICLOSAMIDE

ABT737

KO143

SELUMETINIB

AZD6482

GDC0941

VEMURAFENIB

IDELALISIB

MK2206

TRAMETINIB

DABRAFENIB PLX4720

ZSTK474

GDC0879

PHA793887

BMS754807

KU55933

BMS536924

FOSTAMATINIB

AT7867

NVPTAE684

SB525334

DORAMAPIMOD

PYRAZOLANTHRONE

PURMORPHAMINE

PCI34051

SB431542

TRIFLUOPERAZINE

OSI930

AM580

CYT387

NAVITOCLAX

GSK3INHIBITORIX

TPCA1

RG108

CI976

NVPBEZ235

PI103

AZD8055

TGX221 KU0063794

VORINOSTAT

GSK1059615

SIROLIMUS

TG101348
BELINOSTAT

BI2536

TACEDINALINE

TUBASTATINA

PANOBINOSTAT

BMS345541

LRRK2IN1

ENTINOSTAT

METHOTREXATE

ZEBULARINE

AZACITIDINE

FK866

GEMCITABINE

DACARBAZINE

CYTARABINE

5FLUOROURACIL

BMS387032

CHLORAMBUCIL

DECITABINE

TIVOZANIB

BIX01294

CRIZOTINIB

NSC23766

HOMOHARRINGTONINE

KI8751

RUXOLITINIB

TANESPIMYCIN

TOPOTECAN

PEVONEDISTAT

TENIPOSIDE
ETOPOSIDE

DOXORUBICIN

CICLOPIROX

CERULENIN

RITA

PRIMA1

NSC95397

PX12

C646
YM155

NUTLIN3

TOSEDOSTAT

TACROLIMUS

PIFITHRINMU

THALIDOMIDE

STAT3INHIBITORVI

PIFITHRINALPHA NECROSTATIN1

SIMVASTATIN

FGIN127

SAR245409
CIMETIDINE

CYCLOPHOSPHAMIDE

UNC0321

EPIGALLOCATECHINGALLATE

CHIR99021

MYRICETIN

AC55649

SGX523

SITAGLIPTIN

PROCARBAZINE

BETULINICACID

BLEBBISTATIN

TG100115

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Fig. 4. Network visualization of functionally-enriched drug communities identified by

Mania. Mania identified 29 drug communities by applying an affinity propagation clustering algo-
rithm. One drug of each community was selected as the exemplar drug for that community. Inter-
community edges were represented by exemplar-exemplar edges, which were obtained by building a
minimal spanning tree among exemplar drugs.

of drugs, Mania produced various drug communities in which drugs with the same or simi-
lar functions were clustered together. For instance, Mania correctly identified the inhibitors
for several targets, including the inhibitors of BRD4 (Cluster 5), PI3K/mTOR (Cluster 8),
IGF-1R (Cluster 13), EGFR/ERBB (Cluster 16), TOP2 (Cluster 17), PSMB1 (Cluster 18),
BRAD/MEK (Cluster 22), TGFBR1 (Cluster 24), and HDAC (Cluster 28). Among these,
TOP2 (Topoisomerase II) has held great interest of researchers because of the discovery of
active anti-cancer drugs that target TOP2,27 and Mania identified four drugs (Teniposide,
Etoposide, Topotecan, and Doxorubicin) targeting TOP2 (Cluster 17), which includes Etopo-
side and Doxorubicin, two clinically active agents.

We further conducted a Fisher’s exact test between all the drugs grouped in a community
and all drugs associated with a specific MoA or target, to assess whether the specific MoA
or target is enriched in the community. We found that out of the 29 drug communities, 16
communities were significantly enriched (P < 0.05) for a direct target and 15 were significantly
enriched for one MoA. For example, Cluster 28 were statistically enriched (P < 10−5) for
targets in the HDAC family and contained six known inhibitors for these targets, including
Vorinostat and Belinostat, two FDA approved drugs. Another example is Cluster 16, where
the 8 drugs were statistically enriched (P < 10−7) for the ERBB and EGFR targets.

Taken together, the above results on clustering demonstrated the ability of Mania on
illustrating the functional drug-drug relationships among drugs, by partitioning the drugs into

Pacific Symposium on Biocomputing 2018

53



disjoint function-related communities based on the low-dimensional vector representations.

3.4. Predictions of drugs for significantly mutated genes

We then proceeded with explosive analysis to test the ability of Mania for drug repurposing.
To this end, we obtained a list of 224 significantly mutated cancer genes across 21 tumor types
in a recent analysis of The Cancer Genome Atlas.28 Mania first predicted targets for each drug
through a weighted majority voting process, and the top 10 scored targets for each drug were
recorded. Each significantly mutated gene was then searched against the list of top 10 predicted
targets for each drug, and we found that 20 genes had been predicted by Mania to have new
corresponding drugs that were not included in the Drug Repurposing Hub. Among these,
EGFR, a significantly mutated gene in lung adenocarcinoma, was predicted by Mania as the
top 1 gene that can be targeted by the drug Saracatinib but has not been predicted by DNF in
its top 10 list. Our prediction of the use of Saracatinib to treat lung cancer through reducing
the activation of EGFR is also supported by studies in the literature,29 where Saracatinib was
found to be able to efficiently reduce the activation of EGFR. Interestingly, Saracatinib was
clustered into Cluster 16, which contains several well-known EGFR inhibitors, including two
launched drugs, Afatinib and Erlotinib. This demonstrated the ability of Mania on transferring
the knowledge of well-studied drugs to other similar but less characterized ones and providing
additional potential insights into drug repurposing.

4. Discussion

We have presented Mania, a method for integrating heterogeneous pharmacogenomic data,
which can be used to predict drug MoAs and targets, as well as to study the drug-drug
relationships. Mania integrates multiple data sources and learns low-dimensional vector repre-
sentations of drugs, which encode the structural and functional information for drugs. We have
demonstrated Mania accurately quantifies the drug-drug similarity and substantially improves
the performance of MoA/target prediction.Furthermore, Mania identifies functionally-enriched
drug communities and new drugs that potentially target cancer mutated genes.

In the future, we plan to pursue further improvements of Mania. First, besides the Pearson
correlation as the similarity measure for perturbation and sensitivity data, we plan to explore
other approaches that can better capture the drug-drug relationships. In addition, we will test
our method on non-redundant data (redundancy may arise, for example, when structures of
some drugs were derived from others) and analyze the prediction ability of each data source.
Furthermore, we plan to integrate more types of pharmacogenomic data (e.g., Cancer Cell
Line Encyclopedia30) to provide a more complete view of the relationships among drugs.
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