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In this paper, we establish a unified analytical framework for designing load balancing algorithms that can
simultaneously achieve low latency, low complexity, and low communication overhead. We first propose
a general class II of load balancing policies and prove that they are throughput optimal and heavy-traffic
delay optimal. This class IT includes popular policies such as join-shortest-queue (JSQ) and power-of-d as
special cases, but not the recently proposed join-idle-queue (JIQ) policy. In fact, we show that JIQ is not
heavy-traffic delay optimal even for homogeneous servers. By exploiting the flexibility offered by the class
I1, we design a new load balancing policy called join-below-threshold (JBT-d), in which the arrival jobs are
preferably assigned to queues that are no greater than a threshold, and the threshold is updated infrequently.
JBT-d has several benefits: (i) JBT-d belongs to the class IT and hence is throughput optimal and heavy-traffic
delay optimal. (ii) JBT-d has zero dispatching delay, like JIQ and other pull-based policies, and low message
overhead due to infrequent threshold update. (iii) Extensive simulations show that JBT-d has excellent delay
performance, comparable to the JSQ policy in various system settings.
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1 INTRODUCTION

Load balancing, which is responsible for dispatching jobs on parallel servers, is a key component in
computer networks and distributed computing systems. For a large number of practical applications,
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such as, Web service [6], distributed caching systems (e.g., Memcached [13]), large data stores
(e.g., HBase [5]), embarrassingly parallel computations [1] and grid computing [4], the system
performance critically depends on the load balancing algorithm it employs.

In a load balancing system, there are two directions of message flows: push messages (from the
dispatcher to the servers) and pull messages (from the servers to the dispatcher). In a push-based
policy, the dispatcher actively sends query messages to the servers and waits for their responses;
In a pull-based policy, the dispatcher passively listens to the report from the servers. The job
dispatching decision is conducted at the dispatcher based on the pull-messages sent from the
servers. Push-based policies (e.g., the join-shortest-queue (JSQ) policy [19], [2] and the power-of-d
policy [10], [17]) have been shown to be delay optimal in the heavy-traffic regime [2], [9]. Recently,
the pulled-based policies such as join-idle-queue (JIQ) [8] and the equivalent one in [15], have
been proposed. Compared with the push-based policies, these pull-based policies not only achieve
good delay performance, but also have some nice features, such as, lower message overhead, lower
computational complexity, and zero dispatching delay. However, as shown in the simulations of [8],
the delay performance of existing pull-based polices will degrade substantially as the load gets
higher. In fact, as shown in Theorem 3.11 of this paper, JIQ is not heavy-traffic delay optimal even
for homogeneous servers. Therefore, one key question is how to design load balancing policies that
are heavy-traffic delay optimal and meanwhile possess all the nice features of pull-based policies
such as zero dispatching delay, low message overhead and low computational complexity.

In this paper, we take a systematic approach to address this question. To that end, the main
contributions of this paper are summarized as follows:

e We derive inner-product based sufficient conditions for proving that a load-balancing policy
is throughput optimal and heavy-traffic delay optimal. Using these sufficient conditions, we
obtain a general class IT of load balancing policies that are throughput optimal and heavy-
traffic delay optimal. This class of load balancing policies contains the famous (push-based)
JSQ and the power-of-d policies as special cases, but not the (pull-based) JIQ policy.

¢ On the other hand, we show that JIQ, which is not in II, is not heavy-traffic delay optimal
even for homogeneous servers. While it has been empirically shown in the past that the
delay using JIQ is quite bad at high loads, the question of whether it was heavy-traffic delay
optimal in homogeneous servers has been previously left unsolved. Furthermore, our novel
Lyapunov-drift approach offers a new avenue to show a policy is not heavy-traffic delay
optimal.

¢ By exploiting the significant flexibility offered by class II, we are able to design a new policy
called Join-Below-Threshold (JBT-d). To the best of our knowledge, this is the first load
balancing policy that guarantees heavy-traffic delay optimality while enjoying nice features
of pull-based policy, e.g., zero dispatching delay, low message overhead and low computational
complexity. Through extensive simulations, we demonstrate that JBT-d has excellent delay
performance for different system sizes and various arrival and service processes over a large
range of traffic loads.

The rest of the paper is organized as follows. Section 1.1 reviews the related work on load
balancing schemes. Section 1.2 introduces the necessary notations in the paper. Section 2 describes
the system model and the related definitions. Section 3 presents the main results of the paper.
In particular, a class II of flexible load balancing policies are introduced, containing as special
cases the popular existing ones and motivating new ones. Sufficient conditions are derived to
guarantee throughput and heavy-traffic delay optimality. Section 4 contains the simulation results
on comparing different policies, demonstrating the performance and simplicity of our new policy.
Section 5 contains the proofs of the main results.
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1.1 Related work: push versus pull

This section reviews state-of-the-art load balancing policies with a focus on the system performance
in heavy traffic. We group these policies mainly into two categories: push-based and pull-based as
shown in Fig. 1.

Push-based policy: Under a push-based policy, the dispatcher tries to “push” jobs to servers.
More specifically, upon each job arrival, the dispatcher sends probing messages to the servers, which
feed back the required information for dispatching decisions, e.g., queue lengths. After receiving
the feedback, the dispatcher sends the incoming jobs to servers based on a dispatching distribution.
A classical example in this category is the JSQ policy, under which the dispatcher queries the queue
length information of each server upon new job arrivals, and sends the incoming jobs to the server
with the shortest queue, with ties broken randomly. It has been shown [19] that for homogeneous
servers this policy is delay optimal in a stochastic ordering sense under the assumption of renewal
arrival and non-decreasing failure rate service. In the heavy-traffic regime, it has been proved that
it is heavy-traffic delay optimal for both heterogeneous and homogeneous servers [2]. Nevertheless,
the performance of this policy comes at the cost of substantial overhead as it has to sample the
queue lengths of all the servers, which is undesirable in large-scale systems. To overcome this
problem, an alternative load balancing policy called power-of-d has been introduced [10], [17];
see also related works [20], [16]. Under this policy, the dispatcher routes all the incoming jobs
to the server that has the shortest queue length, with ties broken randomly, out of the d servers
sampled uniformly at random. This policy has also been shown to be heavy-traffic optimal for
homogeneous servers [9]. However, for heterogeneous servers, the power-of-d policy is neither
throughput optimal, nor delay optimal in heavy traffic.

Pull-based policy: Under a pull-based policy, the servers spontaneously send messages to “pull”
jobs from the dispatcher according to a fixed policy. One illustrative example is the JIQ policy [8]
and the equivalent one in [15]. Under the JIQ policy, each server sends a pull message to the
dispatcher whenever it becomes idle. Upon job arrivals, the dispatcher checks the available pull
messages in memory. If such messages exist, it removes one uniformly at random, and sends the
jobs to the corresponding server. Otherwise, the new jobs will be dispatched uniformly at random
to one of the servers in the system. This policy has several favorable properties. The most important
property is that the required number of messages in steady-state is at most one for each job arrival,
which is smaller than the 2d of the power-of-d-choices (d for query and d for response per job).
However, as already shown in [8], when the load becomes heavy, the performance of JIQ keeps
empirically degrades substantially, and in fact, in Theorem 3.11 we show that it is not heavy traffic
delay optimal even for homogeneous servers.

1.2 Notations

We use boldface letters to denote vectors in RN and ordinary letters for scalers. Denote by Q
the random vector whose probability distribution is the same as the steady-state distribution of
{Q(t),t > 0}. The dot product in R is denoted by (x,y) := Zfil x;jy;. For any x € RV, the [,
norm is denoted by ||x||, = Zil |xn| and Iz norm is denoted by [|x|| := v/(x, x). The parallel and
perpendicular component of the queue length vector Q with respect to a vector ¢ with unit norm is

denoted by Q| := (¢, Q)c and Q, := Q — Qy, respectively.
2 MODEL AND DEFINITIONS
This section describes a general model for the load balance systems as shown in Fig. 1, and introduces

necessary definitions.
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Fig. 1. System model of general load balancing. (a) For push-based policy, we have m(t) = 0 for all ¢ since
it does not require any memory. The message exchange is bidirectional: probing from the dispatcher and
feedback messages from servers. (b) For pull-based policy, m(t) stores the ID of the servers that satisfy a
certain condition at time ¢. The message exchange is unidirectional, i.e., there only exists the pull-message
that is sent from the servers to the dispatcher.

2.1 Model Description

Consider a time-slotted load balancing system, with one central dispatcher and N parallel servers.
These servers are indexed by its ID n = 1, 2, ..., N. Each server n is associated with a FIFO (first-in,
first-out) queue of length Q,(t) at the beginning of time slot ¢, ¢ = 0,1, 2,.. . .. Thus, we use index n
to represent both the server and the associated queue. Once a job joins a queue, it will remain in
that queue until its service is completed.

Assumption 1 (Arrival Process). Let Az (t) and A,(t) denote the number of exogenous job arrivals
and the number of arrivals routed to queue n at time slot ¢, respectively. We assume that all the
exogenous arrivals at time t are routed to one selected queue s, using the standard model as in
[2], [9], ie, As(t) = As(t),s e N ={1,2,...,N} and A;(t) = 0, for all i € N\ {s}. The job arrival
process {Ax(t), t > 0} is a nonnegative integer valued stochastic process that is i.i.d across time t,
with mean E [A5(t)] = A5 and variance Var(Ax(t)) = oz. We further assume that the number of
exogenous arrivals at each time slot is bounded by a constant, i.e., A5 (t) < Apax < co forallt > 0.

Assumption 2 (Service Process). Let S,(t) denote the potential service offered to queue n at time
t, which represents the maximum number of jobs that can be served in time slot ¢. Therefore,
if the offered service S,(t) is larger than the number of pending jobs in queue n at time slot ¢,
it will cause an unused service Uy,(t), as defined in (1). For each n, the process {S,(t),t > 0}
is a nonnegative integer valued i.i.d. stochastic process with mean E [S,(t)] = p, and variance
Var(S,(t)) = v2. Moreover, A5 < Zfil Un. Furthermore, the processes {S,(t),t = 0},n € N are
mutually independent across different queues, which are also independent of the arrival processes.
The offered service S,(t) to each queue is uniformly bounded by a constant, i.e., S, (t) < Spax < ®©
forallt > 0andalln e V.

Let Q(t) = {Qi(t),...,Qn(t)} be the queue lengths observed at the beginning of time t. Define
m(t) to be the set of server IDs stored in the dispatcher at the beginning of time slot ¢. In general,
the dispatcher makes the decision of A, (t) based on (Q(t), m(t)) for each time slot ¢. This includes
the cases that the dispatching decision depends only on Q(t) (e.g., JSQ), partial information of
Q(t) (e.g., power-of-d) or only on m(t) (e.g., JIQ). In each time slot, the queueing dynamics evolves
according to the following procedure. The job arrivals occur at the beginning of time slot t. Then, the
dispatching decision A, (t) is selected based on (Q(t), m(t)). Further, the routed jobs are processed
by the allocated servers. Thus, the queueing dynamics is given by the following equation,
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On (t + 1) = [Qn (t) + An(t) - Sn(t)]
= Qn (t) +Ap (t) - Sn(t) + Un (t)s

where [x]* = max(0,x), Uy (t) = max(S,(t) — Qn(t) —An(t), 0) denotes the unused service of queue
n.

(Y

2.2 Definitions

The load balancing system is modeled as a discrete-time Markov chain {Z(t) = (Q(t), m(t)),t =
0} with state space Z, using queue length vector Q(t) together with the memory state m(t).
We consider a system {Z(€)(t),t > 0} parameterized by e, i.e., the exogenous arrival process is
{Ag:e)(t), t > 0} with }lg:é) = Uy, — € = X Un — €. That is, we use € to indicate the distance of arrival
rate to the capacity boundary, and it is also adopted as a superscript to represent the corresponding
random variables and processes.

Definition 2.1 (Stability). {Z©)(t),t > 0} is said to be stable if we have

lim sup lim sup P Z Qif)(t) >C|=0.
C—o0 t—oo n

A load balancing policy is said to be throughput optimal if it stabilizes the system under any

arrival rate in the capacity region. Since the capacity region in our model is simply A5 < ps, the

definition of throughput optimality is given as follows.

Definition 2.2 (Throughput Optimality). A load balancing policy is said to be throughput optimal
if it stabilizes {Z(e)(t), t > 0} for any € > 0.

For the definition of heavy-traffic delay optimality, we need the following definition and property.

Definition 2.3 (Resource-pooled System). A single-server FCFS (first-come, first-serve) system
{q(e)(t), t > 0} is said to be the resource-pooled system with respect to {Z(e)(t), t > 0}, if its arrival
and service process satisfy a'®(t) = A(;)(t) and s(t) = ¥, Sy(t) for all t > 0. Then, we have

E[¢90)] <E[) 0¥ ®)]. 6)
forallt > 0and e > 0.

In words, a resource-pooled system is a system that merges the total resource of N servers and
queues to a single server with a single queue. Eq. (2) holds due to the fact for any ¢, the overall
arrivals to the resource-pooled system and to load balancing system are the same, and the overall
service in the resource-pooled system is stochastically larger than the overall service in the load
balancing system. This is due to the fact that the jobs in load balancing system cannot be moved
from one queue to another, which often results in a strict inequality in Eq. (2). However, in the
heavy-traffic regime, this lower bound can be achieved under some policy in an asymptotic sense
as defined in the next definition, and hence based on Little’s law this policy achieves the minimum
average delay of the system.

Definition 2.4 (Heavy-traffic Delay Optimality). A load balancing policy is said to be heavy-traffic
delay optimal if the stationary workload of {Z(€)(t), > 0} under all the arrival and service processes
in Assumptions 1 and 2, satisfies '

1 Assume (o())?

3 converges to a constant.
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ipee[3a] g o

where Q is the random vector whose probability distribution is the same as the steady-state
distribution of {Q(t),t > 0}.

Remark 1. Based on the definition above, in order to show a policy, say P4, is not heavy-traffic
delay optimal, it is sufficient to find a class of {A(EE) ()} and {S,(¢)} such that Eq. (3) does not hold.
In other words, there exists a class of arrival and service processes for which policy #; cannot
achieve the lower bound (i.e., the resource-pooled system) while JSQ can (since it is heavy-traffic

delay optimal).

3 MAIN RESULTS

In this section, we introduce a class II of load balancing policies which are proven to be delay-
optimal in the heavy-traffic regime. Popular load balancing policies, such as JSQ and power-of-d,
are special cases in IT; but the JIQ policy does not belong to II as we will show in Theorem 3.11
that it is not heavy-traffic delay optimal. In order to improve the delay performance of JIQ while
maintaining its low message overhead and simplicity, we develop a new load balancing policy
named join-below-threshold (JBT-d), which is heavy-traffic delay-optimal as we can show JBT-d is
in IT and has a low message overhead similar to JIQ.

3.1 The Class of Load Balancing Policies I1

Let us denote p(t) = (p1(t), . . ., pn(t)), where p, (t) is the probability that the new arrivals in time
slot t are dispatched to queue n such that 3N | p,(t) = 1. We consider a class of load balancing
policies in which p(t) is a function of the system state Z(t) = {Q(t), m(t)}. Consider a permutation
o:(-)of (1,2,...,N) that satisfies Qg, (1) (t) < Qo,(2)(t) £ ... £ Qg (n)(t) forallt,ie., the queuesare
sorted according to an increasing order of the queue lengths in time slot ¢ with ties broken randomly.
Define P(t) = (Py(t), ..., Pn(t)) such that P(¢) is a permutation of p(t) with Py (t) = pg, (n)(t). Let

An(t) = Pcrf(n){t) - PO’:(H)J"{,UE
= Pn(t) = poy(n)/ pz- 4

Definition 3.1 (Equivalence in inner-product). A dispatching distribution P(t) is said to be equiva-
lent to another dispatching distribution P(t) in inner product, if

Z Qo (mAn(t) = Z Qo (mAn (1), )
or equivalently, if
D QomPa(t) = " Qo (mPalt) ©)

The equivalence between (5) and (6) follows immediately from (4). Intuitively speaking, a load-
balancing policy is ‘good’ if the inner product between Qg, (t) and P(t) is as small as possible such
that more packets are dispatched to shorter queues. If P(t) is equivalent to P(t) in inner-product,
we can replace P(t) by P(t) without affecting the property of the policy in heavy-traffic regime,
which will be explained in details later.

The following definitions enable us to distinguish different load balancing policies based on P(t)
or equivalently A(t):

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 39. Publication date: December 2017.



Designing Low-Complexity Heavy-traffic Delay-Optimal Load Balancing Schemes 39:7

3 »

Pat) Pat) Pa(t)]
3 3
2 8
1 8 1 1
1 T 1 il
I |5
P S S P E—_ — >
(a) (B) (e)
» » A
rol ! X Pa(t) 1
3 3 3
= 8
1 1 3 1
1 1 T 1 I
6 8
> 7 3 1 2 P
(d " (e) " (f) n
h
Q) Q)
Q
F'a B ¢ b 7 A B ¢ D

(@) (z)

Fig. 2. Illustrations of tilted distribution, §-tilted distribution, and equivalence in inner-product.

Definition 3.2 (Tilted distribution). A dispatching distribution P(t) is said to be tilted, if there
exists k € {2,...,N} such that A,(¢) > Oforall n < k and A,(t) < 0forall n > k.

Definition 3.3 (8-tilted distribution). A dispatching distribution P(t) is said to be d-tilted, if (i)
P(t) is tilted and (ii) these exists a constant § > 0 such that A;(¢) > & and AN (2) < 6.

Some examples are presented in Fig. 2 to facilitate the understanding of tilted distribution, é-tilted
distribution, and equivalence in inner-product. Fig. 2 (a)-(f) illustrate six dispatching distributions
P(t). The queue state Q() is given by (i) or (ii). The service rates are us = pg = pc = pp = 1 such
that y;/ps = 1/4 for i = A, B,C, D. By direct computation, one can obtain that P, (t) is tilted in
scenario (a), (b), (d), (e), and (f), and is §-tilted in scenario (d), (e), and (f). If Q(t) is in the State (i),
there is no tie in the queue length and hence the permutation o¢(-) is unique, which means that
P(t) is fully determined by p(t). If Q(t) is in the State (ii), all queue lengths are equal and hence
the permutation oy () is non-unique, which means that P(t) is determined by both p(t) and o:(-).
In this case, however, the inner product between Qg, (t) and P(t) is 1 in all (a)-(f), and hence the
dispatching distributions P(t) in (a)-(f) are mutually equivalent in inner product. For example, in
this case even though P(t) in (c) is neither tilted nor §-tilted, it is equivalent in inner product to
P(t) in (d) which is both tilted and §-tilted.

From the perspective of heavy-traffic delay performance, tilted distribution is a dispatching
distribution that is not worse than random routing and §-tilted distribution is a dispatching
distribution that is strictly better than random routing. In addition, the equivalence in inner-
product allows us to transfer a tilted dispatching distribution to a §-tilted dispatching distribution
when there are ties in queue lengths, that is, it allows to merges probability in P(t) from longer
queues to shorter queues without changing the inner product.

We now introduce a class of load balancing algorithms II based on the property of P(t) or its
equivalent distributions in inner product.
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Definition 3.4. A load balancing policy is said to belong to class IT if it satisfies the following two
conditions:
(1) P(t) or one of its equivalent distributions in inner product is tilted for all Z(¢) and t > 0.
(ii) For some finite positive constants T and § that both are independent of ¢, there exists a time
slotty € {kT,kT +1,...,(k+ 1)T — 1} for each k € N such that P(#x) or one of its equivalent
distributions in inner product is §-tilted for all Z(t).

In the sequel, we will show that any policy in II satisfies the following two sufficient conditions
for throughput and heavy-traffic delay optimality, which are obtained via the Lyapunov-drift based
approach developed in [2].

LEmMA 3.5. Ifthere exist Ty > 0, K; = 0, andy > 0 such that forallty =1,2,...,allZ € Z and
A.E < Hx

th+T1—-1
E[ > QELA®) - S1) | Z(t) = Z| <~y Q] + K. )

then the system is throughput-optimal. Moreover, the stationary distribution of the queueing system
has bounded moments, i.e., there exist finite M, such that for alle > 0 andr e N

o[l

ProoF. See Appendix A. O

;
<.
LEMMA 3.6. Under the assumptions of Lemma 3.5, if there further exist T, > 0,K; > 0 andn > 0

that are independent of €, such that forallty = 1,2,...andallZ €

to+T2—1
E[ > QL) A1) - S®) | Z(to) = Z| < ~7]|Qu]| + Ko ®)

holds for all e € (0, &), g > 0, where Q, = Q — (Q, c)c is the perpendicular component of Q with
respect to the line ¢ = V%ﬁ(l, 1,...,1), then the system is heavy-traffic delay optimal, i.e.,

. =) .. —(e)
]ﬂlﬂleE[Zﬂ:Q" ]—leull‘:lle]E[q ]
Proor. See Appendix B. O

Remark 2. Note that these two sufficient conditions distilled from the Lyapunov-drift based
approach not only provide a unified approach for throughput and heavy-traffic optimality analysis,
but also enable us to abstract a class of heavy-traffic delay optimal policies. In particular, using
Lemma 3.5 and Lemma 3.6, we are able to prove the main result of this paper.

TueoreMm 3.7. Any load balancing policy in II is throughput optimal and heavy-traffic delay
optimal.

Proor skeTcH oF THEOREM 3.7. The insight for a policy in I to satisfy the sufficient condition
in Eq. (7) is that under tilted dispatching distribution the performance is no worse than random

dispatching. This follows from the following property of tilted distribution
N
D Qoym (A1) < 0. ©
n=1
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The equality is obtained when all A,(#) is zero, which is the case of random dispatching as shown
in (b) of Fig. 2. Note that for all other cases of a tilted distribution, Eq. (9) is strictly less than zero.
This is true since 21::1 A,(t) is always zero and the permutation is in the non-decreasing order of
the queue length.

The intuition for a policy in II to satisfy the sufficient condition in Eq. (8) is that the performance
under any d-tilted dispatching distribution is strictly better than random dispatching, under which
the term in Eq. (8) is 0 for homogeneous servers and of order ¢ for heterogeneous servers. Note
that under a §-tilted distribution, we have

N
D Qo OAn(2) < =8(Qa,n) () = Qo1 (¢)- (10)

This inequality comes from the definition of the §-tilted distribution and fact that the permutation
is in the non-decreasing order of the queue length. In order to have the term of ||Q ||, the following

inequality would be quite useful
QL @)l < VN(Qo, ) () = Qo1 (1)) (11)
This is true since Q, () = Q(t) — Q(t) = Q(t) — 22291 = Q(t) — Qug(t)1, in which Qug(t) is

the average queue length among the N servers at time slot .
The details of the proof are presented in Section 5.1. O

From Egs. (9) and (10), it can be seen that the important property of a given policy is fully
characterized by the inner product of Q, (t) and A(t) under the system state Z(t), which is
actually the motivation to define equivalent distribution in inner product. That is, even though
the dispatching distribution P(#) is not unique when there are ties in queue lengths, the inner
product is actually the same if two dispatching distributions are equivalent in inner product, hence
preserving the same property in heavy-traffic regime.

Note that class II is sufficient but not necessary for heavy-traffic delay optimality. Nevertheless,
in the next section, we will show that it not only contains many well-known heavy-traffic delay
optimal policies but also allows us to design new heavy-traffic delay optimal policies which enjoy
nice features of pull-based policies.

3.2 Important Policies in II

3.2.1 Join-shortest-queue (JSQ) policy. Under JSQ policy, all the incoming jobs are dispatched to
the queue that has the shortest queue length, ties are broken uniformly at random, out of all the
servers.

ProrosriTion 3.8. The JSQ policy belongs to I1, and hence is throughput optimal and heavy-traffic
delay optimall.

The result that JSQ is throughput and heavy traffic delay optimal has been first proven via
diffusion limits for two servers in [3] and via Lyapunov-drift argument for N servers in [2]. Here,
we present another simple proof based on our main result.

Proor. Note that when there are no ties in queue lengths, the dispatching distribution P(t)
under JSQ satisfies that for all ¢

Pi(t) =1and Py(t) = 0,2< n< N. (12)

In other words, all the arrivals are dispatched to the shortest queue, which is always the queue
o¢(1) if there are no ties in queue lengths. If there are ties in queue lengths, this P() is equivalent in
inner product to other dispatching distribution under the state Z(t) in which ties exist. In particular,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 39. Publication date: December 2017.



39:10 X. Zhou et al.

if there are m < N queues that all have the shortest queue length, then in this case by random
routing the dispatching distribution under JSQ is given by P; = Lforall1<i<m,and Pi=0
for all i > m. It can be seen that P(t) in Eq. (12) is equivalent in inner product to P(t) according to
the definition because Q,, (1) = Qs,(2) = - - - = Qo (m)- Thus, for all Z(t), under JSQ the dispatching
distribution or its equivalent distribution in inner product is in the form of Eq. (12). Hence, we have
Ai(t) =1 - po,(1)/pz > 0, and Ap(t) = —pio,(m)/pz < 0 for all 2 < n < N, which implies that P(t)
is a §-tilted distribution with & = pmin/ps for all Z(t),t > 0, where pmin = minyen pn. Therefore,
the JSQ policy is contained in the class IT under both heterogeneous and homogeneous servers. O

322 The power-of-d policy. Under the power-of-d policy, all the incoming jobs are dispatched
to the queue that has the shortest queue length, ties are broken uniformly at random, out of d > 2
servers, which are chosen uniformly at random.

ProrosITION 3.9. The power-of-d policy belongs to I under homogeneous servers, and hence is
throughput-optimal and heavy-traffic delay optimal.

The power-of-d policy has been proven to be heavy-traffic delay optimal via Lyapunov drift
condition in [9]. Here, we will present another proof based on our main result.

Proor. Note that when there are no ties in queue lengths, the dispatching distribution P(t)
under the power-of-d policy satisfies that forallt > 0

Pn(t):(l:__:)/(l:),léniN—d+l, (13)

and P,(t) = 0, for all n > N — d + 1. This comes from the fact that all arrivals are dispatched to
the queue with shortest queue length among d uniformly randomly sampled servers. Thus, if the
queue o¢(n) is the one with shortest queue length among d samples, the remaining d — 1 samples
must come from queues o¢(n + 1), 6¢(n + 2), ... 0¢(N) if all the queue lengths are different in Z(t).
If there are ties in queue lengths, it can be easily shown that this P(t) is equivalent in inner product
to other dispatching distributions under any given Z(t) in which there are ties in queue lengths.
Thus, for all Z(t), the dispatching distribution or its equivalent distribution in inner product under
the power-of-d policy can be fully determined by Eq. (13). Since P,(t) is decreasing and i, (n) =
under homogeneous servers, P(t) is a tilted distribution. Note that A, (t) = % and An(t) = —%.
As a result, P(1) is a §-tilted distribution with § = % for all Z(t), which implies that power-of-d
policy is included in the class II for homogeneous servers. O

3.2.3 Join-idle-queue policy is not in I1. Now we will show that the JIQ policy is not contained
in the class II because it is in fact not heavy-traffic delay optimal in homogeneous servers. For the
heterogeneous case, it is well-known that JIQ is not heavy-traffic delay optimal since it is not even
throughput optimal for a fixed number of servers [15]. However, for the homogeneous case, it is still
open whether it is heavy-traffic optimal for a fixed number of servers, although it has been shown
to be heavy-traffic optimal when the number of servers goes to infinity in the Halfin-Whitt regime
[12]. It turns out that when the number of servers is fixed, there exists a class of arrival process,
under which the delay performance of JSQ is strictly better than that of JIQ in the heavy-traffic
limit. More specifically, as shown in the proof of Theorem 3.11, for a class of arrival process, the
delay under JIQ cannot achieve the common lower bound (i.e., the resource-pooled system), while
JSQ can, which implies that JIQ is not heavy-traffic delay optimal for homogeneous case.

In particular, we consider the two-server case with constant service process with rate 1. We are
able to find a class of arrival process such that Eq. (3) under JIQ does not hold. Let us first introduce
the class of arrival process A.
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Table 1. Summary of load balancing policies

. Throughput-Optimal Heavy-traffic Delay-Optimal

Policy Message Homogeneoisp HetP::rogeneous Homoaneous Hegerogeneous
Random 0 Vv X X X
JSQ [2] 2N v v v v
Power-of-d [9], [10] 2d YV X YV X
JIQ[15], [8] <1 v X X X

N+2d
e . y :
=T

“The message rate for JBT-d and JBTG-d in this table is just a crude upper bound. When the new threshold is larger
than the old one, there is no need for the servers that are already recorded in memory to resend pull-messages.

Definition 3.10. An arrival process Ay (t) is said to belong to A if

(1) ]P(A(;) (t) = 0) = po, which py is a constant independent of €.

(ii) (J)gf))"" approaches a constant o which satisfies that o2 > 8/p, — 4.
More concretely, we are able to show the following result.

Tueorem 3.11. JIQ is not heavy-traffic delay optimal in a load balancing system consisting of two
homogeneous servers.

Proor. The proof is relegated to the technical report [21]. O

3.3 Designing New Policies in II

It has been shown in the last section that the state-of-art push-based policies, e.g., JSQ and power-
of-d, are all included in II. Recall that, both of them need to sample the queue length information
upon each new arrival, which directly results in the following two problems.

(a) The message exchange rate between dispatcher and servers is high, especially for join-shortest-
queue.

(b) Each arrival has to wait for completion of the message exchange before being dispatched, which
increases the actual response time for each job.

To resolve the problem, the pull-based policies, join-idle-queue (JIQ) in [8] and an equivalent

algorithm called PULL in [15] are proposed, which have been shown to enjoy low message rate (at

most one message per job) and have a better performance than the power-of-d policy from light to

moderate loads. However, as shown via numerical results in [8] and the proof of Theorem 3.11 in

this paper, when the load becomes high, the performance of JIQ is much worse than the power-of-d

policy, which motivates us to design policies that enjoy low message rates, while still guaranteeing

throughput and heavy-traffic delay optimality.

Definition 3.12. Join-below-threshold-d (JBT-d) policy is composed of three components:

(1) A threshold is updated every T units of time by uniformly at random sampling d servers, and
taking the shortest queue length among the d servers as the new threshold.

(2) Each server sends its ID to the dispatcher when its queue length is not larger than the
threshold for the first time.

(3) Upon a new arrival, the dispatcher checks the available IDs in the memory. If they exist, it
removes one uniformly at random, and sends all the new arrivals to the corresponding server.
Otherwise, all the new arrivals will be dispatched uniformly at random to one of the servers
in the system.
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To be more specific, we explain the connections of the three components as follows. At the
beginning of each time slot, the dispatcher immediately routes the new arrivals to a server only
based on its memory state, i.e., no sampling. If there are available IDs in memory, it removes one
uniformly at random and sends the newly arrived jobs to the corresponding server. Otherwise,
it sends the new jobs to a server selected uniformly at random among all the servers. At the end
of each time slot, if there is no update of threshold, each server will immediately report its ID
if its queue length is not larger than the threshold for the first time, i.e., only reporting once for
each server before dispatched. Otherwise, the dispatcher updates the threshold by uniformly at
random sampling d servers, and the new threshold is set as the shortest queue length among d
samples. Then, each server decides to whether or not to report based on its queue length and the
new threshold, using the same way as before.

Definition 3.13. The JBT-d policy can be easily generalized for heterogeneous servers, denote by
JBTG-d, as follows. The only difference is that the dispatching probability distribution for the case
of non-empty and empty memory is given by
_H
Ljem(r) Hi
That is, the probability to be selected for a server that has its ID in memory is weighted by its

service rate. This can be easily done by requiring the server to report its service rate p, as well as
its ID.

(1) = 1 sem(e)) and @, () == - for all i.
15>

In the following, we will show that JBT-d and JBTG-d belong to II, and hence throughput and
heavy-traffic delay optimal. More specifically, we have the following result.

ProposiTiON 3.14. For any finite T andd > 1, the following two assertions are true:

(1) JBT-d is in I for homogeneous servers, and hence throughput and heavy-traffic delay optimal.
(2) JBTG-d is in 11 for both homogeneous and heterogeneous servers, and hence throughput and
heavy-traffic delay optimal.

ProOF SKETCH OF PROPOSITION 3.14. Let us look at JBT-d for some key insights behind this proof.
In order to show it is in I, we only need to show that it satisfies the two conditions (i) and (ii).
For the condition (i), we will show that at any time slot ¢, the dispatching is no worse than the
random routing. For the condition (ii), we will show that at time slots rT + 1, r € {0, 1, 2,.. .}, the
dispatching decision is strictly better than the random routing.

Note that under the JBT-d policy, if the ID of the server o;(n + 1) is in m(t), we must have that
the ID of the server o;(n) is also in m(t) as the permutation is in the non-decreasing order of the
queue length. Denote by py (t) the probability that there are k IDs in the memory m(t) for time t,
i.e., pr(t) = Pr(|m(t)| = k). Then, the probability for the server o;(n) to be selected at time ¢, i.e.,
P, (t) is given by

1
Pat) = 3 pilt) - (14)

This is true since for the server o;(n) to be selected, there should be at least n IDs in memory, i.e.,
|m(t)| = n and in each case the probability for the server o;(n) to be chosen is m Therefore,
we can see that the probability of P, (t) satisfies

Pi(t) = Py(t) = ... = Py(2), (15)
which directly implies that for all + > 0 there exists a k between 2 and N such that A,(t) =
P,(t) - % > 0foralln < kand A, (t) < 0 for all n > k. Therefore, condition (i) of II is satisfied.
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For condition (ii), we will show that there exists a lower bound for § such that P(rT + 1) (or an
inner product equivalent distribution when there are ties in queue lengths), is at least a §-tilted
distribution for r € {0, 1, 2,.. .}. In this case, we need only to show that Py (rT + 1) is strictly less
than % for all the system state Z(rT + 1).

The full proof is presented in Section 5.2. o

3.4 Features of JBT-d

This section summarizes the main features of JBT-d policy and compares it with existing policies in
Table 1. In particular, we compare the number of messages for each new arrival under different
policies. For push-based polices, e.g., JSQ and power-of-d, there are d query and d response messages
for each new arrival (d = N for JSQ policy). For JIQ policy, for each new arrival, it requires at
most one pull-message since when there are no pull-messages in memory, the arrival is dispatched
randomly without costing any pull-message. Similarly, our JBT-d policy requires 2d push-messages
every T time slots to update the threshold. Due to the threshold update, the old pull-messages may
be discarded, which is upper bounded by N. Hence, the pull-message for each new arrival under
JBT-d is at most 1 + M%N

In sum, the JBT-d policy has the following nice features: a) It is throughput and heavy-traffic delay
optimal since it is in II. b) It is able to guarantee heavy-traffic delay optimal with very low message
overhead when T is relatively large. ¢) The computation overhead is small since it only needs to
keep a list of the available IDs and choose randomly. d) The arrival is immediately dispatched, i.e.,
there is no dispatching delay as compared to push-based policies such as JSQ and Power-of-d.

It is worth pointing that by just changing the way of updating the threshold in JBT-d, we can
design other new policies which also enjoy the nice features above. For example, it can be easily
shown via similar arguments that if the threshold is updated by sampling all the servers and taking
the average value of the queue length as the new threshold, this corresponding new policy is still
in the class II.

4 NUMERICAL RESULTS

In this section, we use simulations to compare our proposed policies JBT-d and JBTG-d with
join-shortest-queue (JSQ), join-idle-queue (JIQ), power-of-d (SQ(d)) and power-of-d with memory
(SQ(d,m)). The power-of-d with memory policy (SQ(d,m)) improves power-of-d by using extra
memory to store the m shortest queues sampled at the previous time slot [11].

We compare the throughput performance, delay performance, heavy-traffic delay performance
and message overhead performance under various arrival and service processes as well as different
system sizes. Moreover, the 95% confidence intervals for all the simulation results can be found
in the technical report [21], which justify the accuracy of the simulation results. The exogenous
arrival Ay (t) and potential service S, (t) are drawn from a Poisson distribution with rate Ay and u,
for each time slot unless otherwise specified. The traffic load is equal to p = A3/py. The parameter
T is the threshold update interval for JBT-d and JBTG-d.

Below we summarize the key observations from the simulations; see Appendix D of the technical
report [21] for the full set of simulation results.

() Throughput performance:
(a) Our proposed policy JBT-d stabilizes all the considered loads in heterogeneous systems
under all different settings.
(b) JIQ and SQ(d) cannot stabilize the system when the load is high in all the cases.
(c) JIQ appears to have a larger capacity region as the number of servers increases. This agrees

with the theoretical result in [15].
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(ii) Delay performance:

(a) Our proposed policy JBT-d exhibits good performance across a wide range from light to
heavy traffic in all the cases.

(b) As the system size increases, JBT-d achieves the same performance as JSQ for a larger
range of loads. Meanwhile, the gains of JBT-d over SQ(d) and SQ(d,m) become larger as
the number of servers increases.

(c) The gain of JBT-d over JIQ decreases as the number of servers increases. This is also
intuitive since as N goes to infinity, it is more likely to find an idle server, which results in
the fact that JIQ is heavy-traffic delay optimal in the Halfin-Whitt regime [12].

(d) The gain of JBT-d over JIQ increases as the arrivals or services become more bursty. This
agrees with the insight in the proof of Theorem 3.11 that larger variance of arrival or
service process will degrade the performance of JIQ.

(i) Message overhead performance:

(a) Our proposed policy JBT-d continues to have a low message overhead among all the cases.

(b) Push-based policies such as SQ(d) and SQ(d,m) have to increase their message overhead
linearly with respect to d to achieve good delay performance as the system size increases.
In contrast, our proposed JBT-d is able to achieve good performance with a message rate
that is less than 1 for all the cases when T is large.

(iv) Confidence interval:

(a) The 95% confidence intervals of the response time under JBT-d is small for all the various
settings as shown in the following figures and the additional results in Appendix E of the
technical report [21].

Next, we will provide details for the three metrics on throughput, delay and message overhead,
respectively.

4.1 Throughput Performance

We investigate the throughput region of different load balancing policies in the case of heteroge-
neous servers. In particular, we consider the case that the system consisting of two server pools
each with five servers and the rates are 1 and 10, respectively. A turning point in the curve indicates
that the load approaches the throughput region boundary of the corresponding policy.

Figure 3 shows that the system becomes unstable when p > 0.5 under the policy power-of-2
(5Q(2)), and it becomes unstable under JIQ when p > 0.9. In contrast, our proposed JBTG-d policy
remains stable for all the considered loads which agrees with the theoretical results. It can be seen
that JBT-2 is also able to stabilize the system for all the considered loads in this case. Note that the
system remains stable under the power-of-2 with memory policy SQ(2,3), which demonstrates the
benefit of using memory to obtain maximum throughput as first discussed in [14].

We further provide additional simulation results on throughput performance under different
arrival and service process as well as different system sizes in the technical report [21].

4.2 Delay Performance

We investigate the mean response time under different load balancing policies in homogeneous
servers with different system sizes and various arrival and service processes. The time interval for
threshold update of JBT-d is set T = 1000.

Let us first look at the regime when p is from 0.3 to 0.99, which ranges from light traffic to heavy
traffic. Figure 4 shows that our proposed policy JBT-d outperforms both power-of-2 and power-of-2
with memory (8Q(2,3), which uses the same amount of memory as in JBT-d) for nearly the whole
regime. Moreover, JBT-d policy achieves nearly the same response time of JIQ when the load is not
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Fig. 4. Delay performance under 10 homogeneous servers.

too high. However, as the load becomes heavier, the performance of JIQ gets worse and worse, and
its mean response time is as large as two times of the response time under JBT-d policy when the
load is 0.99.

Now, let us get a closer look at the delay performance in heavy-traffic regime, i.e,, p > 0.9, as
shown in Figure 5. It can be seen that JBT-10 outperforms JIQ when p > 0.9 and JBT-2 outperforms
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JIQ when p > 0.95 in this case. More importantly, the gap between them keeps increasing as the
load gets higher. Note that power-of-2 with memory (5Q(2,3)) also has good performance in this
case, which, however, uses a much higher message rate compared to our JBT-d policy, as discussed
in the next section.
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Last, we further provide some results on heavy-traffic delay performance for a larger system
size and a bursty service process, respectively. Due to space limitation, the comprehensive results
can be found in the technical report [21]. Figure 6 illustrates the heavy-traffic performance under
Poisson arrival and Poisson service when N = 50. In this case, first thing to note is that even though
the power-of-d with memory policy (SQ(2,9)) uses the same amount of memory as in JBT-d, it has
a much poorer performance with a much higher message overhead since the message overhead
of JBT-d is strictly less than 1 when T = 1000 in this case. This means that to improve delay
performance in large system size, power-of-d with memory has to increase its message overhead
linearly with respect d, while our JBT-d policy is able to achieve good performance with message
rate less than 1 even for d = N. Moreover, as p approaches to 1, the performance of JIQ degrades
substantially while our proposed JBT-d remains quite close to JSQ. In Figure 7, the potential number
of jobs served in each time slot is either 0 or 10. In this bursty service case, JIQ degrades much
faster than that in the Poisson service process. Moreover, in this setting we can easily observe the
difference between non-heavy-traffic policy (JIQ) and heavy-traffic optimal policies (all the others).
Note that the message overhead of SQ(2,3) is nearly 8 times as large as that of JBT-d, as shown in
next section, though its delay is slightly better than JBT-d.

4.3 Message Overhead

We use simulations to further show the low message rate of our proposed JBT-d policy, though
a crude upper bound has been established. Here, we consider the 10 homogeneous servers with
Poisson arrival and Poisson service, and more results for different settings can be found in the
technical report [21]. More specifically, we investigate the impact of different values of T, i.e.,
the time interval for updating the threshold, on the message rate and its corresponding delay
performance at a fixed load p = 0.99. In particular, we calculate the average number of messages
per new job arrival under each policy. For push-based policies, e.g., JSQ, power-of-2 (5Q(2)) and
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power-of-2 with memory (SQ(2,3)), the message only includes the push-message and is easily
calculated as 20, 4, and 4, which is independent of T. For JIQ, we know that the rate is at most one
for each new job arrival, which is also independent with T and serves as the benchmark.

Figure 8 shows the message rate of JBT-d with respect to T for different values of d, and the
corresponding delay performance is shown in Figure 9. The first thing to note is that the message
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rate of JIQ is much smaller than one since the traffic is heavy and hence there are few idle servers
in this case, which directly results in the poor performance in the heavy-traffic regime. Second,
the message rate of JBT-d is smaller than all push-based policies and becomes less than one when
T > 100 in this case, which means that it is able to achieve throughput and heavy-traffic delay
optimality by requiring a slightly more message than JIQ. Moreover, it can be seen that as T
increases, there is no significant change of the delay performance, which indicates that we are
allowed to adopt a sufficiently large T while not incurring the loss of performance very much in this
case. Last, it is worth noting that a larger d does not necessarily mean a larger message overhead
when T is large. This is because when T is large, the push-message in JBT-d will be dominated by
the pull-message. For a small d, the number of pull-message may be larger since the threshold may
be higher than that under a larger d. As shown in the additional results in the technical report [21],
the observations above hold almost for all the considered cases. The exact impact and relationship
of T and d would be one of our future research focuses.

5 PROOF OF MAIN RESULTS

The high-level insight for class II to be heavy-traffic delay optimal is that it always has a preference
to shorter queues in the way that is specified by the §-tilted distribution. The key step behind the
proof that JBT-d is heavy-traffic delay optimal is to show that the dispatching distribution for the
time slot that is immediately after the threshold update is always a §-titled distribution.

5.1 Proof of Theorem 3.7

Before we adopt the sufficient conditions in Lemma 3.5 and Lemma 3.6 to prove Theorem 3.7, we
first present the following lemmas on the tilted distribution and §-tilted distribution, respectively.

LEmMA 5.1. For a system with mean arrival rate Ay, = py — € and a tilted distribution P(t) under
Z(t), we have

E[Q(t). A(t) - S()) | Z(1)] < —*‘:—Z o) (16)

and
E[(Q. (1), A(t) - S(t)) | Z(1)] < eVN Q. (1) (17)
Proor. Consider the left-hand-side (LHS) of Eq. (16)
E[Q(t),A(t) - S(t) | Z(t)]

N
= Z chf(n) (t) [(A (t) +— Foriz) ) AE - ,ucr;(n):l

(R)Z Qaf(ﬂ)(t)An{t);t): + Z Qo (n) (t) ( ,uc;;n )

N
é Z chf (n) (t) ( FC,:;H) )

(c) i
< - efmin oIl
i

'2:‘

where equation (a) holds since A5, = 5 — €; (b) comes from the fact that ¥~ Q,, (m)()An(t) <0
under a tilted distribution. This fact is true since Qg,(1)(t) < Qs,2)(t) < ... < Qg,(n)(t) and
Ele Ay (t) = 0; inequality (c) follows from the fact that ||x||; > ||x|| for any x € RV.
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Note that Q, () = Q(t) - Qy(t) = Q(t) - 201 = Q(t) - Quvg(t)1, in which Quyg(t) is the
average queue length among the N servers at time slot t. Then, consider the left-hand-side (LHS)
of Eq. (17)

E[(QL().A() = S@)) | Z(#)]
N

= (ch,.(n) (t) - Qavg(t)) [(An (t) + %) Ay - ,uo't(n)]

n=1

I
M=

N
Qe 805+ ), (1) = Qo) (222
" ) (18

=
1l
—-

AT
M=

(Qﬂr(ﬂ)(t) - Qavg(t)) (—e ’u‘;;ﬂ)

1l
—-

n

© <
<€ ) [(Qorm (®) — Quve(1))]

(d)
<eVN Q. @)l

where equation (a) comes from the facts that Zle A, (t) = 0 and Ay = py — €; inequality (b) holds
since 21::1 Qo (n)(t)An(t) < 0 under a tilted distribution; inequality (c) is true since x < |x| for
any x € R and |€%| < e for all n € N; inequality (d) is true since ||x||; < VN ||x|| for any
x e RV, O

LEMMA 5.2. For a system with mean arrival rate Ay, = ps — € and a §-tilted distribution P(t) under
Z(t), we have

BLQ.(0.A() - S0 1 2] < VN Q. 0] (¢ - 7). (19)

Proor. Consider the left-hand-side (LHS) of Eq. (19), we have
E[(Q.().A(t) - S(t)) | Z(1)]

= Z (ch,.(n) (t) - Qavg(t)) [(An (t) + %) Ay - ,uo't(n)]

N

N
a

N

—
—

N
? Qo @0+ Y (Qo (1) = Qug(0) (_*‘%)

n

-

b

< Z Qo (n) () An(t)As + eVN QL (1)

—
—

=
-

(c)
< = 258(Qu,n) () = Qoy 1y (1)) + VN [|QL (1)

@_ AE% 0. @)l + VN Q. ()]

VN 0. ) (e - 22).

where equation (a) holds since 21::1 A,(t) = 0 and Ay = ps — €; inequality (b) follows from
steps (c) and (d) in Eq. (18); inequality (c) follows from the definition of §-tilted probability and
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the fact that Q,,(1)(t) < Qo,(2)(t) £ ... < Qu,(w)(t); inequality (d) follows from the fact that
1L (D)l £ VN(Qo, ) () = Qo (1 (1))- o

Now we are ready to present the proof of Theorem 3.7

Proof of Theorem 3.7: The proof is a direct application of the sufficient conditions for through-
put and heavy-traffic delay optimality, i.e., we need only to show Eq. (7) and Eq. (8) hold.

Fix a load balancing policy p in II. Let us first consider the left-hand-side (LHS) of Eq. (7) with
T-l = T,

th+T-1

LHS? > BHQE).A®R) - S0) | Z(t) = Z]
t=t,
ty+T-1

S Z E[E[(Q(t).A(t) - S(t)) | Z(#)]1Z(to) = Z]
(©) th+T-1 fimin
&Y B[-etmn o) 2w - 2

t=tp

< —eB™m 10|,
Hy

where equation (a) comes from the linearity of condition expectation; equation (b) follows from the
tower property of conditional expectation and the fact that Q(¢), A(t) and S(¢) are conditionally
independent of Z(t;) when given Z(t). inequality (c) follows from Lemma 5.1 since the policy p
adopts a tilted distribution within every time slot for all Z(t). Hence, the condition of Lemma 3.5 is
satisfied and thus policy p is throughput optimal.

Let us now turn to consider the left-hand-side (LHS) of Eq. (8) with T, = T and € < ¢y = 21&%
th+T-1
(a)
LHS = " E[QL(1).A(t) - S(1)) | Z(to) = Z)

t=tp

tp+T-1
QS BEKQL().A®) - S@) | Z()] | Z(ts) = Z]

t=t,

<Y B[VN Q.01 Z(0) = 2] + B

SA
VN 0. ()] ( - F‘) | Z(ts) = z]

21
T = )eVN Q. ()| + ) + ( — %) VN0 (t0)]| - M)
(e—%)\(_HQL(tg)H+\(_M(—+(T 2)6)

© (T —%)\F 10 (to)]| + Ko

" 8
< - VN[0 (t)]| + Ko,

where equation (a) comes from the linearity of condition expectation; equation (b) follows from the
tower property of conditional expectation and the fact that Q, (t), A(t) and S(t) are conditionally
independent of Z(t,) when given Z(t); inequality (c) follows from Lemmas 5.1 and 5.2 since under
policy p € II there exists at least one time slot +* within which at least a d-tilted distribution (or
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one of its equivalent distribution in inner-product is é-tilted) is adopted and for all the other time
slots a tilted distribution is used; inequality (d) follows from the fact | ||Q. (to + T)|| - [|QL(t0)]| | <
= 2TVN max{Amax, Smax) and the fact € — ‘5‘12 < 0 for all € < €; inequality (e) comes from the

fact that \/_M(ME +(T-2)e) <K, = \/_M(‘s‘uE + Tpz), which is independent of €; inequality

(f) holds since € < € and Ay = py — €. Therefore, since both —%\/ﬁ and K are independent of €,
the condition of Lemma 3.6 is satisfied, and hence the policy p is heavy-traffic delay optimal. O

5.2 Proof of Proposition 3.14

Let us first look at assertion 1, i.e., JBT-d is in IT under homogeneous servers. Based on Eq. (15), we
can conclude that for any t > 0, the dispatching distribution is a tilted distribution for all Z(t). We
are left to show that at time slot rT + 1,r € {0, 1,2,. ..}, the dispatching distribution is at least a
d-distribution for some positive §. This is equivalent to finding the maximum value for Py (rT + 1)
and the minimum value of P; (rT + 1) for all queue length states. In fact, they are achieved at the
same time when py is in its largest value based on Eq. (14), which is repeated as follows.

1
Pa(t) = ) pil)-

Then, there are two cases to consider.

(a) At time slot rT + 1, the probability for the event that there are N IDs in memory is equal to 1,
ie, py(rT + 1) = 1, if and only if all the servers have the same queue length at the end of time
slots rT (i.e., sampling slots for updating the threshold), which are also the queue length state at
the beginning of rT + 1, i.e.,, Q(rT + 1). In this case, it can be easily seen that P,(rT + 1) = % for
all n, which is not a §-tilted distribution. However, it is an equivalent distribution in inner-product
to Py(rT +1) = 1and P, = 0 for 2 < n < N as all the queue lengths are equal, which is indeed a
§-distribution.

(b) If the queue lengths are not all equal at the end of time slots rT, then the maximum value for
pn(rT + 1) is strictly less than 1 and it is obtained when the queue length in the state that there
are N — 1 servers that have the same queue length, which is strictly larger than the remaining one.
In this case, by sampling d servers uniformly at random at the end of times slots rT, the probability
for the event that there are N IDs in memory, i.e., py (rT + 1) is given by

nGT+1)=1-p(¢,T+1) = 1—%.

Therefore, we have Py (rT+1) = % Nz and Pp(rT+1) = _Zd for 2 < n < N, which is equivalent
in inner product to PirT +1) = N2 PT+1) = (N=-1) A;Z“' and P,(rT + 1) = 0 for all
3 < n < N as the N — 1 queues have the same queue length. As a result, we have for this state

Z(rT+1)

J‘51(1"3'"-*' 1) = %(1 - %) and ﬁN(rT +1) = —%,

Thus, it is a §-distribution with § = mm{%(l - %), %}, which is the lower bound for §. That is, for
any state Z(rT + 1), the dispatching distribution is at least a §-distribution. Therefore, every T + 1
time slots, there exists one time slot in which the dispatching distribution (or an inner product
equivalent distribution) is at least a §-tilted distribution with § = min{< ~(1- —), N}
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The proof for heterogeneous servers follows exact the same idea with additional care on the
service rate. The probability for the server o;(n) to be selected at time t, i.e., P,(t) is given by

. pi(t)
Pu(t)y=p . .
§ o) ; 2 (jem(t), Im(t)|=i} Hj
From it we can easily see that if A, () = P,(t) — #C:% is positive, then we must have that A,_;(t)

is also positive as it has one more term in the equation above. Therefore, we can find a k between
2 and N such that A,(t) = P,(t) - % > 0foralln < k and A,(t) < 0forall n > k. Therefore,
condition (i) of IT is satisfied.

For the condition (ii), we need to find the maximum value of py (T + 1) to bound §. There are
also two cases as before.

(a) If pn(rT + 1) = 1, then we must have that the queue lengths are all equal at the end of time
slots rT, which is the same as that at the beginning of time slot 7T + 1. In this case, P, (rT+1) = %
for all n. Note that this dispatching distribution is an equivalent distribution in inner-product to
Py(rT+1) = 1and P, = 0for 2 < n < N as all the queue lengths are equal, which is a §-distribution.

(b) If pn (r T + 1) # 1, the maximum value of p; (rT + 1) is obtained when there are N — 1 servers
that have the same queue length, which is strictly larger than the remaining one. In this case, we
have py(rT+1)=1-p(rT+1) =1— % as before. Thus, we can obtain

d d Hoe(1)

PirT+1)=—+(1-—=|—=

T+ =75 ( N) ps

and P,(rT+1)=(1- %)% for 2 < n < N. This is equivalent in inner product to P, (rT + 1) =

Pi(rT+1), (T +1) = 1::2 Po(rT +1) and P,(rT + 1) = 0 forall 3 < n < N since the last N — 1
servers have the same queue lengths. As a result, we have for this Z(rT + 1)

_Hoy(N)

- d ,
MGT+1) = (1— %) and An(rT +1) ===

Thus, it is a §-distribution with § = mjn{%(l - H’L‘;‘ \ p;‘;" }, in which pimax = maxpep pin and
Hmin = MiNze N Hn, Which is the lower bound of §. Hence, for any Z(rT + 1), the dispatching

probability distribution (or its inner product equivalent one) is at least a §-distribution. O

6 CONCLUSION

We introduce a class II of flexible load balancing policies, which are shown to be throughput and
heavy-traffic delay optimal. This class includes as special cases JSQ, power-of-d, and also allows
flexibility in designing other new policies. The JIQ policy, albeit exhibiting a good performance
when the traffic load is not heavy, is not in II since it is not heavy-traffic delay optimal even for
homogeneous servers. A new policy called JBT-d is proposed in the class II, which enjoys the
simplicity of JIQ while guaranteeing heavy-traffic delay optimal. A unified analytic framework
is established to characterize this class of policies by exploring their common characteristics and
provide sufficient conditions that guarantee the heavy-traffic delay optimality. Extensive simulations
are used to demonstrate the good performance and low complexity of the proposed policy compared
to other existing ones.
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A PROOF OF LEMMA 3.5

Before we present the proof of Lemma 3.5, we first introduce two lemmas which will be the
key ingredients in the proof. The first lemma enables us to bound the moments of a stationary
distribution based on drift condition, which can be simplified by the second lemma.

The following lemma is introduced in [18], which is an extension of Lemma 1 in [2] and can be
proved from the results in [7].

LEmmA A.1. For an irreducible aperiodic and positive recurrent Markov chain {X(t),t > 0} overa
countable state space X, which converges in distribution to X, and supposeV : X — R, is a Lyapunov
function. We define the T time slot drift of V at X as

AV(X) := [V(X(to + T)) — V(X (1))} (X(to) = X),
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where I (.) is the indicator function. Suppose for some positive finite integer T, the T time slot drift of
V satisfies the following conditions:

e (C1) There exists any > 0 and a k < oo such that for anyty = 1,2, ... and for all X € X with
V(X) =k,

E[AV(X) | X(to) = X] < —.

o (C2) There exists a constant D < oo such that for allX € X,
P(IAV(X)| < D)= 1.

Then {V (X (t)),t > 0} converges in distribution to a random variable V, and there exists constants
6* > 0 and C* < oo such that E [e‘g‘F] < C*, which directly implies that all moments of random
variable V exist and are finite. More specifically, there exist finite constants {M,,r € N} such that for
each positiver, E [V(Y)'] < M,, where M, are fully determined by x, y and D.

LEmMMA A.2. Foranyt > 0, we have

oGt + DI - IR < Q). A()) - S(t) +K (20)
where K is a finite constant.

Proor. Consider the left-hand-side (LHS) of Eq. (20).

LHS = ||Q(t) + A(t) - S(t) + U@)|* - lo@)II?

o) + A®) - SOIP - [P
= 2(Q(t), A(t) — S(t)) + [A(t) — S(t)|I?

2 20(). Alt) - S(t)) + K

where inequality (a) holds as [max(a, 0)]*> < a® for any a € R;ininequality (b), K 2 N max(Amax, Smax)*
holds due to the assumptions that Ax(#) < Amax and Sp(t) < Spax forallt > 0 and alln € N, and
independent of the queue length. O

We are now ready to prove Lemma 3.5.

Proof of Lemma 3.5: The proof follows from the application of Lemma A.1 to the Markov chain
{Z©)(t),t > 0} with Lyapunov function V(Z€) = "Q(e) and T = T; since m'®) (1) is always finite.
In particular, this proof is completed in two steps, where the superscript (¢) will be omitted for ease
of notations.

(1) First, in order to apply Lemma A.1, we need to show that the Markov chain {Z(t),t > 0} is
irreducible, aperiodic and positive recurrent under the hypothesis of Lemma 3.5. It can be easily
seen that {Z(t),t > 0} is irreducible and aperiodic. Thus, we are left with the task to prove that the
Markov chain is positive recurrent. By the extension of Foster-Lyapunov theorem, it suffices to
find a Lyapunov function and a positive constant T such that the expected T time slot Lyapunov
drift is bounded within a finite subset of the state space and negative outside this subset.
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Consider the Lyapunov function W(Z) := ||Q|]%, and the corresponding expected T; time slot
mean conditional Lyapunov drift under the hypothesis of Lemma 3.5.
E[W(Z(to + T1)) - W(Z(t)) | Z(to)]
=E [[|Q(to + T)I” - [[Q(0)I[* | Z(t0)]

ty+Ty—1

> (llee + DI - Ie@IP) | Z(t)

=t

(21)

f+T1—1

D, QAW = S(1)) +K | Z(to)

=ty

a
<E

(b)
< -2y |lO(to) ]| + 2K; + KTy

where inequality (a) follows from Lemma A .2, and inequality (b) results directly from the hypothesis
inEq. (7). Pickany f > 0andlet B ={Z € § : ||Q|| < %}W} Then 8 is a finite subset of S as
m(t) is finite. Moreover, for any Z € B, the conditional mean drift is less or equal to 2K, + KT;,

and for any Z € B, it is less than or equal to — . This finishes the proof of positive recurrence for
any € > 0, and hence throughput optimal.

(if) Second, in order to show that the hypothesis in Lemma 3.5 also ensures the bounded moments

for the stationary distribution, we will resort to Lemma A.1. Thus, we need to check Conditions
(C1) and (C2), respectively.
For Condition (C1), we have

E[AV(Z) | Z(t) = Z]
=E [0t + Ty)ll - 100l | Z(t0) = Z]

-E [\/ 1QGto + TP = 10| | Z(t) = Z]
(ﬂ)

———E|||Q(t + T to)||”> | Z(to) = Z
<3 "Q(t e Q¢ + TOIF - QI | Z(t0) = Z]
(&) s 2K; + KTy
=T 2w
where inequality (a) follows from the fact that f(x) = 4/x is concave; (b) comes from the upper

bound in Eq. (21). Hence, (C1) in Lemma A.1 is verified.
For Condition (C2), we have

IAV(Z)] = 11000 + Tl - Q)| T (Z(ts) = 2)
10t + T) - ()| T (Z(t0) = 2)
(2) T; VN max (Amay., Smax)

where inequality (a) follows from the fact that | ||x|| — ||y||| < |jx — y]|| holds for any x, y € RV;
inequality (b) holds due to the assumptions that the A (t) < Amax and Sp(t) < Smax forallt > 0and

all n € N, and independent of the queue length. This verifies Condition (C2) and hence complete
the proof of Lemma 3.5. O
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B PROOF OF LEMMA 3.6

We now proceed to prove Lemma 3.6. Before we present the proof, the following lemmas which
serve as useful preliminary steps are first introduced. Denote by Q| and Q, the parallel and
perpendicular components of the queue length vector Q with respect to the line c = =1, i.e,

VN
Qp=(c.Qc  Q.=0-0Q (22)
The following lemma is a natural extension of Lemma 7 in [2] to T time slots.

Lemma B.1. Define the following Lyapunov functions

Vi(Z) = 1Qull. W(2) = ||QII* and Wy(2) = [|Qy]I®
with the corresponding T time-slot drift given by

AVL(Z) := [VL(Z(to + T)) — VL(Z(t0)) L (Z(t0) = Z)

AW(Z) = [W(Z(to + T)) — W(Z(t)) L (Z(10) = Z)

AW|(Z) = [W)(Z(to + T)) — W(Z(10)) L (Z (ko) = Z)
Then, the drift of V. (.) can be bounded in terms of W(.) and W|(.) as follows.

AV, (Z) <

3T AW @ - AW (2)

forallZ € S.
LEmMMA B.2. Foranyt > 0, we have

Qi + DI = [QudI* = 2¢Qy(2), A(2) - S(2))-
Proor.
19yt + D> = [|Qy()I*
=2(Qy(1). Qy(t + 1) — Q1)) + Qi (t + 1) — Q)|
>2(Qq (1), Qy(t + 1) — Q1)
=2(Qy (1), Q(t + 1) = Q(t)) — 2(Qy (1), Qu(t + 1) = Q. (1))

2011, 0(t + 1) - Q1))

®
= 2Qy (1), A(r) — S(£))

where the inequality (a) is true because (Q (), Q. (#)) = 0 and (Q, (¢ + 1), Q) (#)) = 0; (b) follows
from the fact that all the components of Q) (#) and U(t) are nonnegative. o

We are now ready to prove the following result, which is often called state space collapse and is
the key ingredient for establishing heavy traffic delay optimality. It shows that under the hypothesis
of Lemma 3.6, the multi-dimension space for the queue length vector will reduce to one dimension
in the sense that the deviation from the line ¢ is bounded by a constant, which is independent with
the heavy-traffic parameter €.

LemMma B.3. If the assumptions in Lemma 3.6 hold, then we have that Q, is bounded in the sense
that in steady state there exists finite constants {L,,r € N} such that

2[Jo[ )<z
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Proor. It suffices to show that V, (Z) satisfies the Conditions (C1) and (C2) in Lemma A.1. Fix
€ € (0, &), and the superscript will be omitted for simplicity in the following arguments.

(i) For the Condition (C1), let A(#) = [|Q(t + D]~ [|Q(+)I* and Ay (¢) = [|Qy (¢ + DI~ lQu (@)
Then, we have

E[AVL(Z) | Z(to) = Z]

(@ 1
— —_E[AW(Z) - AW(Z) | Z(to) = Z
< STo B AW @) - AWi(2) | Z) = 2]
1 tog+To—1
2]|Qull gt; (t) = Ay(2) | Z(to)
(b) 1 to+Tz—1
= mE & 20, (), A(t) - S(t)) + K | Z(ty) = Z
@ 2Ky + KT,

=T 2ol

where the inequality (a) follows from Lemma B.1; the inequality (b) holds as a result of Lemmas
A.2 and B.2; the inequality (c) follows directly from the assumption in Eq. (8). Hence, the Condition
(C1) is verified.

(ii) For the Condition (C2), we have

AV, (Z)]
=1QL(to + T)l = IQL(t)Il 1T (Z(20) = Z)

€104t + 1) - Qu )| T (Z(t0) = 2)
=1Q(to + Tz) — Qy(to + T2) — Q(to) + Q) (to)|| I (Z(t0) = Z)

(b)
< IO(to + T2) — Q(to)|l + |Qy (to + T2) — Q(t0)l| L (Z (k) = Z)

(c)
<2[|Q(to + T2) — Q(to)|| L (Z(20) = Z)

(d)
< 2T, VN max(A sy, Smax) (23)

where the inequality (a) follows from the fact that | [|x|| — |ly||| < ||x — y|| holds for any x, y € RV;
inequality (b) follows from triangle inequality; (c) holds due to the non-expansive property of
projection to a convex set. (d) holds due to the assumptions that the Ay (t) < Apax and Sp(2) < Smax
forall t > 0 and all n € N, and independent of the queue length. This verifies Condition (C2) and
hence complete the proof of Lemma B.3. O

The following result on the unused service is another key ingredient for establishing heavy-traffic
delay optimal.

Lemma B.4. Foranye > 0 andt = 0, we have
0t + 1)U (t) = 0 and 9 (t + 1)u' () = 0.

If the system has a finite first moment, then we have for some constants ¢, and c,

2
E ["U(E)H ] < cie andE [(ﬁ(e))z] < e
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Proor. According to the queue dynamic in Eq. (1), we can see when U, (t) is positive, Qn(t + 1)
must be zero, which gives the results Q(f)(t + l)U,Ef)(t) =0foralln € N and all t > 0, and the
corresponding result for the resource-pooled system ¢(€) (t + 1)u(€)(t) = 0.

Then, let us consider the Lyapunov function W;(Z(t)) = ||Q(t)||;. In the steady state with a finite
first moment, the mean drift of W (Z(t)) is zero. Then, we have

0=E[Ja®], - st + [7] ]
which directly implies
E ” o' ] = ¢ (24)
1
—(e)|* —(€)
Moreover, due to the fact that U, (t) < Spay foralln € N and t > 0, we have |[U < Smax ||[U
1
2
Therefore, we can conclude that E [”ﬁe)u ] < Smaxe and B [(ﬁ(e))Z] < NSmaxe. |

Now, we are well prepared to prove Lemma 3.6

Proof of Lemma 3.6: First, let us consider the Lyapunov function V;(Z) := ||Q||? and the corre-
sponding conditional mean drift, defined as D;(Z(t)) = E[Vi1(Z(t + 1)) - Vi(Z(t)) | Z(t) = Z].

Then, we have the following equation, in which the time reference (t) will be omitted after the
second step for brevity and Q% := Q(t + 1).

Dy(Z(t))
=E[llQ + DI - QW | Z(t) = Z]
=E [(IQ®)l, + IA@®)II;, = IS@)l, + IU®),)? | Z¢) = Z] ~E [} | Z(t) = Z]
=E [2]|Qll, (1Al = IISI1,) + (1Al = 1SI11)* + 2 ([Qll, + 1Al = IISIly) 1Ull; + 1U1IZ | Z]

=E [2 lOll; (AL = NISIly) + (Al - ||S"1)2 + 2]1Q7l; lull, - ||U||? | Z]
<E [2]Qll; (1Al = ISI,) + (1Al = ISI,)* + 2[|Q*[l; Ul | Z]

(25)

Under the assumptions of Lemma 3.6, there exists a steady-state distribution with finite moments
for any € > 0. Therefore, the mean drift in steady-state is zero, i.e., E [D1 (E(é))] = 0. Therefore,

taking the expectation of both sides of Eq. (25) with respect to the steady-state distribution Z VAN )

yields

2[5 3] < 2 x[Joeo] Jo

where {(€) = (0')(;))2 +vZ + €. For the resource-pooled system, by letting N = 1 in Eq. (25) and
taking the expectation with respect to g'°), we have

(€)
B[79] = 2 +B[q9¢t + 1)u@)] - ]E [@©)?].
Then, based on the property on the unused service in Len:una B.4, we have

(€) (e)
é’ cze <eB [_(E)] <eB Z_(e)] < f _(E) (26)
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where E(e) =E [

[0+ [
1l
Therefore, in order to show heavy-traffic delay optimality, all we need to show is that lim, |o B9 -

0. Note that E(e) can be bounded as follows.
B(e) (a )NE [(U(é)

\/ & ]

where the equality (a) comes from the property fo)(t + l)U,Ef)(t) =0forallne N andallt > 0in
Lemma B.4 and the definition of Q ; the inequality (b) holds due to Cauchy-Schwartz inequality;

the last equality (c) is true since the distributions of 6(;) (t + 1) and ﬁ(f) () are the same in steady
state.

As shown in Lemma B.3, E

=le)

(t),-0(t + 1»]

(b) (e)

]

7€) (e)

< L, holds for all € € (0, ¢y) and some constant L, which

is independent of . Meanwhile, note that E ["ﬁ(e)uz] < c;€ for some ¢; independent of € based on
Lemma B.4. Then, we have for all € € (0, &)

E(E) < N+Jciel, (27)
Therefore, it can be seen from Eq. (27) that lim, |4 ﬁ(e) = 0, which directly implies lim, |, eE [Z n 65‘6)] =

limg o eE [ﬁ(e)] , and thus the proof of Lemma 3.6 is completed. O
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