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ABSTRACT

Wind energy is one of the major sources of renewable energy. Coun-
tries around the world are increasingly deploying large wind farms
that can generate a significant amount of clean energy. A wind farm
consists of many turbines, often spread across a large geographical
area. Modern wind turbines are equipped with meteorological sen-
sors. The wind farm control center monitors the turbine sensors
and adjusts the power generation parameters for optimal power
production. The turbine sensors are prone to cyberattacks and with
the evolving of large wind farms and their share in the power
generation, it is crucial to analyze such potential cyber threats. In
this paper, we present a formal framework to verify the impact of
false data injection attack on the wind farm meteorological sensor
measurements. The framework designs this verification as a maxi-
mization problem where the adversary’s goal is to maximize the
wind farm power production loss with its limited attack capability.
Moreover, the adversary wants to remain stealthy to the wind farm
bad data detection mechanism while it is launching its cyberattack
on the turbine sensors. We evaluate the proposed framework for
its threat analysis capability as well as its scalability by executing
experiments on synthetic test cases.
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1 INTRODUCTION

Wind energy is a popular and widely used renewable energy source.
Many countries like China, Germany, the United States, the United
Kingdom, and India have already deployed a large number of wind
farms and are producing a significant amount of energy that feeds
into the national grid [1]. In the last decades, we are observing a
growing emphasis on green, renewable energy sources, leading to
the increasing deployment of wind power infrastructures [2]. Wind
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energy is currently the second largest form of renewable energy
generation source and its installed capacity is increasing more than
any other renewable energy [3].

In a typical wind farm, there can be hundreds of wind turbines
spread across a large geographical area. These turbines are often
equipped with sensors, which measure important meteorological
data like wind speed, wind direction, air pressure, and air den-
sity [4]. These measurements are important for the operation of
the wind farm. The Wind Farm Control Center (WFCC) uses these
meteorological data to optimally operate turbines. When the WFCC
receives new sensor measurements, it validates the measurements
using its Bad Data Detection (BDD) mechanism. Once the mea-
surements are validated, they can be used to determine new power
generation setpoints for the turbines.

The wind farm sensors and the data/control command trans-
mission network are vulnerable to cyberattacks. Recent studies
in power grids show that an intelligent adversary can alter the
power-flow measurements in such a way that it can evade existing
BDD algorithms and thus the attack remains undetected to the sys-
tem operator. These attacks are widely known as Undetected False
Data Injection (UFDI) attacks [5]. In a wind farm, an adversary can
launch similar UFDI attacks by altering an intelligently selected set
of sensor measurements, thus providing false meteorological data
to the WFCC while evading the BDD process.

In this work, we propose a formal framework that can model
potential UFDI attacks on the wind turbine meteorological sen-
sors and analyze its impact on the wind farm power generation.
More specifically, the framework considers an attack model, ad-
versary attributes, and an attack objective and verifies potential
UFDI attacks on a wind farm. The attack model mainly considers
false data injection attacks on sensor measurements and the attack
objective often specifies a maximum reduction in the power pro-
duction. We also consider the presence of diverse loads and analyze
the impact of UFDI attacks on their power consumption informa-
tion. Our framework models the entire problem in a generic, broad
form by considering it through a formal constraint satisfaction and
optimization problem. Our framework is built using Satisfiability
Modulo Theories (SMT), which is a powerful constraint satisfaction
tool and can efficiently solve large complex problems with over
thousands of variables [6]. We provide two example case studies
to illustrate the execution of the proposed framework. We also
evaluate the framework in terms of its threat analysis capability
and its scalability.

The rest of this paper is organized as follows: In Section 2, we
provide the necessary background. In Section 3, we present the
problem definition, research objective, and our attack model. For-
malization of the attack model is briefly discussed in Section 4. In
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Figure 1: A wind farm in Microgrid environment.

Section 5, we describe two example case studies. The evaluation
results are discussed in Section 6. We briefly discuss the related
work in Section 7 and conclude in Section 8.

2 BACKGROUND

In this section, we provide the necessary background of the wind
energy system. Here, we also discuss common sensors of the wind
turbine, their purpose, and the wind farm BDD mechanism.

2.1 Wind Turbine Power Generation

A wind turbine converts kinetic energy of the wind to the mechan-
ical energy by the rotation of the turbine blades and rotors. Then
this mechanical energy is converted to electrical energy by the tur-
bine generator. There can be multiple types of wind turbines. In the
United States, three-blade, horizontal axis, variable speed, and pitch
turbine are more popular. The amount of surface area available
for the incoming wind is key to increasing aerodynamic forces on
the rotor blades. To optimize the rotation of the blades, the turbine
local controller can adjust the angle of the blade according to the
direction of the wind. The angle at which the blade is adjusted is
referred to as the angle of attack & [7]. The value of « is calculated
based on the direction of the wind and the blade chord line. Proper
balance between the rotational speed and the velocity of wind are
critical for the optimal operation of the wind turbine. The balance
between the rotational speed and the wind velocity is referred to
as the tip speed ratio A. The power coefficient of the turbine CP is
a function of angle of attack « and the tip speed ratio A.

We can formulate a three-blade, horizontal axis, variable speed,
and pitch turbine power equation as follows [8]:

P=(pxAxv®xCPxCGxCE)/2 (1)

Here, parameter P represents the power generated by the wind
turbine, p is the air density, A is the turbine swept area, v is the
wind speed, CP is the turbine power coefficient, CG is the gearbox
efficiency, and CE is the generator efficiency. From above discussion,
it is apparent that the wind turbine power generation is directly
related to the direction of the wind, wind velocity, and air density.

2.2 Wind Farm Architecture

Wind energy is a rapidly growing form of renewable energy in the
United States. Wind turbines can be on-shore or off-shore. Similarly,
they can be industrial (large wind turbines with high capacity) or
privately owned. In this work, we only focus on industrial on-shore
wind turbines. A wind farm is a collection of wind turbines in a
given area. A wind farm can operate as a standalone energy gen-
eration source or can be integrated with the conventional power
grid as an additional power source. We can observe the location of
industrial wind farms, their power generation capability, and the
number of turbines in the U.S. as of 2014 in [9]. From this work,
we can observe that wind farms operate adjacent to each other in
a given area. Within a wind farm, turbines are grouped based on
their specification and their power generation capability. In a wind
farm, turbines can be manufactured by various manufacturer. As a
result, different turbines may have different power generation capa-
bility. Based on the specification of the turbines, surrounding area,
location, environmental attributes (terrain, elevation), there can be
multiple possible architecture of the wind farms. In this section, we
present a generic, grid connected wind farm architecture.

Figure 1 presents an architecture of a grid-connected generic
wind farm. In this wind farm, all turbines are grouped into multiple
arrays, each producing and feeding power to the utility [10]. Wind
turbines are connected with the wind farm substations through
the collector bus. To control the operation of the wind farm, there
are controllers. In a small wind farm, there can be a single con-
troller. However, in a large wind farm, there can be more than one
controllers, connected together in an hierarchical structure. In this
framework, we consider WFCC as a generic control system of the
wind farm that can monitor turbine operations and adjust turbine
parameters. It can be a conventional Supervisory Control and Data
Acquisition (SCADA) system or can be a customized proprietary
controller. Modern wind turbines also have multiple on-board local
controllers. These local controllers periodically monitor the turbine
sensors and adjust the rotor speed, blade angle of attack accord-
ing to the requirement established by the main controller (WFCC).
Standard communication architecture may not be adequate for
the wind farm since a wind farm may operate in a harsh terrain.
To address the wind farm communication problem, IEC 61400-25
series of standards for communication technologies have been de-
signed [11]. Different components in a turbine are connected with
each other by Ethernet cables. Some wind farm installations also
use wireless technologies to connect different components of the
wind farm [12].

2.3 Wind Turbine Sensors

Modern wind turbines are equipped with multiple sensors. Sensors
play an important role in the operation of a wind farm. WFCC and
the turbine local controller use the sensor measurements to monitor
turbine properties and identify any component failures. Based on
the sensor measurement, the controller makes necessary decisions
and configure parameters of the wind turbine for the optimal power
generation. It is important to understand that not all the turbines
are equipped with all types of sensors. Here we discuss some of the
important types of sensors.



e Wind speed sensors: Wind speed sensors measure the ve-
locity of the turbine surrounding wind. Generally, there can
be more than one wind speed sensors in a turbine, installed
at different heights to measure the wind speed from different
elevation. In a small wind farm, there may not be any dedi-
cated wind speed sensor. Such wind farms may gather wind
speed information from the nearby adjacent wind farms or
from some third-party online sources. Ultrasonic Anemome-
ter [13], traditional cup-anemometers, wind vanes, Sodar
(Sound Detection And Ranging), and Lidar (Light Detection
and Ranging) are commonly used in the turbine/farm wind
velocity measurement [14].

e Temperature sensors: Turbines may operate in a harsh
environment. During the operation of a turbine, there can
be mechanical failures which may generate abnormal heat.
Sudden temperature change within a wind turbine can in-
dicate major mechanical failure. The temperature sensor is
used to detect any unusual temperature in the turbine.

e Wind direction sensors: This sensor is used to determine

the direction of the wind. Ideally, a wind turbine nacelle

and blades should rotate according to the direction of the
wind. Direction sensor measurements are very important for

WFCC to determine the optimal position of turbine blades

and nacelle. Based on wind direction sensor measurement,

a wind turbine can adjust its blades to maintain optimal

angle-of-attack with the wind.

Air density sensor: Air density sensor measures the air

density of the turbine surrounding area. From Equation 1,

we can observe that the power generation of the wind tur-

bine is proportional with the air density of the environment.

Based on the air density sensor measurement, the WFCC can

compute the power generation curve of the wind turbine

and adjust turbine parameters.

2.4 Bad Data Detection

In a cyber-physical system, BDD mechanism plays an important
role. From previous discussion, we can observe that the operation of
the wind farm heavily depends on the accurate measurement of it’s
sensors. Based on the sensor measurement, the WFCC and turbine’s
local controller can make important decisions and perform optimal
adjustments on the turbine parameters.

Wind turbines operate at harsh environment. Most of the in-
dustrial wind turbine sensors are battery operated. Such sensors
can malfunction anytime and generate inaccurate information. The
wind farm control center collects sensor information from the tur-
bine using cellular or wireless technology. During the transmission
of the sensor measurements, sensor data can get corrupted due to
network congestion. Finally, there can be cyberattacks, where an
intelligent adversary can tap itself in the transmission path, create
a communication bridge, and perform false-data-injection attack,
denial-of-service, or impersonation attack. Due to all above possi-
bilities, an efficient BDD mechanism is necessary for the reliable
data acquisition of the wind farm. In the literature, we can find
multiple BDD mechanisms suitable for the wind farm. Here, we
discuss some of the generic BDD mechanisms.

¢ Redundant sensors: Wind turbine sensors can malfunction
anytime due to its harsh operating condition. If a sensor stalls,
it cannot transmit data to the controller. For such situation,
modern wind turbines are often equipped with more than
one redundant sensors for the measurement of the same
parameters. When a sensor malfunction, another sensor can
takeover its place. If more than one sensor is operating at
the same time, WFCC can collect data from all sensors and
validate the measurement.

e Comparison with adjacent turbines: In the wind farm, if
there are more than one turbines and they are adjacent to
each other, WFCC can use their sensor measurements for
data validation. If the turbines are adjacent to each other, it
is realistic to assume that the turbine will operate at similar
meteorological environment (similar wind speed, air density,
and wind direction). If the BDD identifies large difference be-
tween adjacent turbine meteorological sensor measurement,
it can identify that there is a possible error in the data.

e Data sharing between adjacent wind farms: Adjacent
wind farms can share their meteorological sensor informa-
tion. Using this shared information, the wind farm con-
trollers can validate the reliability of its sensor data and
filter/identify anomalies.

e Comparison with data from other weather services: A
wind farm control center can collect weather data from vari-
ous sources. From multiple weather services, a wind farm
can collect wind speed, air direction, and air density data
and use the data to verify its locally collected sensor mea-
surements. These data may not be 100% accurate, but may
act as reference.

e Historic weather data: Wind farm can collect previous
archived data of the wind farm surrounding area from vari-
ous third-party or in-house sources and apply the data for
verification purpose. If the new sensor data deviates too
much from the previous data, it indicates an unusual situa-
tion and may raise flag for further investigation.

3 PROBLEM DEFINITION, RESEARCH
OBJECTIVE, AND ATTACK MODEL

In this section, we briefly discuss the target problem along with our
research objective, and proposed framework.

3.1 Problem Definition

Wind energy is prone to cyberattacks. In a large wind farm, different
sensors are manufactured by different organizations. Most of the
time, these sensors do not follow any standard security practice and
they have limited computation ability. Some sensors may even have
very limited embedded security and may use unencrypted pass-
words for communication [15]. When these sensors share data with
the controllers, these transmission can be easily intercepted, and an
intelligent attacker can easily modify their packets. If an adversary
can intelligently choose its targets and smartly control its attack,
it may easily deceive the wind farm’s BDD mechanism and create
disturbance. Sensor measurements are important for the optimal
operation of the wind farm. Corrupted sensor measurements can in-
flict major damage to the wind farm’s power production. However,



deceiving the wind farm’s BDD mechanism is not straight forward.
An attacker cannot attack any turbine it wishes and the wind farm
has multiple ways to verify its measurements. If an attacker has
sufficient inside knowledge, it can launch this smart stealthy false
data injection attack on the wind farm’s meteorological sensors
and inflict serious damage.

3.2 Research Objective and Challenges

There is great need to explore the possibility of UFDI attack on
the wind farm’s critical sensor measurements. In this work, we
define a comprehensive framework for analyzing the impact of
stealthy false data injection attacks on the wind power system. Our
objectives are as follows:

o Our objective is to analyze the impact of stealthy false data
injection attack on the wind farmaAZs critical sensor mea-
surements. For this purpose, we need a comprehensive analy-
sis framework that can model the stealthy attack on the wind
farm by taking its parameters, power generation properties,
and attack constraints as input and measure the impact.

e The primary objective of an adversary is to create a signif-
icant imbalance in the wind farm’s power generation and
make the system unstable. To remain stealthy throughout
the attack, an adversary must intelligently balance the power
equations and modify measurements.

In our framework, we consider realistic turbine properties, attack
conditions, BDD mechanisms, and attack goals. Launching a UFDI
attack on the wind farm is a multi-objective problem, where on one
hand the adversary wants to reduce the power generation of the
wind farm as much as possible and on the other hand the adversary
has limited attack capability and must satisfy all defined constraints
to evade the BDD mechanism. Such multi-objective problems are
computationally expensive and considered as an NP-Complete.

3.3 Attack Model

Here we define UFDI attacks on the wind turbine in their most
generic form, to allow the evaluation of the feasibility of the attacks
under various scenarios. The attack attributes that represent the
attack model are discussed in the following:

3.3.1 Adversary’s Capability. An adversary may not have access
to all the wind turbines in the wind farm. Some turbines may be
located in a secure location. For some turbines, accessing the phys-
ical or remote terminal may be very difficult. For example, in order
to launch a false data injection attack on a turbine, an adversary
must have access to the turbine’s remote terminal unit [16]. For this
reason, we assume that an adversary has limited attack capability
(can attack a limited number of turbines simultaneously). In our
model, we also assume that some turbines are secured. There can
be different types of cyberattacks. In this work, we only focus on
UFDI attacks on the turbine meteorological sensors.

3.3.2  Group of Turbines. In alarge wind farm, there can be many
wind turbines scattered across a vast geographical area. From [17],
we can observe that most of the wind farms in the U.S. are in
central region. In the state of Iowa, South Dakota, Wisconsin, and
Minnesota, there are total 260 wind farms. Different wind farms
have different number of turbines. For example, the Federated Wind

Farm in Minnesota have just one wind turbine. However, the Grant
County Wind Farm has ten active wind turbines [17]. Some wind
farms can be really big (more than hundreds of turbines). Based
on the location of the turbine, their operation, and specification,
turbines are grouped into multiple logical groups. The turbines of
the same group are generally located close to each other. Within a
group, all turbines operate at a similar meteorological condition.

In a large wind farm, we can group the turbines based on their
locations. The turbines of the same group are geographically lo-
cated close to each other. Within a group, all turbines operate at a
similar meteorological condition. In the real world, it is reasonable
to assume that adjacent locations operate at a very similar meteo-
rological conditions (unless they are in different altitude or there is
any severe weather). Let a and b be two turbines of group j. Their
distance is w, 3. If we measure their wind speed sensor values
(vg,j and Up, j) and calculate their difference, we can formulate their
difference as a function of their distance w, ;. We can define this
logic using the equation below:

Va,j — Vp,j < f(Wa,p) )

Also in the wind farm, there can be more than one groups. Tur-
bines of adjacent groups may have different meteorological values.
However, since their locations are adjacent, if we calculate group
average sensor value and compare with the adjacent groups, we can
formulate their difference as a function of adjacent group distances.
If there are two adjacent groups j and k, their distance is g x, and
their average wind speed sensor values are 0; and U, we can define
the adjacent group condition using the following equation:

0j — 0 < f(q; k) 3)

3.3.3 Attack on Loads. In a Microgrid environment, there can
be loads connected with the bus (Fig 1). There can be different kinds
of loads (residential buildings, offices, government buildings, and
hospitals). The EMS collects power consumption information from
the loads and uses the information to regulate the power generation
of its generators (wind farm). Different loads consume a different
amount of power. In this framework, we also consider the impact
of UFDI attacks on the Microgrid loads [18]. Here, we discuss our
load attack model:

¢ Anintelligent attacker can launch UFDI attacks on the power
consumption data of the loads.

e Some loads are secured (the communication channel be-
tween the load and the EMS is encrypted). An attacker can
only attack power consumption data of the vulnerable loads
and cannot attack secured loads.

e From the attack, the attacker can alter the power consump-
tion data of the loads. The EMS produces power based on the
power consumption data. If the power consumption report
is forged, the EMS will set wrong power generation setpoint
for the wind farm.

o If the Microgrid is main grid connected, it can get electricity
directly from the main grid when the power production of the
wind farm is not sufficient. However, the power production
cost of the main grid is higher than that of the the wind farm.
As a result, Microgrid always prefers to get electricity from
its local wind farm than the main grid. In this framework,
we do not consider any energy storage.



3.3.4 Bad Data Detection Approach. In any critical system, BDD
mechanism plays an important role. BDD mechanism is used to filter
unusual data from the input data stream. There are many sophisti-
cated BDD mechanisms available in the literature. For this frame-
work, we consider a comprehensive threshold based BDD mecha-
nism that compares the measurements with predefined thresholds
and identify possible anomalies. Here, we discuss two BDD mecha-
nism thresholds that we use in this framework.

e Turbine sensor measurement (TSM) thresholds: For each
type of sensor measurement, there is a separate measure-
ment threshold. When the BDD mechanism receives new
sensor measurements from the turbines, it compares the
measurements with the other measurements of the same
group (similar to Equation 2). For this comparison, BDD uses
TSM threshold, which is a function of the distance between
the turbines. If the sensor measurement difference is larger
than the TSM threshold, it will indicate anomaly and the
BDD will flag the turbine for inspection.

e Adjacent group measurement (AGM) thresholds: When
the BDD mechanism receives new sensor measurements, it
also calculates the group average for each type of sensor (sep-
arate average for wind speed, wind direction, and air density
sensors). BDD then compares the group average with the
group average of the adjacent groups (similar to Equation 3).
For each pair of adjacent groups, there is a separate AGM
threshold. The average sensor measurement difference of
the adjacent groups must be less than this threshold. If the
difference is more than the threshold, the BDD mechanism
will identify the group measurement as unusual and flag it
for further investigation.

3.3.5 Attack Constraints. To launch a successful UFDI attack,
an adversary must satisfy the following conditions:

e An attacker cannot alter the sensor measurement values
arbitrarily. The new sensor measurement value must satisfy
the TSM and AGM thresholds.

e Some turbines can be secured. As a result, an adversary
cannot attack every turbine of the wind farm. For each UFDI
attack attempt, an adversary can attack a limited number of
turbines simultaneously.

o From this attack, an adversary wants to inflict as much power
generation change as possible in the wind farm. However, to
remain undetected, the power generation change should not
be more than a certain limit. If the power generation change
is more than this limit, the BDD mechanism will detect the
power change and take necessary actions.

e Similarly, an adversary wants to attack the turbines and
change the power production of the wind farm to a signifi-
cant level. For this purpose, we also define an attack margin
(minimum target). If the power change is more than this
margin, we consider the attack as significant.

3.3.6 Adversary’s Target. An adversary wants to launch UFDI
attacks on turbine sensors and reduce the wind farm power genera-
tion. An adversary’s target is to inflict as much damage as possible
to the wind farm power generation and remain stealthy.

Table 1: Modeling Parameters

Notation Definition

n The total number of turbines in the wind farm.
t Types of turbines in the wind farm.

g The total number of groups.

groupj Group j of the wind farm.

turbine; j Turbine i in group j.

0j Average wind speed value of group j.

dj Average wind direction value of group j.
pj Average air density value of group j.
Vi, Wind speed value of turbine;, ;.

dj, j Wind direction value of turbine;, ;.
Pij Air density value of turbine;_ ;.

3.4 Contributions

Modern wind farms are equipped with a smart BDD mechanism.
However, an intelligent adversary, with sufficient knowledge, can
launch UFDI attacks on the wind farm and affect its power gen-
eration. Therefore, there is great need to explore the possibility
of UFDI attacks on the wind farm meteorological sensors. In this
work, we define a comprehensive framework for analyzing the
impact of UFDI attacks on the wind energy management system.
Our contributions are as follows:

e We present a formal analysis framework for analyzing the
impacts of UFDI attacks on the wind farm meteorological
sensor measurements and loads. In the framework, we con-
sider different attack attributes, adversary’s capabilities, and
attack constraints. We also consider locations of the turbines
and define a generic BDD mechanism.

o The primary objective of an adversary is to reduce the power
generation of the wind farm. To remain stealthy, an adver-
sary must deceive the BDD mechanism.

4 FORMAL MODEL OF CYBERATTACK
ANALYSIS

In this section, we present the formal model of our proposed frame-
work. In order to present our model, we need a number of parame-
ters to denote the wind farm features, turbine properties, and attack
attributes. We present some of the important parameters in Table 1.
In this model, no multiplication of two parameters is performed
without the multiplication sign.

4.1 Preliminaries

In a wind farm, there can be n turbines of t types. Based on the
location of the turbines, we can divide the turbines into g groups.
Parameter group; represents jth group. Parameter turbine; j repre-
sents turbine i in group j. For group;, its average wind speed, wind
direction, and air density value can be represented by notation 9;,
d;j, and p;, respectively. Parameters v; j, d;, j, and p;, j represent the
wind speed, wind direction, and air density sensor measurements
of turbine; ;. When the sensor measurements reach WFCC, each
measurement is verified by the BDD mechanism. Once they are
verified, they are applied to calibrate turbine power generation set
points and parameters.

4.2 Turbine and Group Constraints

In a group, all turbines have similar meteorological sensor values.
Let turbine;,j and turbine; j be two turbines in group;. Parame-
ter v; j and vy ; represent the wind speed sensor measurement



value of turbine; j and turbine; ;, respectively. After the UFDI at-
tack, the new wind speed sensor values of the turbines are 9; ;
and 9y ;. Let Av;, j and Av;,j represent the wind speed measure-
ment change of turbine; j and turbine ; after a successful attack.
Parameter w; j ; represents the distance between turbine;,j and
turbine; ; and parameter CTy,j is a constant that represents the
change in wind speed per unit distance. If parameter mv;, ; denotes
whether the wind speed sensor of turbine; ; is compromised, based
on Equation 2, we can represent the attack on wind speed sensor
measurements using the following equations:

tv,j — (Ui,j + Avi,]’) — (Ul,j + Avl,j) <wip X CTy,j (4)
vlsi,Ing mu; j — tvjj A (Avi,j #0)A (A’Ul’j #0) (5)
Similarly, for wind direction sensor, if the parameter d;,j and dj ;
represent the original sensor value and parameter Ad;,j and Ady ;
represent the change in the sensor value due to the UFDI attack

then we can represent the turbine wind direction value difference
using the equation below:

tdi j — ((di’j + Adi,j) - (dl,j + Adl’j)) Swipi X CTd,j 6)

Vlsi,lsgj mdij — td; j A (Adjj #0) A (Adl’j #0) (7)

Here, CTy ; is a constant that represents the change in the wind
direction sensor measurement per unit distance. Parameter md; ;
represents whether the wind direction sensor or turbine; ;j is suc-
cessfully attacked.
Finally for air density sensor measurement, if parameter p; j and
p1,j represent the original air density sensor measurement value
of turbine; j and turbine, ;, parameter Ap; ;j and Ap; ; represent
the change in air density measurement due to UFDI attack, param-
eter CT), j represents the air density change in per unit distance,
and parameter mp; ; represents whether the air density sensor of
turbine; j is successfully attacked, then we can define the turbine
air density value difference using the following equation:

tp; ;= ((pi,j + Dpij) = (prj + Dprj)) < wi g ;X CTp i (8)

Yi<izg; mp;j = tp;; A (Dpij #0) A (Apyj # 0) )
If any of the condition mv;_ j, md; j, or mp ;,j is true, we can consider
that the attacker has successfully attacked turbine; ; sensor(s). Let
parameter mt; ; represent whether the turbine; ; is successfully at-
tacked. We can combine the turbine sensor measurement conditions
and formalize them using following equation:

Vlsngj mtj j — (mvi,j \Y, md,',j \Y, mpl-’j) (10)

In our problem model, there is more than one group. The difference
between the average sensor measurement values of the adjacent
groups can be represented using the Adjacent Group Sensor Mea-
surement threshold. Let us consider that there are two adjacent
groups (group;j and groupy ). For groupy, let parameter oy, d, and
Pk denote the average wind speed, wind direction, and air density
sensor measurement value. After the UFDI attack, let parameter
ADy, Ady, and Apy, represent the change in average wind speed,
wind direction, and air density sensor value of groupy. According
to the concept of adjacent groups, the difference between the new
average sensor measurement values of group; and groupy. must be
within the Adjacent Group Measurement Threshold. Let param-
eter CGy, j k. CGq, j k> and CG,, ; i denote the wind speed, wind
direction, and air density AGM thresholds for group; and groupy.

Parameter q; j denotes the distance between group; and groupy
and parameter K denote the set of all turbine groups adjacent to
group;. If parameter gvj, gd;, and gp; are boolean variables that
define whether the group average wind speed, wind direction, and
air density values of group; satisfy the AGM thresholds, then we
can formally define the conditions using the following equations:

avj | — (o + Agy) - (@j + A@j)) < qjk % CGv,j,k (11)
gV = Ve avj i A (DD # 0) A (AD; # 0) (12)

adj’k — ((Jk+Acik)—(d_j+A(ij)) < qj,kXCGd,j,k (13

apj.k = ((Pk + Ap) — (pj + Apj)) < qj .k XCGp jk (15
9pj = Ykex apj .k N (Dpr #0) A (Apj #0) (16
If J is the set of all groups and myg; is the combined condition

variable for group;, then we can formalize the combined group
condition by combining the conditions in Equation 12, 14, and 16.

)
gd; = Viex adj i A (Ady #0) A (Adj # 0) (14)
)
)

¥jey mg; — gvj A gdj A gpj 17)

If Equation 10 and Equation 17 are satisfied, we can conclude that
the attacker has successfully launched the UFDI attack on the wind
farm.

4.3 Load Constraints

Let parameter sl denote whether the load, is secured. When the
load is vulnerable, an attacker may launch UFDI attack on the
load to change it’s power consumption information. If PC, is the
original power consumption of load, and APC, is the change in
power consumption due to UFDI attack, then we can formalize the
load attack condition using the equation below:

ygr — sl A (APC, #0) (18)

4.4 Attack in Power Production

As the wind turbine meteorological sensor values change, the power
generation of the wind turbines also change. Let, P; j be the original
power generation value of turbine; j and AP; j be the power genera-
tion change of the turbine;, ; due to the UDFI attack. If the minimum
power generation change threshold for turbine; j is MIN; j then the
attacker must alter the sensor measurement values of the turbine
in a way that the power generation change is greater than MINj,;.
We can formalize this as follows:

Vi<i<g; APi,j = MINj,j (19)

If the value of the power generation change AP; j is less than
MIN; j, there will not be any significant power loss on the turbine; ;
due to the UFDI attack .

Similarly, the power generation change of the turbine; ; must be
less than the maximum power generation change threshold MAX; ;.
If the change is more than the threshold, the WFCC will notice the
unusual power difference and take necessary maintenance action.

Vlsiggj AP,"]' < MAXi’j (20)

Let, boolean pt; ; denote whether the power constraint of turbine; j
is met (the power change of the turbine; ; is at least the minimum



and the maximum level). We can formalize the minimum and maxi-
mum power generation condition using the following equation:

Vlgisgj ptij = MIN;j < AP; j < MAX; j (21)

Let, P;y;q] represent the total generated power of the wind farm.
Also, parameter P, ,; is the new total generated power of the wind
farm due to the UFDI attacks. We can calculate the value of P,y
and P, ;41 using the following equations:

n
Protar = Z(Pi,j) (22)
i
n

Protal = Z(Pi,j + APy j) (23)

i
If Cpower is the wind farm’s total power generation threshold then
the attacker’s target is to launch UFDI attacks on wind farm turbines
in a way that the difference between P;,;,; and P;,; 4 is greater

than the threshold Cpoyyer. This can be represented as follows:

Protal = Protal Z Cpower (24)

If boolean parameter pf bdenotes whether the entire wind farm
power generation change threshold is successfully met (the attack
is significant enough), then using Equation 24 we can formalize the
condition as follows:

of — (ptotul = Protal) 2 Cpower (25)

If we consider loads in the system, an attacker can launch UFDI
attacks on vulnerable loads and alters their power consumption
information. Let parameter PC,,,4; is the new total power con-
sumption requirement of loads in the system after UFDI attacks.
Using the concept of power balance, we can formalize the power
generation/consumption condition using following equation:

be = (Prorar + Pyria) = PCioral =0 (26)

Here, Py ;g is the power from the main grid and bc is a boolean
that represents whether the power balance condition is satisfied.

4.5 Adversary’s Capability

Constant Ccqpapiliry denotes the attack capability of the adversary.
An adversary can attack Ccqpapility number of turbines simultane-
ously. Let parameter Ng;; . denote the total number of turbines
successfully attacked by the adversary during a single UFDI at-
tack attempt on the wind farm. The value of Ny ;;40x must be less
than or equal to the value Ceqpapiliry- If the boolean parameter
mc denotes whether the capability constraint is met, then we can
formalize the capability condition using the following equation:

me = (Ngtrack < ccapability) (27)

4.6 Formalization of Attack Goal

Let AP;,;4; be the total change in the power generation by the
wind farm due to the UFDI attack. In our framework, the goal of
the adversary is to maximize the value of APf°? al while satisfying
all the system constraints. We can define the combined conditions
and formalize the attack goal using the following equation:

Mgoal — MAX(APyora1) A

(28)
Vjes (Viel, (mgj A mtij))

Table 2: Input of example scenario 1

# Number of Turbines, Groups, and Types
2053

# Group, Air Density (kg/ms), Wind Speed (m/sec), Wind Direction, Wind Speed Change
Threshold(%), Wind Direction Change Threshold(%), and Air Density Change Threshold(%)
11.22516.501 S22 3 12

2131215302 SW 214 11

31.214 14432 SW 225 12

41.23417.228 SE 233 13

51.32212.322S 21411

# Turbine, Group, Type, Swept Area (mz), Secured, CP, Generator Efficiency, Gearbox Effi-
ciency, Has Wind Speed Sensor?, Has Wind Direction Sensor?, and Has Air Density Sensor?
111125600.350.75095111

22270010.370.74091000

333101800.360.750.92110

431125610.380.730.95100

541125600.340.720.97 111

# Minimum Power Change(%) and Maximum Power Change(%)
510

Adversary’s Capability(%)
20

Table 3: Input of example scenario 2

# Number of loads ad types of load
203

# Type, Secure, and Consumption (MW/h)
100.7

211

312

# Load, Type
21

# Load Attack Capability(%)
20

5 EXAMPLE CASE STUDIES

In this section, we briefly discuss the implementation of the model
and illustrate the model’s execution with two example.

5.1 Implementation

To execute our model, we use SMT [6] to encode the formalizations
presented in the previous section. In both example problems, we
define a wind farm with 20 turbines and 5 groups. We analyze the
impact of UFDI attacks on the wind farm meteorological sensors and
measure power generation loss in Megawatt (MW). For both of the
examples, we use realistic synthetic model data. We generated our
wind farm model based on United States Geological Survey (USGS)
wind farm data [19]. In the first example, we do not consider any
load. In the second example, we consider a Microgrid environment.
In this example, we consider that the Microgrid is operating in grid-
connected mode, and it has local loads. For both of the examples,
we consider exactly same wind farm setup (turbine properties and
group formations). From Figure 2, we can observe the formation of
groups in our synthetic wind farm example. We solved the examples
using Microsoft Z3, an efficient SMT solver [20].

5.2 Example: Scenario 1

The complete input regarding the study is shown in Table 2. In this
wind farm, there are three different types of wind turbines (man-
ufactured by different manufacturer), each producing a different
amount of power. Turbines are divided into groups based on their
locations. We also assume that some turbines do not have all the
sensors. For example, from Table 2, we can observe that turbine 1
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Figure 2: An example wind farm layout with 20 turbines.

has all the sensors and turbine 2 has no sensors. We also assume
that some turbines are secured. An adversary cannot launch UFDI
attack on a secured turbine. For example, from Table 2, we can
observe that the turbine 1 is not secured and turbine 2 is secured.
As a result, during cyberattack, an adversary may choose to attack
turbine 1, but cannot attack turbine 2.

Our framework can identify many attack vectors of a given
problem. However, we are only interested in attacks that generate
significant impact. To filter high impact attacks from the low impact
attacks, we use two power generation change margin. The first one
is the minimum power generation change margin. In this example,
the value of this margin is 5%, which means we only consider attacks
which change the power generation of the wind farm to at least
5% of its original value. Similarly, the maximum power generation
change margin is 10% of the original power generation value. We
want to limit our attack within this maximum margin so that the
change in power generation does not create suspicion to the grid
operators. An adversary can attack a maximum 20% of the turbines
simultaneously (except the secure turbines).

An adversary’s objective is to launch UFDI attacks on the tur-
bine sensors and reduce the total power generation. In order to
remain undetected, an adversary must deceive the wind farm BDD
mechanism by limiting the changes within the thresholds. With all
above constraints, the execution of the model returns a SAT (Satis-
fiable) result, along with the assignments to different variables of
the model. From the assignment, we find that:

e An adversary can launch a successful UFDI attack on the
wind farm by attacking the turbines 6, 12, 14, and 20 of group
5. During this attack, the wind speed and the air density
sensors of turbine 6 and 12 are attacked. Similarly, the wind
speed and the wind direction sensors of turbine 14 and 20
are also attacked.

o The original power generation of the four turbines were
0.42MW, 0.56MW, 0.63MW, and 0.56MW, respectively. After
the successful UFDI attack, the new power generation of the
four turbines are 0.25MW, 0.47MW, 0.42MW, and 0.41MW.

o The new power generation of the wind farm is 10.615MW.

The original power generation of the wind farm was 11.235MW.

The total power generation change by the cyberattack is
0.62MW, which is a significant attack (between the mini-
mum and maximum power generation change margin).

As the capability of an adversary increases, its capability to attack
multiple turbines simultaneously also increases. In this example, if
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Figure 3: Example scenario 2v— WEMS with loads

we increase the capability of an adversary to 30%, our framework
again returns SAT result with the following variable assignments:

e A successful UFDI attack is launched in turbines 1, 5, 9, 11,
17, and 19 of group 1 and group 4. The wind speed and the
air density sensors of turbine 1, 5, 11, and 17 are successfully
attacked. Turbine 9 and 19 have no sensors.

e The original power generation of the turbines were 0.56MW,
0.63MW, 0.42MW, 0.56MW, 0.56MW, and 0.42MW, respec-
tively. After the successful attack, the new power generation
of the 6 turbines are 0.43MW, 0.51MW, 0.29MW, 0.42MW,
0.42MW, and 0.34MW, respectively.

e The new power generation of the wind farm is 10.495MW.
The power generation loss of the wind farm due to UFDI
attack is 0.74MW, which is more than the minimum margin
and less than the maximum allowed limit.

It is interesting to see from this two scenarios that though there
are many tight constraints, the adversary has still succeeded to
launch a UFDI attack on the wind farm and successfully reduce the
power generation. We can also observe that as the capability of an
adversary increases, the total number of turbines an attacker can
simultaneously attack also increases, and the power generation of
the wind farm decreases.

5.3 Example: Scenario 2

In this example, we consider a Microgrid environment where differ-
ent types of loads connected with the energy management system.
Here, we consider a grid-connected Microgrid where the wind farm
is the only local power generator. The wind farm turbine arrange-
ment is same as example 1. The complete input of the example
is the combination of Table 2 and Table 3. Here, we consider a
typical power distribution scenario where the wind farm, loads
(consumers), and the main power grid are connected with the En-
ergy Management System (EMS) (Figure 3). We consider three
types of load. Type one represents smart homes (average power
consumption 700kW/h), type two represents hospitals (average
power consumption 1IMW/h), and type three represents govern-
ment building (2MW/h). In this example, we consider that load type
two (hospitals) and three (government buildings) are secured. An
attacker can only attack load type one (smart homes). An attacker
can launch UFDI attacks on the turbines and loads and alter the
power generation/consumption measurements.
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Figure 4: (a) The number of attack vectors with respect to the adversary’s capability and (b) the wind farm power loss with

respect to the adversary’s capability.

To quantify the impact of UFDI attack, in this example, we con-
sider a simple cost model. We make an assumption that the elec-
tricity produced by the wind farm is cheaper than the main grid.
Based on this cost model, the EMS always prefer to buy electricity
from its local wind farm over the main power grid. If the power
production of the wind farm less than the consumption require-
ment (the total power consumption of all loads), the EMS buys the
remaining electricity from the main grid. An adversary can simul-
taneously attack 20% of all turbines and 20% of all loads (except the
secure turbines and loads). After formalizing all above constraint in
SMT, the execution of the model returns a SAT result, along with
following assignments to different variables:

e An adversary can launch UFDI attacks on wind turbine 6,
12, 14, and 20 of group 5. In the same attack, an adversary
also altered the power consumption measurement of load 1,
2,5, and 8.

e The original power generation of the four turbines were
0.42MW, 0.56MW, 0.63MW, and 0.56MW, respectively. After
successful attack, the new power generation of the turbines
are 0.26MW, 0.45MW, 0.43MW, and 0.4AMW respectively. The
new total power generation of the wind farm is 10.605MW.
The total power generation change due to cyberattack is
0.63MW, which is more than the minimum power generation
change limit and less than the maximum power generation
change limit.

o The original power generation of the wind farm was 11.235MW.
The original power requirement of all loads was 10MW.
Based on this requirement, before the attack, the Microgrid
was capable of producing enough power for its local load.
However, after the UFDI attack, the new power requirement
of the local loads is 11.2MW, which is more than the new
power generation value of the wind farm (10.605MW). As
a result, the Microgrid cannot generate enough electricity
to support its entire load and force buy additional electric-
ity from the main power grid. The total deficit electricity
that the Microgrid buys from the main grid is 0.595MW. In
this example, we do not consider any intermediate Energy
Storage (ES). However, we can easily extend our case study

to incorporate energy storage in the Microgrid system and
analyze its impact.

From above analysis, it is visible that, a successful stealthy attack
on the turbines and the loads can reduce the power generation of
the wind farm and force the Microgrid to purchase electricity from
the main grid.

6 EVALUATION

In this section, we conduct necessary experiments to evaluate our
proposed framework with respect to different attack attributes and
problem sizes.

6.1 Methodology

Here, we analyze the impact of UFDI attacks on the wind farm, with
respect to attack capabilities, the number of secure turbines, and the
number of turbines. We performed this analysis over two different
wind farm sizes: 200 turbines and 400 turbines. In the scalability
analysis, we analyze the execution time of our framework with
respect to different attack capabilities, number of groups, and the
size of the wind farm. We run our experiments on an Intel Core i7
Processor PC with 16 GB memory.

6.2 Threat Analysis

6.2.1 Impact of Adversary’s Capability on Threat Analysis. As
shown in Figure 4(a) and Figure 4(b), when an adversary’s capa-
bility increases, the number of attack vectors and the wind farm
power loss also increases. An attack vector is a solution found by
our framework on the problem model that satisfies all the given
constraints. From Figure 4(a), we can observe that the number of
attack vectors generated by the wind farm of 400 turbines is signif-
icantly higher than that of the wind farm of 200 turbines. Since the
wind farm of 400 turbines is a significantly larger problem model,
our framework can generate more attack vectors compared to that
of the wind farm of 200 turbines. From Figure 4(b), we can observe
that as the adversary’s capability increases, the power loss of the
wind farm also increases. With more capability, an adversary can
attack more turbines and further reduce the power generation.
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Figure 5: (a) The number of attack vectors with respect to the number of secured turbines and (b) the wind farm power loss

with respect to the number of secured turbines.
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Figure 6: (a) The number of attack vectors with respect to the number of turbines and (b) the wind farm power loss with respect

to the number of turbines.

6.2.2  Impact of Security on Threat Analysis. From Figure 5(a), we
can observe that as we increase the number of secure turbines (in
percentage), the number of attack vectors identified by our frame-
work decreases. When a turbine is secured, the attacker cannot
attack the turbine. If the number of secured turbine increases, the
attacker would have fewer alternatives to attack, and our frame-
work identifies fewer attack vectors. Similarly from Figure 5(b), we
can observe that, when the number of secure turbines increases,
the total power loss of the wind farm also decreases. With less
capability, the attacker cannot inflict great damage to wind farm’s
power production.

6.2.3 Impact of Number of Turbines on Threat Analysis. From
Figure 6(a) and Figure 6(b), we observe the relationship between the
number of attack vectors, the wind farm power loss, and the size of
the wind farm. As the number of turbines increases, the size of the
framework also increases. As a result, with the increase in number
of turbines, our framework can find more attack vectors. Also in the
figure, we observe that with higher capability, our framework can
identify more attack vectors for the same problem size. Similarly
from Figure 6(b), we observe that as the size of the wind farm
increases, the total power loss of the wind farm also increases.

6.3 Scalability Analysis

6.3.1 Impact of Adversary’s Capability on Execution Time. From
Figure 7(a), we can observe the execution time of our framework
with respect to different capabilities. As the attackers capability
increases, the number of attack vectors generated by our program
also increases. As a result, the execution time of the program also
increases. Also from the figure, we can observe that, the execution
time of the 400 turbine wind farm problem is higher than the 200
turbine wind farm problem. This is logical, as the 400 turbine wind
farm model is a significantly larger problem model than the 200
turbine model.

6.3.2  Impact of Number of Secured Turbines on Execution Time.
We can observe the relationship between the framework execu-
tion time and the number of secured turbines (%) in Figure 7(b).
As the percentage of secured turbines increases, the number of
attack vectors found by our framework decreases. As a result, our
framework requires less time to execute. From the figure, we can
also observe that the execution time of the 400 turbine wind farm
model is higher than the 200 turbine wind farm model. The 400
turbine wind farm model is a significantly larger problem model
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Figure 7: (a) The execution time with respect to the adversary’s capability and (b) the execution time with respect to number

of secured turbines.
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Figure 8: (a) The execution time with respect to the number of turbines and (b) execution time with respect to the power

generation change margin.

than the 200 turbine model. As a result, our framework requires
longer time to execute the 400 turbine model than that of the 200
turbine model.

6.3.3 Impact of Number of Turbines on Execution Time. Fig-
ure 8(a) shows the relationship between the execution time of our
framework and the size of the wind farm. As the size of the wind
farm increases, the problem model of our framework also increases.
As a result, our framework requires more time to compute, gener-
ates larger number of attack vectors, and require longer time to
finish execution. As a result, we can observe that as the number of
turbines increases, the execution time of the program also increases.
We can also observe that the execution time of the framework with
40% attack capability is larger than the execution time with 20%
attack capability. With more attack capability, our framework can
generates more attack vectors and requires longer time.

6.3.4 Impact of Power Generation Change Margin on Execution
Time. Figure 8(b) shows the relationship between the execution
time of our framework and the minimum power generation change
margin. In this analysis, the maximum power generation change
margin is fixed (always 10%). Also, the adversary has 20% attack

capability and 20% of all turbines are secured. From the figure,
we can observe that as the minimum power generation margin
increases, the execution time of the framework for both 200 turbine
problem and 400 turbine problem decreases. When the value of
minimum power generation change margin is small, our framework
can generate more attack vectors that can inflict significant impact.
As a result, our framework requires more time to generate all the
attack vectors. However, when the minimum power generation
change margin is high, our framework cannot identify too many
attack vectors that inflicts significant impact, hence our framework
requires less time.

7 RELATED WORK

In a wind farm, monitoring the conditions of the turbines is al-
ways very challenging. Yongxiang et al. in [21], presented a remote
large-scale, real-time, monitoring and controlling solution. Their
proposed solution is applicable for large offshore wind farms. Zhang
et al. [22] proposed a unified browser/server based monitoring so-
lution of diverse wind turbines in a wind farm that can monitor
the condition of the turbine using a single monitoring interface.
Helsen et al. [23] proposed to use a big data analysis solution to



monitor the condition of a wind turbine through long term log file
monitoring. Monitoring solutions for turbines using power and
performance curves are proposed in [24, 25]. Hussain et al. [26]
proposed a fault resilient communication network infrastructure
for real-time controlling and monitoring of the wind farm turbines
and other components.

In [27], Bang et al. proposed a high-speed sensor array for per-
forming shape estimation of the wind turbine at different dynamic
loads. Popeanga et al. [12] proposed a wireless sensor network
based monitoring solution for the wind farm to monitor the struc-
ture, behavior, and response to different components of a wind
turbine under dynamic load. Worms et al. [28] proposed a solu-
tion to monitor the rotation and position of the wind turbine rotor
blade using optically powered sensors. Wind turbines also operate
at variable weather conditions and its components can fail any-
time. Qiu et al. [29] proposed a model based BDD mechanism for
wind turbine gearbox. Agarwal et al. [30] proposed a fuzzy infer-
ence system-based fault detection system (FTSFFDS) for structural
health monitoring of the wind farm. Godwin et al. [31] presented a
data intensive machine learning approach for detecting faults in
wind turbine pitch control mechanism. In [32], Butler et al. pre-
sented a turbine performance monitoring solution by utilizing wind
farm SCADA system data.

None of the above discusses the cyberattacks on the wind turbine
meteorological sensors. In this work, we propose a formal frame-
work to analyze the feasibility of UFDI attacks on the meteorological
sensors, which is unique to the best of our knowledge. While it
appears intuitive that an attack on the wind turbine sensors can
compromise the overall wind farm power generation, we provide a
systematic modeling framework to analyze such cyberattacks.

8 CONCLUSION

The meteorological sensors of the wind turbines are vulnerable to
false data injection attacks. An adversary with sufficient knowl-
edge, accessibility, and resources can successfully perform UFDI
attacks on the wind farm, causing non-optimal generation of power.
We propose an SMT-based formal framework to systematically in-
vestigate potential security threats, particularly the feasibility of
UFDI attacks, on WEMS with respect to various attack attributes.
We conduct necessary experiments to analyze the threats based
on different factors and to evaluate the scalability of the model. In
the future, we would like to expand our framework by considering
other renewable energy sources.
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