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Abstract—Optimal Power Flow (OPF) is a crucial part of the Energy Management System (EMS) as it determines individual generator
outputs that minimize generation cost while satisfying transmission, generation, and system level operating constraints. OPF relies on
a core EMS routine, namely state estimation, which computes system states, principally bus voltages/phase angles at the buses.
However, state estimation is vulnerable to false data injection attacks in which an adversary can alter certain measurements to corrupt
the estimators solution without being detected. It is also shown that such a stealthy attack on state estimation can increase the OPF
cost. However, the impact of stealthy attacks on the economic and secure operation of the system cannot be comprehensively
analyzed due to the very large size of the attack space. In this paper, we present a hybrid framework that combines formal analytics
with Simulink-based system modeling to investigate the feasibility of stealthy attacks and their influence on OPF in a time-efficient
manner. The proposed approach is illustrated on synthetic case studies demonstrating the impact of stealthy attacks in different attack
scenarios. We also evaluate the impact analysis time by running experiments on standard IEEE test cases and the results show

significant scalability of the framework.

Index Terms—Power Grid; Optimal Power Flow; Stealthy Attacks; Impact Analysis; Resiliency; Formal Verification.

1 INTRODUCTION

EMS refers to a set of computational routines employed for
system-wide monitoring, analysis, control, and operation in
electric power grids. A schematic diagram of EMS modules
is shown in Fig. 1 (adapted from [1]). State estimation is the
core routine or module in EMS that estimates the system
state variables from a set of real-time telemetered measure-
ments (from sensors/meters) and topology statuses (from
circuit breakers and switches). The term “states” denotes
bus voltages and phase angles, from which transmission line
power flows can be computed. As seen in Fig. 1, the output
of state estimation is required by OPF and contingency
analysis for economic dispatch calculations and security
assessment.

Cyber technologies are increasingly used in modern
power grids with the promise of providing larger capacity,
higher efficiency, and more reliability [2]. While this integra-
tion helps energy providers to offer smarter services, real-
time demand-response actions, and economic advantages,
power grids also become vulnerable to cyber attacks. Cyber
intrusions and false data injections can be launched against
power grids, which can cause improper controls and thereby
economically inefficient as well as functionally insecure
operations [3].

An attacker can compromise sensors/meters or commu-
nication media to introduce malicious measurements, which
can lead to incorrect state estimation. Bad data detection
algorithm [4], [5] can detect bad measurements, principally
by comparing the mean-squared deviation between ob-
served and estimated measurements with a threshold value.
However, it has been shown that an attacker who possesses
the knowledge of the grid can generate bad measurements,
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Fig. 1. An schematic diagram of the EMS, which shows the interdepen-
dency among different modules on the state estimation routine.

which can bypass this bad data detection mechanism [6].
These attacks are widely named in the literature as Un-
detected False Data Injection (UFDI) or simply “stealthy”
attacks. As a result of these stealthy attacks, states are
estimated incorrectly, which can easily lead the system to a
non-optimal and vulnerable situation. Hence, it is crucial to
develop an impact analytics framework that can identify po-
tential stealthy attacks with respect to the interdependency
among different EMS modules, different attack models, and
possible impact on the system.

The primary goal of our research is to efficiently analyze
the impact of stealthy attacks on the modules that are
dependent on state estimation. In this particular work, we
focus on economic impact-based threat analysis considering
the OPF module. OPF calculates the optimal production
set-points for the power generators that meet the loads,
satisfy transmission and generation-level operating con-



straints, and minimize the generation cost. An incorrect
state estimation can result in an OPF solution that is no
longer optimal, and the resulting generation dispatches
will be economically disadvantageous. The stealthy attack
capability allows an adversary to undermine a power sys-
tem and create economic loss. Therefore, it is important
to understand potential threats on a power system, with
respect to an expected attack model and harden the security
by mitigating the threats.

In our previous work [7], we proposed a formal ap-
proach (based on Satisfiability Modulo Theories (SMT) [8])
for assessing the impact of stealthy attacks on the economic
operation of the system in different adversarial capacities.
However, the attack space is often very large and a complete
impact analysis of a decently large power system cannot
be performed in a reasonable time frame because of the
proposed solution approaches’ limitations. Therefore, an
efficient mechanism is required to perform a comprehensive
impact analysis, and thus measure the system’s dependabil-
ity. The paper is motivated from this stance, leading to the
following two key contributions:

o Hybrid Framework: We propose a hybrid framework to
find critical threats by analyzing the economic impact of
potential stealthy attacks with respect to a given system
environment and expected attack model. We combine
the SMT-based modeling with the Matlab Simulink-
based system design [9]. We model the stealthy attack
logically using SMT and solve the model using an
efficient SMT solver to find attack vectors — the attack
verification model. An attack vector represents a set of
measurements that an attacker needs to alter, and thus
the buses corresponding to these measurements that
the attacker needs to access, to launch a stealthy false
data injection attack that manipulates a particular set
of states. We design a Simulink model for exploring the
attack space for a particular attack vector and assess the
impact on the OPF solution. Each attack vector is fed to
this Simulink model, where possible alterations in the
measurements are explored efficiently by modeling the
attack vector. The resultant changes in the bus loads are
fed to the OPF routine designed within the Simulink
model, and it is verified whether there is a significant
impact on the generation cost. The whole attack space
can be studied to find all critical threats.

o Efficient Execution of the Framework: We further
improve the efficiency of the framework for explor-
ing the potential attack space by applying a two-level
parallelism technique. First, we perform parallel exe-
cution of the SMT-based attack verification model and
Simulink-based attack space exploration model. Then,
within the latter process, we parallelly execute multiple
instances of the exploration model. We devise necessary
algorithms for this parallel execution. We evaluate the
proposed framework by executing it on arbitrary attack
scenarios according to different IEEE test cases [10] and
observe that it can perform a comprehensive impact-
based threat analysis of a system within a reasonable
time period. This performance also depends on the
available processing and parallelism capacity of the
machine executing the framework.

2

The rest of this paper is organized as follows: Section 2
discusses the necessary background of stealthy attacks. We
present the proposed framework in Section 3. Two case stud-
ies are demonstrated in the following section. We present the
evaluation results of our model in Section 5. We perform the
literature review in the context of our work in Section 7. We
conclude the paper in Section 8.

2 BACKGROUND AND MOTIVATION

This section includes necessary background knowledge and
the research objective.

2.1 State Estimation and Optimal Power Flow

The DC power-flow model has been widely used to analyze
stealth attacks on state estimation (e.g., [6], [11], [12]). The
DC model is a linearized estimation of the non-linear power
system (AC model), but it is useful in preliminary analytical
power systems studies [1]. In this work, we assume the DC
power balance equations.

2.1.1 Power Flow Model

A power grid system consists of a number of buses (or
substations) and transmission lines. Each line connects two
buses. A bus usually has a load to serve while it may be
connected with one or more power generators. The DC
power flow model describes the power balance equations in
a lossless power system [1]. In this lossless model, the total
power generation in a grid is equal to its overall load. The
“state” of a bus is considered as the phase angle with respect
to a reference bus (assuming that voltage magnitudes at all
buses are fixed at one per unit). The power balance equa-
tions are formulated solely based on the reactance properties
of the transmission lines. The model expresses the power-
balance constraint that equates the algebraic sum of powers
incident at every bus to zero. This yields a linear system of
equations. EMS receives measurements from field devices
and the state estimation routine calculates the (unknown)
bus states from the power balance equations.

It is to be noted that the power flow can be measured
at each end bus of a transmission line. A measurement can
also be taken at a bus to realize its power consumption.
Hence, at a bus, meters can be deployed to measure all or
some of the power flow measurements (corresponding to
all the incident lines to the bus) and the power consumption
measurement. Typically, the possible measurements at all
the buses are not metered and the state estimation routine is
used to calculate the unknown (unmetered) measurements,
which may include power consumption measurements (and
so the loads) at different buses.

2.1.2 State Estimation

The state estimation problem, as formally defined, is es-
timating n number of power system state variables x =
(1,2, ,7,)T based on m number of meter measure-
ments z = (21,22, -+ ,2m)" [5]. Under the DC power
flow assumptions, the measurement model is linear (ie.,
the measured power flows are linear functions of the bus
voltages) and hence the measurement model reduces to:

z = Hx + e, where H = (h; j)mxn



A significant number of redundant measurements are
considered (i.e., m > n) in creating an over-determined set
of linear equations. The redundancy enables the detection,
elimination, and smoothing of gross measurement errors.
When the measurement error distribution is Gaussian with
zero mean, the states are estimated (x) as follows:

x=(H'WH) 'H' Wz 1)

Here, W is a diagonal “weighting” matrix whose elements
are reciprocals of meter error variances. Thus, estimated
measurements are calculated as HX. The measurement
residual ||z—HZX]|| is used to determine bad data. If | |z— HX||
is greater than 7, a selected threshold value, it is bad data.

2.1.3 Optimal Power Flow

The OPF routine determines the optimal generation dis-
patches based on system properties and estimated loads at
the buses. The aim of OPF is to minimize the total generation
cost while serving the load at each bus and satisfying the
following constraints [1]:
1) The power balance equations of the system.
2) Generation Limit: Each generator produces an amount
of power within its maximum generation capability.
3) Transmission Capacity: The resultant power flow
through each line must not cross its capacity.

2.2 Stealthy Attack and Adversary Model
2.2.1 Stealthy Attacks

The idea of stealthy attacks on state estimation was first
mathematically shown by Liu et al. based on the DC power
flow model [6]. These attacks are named as Undetected False
Data Injection (UFDI) attacks. The concept of a UFDI attack
is briefly discussed here. Let us consider an attacker who can
inject arbitrary false data a to the original measurements z
such that a = Hcg, i.e., a linear combination of the column
vectors of H. Here, c is the change to the original estimation
% because of the injection of a. Since z + a = H(X + ¢),
the residual ||(z + a) — H(x + c¢)|| still remains the same
because ||z — HX||. Thus, the bad data detection is evaded.
To launch such a stealthy attack, an adversary requires
knowledge of H, more specifically the system topology, elec-
trical properties of the transmission lines, and measurement
configurations.

2.2.2 Attack Model

In this work, we consider false data injection- based cyber
attacks that can potentially occur at the bus or substation
level (Fig. 1). Measurement data can be altered by compro-
mising the corresponding meter or sensor residing at the
bus or the remote terminal unit (RTU), which is responsible
for transmitting this measurement, as a man-in-the-middle
attack. It is worth mentioning that measurements within
a substation are often gathered at a single RTU. that an
adversary can break into to access the measurement data.

2.2.3 Adversary Properties
An adversary’s capability can be described by the following
properties:
o Accessibility: It is very unlikely that an attacker has
access to all measurements because physical or remote
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Fig. 2. The execution time to find a single threat vector that can increase
the generation cost ( 2%) [7].

access to substations is restricted and some measure-
ments may already be data integrity protected.

e Resource: The resource available to an adversary often
limits (in terms of cost or effort) the injection of false
data simultaneously to a large number of measure-
ments, distributed over many substations.

o Knowledge: To launch a stealthy attack, an attacker needs
to know the connectivity among the buses and the
electrical parameters of the transmission lines [6]. If
the attacker has only partial knowledge, the attack
capability becomes restricted.

o Attack Target: A stealthy attack corrupts the state esti-
mation and, thereby, impacts the EMS control decision,
which is the ultimate objective of an adversary. There-
fore, an adversary may like to assess the consequences
of different possible stealthy attacks and launch the se-
vere one. In the context of OPF, an attacker’s target can
be expressed in terms of the generation cost increase.

We specify these adversary properties as attack attributes
that allow a grid operator to flexibly design different adver-
sarial scenarios and assess the system’s security.

2.3 Contribution

While many researchers, such as [6], [11], [13], addressed
stealthy attacks by considering some adversarial properties
in isolation, we verified the attack feasibility and assessed
the impact on the OPF solution by formally modeling
these attributes simultaneously [7]. However, this formal
approach suffers from limited scalability (Fig. 2), where
the execution time is significantly high and it grows expo-
nentially with system size. While the negation of the OPF
constraint is computationally expensive, as applied in [7],
the performance is greatly impacted as the model deals with
real values. While there is usually a large number of stealthy
attack vectors possible in a particular attack scenario (as de-
fined through the adversary properties), each attack vector
is often associated with an infinitesimal number of changes
for the real-valued states. This large space makes the impact
analysis intractable. A thorough impact analysis, e.g., to find
the maximum possible impact or the set of all attack vectors
that can cause a specific impact on OPF, is not feasible at all
under such inefficient time requirements.

In this work, we address the challenge of developing
an efficient impact analysis framework for comprehensively
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Fig. 3. The architectural design of the impact analytics framework.

assessing the system’s security in terms of OPF, and thus
reckoning the dependability of the system under attacks. To
fulfill this need, we leverage the power of SMT for formal
verification and that of Simulink for system modeling. SMT
solvers can determine the satisfiability of formulas that con-
tain thousands of variables and constraints [8]. Simulink is a
powerful tool for simulating physical systems with complex
mathematical properties [9]. It is being used successfully
to model and evaluate the power system, especially with
the help of SimPowerSystems [14], a component library for
modeling/simulating power systems.

3 IMPACT ANALYSIS FRAMEWORK

In this section, we present the impact analysis framework.

3.1

The architecture of the impact analytics framework is pre-
sented in Fig. 3 and shows the process flow diagram that
integrates formal (SMT) and Simulink models. The main
idea is as follows: An SMT-based formalization is used
to model the stealthy attacks based on the given attack
attributes. This model is solved for generating all potential
threat vectors that are fed into a Simulink model.

The Simulink model has two parts. For each threat
vector, the first part generates the potential load changes at
different buses. A threat vector specifies if (i) a measurement
needs to be altered (or not), (ii) a state value will be affected
(or not), and (iii) multiple states have the same change. Ac-
cording to these constraints, we use Simulink to model the
relation between the states and measurements and generate
possible load changes by exploring those affected states and
altered measurements. These load changes are fed to the
second part of the Simulink model, which is a Simulink
block designed for OPF. This block runs the OPF process and
verifies if the resultant generation cost is increased to the
critical level. If the result is positive, this attack is specified
as a critical threat. In this way, we identify the critical threats
among all attack vectors for a given system and specified
attack attributes, and analyze the depth (maximum possible
increase in the generation cost) and breadth (the number of
critical threats) of the threat space.

In the following, we first briefly present the formal
modeling of the stealthy attack and the synthesis of all attack
vectors. This model is driven from our previous work [7].
Then, we discuss the Simulink model design.

Framework Architecture

TABLE 1
Modeling Parameters

Notation Type Definition

b Integer | The number of buses in the grid.

l Integer | The number of lines in the grid topology.

fi Integer | The from-bus of line 3.

e; Integer | The to-bus of line 7.

d; Real The admittance of line 4.

gi Boolean | Whether the admittance of line 7 is known.

PZ.L Real The power flow through line 3.

PJB Real The power consumption at bus j.

0; Real The state value, i.e., the voltage phase angle, at
bus j.

n Integer | The number of states.

m Integer | The number of potential measurements.

a; Boolean | Whether or not measurement i is required to be
altered for the attack.

cj Boolean | Whether or not state j is affected due to false
data injection.

uj Boolean | Whether or not any measurement residing at
bus j is required to change.

t; Boolean | Whether or not measurement 7 is taken.

T Boolean| Whether or not measurement ¢ is accessible to
the attacker.

Si Boolean | Whether or not measurement 7 is secured.

3.2 Formal Model for Stealthy Attack Verification

The formal model corresponding to the stealthy attack veri-
fication is presented in Table 2.

3.2.1 Formal Modeling Parameters

A number of parameters is used to denote different sys-
tem properties and attack attributes. These parameters are
summarized in Table 1. We denote the two end-buses of
line ¢ using f; (from-bus) and e; (to-bus), where 1 < ¢ < [,
1 < fi,e; < b,and b is the number of buses. The admittance
of the line is denoted by d; and the direction of power flow
is considered from f; to e;. In the DC power-flow model,
two measurements can be taken (i.e., recorded and reported
by sensors/meters) for each line: the forward and backward
current flows. These measurements are equal in magnitude
but opposite in direction. A measurement can be taken to
measure the power consumption at a bus. Therefore, for
a power system with [ number of lines and b number of
buses, there are maximally 2/ + b (i.e., m = 2l 4+ b) number
of potential measurements (1 < 7 < m). We use t; to denote
whether measurement i is taken. We use P to denote the
power flow through line ¢ (1 < ¢ <), PjB to denote the
power consumption by bus j (1 < j < b), and 6; to denote
the state value (i.e., , the voltage phase angle at bus 7). To
denote the load power and generated power of bus j, PjD
and PjG are used, respectively.

We use c; to specify if state j (1 < j < n) is affected or
corrupted due to a stealthy attack. In the DC power-flow
model, each state corresponds to a bus: n is equal to b.
We use a; to denote whether measurement i (1 < i < m)
is required to be altered for the attack. If a measurement at
bus j is required to be changed, b; becomes true, specifying
whether the attacker needs to access bus j to compromise
the measurement. An adversary’s incomplete knowledge of
the grid is modeled with respect to the line admittance. We
use g; to denote whether the attacker knows the admittance
of line 7. The attacker may not be able to alter a measurement
due to inaccessibility or applied security. We use r; to rep-
resent the accessibility of measurement ¢ to the attacker and
s; to denote if the measurement is data integrity protected.



3.2.2 Physical Power Flow Properties

Power flow P depends on the difference of phase angles of
the connected buses (f; and e;) and the admittance of line @
(d;). Equation 2 in Table 2 expresses this relation. The power
consumption of bus j is simply the summation of the power
flows of the lines connected to this bus. When L; ;, and
IL; out represent the sets of incoming lines and outgoing lines
of bus j, respectively, then Equation 3 calculates the power
consumption at bus j. The power consumption at a bus is
the net power: the load at this bus minus the power injected
to the bus (if one or more generators are connected to this
bus). Equation 4 refers to this power component, where P7D
and PjG denote the load power and the generated power at
bus j, respectively. State estimation in the DC power-flow
model involves finding the voltage phase angle (6) of each
bus by solving the linear equations for all the measurements
(PEs and PjB s) given the line admittances (d;s).

3.2.3 Stealthy Attack Properties

The attack on state j specifies that the voltage phase angle
at bus j has changed (Equation 5). According to Equation 2,
changes in the states must be reflected in the line power
flow measurements. This is formalized in Equation 6. When
Afy, # 0 (or A, # 0), then it is obvious that state f; (or
e;) is changed (i.e., attacked). The changes in power flow
measurements are propagated to the power consumption
measurements as shown in Equation 7.

To launch an attack, the attacker must inject required
false data to a set of measurements corresponding to the
power flows or consumptions that are impacted due to
corrupting one or more states. If APZ-L # 0, then it specifies
that measurements (i.e., ¢ and [ + ¢) corresponding to line
1, when taken (ie., ¢; and ¢;4;), are required to change.
Similarly, the power consumption measurement at bus j is
required to change when AP;-B # 0. These are formalized
in Equation 8. Measurement ¢ is altered only if it is taken
and the corresponding power measurement is required to
change (Equation 9).

3.2.4 Aadversary Attribute Properties

If the admittance of a line is unknown, then the correspond-
ing changes required in power flow measurements cannot
be made. The constraint is formalized in Equation 10. An
adversary’s capability is considered in Equation 11. That
is, if a measurement is data integrity protected (s;), then
though the attacker may be able to inject false data to the
measurement, the false data injection will not be successful.
Because of the resource limitation, an adversary can inject
false data to no more than 7); number of measurements at
a particular time. This constraint can be modeled based on
the assumption that the adversary cannot inject false data to
measurements distributed more than T number of buses at
a time. Both forms of the resource constraint are formalized
as in Equation 12 and Equation 14, respectively.

3.2.5 Generation of All Attack Vectors

When an attack vector (including c;s and a;s) is found by
solving this formal model, a new constraint is added to the
model so that the vector is removed from the search space.
The idea is to assert the negation (—) of the attack vector,

TABLE 2
Formalization of Attack Vector Verification

#1: Physical Power Flow Properties:

Power Flows and Topology:
Vici<i PF=d;(0y, — 0e,) @)

1

Power Consumptions:

Vicj<o PP = > P - > PF ®)
P€Lj, in 1€LJ, out
Vicj<o PP =PP —PF ()

#2: Cyber-Physical Attack Properties:
Changes in States:

Vi<j<n ¢ = (A0; #0) ®)

Attack Evasion Properties:

Vi<i<i AP} =di(Aff, — Abe,) (6)
Vicjep APP = Y APf — 3 AP} @)
P€Lj in 1E€Lj, out

Attack Plan Properties:

(APE #£0) = (t; = a;) A (tisi = a144)
(APP #0) = (tary; = azitj)
a; —>t; N\ (AP,L-L #* 0)

ayi = tigs A (APE #0) e
agiyj — tayj A (APP #0)

Vi<i<i
Vi<ji<b

®

Vi<i<i
Vi<i<i
Vi<ji<b

#3: Adversary Attribute Properties:
Attacker’s Knowledge:

Vici<i (APF #0) = ((t: Vtigs) — i) (10)
Attacker’s Access Capability:
Vi<i<m @i — 7T A7sg (11)
Attacker’s Resource:
> ai <Ty (12)
1<i<m
Vi<i<i (a; — hfi) A (ar4i = he;) (13)
Vi<j<s Qo4 — by
> hy <Tg (14)
1<5<b

which is a conjunction (A) of ¢;s and a;s, specifying the
states that are affected and the measurements that are al-
tered, respectively. This constraint is formalized as follows:

_‘(/'\Cj AN /\(Ll)

(15)

3.3

In this subsection, we present the Simulink model that
explore the stealthy attack space and perform verification
for the desired impact.

Simulink Model for Impact Analysis

3.3.1

The change in the loads at the buses due to an stealthy
attack is realized from Equation 4. The power produced by a
generator is fairly well-defined and it is changed only if it is

Identification of Load Changes



driven by the OPF results when it is executed. Typically,
the OPF process is executed after the state estimation to
determine necessary changes in the generation dispatch.
Therefore, the following is assumed in this model:

Vicj<p AP = (16)

Therefore, the change performed in the power consump-
tion measurement specifies the change in the load at the
corresponding bus. Since this change is made by following
the stealthy attack properties, the state estimation process
complies. According to Equation (16), the change in the load
at bus j is formalized as:

Vicj<o APP =APP 17)

If ij denotes the estimated load (according to the
state estimation result) at bus j, Equation 18 specifies this
estimation:

Vicj<o PP =PP+APP (18)
At a partlcular bus j, there is often an expected bound for
the load. If PJ ‘mag and Pj ‘min, Tepresent the maximum and

minimum load at bus j, then the following condition holds:

V1<]<b P “min < PD < PD

j,max

(19)

Using Simulink modeling, we calculate all valid changes
of the loads corresponding to the attack vector (including
APEs and APjB s) fed from the SMT-model. The steps are
briefly discussed below:

Valuation of Afs: We classified the states (fs) into two sets:
(A) states that are affected (true c¢;s) by the stealthy attacks
and (B) states that remains unchanged. Set A is further
classified into subsets A, < |A| based on the following
constraints:

Vicici (APF = 0) A (# c) A (# ce,) — (05, = be,)

Each subgroup Aj consists of the states that are the
same. We associate a value generator (A©j) for each subset.
Then, the following is true: Vo, e, Af; = AO;. However,
there is an exception that depends on whether APJB = 0.
According to Equation 7, APJB = 0 holds if either of the
following two conditions is true:

() V(ieL, )V GeL; o) APl =0,0r

@ > APRF - > PF=0

€L in €L out

If condition (i) is not true, we calculate one of the Afs (as-
sociated with the lines) from the rest of the Afs, following
Equations 6 and 7, such that APJB = 0. If S; is the set of
Afs corresponding to Pls ((i € Ljin) V (i € Lj out)), one
of them, let Af; € S;, is computed as Af; = f(AO_; € S;).

Valuation of APB s: We calculate each A PFs from Afy, and
Ab,, (Equation 6) Then, each APB is calculated summing
the APL s corresponding to this bus Afs are controlled in
such a way, as shown above, that only those line power
flows and bus power consumptions receive nonzero values
that are indicated as AP* # 0 and APJB # 0 in the attack
vector.

3.3.2 Optimal Power Flow and Impact Assessment

The OPF block in the Simulink model implements the OPF
routine (refer to Section 2.1.3). The objective of OPF is
to control optimally the generation according to the load
requirement. The OPF process is briefly explained below.

Operating Constraints: If PJ-G is the power produced by the
generator connected to bus j (assuming a single generator
at each bus), the total generation must match the total load:

Y pi=> PP (20)
1<5<b 1<j<b
Each generator has a production capacity (P¢, imag)- Thus:
Vi<j<o PY < PO o (21)

The power balance equations (i.e., Equations 2, 3, and 4)
must hold. Each line has a power transmission capacity. If

meaz is the maximum line capacity, then:

Vi<ici PF < PE

OPF 4 : i ma (22)
Cost Minimization: If C;(.) denotes the cost function for
the generator connected at bus j, the total generated C;(.)
is a strictly increasing convex function. OPF minimizes
the following function subject to satisfying the operating

constraints mentioned above:

min Z Cj(PjG)

1<5<b

Impact-Assessment: Let C be the actual generation cost, i.e.,
the minimum cost in the normal (no attack) scenario. If Cis
the minimum generation cost in the attacked scenario and
the criticality threshold is 7% increase in the cost, then a
critical threat satisfies the following:

(C—C)%100/C >T (23)

3.4

The implementation of the proposed framework, i.e., the
formal model and the Simulink model, is discussed briefly
in this section. We also present an example Simulink model.

Implementation

3.4.1 Implementation of Formal Model

The formal model for attack vector generation is encoded
into SMT logics using the Microsoft Z3 .NET frame-
work [15]. The bus system’s configurations, attack at-
tributes, and associated constraints are provided in a text
file (input file). The execution of the Z3 program gives the
verification result as either satisfiable (sat) or unsatisfiable
(unsat). The unsat result means that the problem has no
attack vector that satisfies the constraints. In the case of sat,
the result includes the attack vector, which is the values
assigned to the variables (e.g., ¢;s, a;s, etc.). This attack
vector specifies the affected states, the changes to be done
on line power flows and bus power consumptions, and the
corresponding measurements that are required to be altered.
The results are also printed in a text file (output file). This
output file is fed to the Simulink model as an input file to
explore the threat space and assess the impact.
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Fig. 4. The diagram of a part of the Simulink model (5 buses) corresponding to the 14-bus system case study in Section 4.

34.2

We develop a MATLAB program to automatically produce
the Simulink model from the attack vector generated by
the formal attack verification model. This program uses the
same input file as the former model for necessary informa-
tion about the bus system, which is required to design the
Simulink model. It also takes some extra inputs, such as
generation capacities, line capacities, and original loads at
the buses. This program is developed in a way that it can
automatically design the proper Simulink model without
any manual intervention, solely based on the input files. We
add constraints and restrictions based on the attack vector
as mentioned in Section 3.3. Once the model is created, it
is executed for a certain amount of time and the results are
gathered in the MATLAB workspace. This sample time is
chosen based on the number of independent sources for Afs
and the possible number of values for each source, such
that all combinations are considered. We also leverage the
MATLAB “parfor” module to run multiple instances of the
Simulink model simultaneously [16].

Implementation of Simulink Model

3.4.3 Efficient Execution of the Framework

We execute the attack verification model and the Simulink
model parallelly to increase the efficiency of the proposed
framework. We run them parallelly using two MPI pro-
cesses. While the attack verification model executing process
(Process 1) identifies attack vectors, the Simulink model
executing process (Process 2) explores them to verify the
impact. In our proposed framework, the Simulink model
mainly impacts the execution time of the framework be-
cause this model explores the complete attack space (with
respect to affected states) for each attack vector identified by
the attack verification model. The time for producing an at-

tack vector by the attack verification model is much smaller
than that for exploring the attack space by the Simulink
model. Therefore, we devise a systematic mechanism, Al-
gorithm 1, to run multiple instances of the Simulink model
simultaneously, while a parallel process is executing the
verification model. This significantly reduces the ultimate
execution time. The number of simultaneous executions
depends on the hardware capacity, particularly the number
of processing cores of the host machine. For the execution
of the Simulink model, a fixed number of cores is selected.
These cores can be physical or logical (with the help of
hyperthreading). Each core runs a worker process.

Algorithm 1 presents how Process 2 schedules the exe-
cution of the Simulink model on the workers. Each attack
vector identified by Process 1 is notified to Process 2, which
the stored in a queue. Each attack vector is subsequently
explored by Process 2 through one of the idle workers
(Lines 7 and 8). If all of the workers are busy in exploring
attack vectors, the scheduling algorithm waits for a random
but small time period (Lines 5). Once an idle worker is
available, an instance of the Simulink model is launched on
the idle worker for the attack vector residing at the top of
the queue. This process continues until all the attack vectors
are generated by the verification model and explored by the
Simulink model (Line 12).

3.4.4 An Example Simulink Model

Fig. 4 presents an example of a Simulink model for a 5-
bus system. The diagram is a part of the Simulink model
corresponding to the IEEE 14-bus system [10], considered
in the case study presented in Section 4. This Simulink
model corresponds to an attack vector generated by the
attack verification model. For each generated attack vector,



Algorithm 1 Execute the Simulink Model (Process 2)

Require: C: The set of cores/workers > Each worker executes
an instance of the Simulink model.

Require: A: The queue of attack vectors > Each attack vector
identified (and notified) by Process 1 is inserted into A.
Require: Done: If Process 1 is done with generating attack

vectors > It is initialized to FALSE and will set to TRUE if
Process 1 notifies.
1: while TRUE do

2: while Q is not empty do
3: A; := Dequeue(A)
4 while No C; € Cis idle do
5: Wait for an arbitrary small period
6: end while
7: Select an idle worker C; € C
8: Execute the Simulink model on C; for A;
9: end while
10: if Done then
11: if Q is empty then > One or more attack vectors
may be identified in the mean time.
12: return
13: end if
14: else
15: Wait for an arbitrary small period
16: end if

17: end while

one Simulink model is formed. As shown in Fig. 4, the
phase angles of buses 1, 2, and 5 are 0, while that of buses
3 and 4 are not zero, as they are specified in the attack
vector. Each non-zero phase angle is taken from a range
of values generated using a custom Simulink block, which
can generate real values from -1 to +1 ranges, assuming the
maximum change in the measurements cannot be more than
1 unit in magnitude and the significance of digits after the
decimal point is 2. Using Equation 2 in Table 2, the phase
angle difference is calculated by subtracting one phase angle
value from another. This subtracted result is multiplied by
the admittance of the corresponding line, which ultimately
represents the change in the power flow measurement.

The admittance values for lines 1, 2, 3, and 5 are 16.90,
4.48, 5.05, and 5.75, respectively. The power flow change
for line 4 is 0, as specified in the attack vector. Next, bus
power consumption changes are calculated according to
Equation 3. Finally, the bus power consumption changes
are fed into a Simulink custom block that implements the
OPF process. This implementation is a customized version
of the MATPOWER DC OPF function [17]. The custom
block also takes bus load measurements and power gen-
eration properties as input and runs the OPF routine to
calculate the change in the OPF solution, i.e., the change
in the optimal generation cost. For an attack vector, the
Simulink model runs for all possible values of each phase
angle. When the cost change is equal or greater than the
criticality threshold, the corresponding attack vector (and
the measurement changes) is critical. In this way, all critical
threats are identified by exploring the attack space.

4 CASE STUDIES

We create two synthetic cases based on the standard IEEE
14-bus and 30-bus test systems [10]. We perform experi-
ments on them to analyze the impact of different attack
attributes on the criticality of threats.

‘J}j‘ -Bus#’s
- Transmission Line #°s

- Measurement #’s

Fig. 5. The IEEE 14-bus test system: bus numbers are in circles and line
numbers are in squares.

4.1 Case Study Overview
4.1.1 14-bus Case System

The topology of the 14-bus test system is shown in Fig. 5.
In this bus system, there are total 14 buses and 20 lines.
The input corresponding to the line information includes
a set of data for each line: line number, end buses of the
line, a value indicating the line admittance, the knowledge
status (i.e., whether the line admittance is known to the
attacker), and the transmission capacity of the lines. In this
case, the admittances of lines 3, 7, and 17 are unknown. Line
1 has the highest power flow capacity of 50 MW and line 9
has the least power flow capacity of 5 MW. Since each of
the lines can have two measurements (one for the forward
current and another one is for the backward current), it is
possible to take 54 measurements at most in this IEEE 14
bus system. According to the input about the measurements
in this case study, (i) all the potential measurements are
taken except measurements 13, 19, 25, 31, 37, and 46 and (ii)
measurements 1, 2, 11, 12, 13, 19, 21, 31, and 46 are secured
(data integrity protected). The adversary often does not
have access to all measurements. We consider accessibility
between 50% and 90% of the measurements.

In this case study, the bus has five generators with
a simple multiple segment linear cost function (in $):
Ci(Pf) = o+ BPF [1]. The power generation cost coef-
ficients corresponding to the generators at buses 1, 2, 3,
6, and 8 are (20, 30), (0, 50), (50, 40), (0, 40), and (40, 30),
respectively. The loads at the buses are 0, 21.7 MW, 94.2
MW, 47.8 MW, 7.6 MW, 11.2 MW, 0, 0, 29.5 MW, 9 MW,
3.5 MW, 6.1 MW, 13.5 MW, and 14.9 MW, respectively. The
OPF power generation cost in the normal state (without any
attack) is $9,342.11. The goal of the adversary is considered
as increasing the cost at least 5% of the original cost.

4.1.2 30-bus Case System

In this bus system, there are total 30 buses and 41 lines. In
this case study, we also consider a similar set of inputs like
the 14-bus case system. The admittances of lines 5, 11, 13,
15, 21, and 23 are unknown. Line 1 has the highest power
flow capacity of 76 MW and line 14 has the least power
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Fig. 6. Threat analysis results based on the adversary’s capability and constraint: (a) the maximum generation cost increase w.r.t. the resource, (b)
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flow capacity of 5 MW. All the potential measurements
(112 in total) are taken except measurements 4, 7, 10, 15,
19, 24, 28, 33, 35, 40, 43, 46, 51, 55, 62, 66, 69, 74, 76, 81,
87, 91, 94, 99, 104, 108, and 111. Measurements 1, 2, 4,
6, 10, 12, 13, 15, 18, 20, 27, 44, 45, 52, 54, 57, and 66 are
secured. The accessibility is considered from 50% to 90% of
the measurements. The power generation cost coefficients
corresponding to the generators at buses 1, 2, 13, 22, 23, and
27 are (40, 0), (50, 20), (30, 20), (0, 40), (30, 40), and (40, 30),
respectively. The loads at the buses are 0, 21.7 MW, 2.4 MW,
7.6 MW, 0, 0, 22.8 MW, 30 MW, 0, 5.8 MW, 0, 11.2 MW, 0,
6.2 MW, 8.2 MW, 3.5 MW, 9 MW, 3.2 MW, 9.5 MW, 2.2 MW,
17.5 MW, 0, 3.2 MW, 8.7 MW, 0, 3.5 MW, 0, 0, 2.4 MW, and
10.6 MW, respectively. The OPF power generation cost in
the normal state (without any attack) is $8,402.48. The goal
of the adversary is to increase the cost by at least 5% of
the original cost. In the following subsection, we discuss the
analysis results (as shown in Fig. 7) corresponding to these
case studies. It is worth mentioning that there is no neces-
sary connection between the analysis results corresponding
to these two cases.

4.2

The attack vector includes a set of measurements (and the
corresponding buses/substations) that needs to be altered
(to some controlled sets of values) to manipulate a set of
states. The attackers objective is to maximize the damage
caused to the grid within the adversary properties, i.e.,
resource, knowledge, and accessibility. Larger accessibility,
higher knowledge, and/or more resources impose severer
damage. Our evaluation results below justify the same.

Impact Analysis Results

4.2.1 Adversary’s Resource and the criticality of threats

An adversary’s resource specifies its capability of simul-
taneously attacking multiple measurements distributed on
different buses to launch an attack. As shown in Fig. 6(a),
we observe that if the adversary’s resource increases, the
maximum increase in the generation cost also increases. In
the 14-bus case, when the resource allows the adversary to
compromise 5 buses at a time, the maximum cost increase is
seen as $111.86. When the attacker’s resource increases to 6,
7, and 8 buses, the maximum cost increase is also increased
to $170.47, $281.56, and $422.68, respectively. Similarly, in
the 30-bus case, when the resource allows the adversary to
compromise 5 buses at a time, the maximum cost increase
is seen as $102.79. When the attacker’s resource increases

to 6, 7, and 8 buses, the maximum cost also increases to
$162.05, $260.33, and $384.25, respectively. The figure also
shows that the OPF cost increases almost linearly as the ad-
versary’s resource increases. The increase in the generation
cost depends on the bus system, specifically generation costs
of different generators, loads at the buses, and capacities of
the transmission lines. Moreover, an stealthy attack does not
increase the total load but only redistributes the loads at
different buses. Therefore, creating a significant increase in
the generation cost is nontrivial.

The relationship between the adversary’s resource and
the threat space is presented in Fig. 6(b). Threat space is
defined as the number of attack vectors that can increase
the cost by at least 5%. These attack vectors are critical
with respect to the criticality threshold (i.e., 5% increase). In
the 14-bus case, when the resource allows the adversary to
simultaneously compromise 5 buses, the number of attack
vectors is 6. When the adversary’s resource increases to 6, 7,
and 8 buses, the number of attack vectors also increases to
9, 14, and 18, respectively. In the 30-bus case, when the re-
source allows the adversary to simultaneously compromise
5, 6, 7, and 8 buses, the number of attack vectors is 11, 21,
37, and 63, respectively. It is worth mentioning that there
are many attack vectors that increase the generation cost,
although only a few of them can increase the cost to equal
or above the critical level.

4.2.2 Adversary’s Accessibility and Criticality of Threats

Fig. 6(c) shows the relationship between the adversary’s ac-
cess capability and the maximum increase in the generation
cost. This figure presents analysis results for both the 14-bus
and 30-bus cases. In the 14-bus case, we observe that when
the attackers accessibility is 50% (the adversary has access
to arbitrarily 50% of the total measurements), the maximum
cost increase is $111.86. When the accessibility increases to
60%, 70%, and 90%, the corresponding maximum gener-
ation cost also increases to $132.17, $165.78, and $192.34,
respectively. In the 30-bus case, when the attackers accessi-
bility is 50%, 60%, 70%, and 90%, the corresponding max-
imum generation cost increase is $102.79, $128.24, $152.30,
and $179.48, respectively. Fig. 7(a) shows the relationship
between the adversary’s accessibility and the threat space.
In the 14-bus case, we observe that when the attacker’s
accessibility is 50%, we get only 2 attack vectors that increase
the OPF cost by at least 5%. When the accessibility increases
to 60%, 70%, and 90%, the corresponding threat space also
increases to 4, 7, and 10 attack vectors, respectively. We also
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observe a similar threat space increase in the 30-bus case.
When the attacker’s accessibility is 50%, 60%, 70%, and 90%,
the corresponding number of critical attack vectors is 13, 31,
61, and 97 attack vectors, respectively.

4.2.3 Measurement Security and Criticality of Threats

We analyzed the relationship between the number of se-
cured measurements and the maximum increase in the gen-
eration cost. Fig. 7(b) presents the corresponding analysis
results for both of the 14-bus and 30-bus systems. In the 14-
bus case, when the number of secured measurements is 5%
(i.e., arbitrarily 5% of the total measurements), the maximum
cost increase is found as $174.23. When the measurement
security increases to 10%, 15%, and 20%, the corresponding
maximum generation cost decreases to $163.25, $152.88, and
$136.23, respectively. In the 30-bus system, when the num-
ber of secured measurements is 5%, 10%, 15%, and 20%, the
corresponding maximum generation cost is $165.85, $145.96,
$132.53, and $117.23, respectively.

Fig. 7(c) shows the threat space varying the measurement
security. We observe that when 5% of the total number of
measurements is secured in the 14-bus system, there are
85 attack vectors that can increase the OPF cost by at least
5%. When the percentage of secured measurement is 10%,
15%, and 20%, the corresponding threat space also decreases
to 63, 49, and 37 attack vectors, respectively. In the 30-
bus case, we observe 281, 253, 224, and 189 critical attack
vectors when the percentage of secured measurement is 5%,
10%, 15%, and 20%, respectively. When a measurement is
secured, i.e., data integrity protected, an adversary cannot
alter the measurement (without being detected). As a result,
this measurement cannot be used for launching a stealthy

attack. Therefore, a larger number of secured measurements
creates a further restricted attack capability. The potential
stealthy attack space thus decreases, which in turn decreases
the number of critical attack vectors. The maximum increase
in the generation cost often decreases, as shown in Fig. 7(b),
from a decreased number of critical attacks.

4.3 Attack Vector Properties and Suboptimality

We evaluate if the property of an attack vector has an impact
on the optimality of the solution. The crucial property of an
attack vector is its size, which is the number of measure-
ments to be altered (or buses/substations to be attacked) si-
multaneously to launch a stealthy attack. We evaluate that if
the larger sized attack vectors have chances to create higher
damage. According to the simulation results (Fig. 8(a) and
Fig. 8(b)) we find that the impact is often positive to some
extent. That is, for a larger number of altered measurements,
the maximum increase in the generation cost is often higher.
However, the pattern is not always increasing. Usually, after
some points the increase in the generation cost starts to fall.
Hence, the largest attack vector size cannot but provide
a suboptimal increase. Fig. 8(c) presents the suboptimal
values and the corresponding optimal values in 14-bus, 30-
bus, and 57-bus systems, where the top 10% large sized
attack vectors are explored to find the suboptimal increases.
In these simulated experiments, it is assumed that 70% of
the measurements are secured and the attacker’s resource
limits the simultaneous access to 6, 12, and 18 buses for 14-
bus, 30-bus, and 57-bus systems.

We also observe a similar behavior when we evaluate if
the number of states to be manipulated by an attack vector
influences the optimal behavior.
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5 SCALABILITY EVALUATION

In this section, we present the evaluation results correspond-
ing to the scalability of the proposed framework.

5.1

We evaluate the scalability of our proposed framework by
analyzing the time requirements for executing the frame-
work in different problem sizes and the adversary prop-
erties. Problem size depends primarily on the number of
buses. We evaluated the scalability of our model based on
different sizes of IEEE test systems, i.e., 14-bus, 30-bus, 57-
bus, 118-bus, and 300-bus [10]. The adversary properties
represent the attack capabilities (i.e., resource, accessibility,
etc.), as discussed in Section 2.2. Measurements are arbitrar-
ily selected to specify properties like access capability and
measurement security. The generation and load structures
are also arbitrarily chosen. We run our experiments on an
Intel Core i7 Processor with 16 GB memory.

Methodology

5.2 Evaluation Results and Discussion
5.2.1 Impact of Problem Size on Execution Time

Fig. 9(a) and Fig. 9(b) show the execution time of our
proposed framework with respect to different problem sizes.
The impact analysis is executed on different IEEE test
systems, up to the number of 300 buses. We perform our
experiments through different random scenarios, especially
in terms of the attacker’s resource limitation and the number
of secured measurements. We observe that with respect to
the bus size the increase in the execution time is linear.
In our framework, we have two major models: the SMT-
based attack vector verification/generation model and the

Simulink model for attack space exploration and impact
assessment. As the number of buses increases, the size of
these two models increases, and thus the execution time
increases. As the figure shows, the proposed framework
performs significantly better compared to [7], even the
latter work only when looking for a single critical threat.
The reason behind this twofold. First, as we discussed in
Section 3.4.3, we conduct a parallel execution of these two
models, as well as multiple instances of the Simulink model.
The impact of parallelism will be further analyzed later in
this section. Second, more importantly, the Simulink model
identifies only the valid and distinct attacks/load changes,
instead of infinitesimally many indistinguishable cases, to
verify the desired impact (refer to Section 3.3.1). In fact, the
execution time depends on the number of attack vectors to
be explored by Simulink model. Fig. 9(c) presents the num-
ber of possible attack vectors with respect to the problem
size. The number of attack vector increases with the increase
in the bus size. For the same bus size, when the adversary
has more resources, a larger number of attack vectors is
produced by the attack vector verification model. Fig. 10(a)
shows the impact of the number of attack vectors on the
execution of the proposed impact analysis framework for
the 118-bus system. Since the Simulink model explores each
attack vector, when the number of attack vector increases,
the execution time of the framework increases.

We observe in Fig. 9(a) and Fig. 9(b) that for a specific
bus size, the execution time differs in different scenarios. In
the case of the scenario with a larger resource capability (7
bus), the execution time is larger than that of the smaller
capability (5 bus) and the execution time increases rapidly
in the former case. This is because the number of attack



vectors increases when the capability increases. Similarly,
when 5% of the measurements is secured, our framework
takes a longer time to execute compared to that of the 10%
case. The fewer measurements secured, the more number of
attack vectors there are to explore for impact assessment.

5.2.2 Impact of Parallelism on Execution Time

Fig. 10(b) and Fig. 10(c) show the impact of the number of
cores available in the computing machine on the proposed
framework’s execution time. The results show that the exe-
cution time decreases with increasing numbers of cores. As
shown in Fig. 10(b), the execution time decreases rapidly
as the number of physical cores increases. At a specific
number of cores, the impact of a larger number of cores
on the execution time is more visible when the problem size
increases. With the increase in the number of physical cores,
our framework can run multiple simultaneous executions
of the Simulink model and the number of simultaneous
executions is directly proportional to the number of cores.

Logical cores are virtually implemented (using hyper-
threading) and one physical core can have two logical
cores [18]. Although increasing the number of logical cores
to execute the Simulink model improves the time efficiency
of the framework, this improvement is not as significant as
the improvement achieved by increasing that of the physical
cores. Fig. 10(c) demonstrates this behavior.

6 DISCUSSION

Here we discuss few points that need further elaboration.

6.1 Frameowrk Execution Time

It can be argued that the atacker’s resource limit may be
much larger than 7 buses, which will increase the exe-
cution time impractically high. Here, the resuource limit
specifies the number of buses that can simultaneously be
compromised on a single attack attempt. An attacker can
attack a bus only if it is accessible and its measurements
are not secured. The grid buses are typically established
in physically secured locations. Usually, it is non-trivial to
gain remote access to these buses. Therefore, it is practical
to assume that an attacker has access to a small number
of buses, while the capability of simultaneously accessing
these buses is limited. That is why, we consider arbitrary
small numbers of buses as the simultaneous attack resource.

On the other hand, the execution time of our framework
can easily be improved by increasing the computing power
of the executing machine. As our evaluation results demon-
strate, the execution time of the Simulink module depends
on the number of cores of the host machine. We have used
a general-purpose computer with 4 cores where each core
has a processing speed of 1.8 GHz. If we can increase the
number of cores and/or the computing capability (process-
ing power, cache memory, etc.) of each core, the execution
time can be reduced drastically.

6.2 Measurement Security

While one can argue for securing all the measurements in
a power grid, there are costs associated with securing the
measurements. Although power grids are increasing using
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modern technologies, many legacy devices still exist due
to various technical complexities and economic constraints.
Moreover, the SCADA devices are built by different ven-
dors where vendor-specific technologies are being used. A
SCADA network often consists of devices from multiple
vendors. Therefore, to make a measurement secured, the
grid component must have the capability to implement
necessary security mechanisms, while the implementation
needs to be compatible with all associated equipment. To
make the measurement transmission secured, which is the
data integrity protection in this case, data encryption or
hash-based data validation must be ensured.

6.3 Attacker’s Limited Knowledge and Accessbility

To launch stealthy false data injection attack on the sys-
tem, an adversary requires knowledge of the system topol-
ogy, electrical properties of the transmission lines (i.e., the
impedance), and measurement configurations. In order to
remain stealthy, the attacker must ensure a = Hc. To
build the Jacobian matrix H, one needs the complete in-
formation (the bus connectivity and the line admittances)
of the grid [6], which is not trivial. As discussed in [13],
this knowledge can be gained through offline and/or online
data collections. Offline data collection can take weeks,
months, or even years to get access to the grid topology
maps, which can be done through intruders or former utility
company employees. Moreover, collected data may not be
enough to implement an attack. Some offline data can also
be outdated due to new construction or expansion of the
transmission lines. The locations of circuit breaker switches,
transformer tap changers, etc. also significantly affect the
connectivity and admittance matrices. An adversary can
deploy some sensors to do online data collection. However,
due to restricted physical access to the grid (substations) and
limited resources, online data collection may not be feasible.
Therefore, in most practical cases, an adversary cannot but
launch stealthy attacks with incomplete information and
limited access to the substations.

An adversary’s accessibility is his ability to access state
estimation measurements in the substation level. On one
hand, the grid buses are typically established in physically
secured locations. On another hand, it is non-trivial to gain
remote access to these buses, specifically due to proprietary
network or industrial communication protocol. Some mea-
surements may also have data integrity protection. Based
on this, in this work, we assume that an adversary cannot
access all the measurements of the system.

6.4 Proposed Defense Mechanisms against Stealthy
Attacks and Our Framework

In the literature, we can identify many FDI attack de-
fense mechanisms. Bobba et al [19] proposed solutions for
protecting the state estimation against stealthy attacks by
securing a set of strategically selected basic measurements
that can observe the grid or verifying the state variables
independently using PMU. PMU can directly measure the
bus voltage phasor (including magnitudes and phase an-
gles) with GPS timestamp and often PMU measurements
are assumed here as secured, although these measurements
are vulnerable, e.g., due to GPS signal spoofing [20], [21],



[22], [23]. Similar PMU deployment-based solutions are
proposed in [24], [25], [26]. In our previous work [12], we
also proposed a mechanism to select a set of measurements
(or buses) to be secured to protect state estimation against
stealthy attacks when an adversary has resource, access, and
knowledge limitations.

All these defense approaches rely on securing mea-
surements either by deploying necessary PMUs or by im-
plementing cryptographic (data integrity protection) algo-
rithms. Our proposed formal framework considers measure-
ment security. Hence, if the set of secured measurements
are sufficient to protect state estimation, the framework will
return unsat, i.e., no attack vector. If PMUs are deployed
in the grid and it is assumed that the states of the PMU
deployed buses cannot be attacked (as a PMU can directly
measure the phase magnitude/angle of the bus), we just
need to add a constraint as —c; as true.

Another group of works, such as [27], [28], proposed
mechanisms based on the generalized likelihood ratio test to
detect UFDI attacks. A similar approach is proposed in [29]
with the help of the adaptive cumulative sum control chart
test. Our framework can consider these defense mechanisms
by limiting the mesurement (state) changes to the acceptable
threshold values, although such limiting constraints will
certainly reduce the number of potential attack vectors, and
so the critical ones.

7 RELATED WORK

Although cyber vulnerabilities of power grids have been
discussed in literature over the last decade [30], [31], most
prior and ongoing work on cyber security analysis of power
systems largely revolves around the concept of stealthy
attacks, named Undetected False Data Injection (UFDI) at-
tacks. The concept of such stealthy attacks is first presented
in [6], and extended later in [32]. The authors discussed the
attacks through different scenarios, such as limited access to
measurement sensors/meters and limited resources to com-
promise them, under random and specific targets, assuming
that the adversary has complete information about the grid.
In the general case, the attack vector computation prob-
lem is NP-complete. Therefore, the authors presented few
heuristic approaches that can find attack vectors. Vukovic et
al. proposed a number of security metrics to quantify the
importance of individual buses and the cost of attacking in-
dividual measurements considering the vulnerability of the
communication infrastructure [33]. Kin Sou et al. claimed
that an /; relaxation-based technique provides an exact op-
timal solution of the data attack construction problem [34].
UFDI attacks with incomplete or partial information
(i.e., partial knowledge of the bus system with respect to
electrical properties of the transmission lines) are discussed
in [11], [13]. It is also shown in [35] that an adversary can
launch UFDI attacks despite having no knowledge about
the topology. The idea of the authors is to estimate the
linear structure of the topology from the measurements and
then launch UFDI attacks based on the estimated topol-
ogy. A modeling of the game between an attacker and a
defender with respect to the impact of UFDI attacks on
energy markets is presented in [36]. Algebraic conditions of
undetected topology attacks in power grids are identified
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in [37], although these conditions do not coordinate the
typical UFDI attacks.

The notion of unidentified attacks is presented in [38],
where the grid operator can detect the existence of bad
data, but cannot identify the bad measurements specifically.
Another kind of cyber attacks, namely load redistribution
attacks, is introduced in [39]. Later in [40], these attacks are
discussed for scenarios where the attacker has incomplete
information. We presented a formal model to comprehen-
sively verify stealthy attacks on state estimation considering
various attack attributes simultaneously [12]. We provided a
framework to formally assess the impact of stealthy attacks
on the economic operation of the system considering the
interdependency between state estimation and OPF [7].
Later, we performed a similar impact analysis with respect
to topology poisoning-based stealthy attacks [41].

There are few works that attempted to use Simulink
based design in formal modeling. In [42], the authors pro-
pose a verifier for a contract based system, which is modeled
using Simulink. This SMT-based verifier validates the cor-
rectness of the Simulink model using system annotations.

n [43], the authors proposed a technique to verify the
control system properties, modeled using Simulink. They
used a platform named Why3, which is used for deductive
program verification. Although these two works apply the
idea of utilizing formal methods for the Simulink model
verification, we integrate these two methodologies from an
analytical point of view in which the output from a formal
model is efficiently explored using a Simulink model.

8 CONCLUSION

In this paper, we have proposed a framework to find critical
threats by analyzing the impact of stealthy attacks on the
generation cost with respect to the OPF routine and a
flexible attack model. This framework provides an efficient
analysis of economic impact by integrating formal method-
based modeling with Simulink-based system design. This
hybrid framework also applies parallelism to enhance its
time-efficiency. We have implemented this framework and
evaluated its scalability. We have observed that for a prob-
lem with 300 buses, this framework needs a few hours to
perform a comprehensive impact analysis on a computing
system with four physical cores. The proposed framework
is useful in performing impact analysis of cyber attacks and
thus understanding the dependability of the system. In the
future, we would like to apply this hybrid framework to
analyze impacts of stealthy attacks on other EMS modules.
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