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SUMMARY

While genes are defined by sequence, in biological

systems a protein’s function is largely determined

by its three-dimensional structure. Evolutionary

information embedded within multiple sequence

alignments provides a rich source of data for infer-

ring structural constraints on macromolecules. Still,

many proteins of interest lack sufficient numbers

of related sequences, leading to noisy, error-prone

residue-residue contact predictions. Here we

introduce DeepContact, a convolutional neural

network (CNN)-based approach that discovers

co-evolutionarymotifs and leverages these patterns

to enable accurate inference of contact probabili-

ties, particularly when few related sequences

are available. DeepContact significantly improves

performance over previous methods, including

in the CASP12 blind contact prediction task

where we achieved top performance with another

CNN-based approach. Moreover, our tool converts

hard-to-interpret coupling scores into probabilities,

moving the field toward a consistent metric to

assess contact prediction across diverse proteins.

Through substantially improving the precision-

recall behavior of contact prediction, DeepContact

suggests we are near a paradigm shift in template-

free modeling for protein structure prediction.

INTRODUCTION

Protein structure and function are by nature intertwined, with

structure, or structural properties, playing a large role in defining

function. As such, ever since the X-ray structure of lysozyme

led to the elucidation of its mechanism of catalytic action,

determining protein structure has been one of the most important

challenges in biology (Phillips, 1966; Phillips, 1967). In parallel,

given the many obstacles to experimental structure determina-

tion, computational prediction of protein structure remains one

of the longest-standing challenges in computational biology

(Moult et al., 2014, 2016). Existing approaches to protein

structure prediction can be categorized into two types:

template-based modeling and template-free modeling. With the

requirement of a homologous structure, template-basedmethods

are often not applicable to structure prediction tasks of interest,

including orphan proteins, and thus for many novel proteins the

field has turned to template-free, or de novo, folding approaches

that predict 3D structures using the query sequence alone

(Zhang, 2008; Xu and Zhang, 2012). While these approaches

work reasonably well for smaller proteins, they have generally

required further difficult-to-obtain experimental data for larger

proteins (Bradley et al., 2005; Moult et al., 2014, 2016).

Recent computational advances, together with the availability

of large protein sequence databases, have enabled us to exploit

rich evolutionary information encoded within multiple sequence

alignments (MSAs) to assist traditional protein structure

prediction approaches. Notably, evolutionary coupling analysis

methods, such as direct-coupling analysis, GREMLIN, (meta-)

PSICOV, and EVFold, take an MSA as input and predict

residue-residue contacts by learning an inherent graphical

model structure that incorporates pairwise terms to capture

evolutionary constraints among residues (Ekeberg et al., 2013;

Morcos et al., 2011; Kamisetty et al., 2013; Jones et al., 2012,

2015; Marks et al., 2011; Kaján et al., 2014). Several tools

(including Rosetta) have successfully incorporated evolutionary

couplings into their pipelines as distance restraints to signifi-

cantly improve predictions, particularly for proteins that have

proven challenging using traditional approaches (Ovchinnikov

et al., 2015, 2017). In addition, evolutionary coupling-based

methods have been successfully applied to protein complex

assembly and interactions, disordered region structure predic-

tion, RNA structure prediction, and mutagenesis analysis

(Ovchinnikov et al., 2014; Uguzzoni et al., 2017; Hopf et al.,

2014, 2017; Toth-Petroczy et al., 2016; De Leonardis et al.,

2015; Weinreb et al., 2016).

Despite these advances, state-of-the-art evolutionary

coupling approaches still have several major failings that limit

their applicability. First, they require large, high-quality MSAs

and often generate sparse or poor contact predictions for pro-

teins with less robust MSAs (Moult et al., 2016). Second, the

units of evolutionary couplings are arbitrary; while there have

been recent attempts to define significant couplings, for the

most part users are left to decide how many couplings to take
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as true distances restraints (Toth-Petroczy et al., 2016). Third,

these methods do not put any outside constraints, beyond spar-

sity of contacts through the use of regularization, on the coupling

matrix, ignoring everything we know about protein structures.

Deep learning continues to develop as a powerful set of tools

for solving an increasingly diverse range of problems, including

many related to biological systems (LeCun et al., 2015; Zhou

and Troyanskaya, 2015; Angermueller et al., 2016; Wang et al.,

2017). The key insights of modern machine learning include

both the power of automatic feature selection and the ability to

integrate data sources, as well as the ability to leverage and

encode contextual data and to convert inputs of arbitrary units

into well-calibrated probabilities (Cho et al., 2016; Jones et al.,

2015; Gao et al., 2017; Niculescu-Mizil and Caruana, 2005).

While the proliferation of biological data has made many tasks

suitable for deep learning, biology, perhaps more than many

other fields grappling with expanding amounts of data, often

seeks understanding as much as improved inference. Therefore,

powerful deep-learning approaches in biology hold the promise

of not only having superior predictive performance over previous

methods, but also of including a focus on interpretability allowing

insights into the underlying dynamics and mechanisms of the

biological phenomena at play.

Here we introduce DeepContact, an approach that employs a

convolutional neural network (CNN) to learn structural interaction

motifs from thousands of proteins with experimentally solved

structures. Taking raw evolutionary couplings produced by

existing methods (e.g., CCMPred) as input, we trained the

network to predict contact maps using experimentally deter-

mined structures (Seemayer et al., 2014). DeepContact automat-

ically and effectively leverages local information and multiple

features to discover patterns in contact map space and embeds

this knowledge within the neural network. Notably, few CNN

layers suffice, avoiding the potential for overtraining and allowing

the model to be trained on a large number of structures in a

reasonable amount of time.

For subsequent prediction of new proteins, DeepContact uses

what it has learned about structure and contact map space to

impute missing contacts and remove spurious predictions, lead-

ing to significantly more accurate inference of residue-residue

contacts. Its performance on several benchmark datasets and

in the most recent Critical Assessment of protein Structure Pre-

diction, CASP12, demonstrates DeepContact’s (also known as

iFold_1 in the CASP12 results) significant improvement over pre-

vious evolutionary coupling analyses, which do not take contact

or structure space into account (Moult et al., 2016; CASP12).

Notably, DeepContact automatically converts coupling scores

into probabilities, such that the values have common scale

across proteins and alignments, simplifying their use and inter-

pretation. Moreover, it identifies patterns that capture a set of

‘‘rules’’ for structural motif interactions.

Given the improved precision-recall characteristics and

associated probabilities, downstream folding methods based

on DeepContact have the potential to significantly improve

structure prediction by maximizing the probabilities of the satis-

fied restraints. DeepContact not only makes many proteins with

hard-to-predict structures accessible to evolutionary coupling

analysis, but it also provides a rich resource for further

evolutionary analysis of protein sequence and structure.

RESULTS

Overview of DeepContact

Observing the contact maps resulting from solved experimental

structures (a contact is defined as when two residues in the

structure are within a distance d of each other), distinctive pat-

terns emerge whereby one can identify structural components

such as parallel and antiparallel b sheets as well as helix-helix

interactions (Hu et al., 2002). Not all sets of contact maps are

equally likely to emerge from a protein structure, and contex-

tual information can help inform our confidence in a particular

contact. In the image recognition field, CNNs have proven

very effective at taking a noisy image and returning the clean

image (Zhang et al., 2017). We pursue the intuition that by

training a CNN to predict contact probabilities using

evolutionary couplings and experimentally solved structures,

the CNN is able to learn about contact map space. Using

multiple convolutional layers our algorithm, DeepContact,

effectively re-weights evolutionary couplings based on the

contextual information of the contact map, down-weighting

contacts that are unlikely to be true given the context and the

space of evolutionary couplings and up-weighting contacts in

the reverse case.

The DeepContact framework consists of a CNN that takes

evolutionary couplings as input and predicts a probability of

contact for each pair of residues (Figure 1A). After obtaining

the input features, e.g., evolutionary couplings from CCMPred,

they are fed into the fully convolutional neural network which

extracts multiple levels of features by successively applying a

convolutional layer, a batch normalization layer, and a rectified

linear unit layer (Seemayer et al., 2014). DeepContact then uses

a shared-weight neural network to compute the final contact

probability for each pair of residues (Figure 1A). To balance

predictive performance, ease of training, and interpretation,

DeepContact uses nine-convolutional layers. DeepContact

was trained on the solved structures from the 40% filtered

ASTRAL SCOPe 2.06 dataset split according to the ratio

8:1:1 as training:validation:test (Figure 1B) (Fox et al., 2013).

This was done such that members in a superfamily did not

appear in both the training and testing sets, ensuring that

proteins in the testing set share at most the class and fold

with any protein in the training or validation set and that we

did not train on structures in our test set.

We trained using a cross-entropy loss function adapted to

deal with the imbalance in the dataset by weighting positive

and negative examples equally. We trained an additional model

including sequence features (precisely, predicted secondary

structure, predicted solvent accessibility, and column-wise

amino acid frequencies) and global features (i.e., number of

effective sequences, Neff) in addition to pairwise features

(STAR Methods) (Seemayer et al., 2014; Altschul et al.,

1997). Importantly, all of these features are derived from the

underlying sequence. Whereas raw evolutionary couplings

are computed using a global model that does not know any-

thing about contact map space, DeepContact effectively learns

about protein structure and contact map space from the thou-

sands of examples it has previously seen, leveraging this infor-

mation by integrating contextual information to improve predic-

tions (Figure 1B).
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Improved Contact Prediction

Evolutionary couplings have emerged as a powerful tool for the

prediction of protein structures, particularly for hard-to-predict

structures such as membrane proteins and orphan proteins

(Hopf et al., 2012; Marks et al., 2011; Toth-Petroczy et al.,

2016). The goal is to determine residues that are close in 3D

space, with the underlying assumption that the columns of an

MSA that are highly coupled but far in chain distancewill be close

in the folded structure (Morcos et al., 2011). The improvement in

evolutionary couplings for contact prediction has been driven by

the use of global statistical models that infer direct, as opposed

to transitive, evolutionary couplings by effectively conditioning

on the rest of the alignment (Morcos et al., 2011; Ekeberg

et al., 2013). Sparsity of contacts is enforced through regulariza-

tion; however, these methods are oblivious to the space of

possible contact maps. Generally, users take the top L/x (where

L is the length of the protein and x is an integer) medium- or long-

range (defined by a separation in chain distance) evolutionary

couplings to be the predicted contacts.

We evaluated the performance of DeepContact on the

ASTRAL validation set (660 proteins), on a set of 228 previous

CASP targets (CASP228), on a set of 220 CAMEO targets,

and by participating in the blind prediction tasks from the well-

established CASP12 experiment (Fox et al., 2013; Moult et al.,

2014, 2016; Haas et al., 2013). For medium- and long-range

contacts (residues 12 apart or more in chain distance) we

substantially outperformed the baseline of CCMPred across

the precision/recall curve on all three of our validation sets after

training the model using CCMPred evolutionary couplings as the

only input features (Figures 2A–2C).

To maximize the predictive performance for the CASP12

experiment, at the expense of interpretation, we incorporated

A

B

Figure 1. Overview of DeepContact

(A) Structure of the full-feature DeepContact

model. DeepContact takes in global, 1D, and 2D

features calculated from the amino acid sequence,

including evolutionary couplings, and uses a CNN

to predict contacts.

(B) DeepContact trains using a set of solved

structures, taking in the distance matrix (left) and,

as a preprocessing step, producing a contact

matrix using an 8 �A threshold (right). Intrinsically,

these contact maps have patterns, and clearly

some matrices cannot be contact maps. By

learning the structure of contact matrices and the

relationship between couplings and contacts,

DeepContact is able to vastly improve evolu-

tionary-based contact prediction.

additional input features. These consisted

of additional 2D features (precisely,

EVFold predictions, mutual information

[MI], normalized MI, and mean contact

potential), global features (Neff of the

alignment and SD of the CCMPred and

EVFold predictions), and 1D features

(predicted solvent accessibility, predicted

secondary structure, and column-wise

amino acid frequencies) (STAR Methods).

A benefit of deep learning is that, given many input features, it is

able to learn which features, and interactions between features,

are important for prediction while disregarding those that are

not. We participated in the CASP12 experiment finishing with

the 2nd best average rank across the variety of categories and

ranking metrics considered, as well as in the top two methods

based on average F1 score, with the other top method,

RaptorX-Contact, being another CNN-based model using a

much deeper Residual Learning network (CASP12; Wang et al.,

2017; Schaarschmidt et al., 2017).

Using an L/2 cutoff for the free-modeling (FM) targets we

ranked second in average F1 score for both the set of long-range

(R24 in chain distance) only contacts and for the set of long- and

medium-range (R12 in chain distance) contacts. This was

despite the fact that DeepContact earned an F1 score of 0 for

one of the 38 FM targets due to a submission script bug that

prevented us from submitting. Comparing with the other top

method, RaptorX-Contact, on the 37 structures where we both

submitted predictions, RaptorX-Contact slightly outperformed

on the combined set of long- and medium-range contacts

(average F1 score of 20.717 for RaptorX-Contact versus our

DeepContact-based method, iFold_1, average F1 score of

20.011), while we slightly outperformed on the long-range-only

contacts (average F1 score of 20.233 for RaptorX-Contact versus

our average F1 score of 20.775) (Wang et al., 2017). DeepContact

also outperformed on the long-range contacts for the FM/tem-

plate-based modeling (TBM) targets using an L/2 cutoff. Despite

only submitting 54/57 targets for the joint set of FM and FM/TBM

targets due to the submission script bug, DeepContact achieved

an experiment best overall average F1 score, including 0 for the 3

missed targets, of 23.226 (iFold_1) with MetaPSICOV (Jones

et al., 2015) the next best non-DeepContact-based method,
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submitting 57/57 targets for an average F1 score of 22.470

(Deepfold-Contact is an earlier version of DeepContact submit-

ted in parallel, see STAR Methods) (CASP12). Notably, folding

using contacts generally requires L/2 or more contacts for a

quality structure, making L/2 a relevant cutoff for downstream

structure prediction (Marks et al., 2011).

On our three benchmark datasets, DeepContact substantially

outperforms CCMPred on medium- and long-range contacts

(residue-residue pairs separated by more than 12 in chain dis-

tance) across the entire precision-recall curve from L/10 all the

way to 20*L (Figures 2A–2C). This is true for the simplest version

of DeepContact trained using CCMPred as the only feature

(green line in Figures 2A–2C), demonstrating the power of the

underlying convolutional model to extract additional information

from the CCMPred-predicted evolutionary couplings. Including

the full-set of additional features (STAR Methods) further

enhances the performance of DeepContact (blue line in Figures

2A–2C). On the two more challenging datasets, CASP228 and

CAMEO, we also compared DeepContact with the previous

state-of-the-art method metaPSICOV and again significantly

outperformed using the full-featured model (Figures 2B and

2C). metaPSICOV is a machine-learning method that uses the

same general features as DeepContact; for all overlapping
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Figure 2. Improved Performance of

DeepContact on Benchmark Datasets

(A) DeepContact outperforms CCMPred on the

ASTRAL validation set using only CCMPred as

features. Including other features further improves

the precision-recall performance.

(B) Precision-recall performance of contact-

prediction methods on the CAMEO dataset.

DeepContact further outperforms metaPSICOV

on the CAMEO dataset.

(C) Precision-recall performance of contact-

prediction methods on the CASP228 dataset.

On all three validation sets, using our novel

probability cutoff enables enhancement of the

precision/recall characteristics of DeepContact.

Effectively, we exclude sequences or contacts

with little confidence, and include contacts in

which we have more confidence, leading to

improved performance.

(D) The improved contact-prediction performance

of DeepContact over CCMPred leads to improved

contact-assisted folding across the CASP12

free-modeling target set. Targets where folding

failed using CCMPred contacts are plotted at a

TM-score of 0.

features we used the same inputs,

demonstrating the power of the CNN-

based approach (Jones et al., 2015).

To demonstrate that the improved

precision-recall behavior leads to

improved structure prediction, we used

the top L predictions from DeepContact

and CCMPred to fold the 36 FM targets

from CASP12 with released coordinates.

We ran an off-the-shelf folding algorithm,

Confold, without any further refinement

and selected the top 5 of 500 models by energy for each target

(Adhikari et al., 2015). We calculated the TM-score, a measure

of similarity between protein structures, for these top models

and for each target compared the maximum TM-score using

the DeepContact predictions with the maximum TM-score using

the CCMPred predictions; in every case DeepContact improved

the TM-score with an average improvement of 0.15 excluding

the 8/36 targets where Confold failed using the CCMPred con-

tacts (Zhang and Skolnick, 2005). On these challenging targets,

whereas 8/36 targets failed and 0/36 targets had a TM-score

above 0.3 for the CCMPred contacts, 25/36, 12/36, and 4/36 tar-

gets had a TM-score above 0.3, 0.4, and 0.5, respectively, using

DeepContact’s predicted contacts representing a significant

improvement (Figure 2D) (Xu and Zhang, 2010).

A demonstrative example, PDB: 3LRT, shows how

DeepContact, using both the CCMPred-only model and the

full-feature model, is able to integrate over the local context to

improve contact predictions (Figure 3) (Cherney et al., 2011).

The diffuse patterns of couplings from CCMPred lead to sub-

optimal predictions; however, DeepContact is able to integrate

across these regions to improve contact prediction (Figure 3).

The Neff score of the MSA input for PDB: 3LRT was in line

with the rest of the set at 8.0, compared with an average of
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8.3 for our training set, 8.7 for the ASTRAL test set, 6.4 for the

CASP228 set, and 6.6 for the CAMEO set (higher Neff implies

more evolutionary information). Using a cutoff of L/2, the full-

featured implementation of DeepContact has a precision of

0.83, while CCMPred has a precision of 0.56 for the 78 predicted

contacts. Using a probability cutoff of 0.99 for DeepContact

includes an additional 21 contacts, for a total of 99 predicted

contacts, while the precision remains 0.83 (Figure S1).

DeepContact’s improvement of 0.27 at L/2 is in line with the re-

sults across the three benchmark datasets, where DeepContact

improves precision by 0.25, 0.19, and 0.24 on average for the
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Figure 3. DeepContact Integrates Local

Information to Improve Contact Prediction

(A) Example of how DeepContact (upper right tri-

angle) improves contact prediction over CCMPred

(lower left triangle) input for PDB: 3LRT_A

(Cherney et al., 2011). Most of the DeepContact

‘‘false-positives’’ border regions of true positives,

and the two that do not (black circles) are true

homodimer contacts between chain A (green) and

chain B (cyan) separated by 3.6 and 4.3 �A,

respectively (right panel). See also Figure S1.

(B) DeepContact integrates local information.

Using CCMPred as the only input feature (top left),

DeepContact is able to identify patterns indicative

of secondary structure elements (bottom left).

Using additional features sharpens the predicted

contact map (top right). These matrices resemble

the experimentally determined distance matrix

(bottom right).

ASTRAL validation, CASP228, and

CAMEO sets, respectively. In addition,

most of DeepContact’s false-positive

contacts border a region of true posi-

tives, and the two that do not are in fact

dimer contacts in the biologically active

homodimer (Figure 3A) (Cherney et al.,

2011). DeepContact, using only the

CCMPred output as a feature, identifies

the same regions as DeepContact with

the full-feature set, with the full-featured

version using the additional features to

sharpen the predictions (Figure 3B).

Even though the model was trained on

the contact maps after thresholding

(Figure 1B), the output resembles the

full-distance matrix (Figure 3B).

DeepContact re-orders the entire rank-

ordered list of contacts, not just the

top contacts from CCMpred, with the

ordering of contacts by DeepContact

being much closer to the ground-truth

ordering by distance in the structure

(Figure 4A). Notably, the false-positive

contact pairs, as called using a hard dis-

tance cutoff of 8 �A, for DeepContact are

significantly closer than the false-positive

contact pairs of CCMPred (Figure 4B).

DeepContact substantially improves contact prediction by

training a CNN on thousands of solved structures, which allows

it to use knowledge of protein structure space to improve predic-

tions for novel protein structures.

Probabilistic Interpretation of Couplings

Evolutionary coupling scores exist on a poorly defined scale, as

they are calculated by taking the maximum entropy solution to

the global model for coupling matrices and calculating the

Frobenius norm of each coupling matrix after correcting for the

effects of column entropy and undersampling by using average
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product correction (Buslje et al., 2009; Ekeberg et al., 2013). This

scale can change based on alignment size, the number of amino

acids in the sequence of interest, and regularization parameters,

making the values somewhat arbitrary across different proteins,

alignments, and model parameters. Traditionally users of these

methods rank order the evolutionary couplings, discarding

short-range couplings generally defined as residue-residue pairs

separated by fewer than six in chain distance, and then define a

cutoff as a fraction of L, the number of amino acids in the

sequence. The distribution of evolutionary couplings generally

consists of a Gaussian centered near 0 and a fat right hand tail

for the highly coupled residue pairs (Toth-Petroczy et al.,

2016). Most of the highly coupled pairs in the tail are short-range

couplings, which fits with the intuition of highly coupled pairs

being close in 3D space. Experienced users often use conserva-

tive cutoffs or increase the cutoff as a fraction of L until the

contact maps begin to look more like noise than signal (Kim

et al., 2014). Recently, more principled approaches have been

proposed that model the distribution of evolutionary couplings

and assign medium- and long-range couplings to the tail based

on the probability of coming from the Gaussian or tail distribu-

tion, an approach similar to methods previously applied to

coiled-coil domain prediction from pairwise residue correlations

(Toth-Petroczy et al., 2016; Berger et al., 1995).

One of the benefits of machine-learning approaches is that

by defining an appropriate objective function they naturally

transform input feature values into probabilistic estimates.

DeepContact is trained using a cross-entropy loss function,

thereby converting the input evolutionary couplings (and other

features for the full model, see STAR Methods) into contact

probabilities. This ability allows us to introduce the idea of using

a universal probability cutoff to define contacts, given that the

probabilities have consistent scale and meaning across different

proteins and alignments. It also allows end-users to select the

number of couplings based on the estimated probabilities of

the couplings instead of using a hard cutoff. With this probabil-

ity-based approach the network effectively decides on the

significant couplings using all of the features in a context-aware

manner. Using probabilistic cutoff scores further enhances the

precision-recall behavior by allowing more contacts in cases

where DeepContact is more certain in the prediction and not

making predictions when it is uncertain (Figure 2). In the example

discussed above (PDB: 3LRT) we allow 21 additional couplings

using a probability cutoff of 0.99 versus L/2, enhancing the recall

while still achieving the same precision of 0.83 (Figures 3A

and S1) (Cherney et al., 2011).

Downstream folding pipelines (e.g., Confold, CNS, Rosetta)

take in the residue-residue contacts predicted by evolutionary

couplingmethods and treat them as distance restraints, returning

the top model structures that maximally satisfy the distance

restraints (Adhikari et al., 2015; Br€unger et al., 1998; Ovchinnikov

et al., 2015). Assigning probabilities to residue-residue couplings

allows a more fine-grained approach, whereby downstream

folding algorithms can incorporate the probability of the distance

restraints satisfied by a structural model. The conversion of

evolutionary couplings to meaningful probabilities will facilitate

broader use and integration of evolutionary coupling approaches,

while aiding structural model determination through the probabi-

listic view of satisfying restraints.

Ideally these probabilities would be well-calibrated across

examples and proteins, accurately reflecting the confidence

that DeepContact has in any individual residue-residue pair

Figure 4. DeepContact Reranks Full Contact Distribution

(A) Contacts were ranked across the entire ASTRAL validation set based on distance (black), DeepContact probability (blue), and CCMPred score (red). To make

CCMPred comparable across examples we normalized to the SD of the medium- and long-range scores within each protein. The x axis is the rank-ordered list of

DeepContact probabilities, and the y axis the average distance of the higher-ranked contacts. DeepContact (blue) significantly improves the rank order of

contacts across the distribution compared with CCMPred, being much closer to the true rank order of contacts (black).

(B) The average distance of the false positives for each of the ASTRAL validation set structures as called byCCMPred versus as called byDeepContact. The ‘‘false

positives’’ called by DeepContact are significantly closer in the experimental structure, with many of them lying just beyond the 8 �A cutoff.
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prediction. Our probabilities are generally overestimates, partic-

ularly in the middle of the distribution (Figure 5). Much of this

arises from one of themain challenges of our training task: imbal-

ance in the positive and negative classes. To address the imbal-

ance in the dataset we train with half the weight on positive

examples and half the weight on negative examples. This choice

is exacerbated for long proteins because as the length, L, of a

protein grows the number of contacts also grows in proportion

to L; however, the number of entries in the contact map grows

with L2 (Kim et al., 2014). Thus, the imbalance grows with

the length of the protein and we subsequently end up

down-weighting false positives more in longer proteins. Training

an additional model that takes in output probabilities, length, and

Neff (average log entropy of columns) is one solution to output

better-calibrated probabilities. Importantly, some of the false

contacts identified by DeepContact are true homodimer

contacts and others may be true in another conformation, partic-

ularly given the small distances between the residues of many of

the false contacts (Figures 3A and 4B) (Hopf et al., 2012; Morcos

et al., 2011; Toth-Petroczy et al., 2016).

Visualization toward Interpretable Inference

Deep learning is able to take training data and encode the

complex feature relationships relevant for the predictive task

into the parameters of the final network, embedding the knowl-

edge it has learned within the network. By training the network

to predict residue-residue contact probabilities using evolu-

tionary couplings, DeepContact has learned about protein

Figure 5. DeepContact Converts Evolu-

tionary Coupling Scores to Coupling Proba-

bilities

Boxplot of precision of DeepContact with

respect to the ASTRAL validation set (y axis) with

DeepContact predictions binned by 0.01 probabil-

ity. Mean (red) and median (blue) precision are

shown for each bin; whiskers represent 5th to 95th

percentiles.We trainedDeepContact using a cross-

entropy loss function, which effectively maximizes

the ability to distinguish residue pairs less than 8 �A

apart from residues more than 8�A apart. While the

probabilities are better calibrated at the ends of the

distribution, those in the middle enable an objective

understanding of the likely probability of contacts

using the output probabilities.

residue-residue contact map space, as

well as the relationship between evolu-

tionary coupling space and contact map

space, and is able to effectively leverage

that information to improve predictions

for targets it has never seen before.

Much of the knowledge embedded

within the trained CNN is encoded by the

filterparametersof theconvolutional layers

(STAR Methods). By visualizing the filters

and the contact map patterns that activate

them, we can begin to disentangle the

network, revealing the first-layer units that

form thebasis for the ‘‘grammar’’ of protein

contact space (Figure 6). The deeper layers of the network inte-

grate the local motifs captured by the first layer to formmore com-

plex hierarchical interactions at a higher level of abstraction.

To visualize the features identified by the network, we

computed the activation values of each filter from the first layer

on a non-redundant set of proteins from the SCOP database.

Averaging the top 100 protein activations for each filter, we find

that many of the observed features correspond to conserved

motifs, fitting with our intuitions about the evolutionary patterns

of secondary structure and tertiary structure elements such as

helices, helix-helix interactions, and b sheets (Figure 6, insets

A–F). In the case of b sheets there is an alternating lattice pattern

(Figure 6, insets A–C), whereas a-helical motifs consist of

grid-like couplings separated by three to four residues (the rise

of a helix) (Figure 6, inset E) (Branden, 1999). To visualize the

space of filters we applied t-stochastic neighbor embedding, a

nonlinear dimensionality reduction method that embeds similar

points in the high-dimensional space as points close in two

dimensions, on the top activations (Maaten and Hinton, 2008).

The filters of the first-layer cluster by secondary structure

elements, with b sheet motifs and a-helical motifs separated by

motifs that consist of the interaction between the two (Figure 6).

DISCUSSION

WehavepresentedDeepContact, adeep-learning-basedmethod

to improve structure prediction and elucidate patterns in the co-

evolutionary pressures on macromolecules. DeepContact uses
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contextual information and the knowledge of thousands of

experimentally determinedstructures to improvestructurepredic-

tion by identifying interaction motifs. We have demonstrated the

ability of DeepContact to improve contact prediction, as well as

folding. Moreover, our use of CNNs enables us to successfully

convert evolutionary couplings (ECs) into more general contact

probabilities, which will be of great value to practitioners. The

probabilistic interpretation of DeepContact presented here sug-

gests a framework for contact prediction useful for future CASP

experiments; one can use a range of probability cutoffs instead

of length-based cutoffs, truly incorporating probabilistic esti-

mates. DeepContact significantly improved over the previous

state-of-the-art methods on our validation datasets and during

the CASP12 experiment achieved top performance in line with

RaptorX, another CNN-based approach, which used a residual

network architecture consisting of many more layers, making it

moredifficult and resource intensive to train andmore susceptible

to overtraining (Wang et al., 2017).

The improved contact predictions of DeepContact led to

improved structural prediction on CASP12 targets compared

with CCMPred (Figure 2D, STAR Methods). In their recent publi-

cation evaluating contact prediction in CASP12, Schaarschmidt

et al. (2017) presented analysis in conflict with these results,

suggesting that despite DeepContact’s performance on contact

prediction it did not result in improved structural prediction.

This analysis focused on a small subset of the CASP12 struc-

tures where DeepContact’s average precision was significantly

below its average precision across the complete dataset;

while the performance on these particular sequences is disap-

pointing and suggests room for further improvement, it is not

Figure 6. Visualization of First-Layer Filters

Visualization of features picked up by the first layer

of a DeepContact model trained with CCMPred as

the only feature (STARMethods). We averaged the

top 100 activations of each filter across the

ASTRAL validation set and used t-stochastic

neighbor embedding to reduce the dimensionality

(center gray-shaded matrix). Insets (A–F) show the

activation patterns of selected filters, as well as the

top 5 structural alignments and sequence simi-

larity of the proteins with the top 100 activations.

Filters (center) cluster by secondary structure

element, spanning from b segments (red, top)

to helical/b to helical segments (blue, bottom).

The b patterns fit with the alternating contacts

of b sheets (A, B, and F) and distinguish between

parallel (A andB) and antiparallel (F) sheets. Helical

filter (E) shows a grid-pattern separated by three to

four residues, matching the rise of a helix.

surprising that in cases where the preci-

sion of DeepContact’s predictions are

low, these contacts do not improve

folding. However, critically, these results

cannot be extrapolated to the remaining

cases where DeepContact outperforms

based on precision as the problematic

analysis of Schaarschmidt et al. (2017)

suggests.

Further, by analyzing the first-layer filters of the network we

have demonstrated the underlying motifs of protein structural

interaction space and their correspondence to evolutionary pat-

terns. The challenge remains of further understanding how these

motifs are combined to determine the higher-order grammar of

evolutionary forces driving protein structure and function. By

elucidating the different contact map patterns and features cor-

responding to identified structural features, we may be able to

understand the range of evolutionary patterns that are able to

constrain structure.

The full contact maps output by DeepContact are significantly

cleaner than the contact maps output by CCMPred. Our algo-

rithm increases the contrast, and the fully plotted contact

maps output by DeepContact look much more similar to the

full-distance matrices, despite the fact that they were trained

only on the binary classification of a contact defined by a dis-

tance of less than 8 Å. Just as with the probabilities, this sug-

gests a paradigm where we can effectively use much more of

the contact matrix to fold proteins in an FMapproach. It also sug-

gests that using smarter objective functions we may well be able

to extract evenmore information fromECs. In addition, the failure

modes are such that, by looking at the full matrix, we can often

immediately identify by eye whether it is a valid contact map or

not and what regions of contacts are suspect. This observation

suggests room for improvement in that DeepContact should

be able to avoid and eliminate these failure modes. Perhaps

more importantly, DeepContact extracts much more information

about the distances from the ECs. Improved models for folding

that are able to use the additional information content will facili-

tate a paradigm shift in FM protein structure prediction.
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KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Jian Peng,

jianpeng@illinois.edu, Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA.

METHOD DETAILS

DeepContact Framework

Neural Network

Convolutional Neural Networks (CNNs) have beenwell established for diverse learning tasks on both one-dimensional sequence data

and two-dimensional image data, including pixel level labeling tasks such as image segmentation (LeCun et al., 1998; Krizhevsky

et al., 2012; Long et al., 2015). Here we frame contact prediction as a pixel-level labeling task - viewing each amino acid pair as a

‘pixel’ in the evolutionary coupling matrix (the ‘image’) with the task defined as labeling the true contact pairs. The DeepContact

CNN takes in the input features, the primary feature being the evolutionary coupling matrix, and predicts a new corrected contact

matrix.

We trained two different models - one with the only feature being an evolutionary coupling matrix and the other including the

evolutionary coupling matrix and additional features (see ‘Features’ below) - using experimentally determined structures. For the

model with additional features we used three different levels of amino acid features: 2d features, which measure the correlation

between two amino acids; 1d features, the statistical information for each amino acid; and global features, the overall features across

the whole proteins.

Based on the feature maps, our network consists of 9 convolutional layers, each followed by a batch normalization layer and then a

rectified-linear unit (ReLU) layer. Each convolutional layer has 32 filters (i.e. features) of size 5x5 and a stride of 1. To make the final

predictions, we concatenate the output of the 3rd, 6th, and 9th layers with the original joint features and use a shared weight MLP on

each amino acid pair, which can alternatively be viewed as a convolutional layer with both a filter size and stride of 1. As our objective

function we use cross-entropy loss.

Features

Alignment Generation

Co-evolution analyses depend on multiple sequence alignments (MSAs). We generated alignments for all sequences with HHBlits

with an e-value threshold of 0.001, a pairwise identity cut-off of 0.99 and a minimum coverage of master sequence of 50%

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

ASTRAL Fox et al., 2013 https://scop.berkeley.edu/astral/subsets/ver=2.06

UniProt_2016_04 UniProt Consortium, 2016 http://www.uniprot.org/

Software and Algorithms

HHblits Remmert et al., 2012 https://toolkit.tuebingen.mpg.de/#/tools/hhblits

JackHMMER Eddy, 1998 http://hmmer.org/

CCMPred Seemayer et al., 2014 https://github.com/soedinglab/CCMpred

EVFold Kaján et al.,2014 https://launchpad.net/ubuntu/+source/freecontact/1.0.21-4build2

SOLVPRED Jones et al., 2015 http://bioinf.cs.ucl.ac.uk/downloads/MetaPSICOV

PSIPRED Jones et al., 2015 http://bioinf.cs.ucl.ac.uk/downloads/MetaPSICOV

Python Python Software Foundation https://www.python.org/psf/

Theano Theano Development Team http://deeplearning.net/software/theano/

Lasagne Github https://github.com/Lasagne/Lasagne

MetaPSICOV Jones et al., 2015 http://bioinf.cs.ucl.ac.uk/downloads/MetaPSICOV.

PyMol Schrödinger, LLC https://pymol.org/

CONFOLD Adhikari et al., 2015 https://github.com/multicom-toolbox/CONFOLD

Jupyter Kluyver et al., 2016 https://jupyter.org/
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(Remmert et al., 2012). HHblits was configured to run 3 iterations. If the alignment returned by HHBlits had fewer than 1000

sequences we used JackHMMERwith an e-value threshold of 10 (Remmert et al., 2012; Eddy, 1998). JackHMMERwas also config-

ured to run 3 iterations and the same pairwise identity cut-off and minimum coverage criteria were applied. All homology searches

were performed on Uniprot_2016_04.

Two-dimensional Features

For the two-dimensional features, we used CCMPred predictions, EVFold predictions, mutual-information (MI), normalized MI, and

themean contact potential. To generate the evolutionary coupling features we ran CCMPred and EVFold using default parameters on

the previously-computed multiple sequence alignments (MSAs) (Seemayer et al., 2014; Kaján et al., 2014).

One-dimensional Features

For one-dimensional features we used predicted solvent accessibility as computed by SOLVPRED , predicted secondary structure

as predicted by PSIPRED, and column-wise amino acid frequencies (McGuffin et al., 2000). We ran SOLVPRED and PSIPRED with

default parameters.

To convert the 1d features into a ‘2d‘ input for DeepContact, we first conducted 1d convolutions on the 1d features to extract

higher-level local information. Then the convolved 1d features are converted to 2d features. Namely, for a specific amino acid

pair (i,j), we concatenate i’s 1d feature with j’s 1d feature, resulting in a pairwise feature map. For the 1d convolution, we use one

layer containing 12 filters of size 7 and one layer with 24 filters of size 5. These parameters were trained simultaneously to the

rest of the DeepContact parameters.

Global Features

For global features, in each case we included the average log entropy of the columns of the MSA (Neff) and the standard deviation of

the CCMPred and EVfold predictions. We converted global features by padding them to an L by L matrix.

Combining Features

We concatenated all of the transformed LxL features into an LxLxN matrix, where N is the number of features, and the 2D

convolutions operated on this matrix.

Implementation Details

Environment

In the experiments, we used HHblits (2.0.16) and Jackhmmer (3.1b2) to generate the multiple sequence alignments. We used EVfold

(FreeContact 1.0.21) and CCMPred (0.3.2) to generate the two-dimensional contact features. We used PSIPRED to generate one-

dimensional features. We used python (version 2.7) and packages theano (0.8.0) and lasagne (development version on Github) to

implement the deep learning system. The baselines are produced by MetaPSICOV (1.02) and CCMPred for comparison.

Training

To train the CNNmodel, we used a batch size of 4 due to the GPUmemory capacity. We used the adadelta optimization method with

a learning rate of 0.3 and momentum of 0.9 (Zeiler, 2012; Sutskever et al., 2013). Currently, a more popular method is Adam (Kingma

and Ba, 2014). It is worth noting that the training set is not balanced, with actual contact pairs being a small percentage of the total

number of pairs. We assign each contact pair in each protein a weight such that the total weights for contact pairs and non-contact

pairs within each protein are the same. Training a full model takes approximately 12 hours on one TitanX GPU.

Folding

Wegenerated decoymodels for domains with known structures in the CASP 12 freemodeling target set using both DeepContact and

CCMPred contact predictions (CASP12). For each we input the top L contacts greater than or equal to 12 in chain distance, as well as

secondary structure predicted by PSIPRED (McGuffin et al., 2000), and used the folding algorithm CONFOLD to generate structures

(Adhikari et al., 2015). For stage 2 of the CONFOLD algorithm we enabled sheet detector. We generated 500 decoy models for each

set of predicted contacts (with different random seeds) and ranked them by their ‘‘overall energy’’. For each target and set of contact

predictions (CCMPred and DeepContact) we took the 5 models with the lowest energies and selected the one with the highest

TM-Score with respect to the reference model.

Datasets

ASTRAL

Our ASTRAL dataset consists of the ASTRAL SCOPe 2.06 genetic domain sequence subsets filtered for sequences with less than

40% sequence identity (based on PDB SEQRES records) (Fox et al., 2013). We divided the ASTRAL set into subsets according to the

ratio 80% training, 10% validation, and 10% test by randomly assigning structures to a subset. Once a structure was assigned to a

subset, we assigned all structures sharing the same superfamily to that subset to ensure that the training, validation, and test data

were independent of each other. This means that at most a protein in the testing set shares only the class and fold with any protein in

the training or validation set. For the testing set we further filtered out proteins with gaps in the structure and removed fragments,

inserting the whole proteins, which left 660 proteins in the validation set.

CASP228

TheCASP228 dataset consists of the 228 targets from theCASP 10 and 11 experiments (Moult et al., 2014;Moult et al., 2016). 2 of the

targets failed during feature generation, leaving 226 on which analysis was performed.
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CAMEO

The CAMEO dataset consists of 220 targets released as part of the Continuous Automated Model EvaluatiOn (CAMEO) community

project (Haas et al., 2013). 1 of the targets failed during feature generation, leaving 219 on which analysis was performed.

CASP 12

Weparticipated in the Community Assessment of Structure Prediction 12 experiment, submitting contact predictions for 37 of the 38

free-modeling (FM) targets as part of the blind contact prediction task (CASP12).We also submitted 17 of the 19 FMand TBM targets.

The missed targets were due to a submission script bug. We submitted predictions under 3 names: naı̈ve, Deepfold-Contact,

and iFold_1. All of these methods are based on the same underlying DeepContact model with iFold_1 representing the most

up-to-date version. In the CASP12 competition, we used an ensemble of five different models trainedwith different distances defined

as contacts. The thresholds are selected as 7.0, 7.5, 8.0, 8.5 and 9.0 angstroms.

Filter Visualization

Beyond prediction, we are also interested in the biological patterns learned by the CNN model. To explore this, we trained a new

model, splitting the astral dataset into training/validation/testing sets according to a ratio 0.6/0.2/0.2 with the same rules as before.

We cleaned the training/validation set to make sure that all proteins in the testing set have an E-value of greater than 1e-3 with the

training and validation sets. This ensures that the validation set and the testing set share limited sequence information.

For the visualization model we utilized a neural network consisting of three convolutional blocks, each made up of a convolutional

layer, a batch normalization layer, and aReLU layer. The first block’s convolutional layer uses 11x11x64 convolutional filters, while the

second and third blocks use convolutional filters each of 5x5x64, respectively. Between each of the consecutive convolutional blocks

there is a 2x2 max-pooling layer. Finally, all blocks are up-sampled to the original input size and concatenated to perform final

prediction with a shared-weight MLP network with 32 hidden units as before.

After training on the dataset, we performed early stop on the validation set to avoid overfitting. Then we obtained the predictions on

the testing set. For each convolutional filter in the first layer, we calculated the input regionswith the top 100 activations and produced

pairwise sequence identities to illustrate that our CNN captures structural patterns rather than simply memorizing similar sequences.

Then, we represented each filter by its representative input regions using the dimensionality reduction software tSNE (Maaten and

Hinton, 2008). Finally, we ran K-Means to conduct clustering on the reduced two-dimensional representations and visualized the

representative filters by conducting structural multiple sequence alignments on the top-5 input regions removing the outliers.

QUANTIFICATION AND STATISTICAL ANALYSIS

Contacts

For both training and evaluation we defined two residues as contacts when their C-betas were less than 8 angstroms apart in the

experimentally determined structure. For a given residue, if there is not a C-beta we use the C-alpha. We trained on medium and

long-range contacts, meaning only residues separated by a chain distance of 12 or more. All analysis in the paper was done on these

medium and long-range contacts defined as above. In the CASP12 competition, we used an ensemble of five different models trained

with different contact definitions. The thresholds are selected as 7.0, 7.5, 8.0, 8.5 and 9.0.

Probabilites

To calculate the precision by probability we binned the probabilities by 0.01. For each bin and each protein in the ASTRAL validation

dataset we calculated the precision using contacts as defined above. To calculate the precision/recall curves by probability we used

probability cutoffs of 0.999 and then 0.99 to 0.01 incremented by 0.01. This was done by protein and averaged across each dataset.

Analysis was performed using Python and Jupyter (Kluyver et al., 2016).

DATA AND SOFTWARE AVAILABILITY

The architecture of ourmodel allows for both efficient training and prediction - once themodel is trained novel predictions are compu-

tationally inexpensive. DeepContact is available at https://github.com/largelymfs/deepcontact and can be readily used starting from

amino acid sequence (including feature generation) or directly from evolutionary coupling scores (e.g., from CCMPred) to predict

more meaningful and accurate output probabilities.
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