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Inthfispaper,weestabflfishaunfifiedanaflytficaflfframeworkffordesfignfingfloadbaflancfingaflgorfithmsthatcan
sfimufltaneousflyachfieveflowflatency,flowcompflexfity,andflowcommunficatfionoverhead.Wefirstpropose
ageneraflcflassΠofffloadbaflancfingpoflficfiesandprovethattheyarethroughputoptfimaflandheavy-trafic
deflayoptfimafl.ThfiscflassΠfincfludespopuflarpoflficfiessuchasjofin-shortest-queue(JSQ)andpower-off-das
specfiaflcases,butnottherecentflyproposedjofin-fidfle-queue(JIQ)poflficy.Inffact,weshowthatJIQfisnot
heavy-traficdeflayoptfimaflevenfforhomogeneousservers.Byexpflofitfingtheflexfibfiflfityofferedbythecflass
Π,wedesfignanewfloadbaflancfingpoflficycaflfledjofin-beflow-threshofld(JBT-d),finwhfichthearrfivafljobsare
prefferabflyassfignedtoqueuesthatarenogreaterthanathreshofld,andthethreshofldfisupdatedfinffrequentfly.
JBT-dhasseveraflbenefits:(fi)JBT-dbeflongstothecflassΠandhencefisthroughputoptfimaflandheavy-trafic
deflayoptfimafl.(fifi)JBT-dhaszerodfispatchfingdeflay,flfikeJIQandotherpuflfl-basedpoflficfies,andflowmessage
overheadduetofinffrequentthreshofldupdate.(fififi)ExtensfivesfimuflatfionsshowthatJBT-dhasexceflflentdeflay
perfformance,comparabfletotheJSQpoflficyfinvarfioussystemsettfings.

CCSConcepts:•Mathematficsoffcomputfing→ Queuefingtheory;•Networks→ Networkperfformance
modeflfing;Networkperfformanceanaflysfis;
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1 INTRODUCTION

Loadbaflancfing,whfichfisresponsfibfleffordfispatchfingjobsonparaflfleflservers,fisakeycomponentfin
computernetworksanddfistrfibutedcomputfingsystems.Foraflargenumberoffpractficaflappflficatfions,
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suchas,Webservfice[6],dfistrfibutedcachfingsystems(e.g.,Memcached[13]),flargedatastores
(e.g.,HBase[5]),embarrassfingflyparaflfleflcomputatfions[1]andgrfidcomputfing[4],thesystem
perfformancecrfitficaflflydependsonthefloadbaflancfingaflgorfithmfitempfloys.
Inafloadbaflancfingsystem,therearetwodfirectfionsoffmessageflows:pushmessages(ffromthe
dfispatchertotheservers)andpuflflmessages(ffromtheserverstothedfispatcher).Inapush-based
poflficy,thedfispatcheractfiveflysendsquerymessagestotheserversandwafitsfforthefirresponses;
Inapuflfl-basedpoflficy,thedfispatcherpassfiveflyflfistenstothereportffromtheservers.Thejob
dfispatchfingdecfisfionfisconductedatthedfispatcherbasedonthepuflfl-messagessentffromthe
servers.Push-basedpoflficfies(e.g.,thejofin-shortest-queue(JSQ)poflficy[19],[2]andthepower-off-d
poflficy[10],[17])havebeenshowntobedeflayoptfimaflfintheheavy-traficregfime[2],[9].Recentfly,
thepuflfled-basedpoflficfiessuchasjofin-fidfle-queue(JIQ)[8]andtheequfivaflentonefin[15],have
beenproposed.Comparedwfiththepush-basedpoflficfies,thesepuflfl-basedpoflficfiesnotonflyachfieve
gooddeflayperfformance,butaflsohavesomenficeffeatures,suchas,flowermessageoverhead,flower
computatfionaflcompflexfity,andzerodfispatchfingdeflay.However,asshownfinthesfimuflatfionsoff[8],
thedeflayperfformanceoffexfistfingpuflfl-basedpoflficeswfiflfldegradesubstantfiaflflyasthefloadgets
hfigher.Inffact,asshownfinTheorem3.11offthfispaper,JIQfisnotheavy-traficdeflayoptfimafleven
fforhomogeneousservers.Thereffore,onekeyquestfionfishowtodesfignfloadbaflancfingpoflficfiesthat
areheavy-traficdeflayoptfimaflandmeanwhfiflepossessaflflthenficeffeaturesoffpuflfl-basedpoflficfies
suchaszerodfispatchfingdeflay,flowmessageoverheadandflowcomputatfionaflcompflexfity.
Inthfispaper,wetakeasystematficapproachtoaddressthfisquestfion.Tothatend,themafin

contrfibutfionsoffthfispaperaresummarfizedasffoflflows:

•Wederfivefinner-productbasedsuficfientcondfitfionsfforprovfingthatafload-baflancfingpoflficy
fisthroughputoptfimaflandheavy-traficdeflayoptfimafl.Usfingthesesuficfientcondfitfions,we
obtafinageneraflcflassΠofffloadbaflancfingpoflficfiesthatarethroughputoptfimaflandheavy-
traficdeflayoptfimafl.Thfiscflassofffloadbaflancfingpoflficfiescontafinstheffamous(push-based)
JSQandthepower-off-dpoflficfiesasspecfiaflcases,butnotthe(puflfl-based)JIQpoflficy.
•Ontheotherhand,weshowthatJIQ,whfichfisnotfinΠ,fisnotheavy-traficdeflayoptfimafl
evenfforhomogeneousservers.Whfiflefithasbeenempfirficaflflyshownfinthepastthatthe
deflayusfingJIQfisqufitebadathfighfloads,thequestfionoffwhetherfitwasheavy-traficdeflay
optfimaflfinhomogeneousservershasbeenprevfiousflyflefftunsoflved.Furthermore,ournovefl
Lyapunov-drfifftapproachoffersanewavenuetoshowapoflficyfisnotheavy-traficdeflay
optfimafl.
•ByexpflofitfingthesfignfificantflexfibfiflfityofferedbycflassΠ,weareabfletodesfignanewpoflficy
caflfledJofin-Beflow-Threshofld(JBT-d).Tothebestoffourknowfledge,thfisfisthefirstfload
baflancfingpoflficythatguaranteesheavy-traficdeflayoptfimaflfitywhfifleenjoyfingnficeffeatures
offpuflfl-basedpoflficy,e.g.,zerodfispatchfingdeflay,flowmessageoverheadandflowcomputatfionafl
compflexfity.Throughextensfivesfimuflatfions,wedemonstratethatJBT-dhasexceflflentdeflay
perfformanceffordfifferentsystemsfizesandvarfiousarrfivaflandservficeprocessesoveraflarge
rangeofftraficfloads.

Therestoffthepaperfisorganfizedasffoflflows.Sectfion1.1revfiewsthereflatedworkonfload
baflancfingschemes.Sectfion1.2fintroducesthenecessarynotatfionsfinthepaper.Sectfion2descrfibes
thesystemmodeflandthereflateddefinfitfions.Sectfion3presentsthemafinresufltsoffthepaper.
Inpartficuflar,acflassΠoffflexfibflefloadbaflancfingpoflficfiesarefintroduced,contafinfingasspecfiafl
casesthepopuflarexfistfingonesandmotfivatfingnewones.Suficfientcondfitfionsarederfivedto
guaranteethroughputandheavy-traficdeflayoptfimaflfity.Sectfion4contafinsthesfimuflatfionresuflts
oncomparfingdfifferentpoflficfies,demonstratfingtheperfformanceandsfimpflficfityoffournewpoflficy.
Sectfion5contafinstheprooffsoffthemafinresuflts.
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1.1 Reflatedwork:pushversuspuflfl

Thfissectfionrevfiewsstate-off-the-artfloadbaflancfingpoflficfieswfithaffocusonthesystemperfformance
finheavytrafic.Wegroupthesepoflficfiesmafinflyfintotwocategorfies:push-basedandpuflfl-basedas
shownfinFfig.1.
Push-basedpoflficy:Underapush-basedpoflficy,thedfispatchertrfiesto“push”jobstoservers.

Morespecfificaflfly,uponeachjobarrfivafl,thedfispatchersendsprobfingmessagestotheservers,whfich
ffeedbacktherequfiredfinfformatfionffordfispatchfingdecfisfions,e.g.,queueflengths.Affterrecefivfing
theffeedback,thedfispatchersendsthefincomfingjobstoserversbasedonadfispatchfingdfistrfibutfion.
AcflassficaflexampflefinthfiscategoryfistheJSQpoflficy,underwhfichthedfispatcherquerfiesthequeue
flengthfinfformatfionoffeachserveruponnewjobarrfivafls,andsendsthefincomfingjobstotheserver
wfiththeshortestqueue,wfithtfiesbrokenrandomfly.Ithasbeenshown[19]thatfforhomogeneous
serversthfispoflficyfisdeflayoptfimaflfinastochastficorderfingsenseundertheassumptfionoffrenewafl
arrfivaflandnon-decreasfingffafiflurerateservfice.Intheheavy-traficregfime,fithasbeenprovedthat
fitfisheavy-traficdeflayoptfimaflfforbothheterogeneousandhomogeneousservers[2].Neverthefless,
theperfformanceoffthfispoflficycomesatthecostoffsubstantfiafloverheadasfithastosampflethe
queueflengthsoffaflfltheservers,whfichfisundesfirabflefinflarge-scaflesystems.Toovercomethfis
probflem,anaflternatfivefloadbaflancfingpoflficycaflfledpower-off-dhasbeenfintroduced[10],[17];
seeaflsoreflatedworks[20],[16].Underthfispoflficy,thedfispatcherroutesaflflthefincomfingjobs
totheserverthathastheshortestqueueflength,wfithtfiesbrokenrandomfly,outoffthedservers
sampfledunfifformflyatrandom.Thfispoflficyhasaflsobeenshowntobeheavy-traficoptfimaflffor
homogeneousservers[9].However,fforheterogeneousservers,thepower-off-dpoflficyfisnefither
throughputoptfimafl,nordeflayoptfimaflfinheavytrafic.
Puflfl-basedpoflficy:Underapuflfl-basedpoflficy,theserversspontaneousflysendmessagesto“puflfl”

jobsffromthedfispatcheraccordfingtoafixedpoflficy.OnefiflflustratfiveexampflefistheJIQpoflficy[8]
andtheequfivaflentonefin[15].UndertheJIQpoflficy,eachserversendsapuflflmessagetothe
dfispatcherwheneverfitbecomesfidfle.Uponjobarrfivafls,thedfispatchercheckstheavafiflabflepuflfl
messagesfinmemory.Iffsuchmessagesexfist,fitremovesoneunfifformflyatrandom,andsendsthe
jobstothecorrespondfingserver.Otherwfise,thenewjobswfiflflbedfispatchedunfifformflyatrandom
tooneofftheserversfinthesystem.Thfispoflficyhasseveraflffavorabflepropertfies.Themostfimportant
propertyfisthattherequfirednumberoffmessagesfinsteady-statefisatmostonefforeachjobarrfivafl,
whfichfissmaflflerthanthe2doffthepower-off-d-chofices(dfforqueryanddfforresponseperjob).
However,asaflreadyshownfin[8],whenthefloadbecomesheavy,theperfformanceoffJIQkeeps
empfirficaflflydegradessubstantfiaflfly,andfinffact,finTheorem3.11weshowthatfitfisnotheavytrafic
deflayoptfimaflevenfforhomogeneousservers.

1.2 Notatfions

WeusebofldffacefletterstodenotevectorsfinRNandordfinaryflettersfforscaflers.DenotebyQ
therandomvectorwhoseprobabfiflfitydfistrfibutfionfisthesameasthesteady-statedfistrfibutfionoff
{Q(t),t≥0}.ThedotproductfinRNfisdenotedby⟨x,y⟩:= N

fi=1xfiyfi.Foranyx∈R
N,thefl1

normfisdenotedby∥x∥1:=
N
n=1|xn|andfl2normfisdenotedby∥x∥:=

√
⟨x,x⟩.Theparaflflefland

perpendficuflarcomponentoffthequeueflengthvectorQwfithrespecttoavectorcwfithunfitnormfis
denotedbyQ∥:=⟨c,Q⟩candQ⊥:=Q−Q∥,respectfivefly.

2 MODELANDDEFINITIONS

ThfissectfiondescrfibesageneraflmodeflfforthefloadbaflancesystemsasshownfinFfig.1,andfintroduces
necessarydefinfitfions.
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Ffig.1.Systemmodefloffgeneraflfloadbaflancfing.(a)Forpush-basedpoflficy,wehavem(t)=∅fforaflfltsfince
fitdoesnotrequfireanymemory.Themessageexchangefisbfidfirectfionafl:probfingffromthedfispatcherand
ffeedbackmessagesffromservers.(b)Forpuflfl-basedpoflficy,m(t)storestheIDofftheserversthatsatfisffya
certafincondfitfionattfimet.Themessageexchangefisunfidfirectfionafl,fi.e.,thereonflyexfiststhepuflfl-message
thatfissentffromtheserverstothedfispatcher.

2.1 ModeflDescrfiptfion

Consfideratfime-sflottedfloadbaflancfingsystem,wfithonecentrafldfispatcherandNparaflfleflservers.
TheseserversarefindexedbyfitsIDn=1,2,...,N.EachservernfisassocfiatedwfithaFIFO(first-fin,
first-out)queueoffflengthQn(t)atthebegfinnfingofftfimesflott,t=0,1,2,....Thus,weusefindexn
torepresentboththeserverandtheassocfiatedqueue.Onceajobjofinsaqueue,fitwfiflflremafinfin
thatqueueuntfiflfitsservficefiscompfleted.

Assumptfion1(ArrfivaflProcess).LetAΣ(t)andAn(t)denotethenumberoffexogenousjobarrfivafls
andthenumberoffarrfivaflsroutedtoqueuenattfimesflott,respectfivefly.Weassumethataflflthe
exogenousarrfivaflsattfimetareroutedtooneseflectedqueues,usfingthestandardmodeflasfin
[2],[9],fi.e.,As(t)=AΣ(t),s∈N={1,2,...,N}andAfi(t)=0,fforaflflfi∈N\{s}.Thejobarrfivafl
process{AΣ(t),t≥0}fisanonnegatfivefintegervafluedstochastficprocessthatfisfi.fi.dacrosstfimet,
wfithmeanE[AΣ(t)]=λΣandvarfianceVar(AΣ(t))=σ

2
Σ.Weffurtherassumethatthenumberoff

exogenousarrfivaflsateachtfimesflotfisboundedbyaconstant,fi.e.,AΣ(t)≤Amax<∞fforaflflt≥0.

Assumptfion2(ServficeProcess).LetSn(t)denotethepotentfiaflservficeofferedtoqueuenattfime
t,whfichrepresentsthemaxfimumnumberoffjobsthatcanbeservedfintfimesflott.Thereffore,
fifftheofferedservficeSn(t)fisflargerthanthenumberoffpendfingjobsfinqueuenattfimesflott,
fitwfiflflcauseanunusedservficeUn(t),asdefinedfin(1).Foreachn,theprocess{Sn(t),t≥0}
fisanonnegatfivefintegervafluedfi.fi.d.stochastficprocesswfithmeanE[Sn(t)]=µnandvarfiance
Var(Sn(t))=ν

2
n.Moreover,λΣ<

N
fi=1µn.Furthermore,theprocesses{Sn(t),t≥0},n∈Nare

mutuaflflyfindependentacrossdfifferentqueues,whfichareaflsofindependentoffthearrfivaflprocesses.
TheofferedservficeSn(t)toeachqueuefisunfifformflyboundedbyaconstant,fi.e.,Sn(t)≤Smax<∞
fforaflflt≥0andaflfln∈N.

LetQ(t)={Q1(t),...,QN(t)}bethequeueflengthsobservedatthebegfinnfingofftfimet.Define
m(t)tobethesetoffserverIDsstoredfinthedfispatcheratthebegfinnfingofftfimesflott.Ingenerafl,
thedfispatchermakesthedecfisfionoffAn(t)basedon(Q(t),m(t))fforeachtfimesflott.Thfisfincfludes
thecasesthatthedfispatchfingdecfisfiondependsonflyonQ(t)(e.g.,JSQ),partfiaflfinfformatfionoff
Q(t)(e.g.,power-off-d)oronflyonm(t)(e.g.,JIQ).Ineachtfimesflot,thequeuefingdynamficsevoflves
accordfingtotheffoflflowfingprocedure.Thejobarrfivaflsoccuratthebegfinnfingofftfimesflott.Then,the
dfispatchfingdecfisfionAn(t)fisseflectedbasedon(Q(t),m(t)).Further,theroutedjobsareprocessed
bytheaflflocatedservers.Thus,thequeuefingdynamficsfisgfivenbytheffoflflowfingequatfion,
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Qn(t+1)=[Qn(t)+An(t)−Sn(t)]

=Qn(t)+An(t)−Sn(t)+Un(t),
(1)

where [x]+=max(0,x),Un(t)=max(Sn(t)−Qn(t)−An(t),0)denotes the unused servfice off queue
n.

2.2 Defffinfitfions

The fload baflancfing system fis modefled as a dfiscrete-tfime Markov chafin{Z(t)=(Q(t),m(t)),t≥
0}wfith state spaceZ, usfing queue flength vectorQ(t)together wfith the memory statem(t).
We consfider a system{Z(ϵ)(t),t≥0}parameterfized byϵ, fi.e., the exogenous arrfivafl process fis

{A(ϵ)Σ (t),t≥0}wfithλ
(ϵ)
Σ =μΣ−ϵ= nμn−ϵ. That fis, we useϵto findficate the dfistance off arrfivafl

rate to the capacfity boundary, and fit fis aflso adopted as a superscrfipt to represent the correspondfing
random varfiabfles and processes.

Definfitfion 2.1 (Stabfiflfity).{Z(ϵ)(t),t≥0}fis safid to be stabfle fiff we have

flfim sup
C→∞

flfim sup
t→∞

P
n

Q(ϵ)n (t)>C =0.

A fload baflancfing poflficy fis safid to be throughput optfimafl fiff fit stabfiflfizes the system under any
arrfivafl rate fin the capacfity regfion. Sfince the capacfity regfion fin our modefl fis sfimpflyλΣ<μΣ, the
definfitfion off throughput optfimaflfity fis gfiven as ffoflflows.

Definfitfion 2.2 (Throughput Optfimaflfity).A fload baflancfing poflficy fis safid to be throughput optfimafl
fiff fit stabfiflfizes{Z(ϵ)(t),t≥0}ffor anyϵ>0.

For the definfitfion off heavy-trafic deflay optfimaflfity, we need the ffoflflowfing definfitfion and property.

Definfitfion 2.3 (Resource-poofled System).A sfingfle-server FCFS (first-come, first-serve) system
{q(ϵ)(t),t≥0}fis safid to be the resource-poofled system wfith respect to{Z(ϵ)(t),t≥0}, fiff fits arrfivafl

and servfice process satfisffya(ϵ)(t)=A(ϵ)Σ (t)ands(t)= Sn(t)ffor aflflt≥0. Then, we have

Eq(ϵ)(t)≤E Q(ϵ)n (t), (2)

ffor aflflt≥0 andϵ>0.

In words, a resource-poofled system fis a system that merges the totafl resource offNservers and
queues to a sfingfle server wfith a sfingfle queue. Eq.(2)hoflds due to the ffact ffor anyt, the overaflfl
arrfivafls to the resource-poofled system and to fload baflancfing system are the same, and the overaflfl
servfice fin the resource-poofled system fis stochastficaflfly flarger than the overaflfl servfice fin the fload
baflancfing system. Thfis fis due to the ffact that the jobs fin fload baflancfing system cannot be moved
ffrom one queue to another, whfich offten resuflts fin a strfict finequaflfity fin Eq.(2). However, fin the
heavy-trafic regfime, thfis flower bound can be achfieved under some poflficy fin an asymptotfic sense
as defined fin the next definfitfion, and hence based on Lfittfle’s flaw thfis poflficy achfieves the mfinfimum
average deflay off the system.

Definfitfion 2.4 (Heavy-trafic Deflay Optfimaflfity).A fload baflancfing poflficy fis safid to be heavy-trafic
deflay optfimafl fiff the statfionary workfload off{Z(ϵ)(t),t≥0}under aflfl the arrfivafl and servfice processes
fin Assumptfions1and2, satfisfies1

1Assume(σ
(ϵ)
Σ )

2converges to a constant.
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flfim
ϵ↓0
ϵE
⎡⎢⎢⎢⎢⎣n
Q
(ϵ)
n

⎤⎥⎥⎥⎥⎦
=flfim
ϵ↓0
ϵEq(ϵ), (3)

whereQfis the random vector whose probabfiflfity dfistrfibutfion fis the same as the steady-state
dfistrfibutfion off{Q(t),t≥0}.

Remark 1.Based on the definfitfion above, fin order to show a poflficy, sayP1, fis not heavy-trafic

deflay optfimafl, fit fis suficfient to find a cflass off{A(ϵ)Σ (t)}and{Sn(t)}such that Eq.(3)does not hofld.
In other words, there exfists a cflass off arrfivafl and servfice processes ffor whfich poflficyP1cannot
achfieve the flower bound (fi.e., the resource-poofled system) whfifle JSQ can (sfince fit fis heavy-trafic
deflay optfimafl).

3 MAIN RESULTS

In thfis sectfion, we fintroduce a cflassΠoff fload baflancfing poflficfies whfich are proven to be deflay-
optfimafl fin the heavy-trafic regfime. Popuflar fload baflancfing poflficfies, such as JSQ and power-off-d,
are specfiafl cases finΠ; but the JIQ poflficy does not beflong toΠas we wfiflfl show fin Theorem3.11
that fit fis not heavy-trafic deflay optfimafl. In order to fimprove the deflay perfformance off JIQ whfifle
mafintafinfing fits flow message overhead and sfimpflficfity, we deveflop a new fload baflancfing poflficy
named jofin-beflow-threshofld (JBT-d), whfich fis heavy-trafic deflay-optfimafl as we can show JBT-dfis
finΠand has a flow message overhead sfimfiflar to JIQ.

3.1 The Cflass off Load Baflancfing PoflficfiesΠ

Let us denotep(t)=(p1(t),...,pN(t)), wherepn(t)fis the probabfiflfity that the new arrfivafls fin tfime
sflottare dfispatched to queuensuch that N

n=1pn(t)=1. We consfider a cflass off fload baflancfing
poflficfies fin whfichp(t)fis a ffunctfion off the system stateZ(t)={Q(t),m(t)}. Consfider a permutatfion
σt(·)off(1,2,...,N)that satfisfiesQσt(1)(t)≤Qσt(2)(t)≤...≤Qσt(N)(t)ffor aflflt, fi.e., the queues are
sorted accordfing to an fincreasfing order off the queue flengths fin tfime sflottwfith tfies broken randomfly.
DefineP(t)=(P1(t),...,PN(t))such thatP(t)fis a permutatfion offp(t)wfithPn(t)=pσt(n)(t). Let

Δn(t)=pσt(n)(t)−μσt(n)/μΣ

=Pn(t)−μσt(n)/μΣ. (4)

Definfitfion 3.1 (Equfivaflence fin finner-product).A dfispatchfing dfistrfibutfionP̂(t)fis safid to beequfiva-
flent to another dfispatchfing dfistrfibutfionP(t)fin finner product,fiff

n

Qσt(n)Δn(t)=
n

Qσt(n)̂Δn(t), (5)

or equfivaflentfly, fiff

n

Qσt(n)Pn(t)=
n

Qσt(n)̂Pn(t). (6)

The equfivaflence between(5)and(6)ffoflflows fimmedfiatefly ffrom(4). Intufitfivefly speakfing, a fload-
baflancfing poflficy fis ‘good’ fiff the finner product betweenQσt(t)andP(t)fis as smaflfl as possfibfle such
that more packets are dfispatched to shorter queues. IffP(t)fis equfivaflent tôP(t)fin finner-product,
we can repflaceP̂(t)byP(t)wfithout affectfing the property off the poflficy fin heavy-trafic regfime,
whfich wfiflfl be expflafined fin detafifls flater.
The ffoflflowfing definfitfions enabfle us to dfistfingufish dfifferent fload baflancfing poflficfies based onP(t)
or equfivaflentflyΔ(t):
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Ffig. 2.Iflflustratfions off tfiflted dfistrfibutfion,δ-tfiflted dfistrfibutfion, and equfivaflence fin finner-product.

Definfitfion 3.2 (Tfiflted dfistrfibutfion).A dfispatchfing dfistrfibutfionP(t)fis safid to betfiflted, fiff there
exfistsk∈{2,...,N}such thatΔn(t)≥0 ffor aflfln<kandΔn(t)≤0 ffor aflfln≥k.

Definfitfion 3.3 (δ-tfiflted dfistrfibutfion).A dfispatchfing dfistrfibutfionP(t)fis safid to beδ-tfiflted, fiff (fi)
P(t)fis tfiflted and (fifi) these exfists a constantδ>0 such thatΔ1(t)≥δandΔN(t)≤−δ.

Some exampfles are presented fin Ffig.2to ffacfiflfitate the understandfing off tfiflted dfistrfibutfion,δ-tfiflted
dfistrfibutfion, and equfivaflence fin finner-product. Ffig.2(a)-(ff) fiflflustrate sfix dfispatchfing dfistrfibutfions
P(t). The queue stateQ(t)fis gfiven by (fi) or (fifi). The servfice rates areμA=μB=μC=μD=1 such
thatμfi/μΣ=1/4 fforfi=A,B,C,D. By dfirect computatfion, one can obtafin thatPn(t)fis tfiflted fin
scenarfio (a), (b), (d), (e), and (ff), and fisδ-tfiflted fin scenarfio (d), (e), and (ff). IffQ(t)fis fin the State (fi),
there fis no tfie fin the queue flength and hence the permutatfionσt(·)fis unfique, whfich means that
P(t)fis ffuflfly determfined byp(t).IffQ(t)fis fin the State (fifi), aflfl queue flengths are equafl and hence
the permutatfionσt(·)fis non-unfique, whfich means thatP(t)fis determfined by bothp(t)andσt(·).
In thfis case, however, the finner product betweenQσt(t)andP(t)fis 1 fin aflfl (a)-(ff), and hence the
dfispatchfing dfistrfibutfionsP(t)fin (a)-(ff) are mutuaflfly equfivaflent fin finner product. For exampfle, fin
thfis case even thoughP(t)fin (c) fis nefither tfiflted norδ-tfiflted, fit fis equfivaflent fin finner product to
P(t)fin (d) whfich fis both tfiflted andδ-tfiflted.
From the perspectfive off heavy-trafic deflay perfformance, tfiflted dfistrfibutfion fis a dfispatchfing
dfistrfibutfion that fis not worse than random routfing andδ-tfiflted dfistrfibutfion fis a dfispatchfing
dfistrfibutfion that fis strfictfly better than random routfing. In addfitfion, the equfivaflence fin finner-
product aflflows us to transffer a tfiflted dfispatchfing dfistrfibutfion to aδ-tfiflted dfispatchfing dfistrfibutfion
when there are tfies fin queue flengths, that fis, fit aflflows to merges probabfiflfity finP(t)ffrom flonger
queues to shorter queues wfithout changfing the finner product.
We now fintroduce a cflass off fload baflancfing aflgorfithmsΠbased on the property offP(t)or fits

equfivaflent dfistrfibutfions fin finner product.
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Definfitfion 3.4.A fload baflancfing poflficy fis safid to beflong to cflassΠfiff fit satfisfies the ffoflflowfing two
condfitfions:

(fi)P(t)or one off fits equfivaflent dfistrfibutfions fin finner product fis tfiflted ffor aflflZ(t)andt≥0.
(fifi)For some finfite posfitfive constantsTandδthat both are findependent offϵ, there exfists a tfime
sflottk∈{kT,kT+1,...,(k+1)T−1}ffor eachk∈Nsuch thatP(tk)or one off fits equfivaflent
dfistrfibutfions fin finner product fisδ-tfiflted ffor aflflZ(tk).

In the sequefl, we wfiflfl show that any poflficy finΠsatfisfies the ffoflflowfing two suficfient condfitfions
ffor throughput and heavy-trafic deflay optfimaflfity, whfich are obtafined vfia the Lyapunov-drfifft based
approach devefloped fin [2].

Lemma 3.5.Iff there exfistT1>0,K1≥0, andγ>0such that ffor aflflt0=1,2,..., aflflZ∈Zand
λΣ<μΣ

E
⎡⎢⎢⎢⎢⎣

t0+T1−1

t=t0

Q(t),A(t)−S(t)|Z(t0)=Z
⎤⎥⎥⎥⎥⎦
≤−γQ +K1, (7)

then the system fis throughput-optfimafl. Moreover, the statfionary dfistrfibutfion off the queuefing system
has bounded moments, fi.e., there exfist finfiteMrsuch that ffor aflflϵ>0andr∈N

E Q
(ϵ)r

≤Mr.

Prooff. See AppendfixA.

Lemma 3.6.Under the assumptfions off Lemma3.5, fiff there ffurther exfistT2>0,K2≥0andη>0
that are findependent offϵ, such that ffor aflflt0=1,2,...and aflflZ∈Z

E
⎡⎢⎢⎢⎢⎣

t0+T2−1

t=t0

Q⊥(t),A(t)−S(t)|Z(t0)=Z
⎤⎥⎥⎥⎥⎦
≤−ηQ⊥ +K2 (8)

hoflds ffor aflflϵ∈(0,ϵ0),ϵ0>0, whereQ⊥=Q−Q,ccfis the perpendficuflar component offQwfith
respect to the flfinec= 1√

N
(1,1,...,1), then the system fis heavy-trafic deflay optfimafl, fi.e.,

flfim
ϵ↓0
ϵE
⎡⎢⎢⎢⎢⎣n
Q
(ϵ)
n

⎤⎥⎥⎥⎥⎦
=flfim
ϵ↓0
ϵEq(ϵ).

Prooff. See AppendfixB.

Remark 2.Note that these two suficfient condfitfions dfistfiflfled ffrom the Lyapunov-drfifft based
approach not onfly provfide a unfified approach ffor throughput and heavy-trafic optfimaflfity anaflysfis,
but aflso enabfle us to abstract a cflass off heavy-trafic deflay optfimafl poflficfies. In partficuflar, usfing
Lemma3.5and Lemma3.6, we are abfle to prove the mafin resuflt off thfis paper.

Theorem 3.7.Any fload baflancfing poflficy finΠfis throughput optfimafl and heavy-trafic deflay
optfimafl.

Prooff sketch off Theorem3.7.The finsfight ffor a poflficy finΠto satfisffy the suficfient condfitfion
fin Eq.(7)fis that under tfiflted dfispatchfing dfistrfibutfion the perfformance fis no worse than random
dfispatchfing. Thfis ffoflflows ffrom the ffoflflowfing property off tfiflted dfistrfibutfion

N

n=1

Qσt(n)(t)Δn(t)≤0. (9)
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The equaflfity fis obtafined when aflflΔn(t)fis zero, whfich fis the case off random dfispatchfing as shown
fin (b) off Ffig.2. Note that ffor aflfl other cases off a tfiflted dfistrfibutfion, Eq.(9)fis strfictfly fless than zero.
Thfis fis true sfince N

n=1Δn(t)fis aflways zero and the permutatfion fis fin the non-decreasfing order off
the queue flength.
The fintufitfion ffor a poflficy finΠto satfisffy the suficfient condfitfion fin Eq.(8)fis that the perfformance

under anyδ-tfiflted dfispatchfing dfistrfibutfion fis strfictfly better than random dfispatchfing, under whfich
the term fin Eq.(8)fis 0 ffor homogeneous servers and off orderϵffor heterogeneous servers. Note
that under aδ-tfiflted dfistrfibutfion, we have

N

n=1

Qσt(n)(t)Δn(t)≤−δ(Qσt(N)(t)−Qσt(1)(t). (10)

Thfis finequaflfity comes ffrom the definfitfion off theδ-tfiflted dfistrfibutfion and ffact that the permutatfion
fis fin the non-decreasfing order off the queue flength. In order to have the term offQ⊥, the ffoflflowfing
finequaflfity woufld be qufite useffufl

Q⊥(t)≤
√
N(Qσt(N)(t)−Qσt(1)(t)). (11)

Thfis fis true sfinceQ⊥(t)=Q(t)−Q(t)=Q(t)−
Qn(t)
N 1=Q(t)−Qavg(t)1, fin whfichQavg(t)fis

the average queue flength among theNservers at tfime sflott.
The detafifls off the prooff are presented fin Sectfion5.1.

From Eqs.(9)and(10), fit can be seen that the fimportant property off a gfiven poflficy fis ffuflfly
characterfized by the finner product offQσt(t)andΔ(t)under the system stateZ(t), whfich fis
actuaflfly the motfivatfion to define equfivaflent dfistrfibutfion fin finner product. That fis, even though
the dfispatchfing dfistrfibutfionP(t)fis not unfique when there are tfies fin queue flengths, the finner
product fis actuaflfly the same fiff two dfispatchfing dfistrfibutfions are equfivaflent fin finner product, hence
preservfing the same property fin heavy-trafic regfime.
Note that cflassΠfis suficfient but not necessary ffor heavy-trafic deflay optfimaflfity. Neverthefless,
fin the next sectfion, we wfiflfl show that fit not onfly contafins many weflfl-known heavy-trafic deflay
optfimafl poflficfies but aflso aflflows us to desfign new heavy-trafic deflay optfimafl poflficfies whfich enjoy
nfice ffeatures off puflfl-based poflficfies.

3.2 Important Poflficfies finΠ

3.2.1 Jofin-shortest-queue (JSQ) poflficy.Under JSQ poflficy, aflfl the fincomfing jobs are dfispatched to
the queue that has the shortest queue flength, tfies are broken unfifformfly at random, out off aflfl the
servers.

Proposfitfion 3.8.The JSQ poflficy beflongs toΠ, and hence fis throughput optfimafl and heavy-trafic
deflay optfimafl.

The resuflt that JSQ fis throughput and heavy trafic deflay optfimafl has been first proven vfia
dfiffusfion flfimfits ffor two servers fin [3] and vfia Lyapunov-drfifft argument fforNservers fin [2]. Here,
we present another sfimpfle prooff based on our mafin resuflt.

Prooff.Note that when there are no tfies fin queue flengths, the dfispatchfing dfistrfibutfionP(t)
under JSQ satfisfies that ffor aflflt

P1(t)=1 andPn(t)=0,2≤n≤N. (12)

In other words, aflfl the arrfivafls are dfispatched to the shortest queue, whfich fis aflways the queue
σt(1)fiff there are no tfies fin queue flengths. Iff there are tfies fin queue flengths, thfisP(t)fis equfivaflent fin
finner product to other dfispatchfing dfistrfibutfion under the stateZ(t)fin whfich tfies exfist. In partficuflar,
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fiff there arem≤Nqueues that aflfl have the shortest queue flength, then fin thfis case by random
routfing the dfispatchfing dfistrfibutfion under JSQ fis gfiven bŷPfi=

1
m ffor aflfl 1≤fi≤m, and̂Pfi=0

ffor aflflfi>m. It can be seen thatP(t)fin Eq.(12)fis equfivaflent fin finner product tôP(t)accordfing to
the definfitfion becauseQσt(1)=Qσt(2)=...=Qσt(m). Thus, ffor aflflZ(t), under JSQ the dfispatchfing
dfistrfibutfion or fits equfivaflent dfistrfibutfion fin finner product fis fin the fform off Eq.(12). Hence, we have
Δ1(t)=1−μσt(1)/μΣ>0, andΔn(t)=−μσt(n)/μΣ<0 ffor aflfl 2≤n≤N, whfich fimpflfies thatP(t)
fis aδ-tfiflted dfistrfibutfion wfithδ=μmfin/μΣffor aflflZ(t),t≥0, whereμmfin =mfinn∈Nμn. Thereffore,
the JSQ poflficy fis contafined fin the cflassΠunder both heterogeneous and homogeneous servers.

3.2.2 The power-off-dpoflficy.Under the power-off-dpoflficy, aflfl the fincomfing jobs are dfispatched
to the queue that has the shortest queue flength, tfies are broken unfifformfly at random, out offd≥2
servers, whfich are chosen unfifformfly at random.

Proposfitfion 3.9.The power-off-dpoflficy beflongs toΠunder homogeneous servers, and hence fis
throughput-optfimafl and heavy-trafic deflay optfimafl.

The power-off-dpoflficy has been proven to be heavy-trafic deflay optfimafl vfia Lyapunov drfifft
condfitfion fin [9]. Here, we wfiflfl present another prooff based on our mafin resuflt.

Prooff.Note that when there are no tfies fin queue flengths, the dfispatchfing dfistrfibutfionP(t)
under the power-off-dpoflficy satfisfies that ffor aflflt≥0

Pn(t)=
N−n

d−1

N

d
,1≤n≤N−d+1, (13)

andPn(t)=0, ffor aflfln>N−d+1. Thfis comes ffrom the ffact that aflfl arrfivafls are dfispatched to
the queue wfith shortest queue flength amongdunfifformfly randomfly sampfled servers. Thus, fiff the
queueσt(n)fis the one wfith shortest queue flength amongdsampfles, the remafinfingd−1 sampfles
must come ffrom queuesσt(n+1),σt(n+2),...σt(N)fiff aflfl the queue flengths are dfifferent finZ(t).
Iff there are tfies fin queue flengths, fit can be easfifly shown that thfisP(t)fis equfivaflent fin finner product
to other dfispatchfing dfistrfibutfions under any gfivenZ(t)fin whfich there are tfies fin queue flengths.
Thus, ffor aflflZ(t), the dfispatchfing dfistrfibutfion or fits equfivaflent dfistrfibutfion fin finner product under
the power-off-dpoflficy can be ffuflfly determfined by Eq.(13). SfincePn(t)fis decreasfing andμσt(n)=μ

under homogeneous servers,P(t)fis a tfiflted dfistrfibutfion. Note thatΔ1(t)=
d−1
N andΔN(t)=−

1
N.

As a resuflt,P(t)fis aδ-tfiflted dfistrfibutfion wfithδ=1
N ffor aflflZ(t), whfich fimpflfies that power-off-d

poflficy fis fincfluded fin the cflassΠffor homogeneous servers.

3.2.3 Jofin-fidfle-queue poflficy fis not finΠ.Now we wfiflfl show that the JIQ poflficy fis not contafined
fin the cflassΠbecause fit fis fin ffact not heavy-trafic deflay optfimafl fin homogeneous servers. For the
heterogeneous case, fit fis weflfl-known that JIQ fis not heavy-trafic deflay optfimafl sfince fit fis not even
throughput optfimafl ffor a fixed number off servers [15]. However, ffor the homogeneous case, fit fis stfiflfl
open whether fit fis heavy-trafic optfimafl ffor a fixed number off servers, aflthough fit has been shown
to be heavy-trafic optfimafl when the number off servers goes to finfinfity fin the Haflfin-Whfitt regfime
[12]. It turns out that when the number off servers fis fixed, there exfists a cflass off arrfivafl process,
under whfich the deflay perfformance off JSQ fis strfictfly better than that off JIQ fin the heavy-trafic
flfimfit. More specfificaflfly, as shown fin the prooff off Theorem3.11, ffor a cflass off arrfivafl process, the
deflay under JIQ cannot achfieve the common flower bound (fi.e., the resource-poofled system), whfifle
JSQ can, whfich fimpflfies that JIQ fis not heavy-trafic deflay optfimafl ffor homogeneous case.
In partficuflar, we consfider the two-server case wfith constant servfice process wfith rate 1. We are

abfle to find a cflass off arrfivafl process such that Eq.(3)under JIQ does not hofld. Let us first fintroduce
the cflass off arrfivafl processA.
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Tabfle 1. Summary off fload baflancfing poflficfies

Poflficy Message
Throughput-Optfimafl Heavy-trafic Deflay-Optfimafl

Homogeneous Heterogeneous Homogeneous Heterogeneous
Random 0

√
× × ×

JSQ [2] 2N
√ √ √ √

Power-off-d[9], [10] 2d
√

×
√

×
JIQ[15], [8] ≤1

√
× × ×

JBT-d ≤N+2dT +1
√

×
√

×

JBTG-d ≤N+2dT +1
√ √ √ √

*The message rate ffor JBT-dand JBTG-dfin thfis tabfle fis just a crude upper bound. When the new threshofld fis flarger

than the ofld one, there fis no need ffor the servers that are aflready recorded fin memory to resend puflfl-messages.

Definfitfion 3.10.An arrfivafl processAΣ(t)fis safid to beflong toAfiff

(fi)P(A(ϵ)Σ (t)=0)=p0, whfichp0fis a constant findependent offϵ.

(fifi)(σ(ϵ)Σ )
2approaches a constantσ2Σwhfich satfisfies thatσ

2
Σ>8/p0−4.

More concretefly, we are abfle to show the ffoflflowfing resuflt.

Theorem 3.11.JIQ fis not heavy-trafic deflay optfimafl fin a fload baflancfing system consfistfing off two
homogeneous servers.

Prooff. The prooff fis reflegated to the technficafl report [21].

3.3 Desfignfing New Poflficfies finΠ

It has been shown fin the flast sectfion that the state-off-art push-based poflficfies, e.g., JSQ and power-
off-d, are aflfl fincfluded finΠ. Recaflfl that, both off them need to sampfle the queue flength finfformatfion
upon each new arrfivafl, whfich dfirectfly resuflts fin the ffoflflowfing two probflems.

(a)The message exchange rate between dfispatcher and servers fis hfigh, especfiaflfly ffor jofin-shortest-
queue.

(b)Each arrfivafl has to wafit ffor compfletfion off the message exchange beffore befing dfispatched, whfich
fincreases the actuafl response tfime ffor each job.

To resoflve the probflem, the puflfl-based poflficfies, jofin-fidfle-queue (JIQ) fin [8] and an equfivaflent
aflgorfithm caflfled PULL fin [15] are proposed, whfich have been shown to enjoy flow message rate (at
most one message per job) and have a better perfformance than the power-off-dpoflficy ffrom flfight to
moderate floads. However, as shown vfia numerficafl resuflts fin [8] and the prooff off Theorem3.11fin
thfis paper, when the fload becomes hfigh, the perfformance off JIQ fis much worse than the power-off-d
poflficy, whfich motfivates us to desfign poflficfies that enjoy flow message rates, whfifle stfiflfl guaranteefing
throughput and heavy-trafic deflay optfimaflfity.

Definfitfion 3.12.Jofin-beflow-threshofld-d(JBT-d) poflficy fis composed off three components:

(1)A threshofld fis updated everyTunfits off tfime by unfifformfly at random sampflfingdservers, and
takfing the shortest queue flength among thedservers as the new threshofld.

(2)Each server sends fits ID to the dfispatcher when fits queue flength fis not flarger than the
threshofld ffor the first tfime.

(3)Upon a new arrfivafl, the dfispatcher checks the avafiflabfle IDs fin the memory. Iff they exfist, fit
removes one unfifformfly at random, and sends aflfl the new arrfivafls to the correspondfing server.
Otherwfise, aflfl the new arrfivafls wfiflfl be dfispatched unfifformfly at random to one off the servers
fin the system.
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Tobemorespecfific,weexpflafintheconnectfionsoffthethreecomponentsasffoflflows.Atthe
begfinnfingoffeachtfimesflot,thedfispatcherfimmedfiateflyroutesthenewarrfivaflstoaserveronfly
basedonfitsmemorystate,fi.e.,nosampflfing.IffthereareavafiflabfleIDsfinmemory,fitremovesone
unfifformflyatrandomandsendsthenewflyarrfivedjobstothecorrespondfingserver.Otherwfise,
fitsendsthenewjobstoaserverseflectedunfifformflyatrandomamongaflfltheservers.Attheend
offeachtfimesflot,fifftherefisnoupdateoffthreshofld,eachserverwfiflflfimmedfiateflyreportfitsID
fifffitsqueueflengthfisnotflargerthanthethreshofldfforthefirsttfime,fi.e.,onflyreportfingonceffor
eachserverbefforedfispatched.Otherwfise,thedfispatcherupdatesthethreshofldbyunfifformflyat
randomsampflfingdservers,andthenewthreshofldfissetastheshortestqueueflengthamongd
sampfles.Then,eachserverdecfidestowhetherornottoreportbasedonfitsqueueflengthandthe
newthreshofld,usfingthesamewayasbeffore.

Definfitfion3.13.TheJBT-dpoflficycanbeeasfiflygeneraflfizedfforheterogeneousservers,denoteby
JBTG-d,asffoflflows.Theonflydfifferencefisthatthedfispatchfingprobabfiflfitydfistrfibutfionfforthecase
offnon-emptyandemptymemoryfisgfivenby

ψfi(t):=
µfi

j∈m(t)µj
✶{fi∈m(t)}andϕfi(t):=

µfi
µΣ
fforaflflfi.

Thatfis,theprobabfiflfitytobeseflectedfforaserverthathasfitsIDfinmemoryfiswefightedbyfits
servficerate.Thfiscanbeeasfiflydonebyrequfirfingtheservertoreportfitsservficerateµnasweflflas
fitsID.

Intheffoflflowfing,wewfiflflshowthatJBT-dandJBTG-dbeflongtoΠ,andhencethroughputand
heavy-traficdeflayoptfimafl.Morespecfificaflfly,wehavetheffoflflowfingresuflt.

Proposfitfion3.14.ForanyfinfiteTandd≥1,theffoflflowfingtwoassertfionsaretrue:

(1)JBT-dfisfinΠfforhomogeneousservers,andhencethroughputandheavy-traficdeflayoptfimafl.
(2)JBTG-dfisfinΠfforbothhomogeneousandheterogeneousservers,andhencethroughputand
heavy-traficdeflayoptfimafl.

ProoffsketchoffProposfitfion3.14.LetusflookatJBT-dfforsomekeyfinsfightsbehfindthfisprooff.
InordertoshowfitfisfinΠ,weonflyneedtoshowthatfitsatfisfiesthetwocondfitfions(fi)and(fifi).
Forthecondfitfion(fi),wewfiflflshowthatatanytfimesflott,thedfispatchfingfisnoworsethanthe
randomroutfing.Forthecondfitfion(fifi),wewfiflflshowthatattfimesflotsrT+1,r∈{0,1,2,...},the
dfispatchfingdecfisfionfisstrfictflybetterthantherandomroutfing.
NotethatundertheJBT-dpoflficy,fifftheIDofftheserverσt(n+1)fisfinm(t),wemusthavethat
theIDofftheserverσt(n)fisaflsofinm(t)asthepermutatfionfisfinthenon-decreasfingorderoffthe
queueflength.Denotebypk(t)theprobabfiflfitythattherearekIDsfinthememorym(t)ffortfimet,
fi.e.,pk(t)=Pr(|m(t)|=k).Then,theprobabfiflfityffortheserverσt(n)tobeseflectedattfimet,fi.e.,
Pn(t)fisgfivenby

Pn(t)=
N

fi=n

pfi(t)
1

fi
. (14)

Thfisfistruesfinceffortheserverσt(n)tobeseflected,thereshoufldbeatfleastnIDsfinmemory,fi.e.,
|m(t)|≥nandfineachcasetheprobabfiflfityffortheserverσt(n)tobechosenfis

1
|m(t)|.Thereffore,

wecanseethattheprobabfiflfityoffPn(t)satfisfies

P1(t)≥P2(t)≥...≥PN(t), (15)

whfichdfirectflyfimpflfiesthatfforaflflt≥0thereexfistsakbetween2andNsuchthat∆n(t)=
Pn(t)−

1
N ≥0fforaflfln<kand∆n(t)≤0fforaflfln≥k.Thereffore,condfitfion(fi)offΠfissatfisfied.
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Forcondfitfion(fifi),wewfiflflshowthatthereexfistsaflowerboundfforδsuchthatP(rT+1)(oran
finnerproductequfivaflentdfistrfibutfionwhentherearetfiesfinqueueflengths),fisatfleastaδ-tfiflted
dfistrfibutfionfforr∈{0,1,2,...}.Inthfiscase,weneedonflytoshowthatPN(rT+1)fisstrfictflyfless
than1NfforaflflthesystemstateZ(rT+1).
TheffuflflproofffispresentedfinSectfion5.2. □

3.4 FeaturesoffJBT-d

ThfissectfionsummarfizesthemafinffeaturesoffJBT-dpoflficyandcomparesfitwfithexfistfingpoflficfiesfin
Tabfle1.Inpartficuflar,wecomparethenumberoffmessagesfforeachnewarrfivaflunderdfifferent
poflficfies.Forpush-basedpoflfices,e.g.,JSQandpower-off-d,therearedqueryanddresponsemessages
fforeachnewarrfivafl(d=NfforJSQpoflficy).ForJIQpoflficy,fforeachnewarrfivafl,fitrequfiresat
mostonepuflfl-messagesfincewhentherearenopuflfl-messagesfinmemory,thearrfivaflfisdfispatched
randomflywfithoutcostfinganypuflfl-message.Sfimfiflarfly,ourJBT-dpoflficyrequfires2dpush-messages
everyTtfimesflotstoupdatethethreshofld.Duetothethreshofldupdate,theofldpuflfl-messagesmay
bedfiscarded,whfichfisupperboundedbyN.Hence,thepuflfl-messagefforeachnewarrfivaflunder
JBT-dfisatmost1+2d+NT .
Insum,theJBT-dpoflficyhastheffoflflowfingnficeffeatures:a)Itfisthroughputandheavy-traficdeflay

optfimaflsfincefitfisfinΠ.b)Itfisabfletoguaranteeheavy-traficdeflayoptfimaflwfithveryflowmessage
overheadwhenTfisreflatfiveflyflarge.c)Thecomputatfionoverheadfissmaflflsfincefitonflyneedsto
keepaflfistofftheavafiflabfleIDsandchooserandomfly.d)Thearrfivaflfisfimmedfiateflydfispatched,fi.e.,
therefisnodfispatchfingdeflayascomparedtopush-basedpoflficfiessuchasJSQandPower-off-d.
ItfisworthpofintfingthatbyjustchangfingthewayoffupdatfingthethreshofldfinJBT-d,wecan
desfignothernewpoflficfieswhfichaflsoenjoythenficeffeaturesabove.Forexampfle,fitcanbeeasfifly
shownvfiasfimfiflarargumentsthatfiffthethreshofldfisupdatedbysampflfingaflfltheserversandtakfing
theaveragevaflueoffthequeueflengthasthenewthreshofld,thfiscorrespondfingnewpoflficyfisstfiflfl
finthecflassΠ.

4 NUMERICALRESULTS

Inthfissectfion,weusesfimuflatfionstocompareourproposedpoflficfiesJBT-dandJBTG-dwfith
jofin-shortest-queue(JSQ),jofin-fidfle-queue(JIQ),power-off-d(SQ(d))andpower-off-dwfithmemory
(SQ(d,m)).Thepower-off-dwfithmemorypoflficy(SQ(d,m))fimprovespower-off-dbyusfingextra
memorytostorethemshortestqueuessampfledattheprevfioustfimesflot[11].
Wecomparethethroughputperfformance,deflayperfformance,heavy-traficdeflayperfformance

andmessageoverheadperfformanceundervarfiousarrfivaflandservficeprocessesasweflflasdfifferent
systemsfizes.Moreover,the95%confidencefintervaflsfforaflflthesfimuflatfionresufltscanbeffound
finthetechnficaflreport[21],whfichjustfiffytheaccuracyoffthesfimuflatfionresuflts.Theexogenous
arrfivaflAΣ(t)andpotentfiaflservficeSn(t)aredrawnffromaPofissondfistrfibutfionwfithrateλΣandµn
fforeachtfimesflotunflessotherwfisespecfified.Thetraficfloadfisequafltoρ=λΣ/µΣ.Theparameter
TfisthethreshofldupdatefintervaflfforJBT-dandJBTG-d.
Beflowwesummarfizethekeyobservatfionsffromthesfimuflatfions;seeAppendfixDoffthetechnficafl

report[21]ffortheffuflflsetoffsfimuflatfionresuflts.

(fi)Throughputperfformance:
(a)OurproposedpoflficyJBT-dstabfiflfizesaflfltheconsfideredfloadsfinheterogeneoussystems
underaflfldfifferentsettfings.

(b)JIQandSQ(d)cannotstabfiflfizethesystemwhenthefloadfishfighfinaflflthecases.
(c)JIQappearstohaveaflargercapacfityregfionasthenumberoffserversfincreases.Thfisagrees
wfiththetheoretficaflresufltfin[15].
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(fifi)Deflayperfformance:
(a)OurproposedpoflficyJBT-dexhfibfitsgoodperfformanceacrossawfiderangeffromflfightto
heavytraficfinaflflthecases.

(b)Asthesystemsfizefincreases,JBT-dachfievesthesameperfformanceasJSQfforaflarger
rangeofffloads.Meanwhfifle,thegafinsoffJBT-doverSQ(d)andSQ(d,m)becomeflargeras
thenumberoffserversfincreases.

(c)ThegafinoffJBT-doverJIQdecreasesasthenumberoffserversfincreases.Thfisfisaflso
fintufitfivesfinceasNgoestofinfinfity,fitfismoreflfikeflytofindanfidfleserver,whfichresufltsfin
theffactthatJIQfisheavy-traficdeflayoptfimaflfintheHaflfin-Whfittregfime[12].

(d)ThegafinoffJBT-doverJIQfincreasesasthearrfivaflsorservficesbecomemorebursty.Thfis
agreeswfiththefinsfightfintheprooffoffTheorem3.11thatflargervarfianceoffarrfivaflor
servficeprocesswfiflfldegradetheperfformanceoffJIQ.

(fififi)Messageoverheadperfformance:
(a)OurproposedpoflficyJBT-dcontfinuestohaveaflowmessageoverheadamongaflflthecases.
(b)Push-basedpoflficfiessuchasSQ(d)andSQ(d,m)havetofincreasethefirmessageoverhead
flfinearflywfithrespecttodtoachfievegooddeflayperfformanceasthesystemsfizefincreases.
Incontrast,ourproposedJBT-dfisabfletoachfievegoodperfformancewfithamessagerate
thatfisflessthan1fforaflflthecaseswhenTfisflarge.

(fiv)Confidencefintervafl:
(a)The95%confidencefintervaflsofftheresponsetfimeunderJBT-dfissmaflflfforaflflthevarfious
settfingsasshownfintheffoflflowfingfiguresandtheaddfitfionaflresufltsfinAppendfixEoffthe
technficaflreport[21].

Next,wewfiflflprovfidedetafiflsfforthethreemetrficsonthroughput,deflayandmessageoverhead,
respectfivefly.

4.1 ThroughputPerfformance

Wefinvestfigatethethroughputregfionoffdfifferentfloadbaflancfingpoflficfiesfinthecaseoffheteroge-
neousservers.Inpartficuflar,weconsfiderthecasethatthesystemconsfistfingofftwoserverpoofls
eachwfithfiveserversandtheratesare1and10,respectfivefly.Aturnfingpofintfinthecurvefindficates
thatthefloadapproachesthethroughputregfionboundaryoffthecorrespondfingpoflficy.
Ffigure3showsthatthesystembecomesunstabflewhenρ>0.5underthepoflficypower-off-2

(SQ(2)),andfitbecomesunstabfleunderJIQwhenρ>0.9.Incontrast,ourproposedJBTG-dpoflficy
remafinsstabflefforaflfltheconsfideredfloadswhfichagreeswfiththetheoretficaflresuflts.Itcanbeseen
thatJBT-2fisaflsoabfletostabfiflfizethesystemfforaflfltheconsfideredfloadsfinthfiscase.Notethatthe
systemremafinsstabfleunderthepower-off-2wfithmemorypoflficySQ(2,3),whfichdemonstratesthe
benefitoffusfingmemorytoobtafinmaxfimumthroughputasfirstdfiscussedfin[14].
Weffurtherprovfideaddfitfionaflsfimuflatfionresufltsonthroughputperfformanceunderdfifferent

arrfivaflandservficeprocessasweflflasdfifferentsystemsfizesfinthetechnficaflreport[21].

4.2 DeflayPerfformance

Wefinvestfigatethemeanresponsetfimeunderdfifferentfloadbaflancfingpoflficfiesfinhomogeneous
serverswfithdfifferentsystemsfizesandvarfiousarrfivaflandservficeprocesses.Thetfimefintervaflffor
threshofldupdateoffJBT-dfissetT=1000.
Letusfirstflookattheregfimewhenρfisffrom0.3to0.99,whfichrangesffromflfighttrafictoheavy

trafic.Ffigure4showsthatourproposedpoflficyJBT-doutperfformsbothpower-off-2andpower-off-2
wfithmemory(SQ(2,3),whfichusesthesameamountoffmemoryasfinJBT-d)ffornearflythewhofle
regfime.Moreover,JBT-dpoflficyachfievesnearflythesameresponsetfimeoffJIQwhenthefloadfisnot
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Ffig.3.Throughputperfformanceunder10
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Ffig.4.Deflayperfformanceunder10homogeneousservers.

toohfigh.However,asthefloadbecomesheavfier,theperfformanceoffJIQgetsworseandworse,and
fitsmeanresponsetfimefisasflargeastwotfimesofftheresponsetfimeunderJBT-dpoflficywhenthe
floadfis0.99.
Now,fletusgetacfloserflookatthedeflayperfformancefinheavy-traficregfime,fi.e.,ρ>0.9,as

shownfinFfigure5.ItcanbeseenthatJBT-10outperfformsJIQwhenρ>0.9andJBT-2outperfforms
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Ffig.5.Heavy-traffficdeflayperfformanceunder10
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Ffig.6.Heavy-traffficdeflayperfformanceunder50homogeneousservers.

JIQwhenρ>0.95finthfiscase.Morefimportantfly,thegapbetweenthemkeepsfincreasfingasthe
floadgetshfigher.Notethatpower-off-2wfithmemory(SQ(2,3))aflsohasgoodperfformancefinthfis
case,whfich,however,usesamuchhfighermessageratecomparedtoourJBT-dpoflficy,asdfiscussed
finthenextsectfion.
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Ffig.7.Heavy-traffficdeflayperfformanceunder10homogeneousserverswfithPofissonarrfivaflandbursty
servfice.

Last,weffurtherprovfidesomeresufltsonheavy-traficdeflayperfformancefforaflargersystem
sfizeandaburstyservficeprocess,respectfivefly.Duetospaceflfimfitatfion,thecomprehensfiveresuflts
canbeffoundfinthetechnficaflreport[21].Ffigure6fiflflustratestheheavy-traficperfformanceunder
PofissonarrfivaflandPofissonservficewhenN=50.Inthfiscase,firstthfingtonotefisthateventhough
thepower-off-dwfithmemorypoflficy(SQ(2,9))usesthesameamountoffmemoryasfinJBT-d,fithas
amuchpoorerperfformancewfithamuchhfighermessageoverheadsfincethemessageoverhead
offJBT-dfisstrfictflyflessthan1whenT=1000finthfiscase.Thfismeansthattofimprovedeflay
perfformancefinflargesystemsfize,power-off-dwfithmemoryhastofincreasefitsmessageoverhead
flfinearflywfithrespectd,whfifleourJBT-dpoflficyfisabfletoachfievegoodperfformancewfithmessage
rateflessthan1evenfford=N.Moreover,asρapproachesto1,theperfformanceoffJIQdegrades
substantfiaflflywhfifleourproposedJBT-dremafinsqufitecflosetoJSQ.InFfigure7,thepotentfiaflnumber
offjobsservedfineachtfimesflotfisefither0or10.Inthfisburstyservficecase,JIQdegradesmuch
ffasterthanthatfinthePofissonservficeprocess.Moreover,finthfissettfingwecaneasfiflyobservethe
dfifferencebetweennon-heavy-traficpoflficy(JIQ)andheavy-traficoptfimaflpoflficfies(aflfltheothers).
NotethatthemessageoverheadoffSQ(2,3)fisnearfly8tfimesasflargeasthatoffJBT-d,asshownfin
nextsectfion,thoughfitsdeflayfissflfightflybetterthanJBT-d.

4.3 MessageOverhead

WeusesfimuflatfionstoffurthershowtheflowmessagerateoffourproposedJBT-dpoflficy,though
acrudeupperboundhasbeenestabflfished.Here,weconsfiderthe10homogeneousserverswfith
PofissonarrfivaflandPofissonservfice,andmoreresufltsffordfifferentsettfingscanbeffoundfinthe
technficaflreport[21].Morespecfificaflfly,wefinvestfigatethefimpactoffdfifferentvafluesoffT,fi.e.,
thetfimefintervaflfforupdatfingthethreshofld,onthemessagerateandfitscorrespondfingdeflay
perfformanceatafixedfloadρ=0.99.Inpartficuflar,wecaflcuflatetheaveragenumberoffmessages
pernewjobarrfivaflundereachpoflficy.Forpush-basedpoflficfies,e.g.,JSQ,power-off-2(SQ(2))and
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Ffig.8. Messagepernewjobarrfivaflunder10homogeneousserverswfithrespecttoT

0 200 400 600 800 1000
T (tfime sflots)

15

20

25

30

35

40

45

M
e
a
n 
r
e
s
p
o
n
s
e 
tfi
m
e 
(tfi
m
e 
sfl
ot
s)

JIQ
SQ(2)
SQ(2,3)
JBT-2
JBT-5
JBT-10
JSQ

.

Ffig.9.Deflayperfformanceunder10homogeneousserverswfithrespecttoT.

power-off-2wfithmemory(SQ(2,3)),themessageonflyfincfludesthepush-messageandfiseasfifly
caflcuflatedas20,4,and4,whfichfisfindependentoffT.ForJIQ,weknowthattheratefisatmostone
fforeachnewjobarrfivafl,whfichfisaflsofindependentwfithTandservesasthebenchmark.
Ffigure8showsthemessagerateoffJBT-dwfithrespecttoTffordfifferentvafluesoffd,andthe

correspondfingdeflayperfformancefisshownfinFfigure9.Thefirstthfingtonotefisthatthemessage
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rate off JIQ fis much smaflfler than one sfince the trafic fis heavy and hence there are ffew fidfle servers
fin thfis case, whfich dfirectfly resuflts fin the poor perfformance fin the heavy-trafic regfime. Second,
the message rate off JBT-dfis smaflfler than aflfl push-based poflficfies and becomes fless than one when
T>100 fin thfis case, whfich means that fit fis abfle to achfieve throughput and heavy-trafic deflay
optfimaflfity by requfirfing a sflfightfly more message than JIQ. Moreover, fit can be seen that asT
fincreases, there fis no sfignfificant change off the deflay perfformance, whfich findficates that we are
aflflowed to adopt a suficfientfly flargeTwhfifle not fincurrfing the floss off perfformance very much fin thfis
case. Last, fit fis worth notfing that a flargerddoes not necessarfifly mean a flarger message overhead
whenTfis flarge. Thfis fis because whenTfis flarge, the push-message fin JBT-dwfiflfl be domfinated by
the puflfl-message. For a smaflfld, the number off puflfl-message may be flarger sfince the threshofld may
be hfigher than that under a flargerd. As shown fin the addfitfionafl resuflts fin the technficafl report [21],
the observatfions above hofld aflmost ffor aflfl the consfidered cases. The exact fimpact and reflatfionshfip
offTanddwoufld be one off our ffuture research ffocuses.

5 PROOF OF MAIN RESULTS

The hfigh-flevefl finsfight ffor cflassΠto be heavy-trafic deflay optfimafl fis that fit aflways has a prefference
to shorter queues fin the way that fis specfified by theδ-tfiflted dfistrfibutfion. The key step behfind the
prooff that JBT-dfis heavy-trafic deflay optfimafl fis to show that the dfispatchfing dfistrfibutfion ffor the
tfime sflot that fis fimmedfiatefly affter the threshofld update fis aflways aδ-tfitfled dfistrfibutfion.

5.1 Prooff off Theorem3.7

Beffore we adopt the suficfient condfitfions fin Lemma3.5and Lemma3.6to prove Theorem3.7,we
first present the ffoflflowfing flemmas on the tfiflted dfistrfibutfion andδ-tfiflted dfistrfibutfion, respectfivefly.

Lemma 5.1.For a system wfith mean arrfivafl rateλΣ=μΣ−ϵand a tfiflted dfistrfibutfionP(t)under
Z(t), we have

E[Q(t),A(t)−S(t)|Z(t)]≤−ϵ
μmfin
μΣ

Q(t) (16)

and

E[Q⊥(t),A(t)−S(t)|Z(t)]≤ϵ
√
N Q⊥(t). (17)

Prooff. Consfider the flefft-hand-sfide (LHS) off Eq. (16)

E[Q(t),A(t)−S(t)|Z(t)]

=
N

n=1

Qσt(n)(t) Δn(t)+
μσt(n)

μΣ
λΣ−μσt(n)

(a)
=
N

n=1

Qσt(n)(t)Δn(t)λΣ+
N

n

Qσt(n)(t)−ϵ
μσt(n)

μΣ

(b)
≤
N

n=1

Qσt(n)(t)−ϵ
μσt(n)

μΣ

(c)
≤−ϵ

μmfin
μΣ

Q(t),

where equatfion (a) hoflds sfinceλΣ=μΣ−ϵ; (b) comes ffrom the ffact that
N
n=1Qσt(n)(t)Δn(t)≤0

under a tfiflted dfistrfibutfion. Thfis ffact fis true sfinceQσt(1)(t)≤Qσt(2)(t)≤...≤Qσt(N)(t)and
N
n=1Δn(t)=0; finequaflfity (c) ffoflflows ffrom the ffact thatx1≥ xffor anyx∈R

N.
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Note thatQ⊥(t)=Q(t)−Q(t)=Q(t)−
Qn(t)
N 1=Q(t)−Qavg(t)1, fin whfichQavg(t)fis the

average queue flength among theNservers at tfime sflott. Then, consfider the flefft-hand-sfide (LHS)
off Eq. (17)

E[Q⊥(t),A(t)−S(t)|Z(t)]

=
N

n=1

Qσt(n)(t)−Qavg(t) Δn(t)+
μσt(n)

μΣ
λΣ−μσt(n)

(a)
=
N

n=1

Qσt(n)(t)Δn(t)λΣ+
N

n

Qσt(n)(t)−Qavg(t) −ϵ
μσt(n)

μΣ

(b)
≤
N

n=1

Qσt(n)(t)−Qavg(t) −ϵ
μσt(n)

μΣ

(c)
≤ϵ

N

n=1

(Qσt(n)(t)−Qavg(t))

(d)
≤ϵ
√
N Q⊥(t),

(18)

where equatfion (a) comes ffrom the ffacts that N
n=1Δn(t)=0 andλΣ=μΣ−ϵ; finequaflfity (b) hoflds

sfince N
n=1Qσt(n)(t)Δn(t)≤0 under a tfiflted dfistrfibutfion; finequaflfity (c) fis true sfincex≤|x|ffor

anyx∈Rand|ϵ
μσt(n)
μΣ
|≤ϵffor aflfln∈N; finequaflfity (d) fis true sfincex1≤

√
N x ffor any

x∈RN.

Lemma 5.2.For a system wfith mean arrfivafl rateλΣ=μΣ−ϵand aδ-tfiflted dfistrfibutfionP(t)under
Z(t), we have

E[Q⊥(t),A(t)−S(t)|Z(t)]≤
√
N Q⊥(t) ϵ−

δλΣ
N
. (19)

Prooff. Consfider the flefft-hand-sfide (LHS) off Eq. (19), we have

E[Q⊥(t),A(t)−S(t)|Z(t)]

=
N

n=1

Qσt(n)(t)−Qavg(t) Δn(t)+
μσt(n)

μΣ
λΣ−μσt(n)

(a)
=
N

n=1

Qσt(n)(t)Δn(t)λΣ+
N

n=1

Qσt(n)(t)−Qavg(t) −ϵ
μσt(n)

μΣ

(b)
≤
N

n=1

Qσt(n)(t)Δn(t)λΣ+ϵ
√
N Q⊥(t)

(c)
≤−λΣδ(Qσt(N)(t)−Qσt(1)(t))+ϵ

√
N Q⊥(t)

(d)
≤−λΣ

δ
√
N
Q⊥(t)+ϵ

√
N Q⊥(t)

=
√
N Q⊥(t)(ϵ−

δλΣ
N
),

where equatfion (a) hoflds sfince N
n=1Δn(t)=0 andλΣ=μΣ−ϵ; finequaflfity (b) ffoflflows ffrom

steps (c) and (d) fin Eq.(18); finequaflfity (c) ffoflflows ffrom the definfitfion offδ-tfiflted probabfiflfity and
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the ffact thatQσt(1)(t)≤Qσt(2)(t)≤...≤Qσt(N)(t); finequaflfity (d) ffoflflows ffrom the ffact that

Q⊥(t)≤
√
N(Qσt(N)(t)−Qσt(1)(t)).

Now we are ready to present the prooff off Theorem3.7
Prooff off Theorem3.7:The prooff fis a dfirect appflficatfion off the suficfient condfitfions ffor through-

put and heavy-trafic deflay optfimaflfity, fi.e., we need onfly to show Eq. (7) and Eq. (8) hofld.
Ffix a fload baflancfing poflficypfinΠ. Let us first consfider the flefft-hand-sfide (LHS) off Eq.(7)wfith

T1=T,

LHS
(a)
=
t0+T−1

t=t0

E[Q(t),A(t)−S(t)|Z(t0)=Z]

(b)
=
t0+T−1

t=t0

E[E[Q(t),A(t)−S(t)|Z(t)]|Z(t0)=Z]

(c)
≤

t0+T−1

t=t0

E−ϵ
μmfin
μΣ

Q(t)|Z(t0)=Z

≤−ϵ
μmfin
μΣ

Q(t0),

where equatfion (a) comes ffrom the flfinearfity off condfitfion expectatfion; equatfion (b) ffoflflows ffrom the
tower property off condfitfionafl expectatfion and the ffact thatQ(t),A(t)andS(t)are condfitfionaflfly
findependent offZ(t0)when gfivenZ(t). finequaflfity (c) ffoflflows ffrom Lemma5.1sfince the poflficyp
adopts a tfiflted dfistrfibutfion wfithfin every tfime sflot ffor aflflZ(t). Hence, the condfitfion off Lemma3.5fis
satfisfied and thus poflficypfis throughput optfimafl.

Let us now turn to consfider the flefft-hand-sfide (LHS) off Eq.(8)wfithT2=Tandϵ<ϵ0=
δμΣ

2TN+2δ.

LHS
(a)
=
t0+T−1

t=t0

E[Q⊥(t),A(t)−S(t)|Z(t0)=Z]

(b)
=
t0+T−1

t=t0

E[E[Q⊥(t),A(t)−S(t)|Z(t)]|Z(t0)=Z]

(c)
≤
tt∗

Eϵ
√
N Q⊥(t)|Z(t0)=Z +E

√
N Q⊥(t

∗) ϵ−
δλΣ
N

|Z(t0)=Z

(d)
≤(T−1)ϵ

√
N(Q⊥(t0)+M)+ ϵ−

δλΣ
N

√
N(Q⊥(t0)−M)

=Tϵ−
δλΣ
N

√
N Q⊥(t0)+

√
NM

δλΣ
N
+(T−2)ϵ

(e)
≤ Tϵ−

δλΣ
N

√
N Q⊥(t0)+K2

(ff)
≤−
δμΣ
2N

√
N Q⊥(t0)+K2,

where equatfion (a) comes ffrom the flfinearfity off condfitfion expectatfion; equatfion (b) ffoflflows ffrom the
tower property off condfitfionafl expectatfion and the ffact thatQ⊥(t),A(t)andS(t)are condfitfionaflfly
findependent offZ(t0)when gfivenZ(t); finequaflfity (c) ffoflflows ffrom Lemmas5.1and5.2sfince under
poflficyp∈Πthere exfists at fleast one tfime sflott∗wfithfin whfich at fleast aδ-tfiflted dfistrfibutfion (or
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one off fits equfivaflent dfistrfibutfion fin finner-product fisδ-tfiflted) fis adopted and ffor aflfl the other tfime
sflots a tfiflted dfistrfibutfion fis used; finequaflfity (d) ffoflflows ffrom the ffact|Q⊥(t0+T)−Q⊥(t0)|≤

M=2T
√
Nmax{Amax,Smax}and the ffactϵ−

δλΣ
N <0 ffor aflflϵ<ϵ0; finequaflfity (e) comes ffrom the

ffact that
√
NM(δλΣN +(T−2)ϵ)≤K2=

√
NM(

δμΣ
N +TμΣ), whfich fis findependent offϵ; finequaflfity

(ff) hoflds sfinceϵ<ϵ0andλΣ=μΣ−ϵ. Thereffore, sfince both−
δμΣ
2N

√
NandK2are findependent offϵ,

the condfitfion off Lemma3.6fis satfisfied, and hence the poflficypfis heavy-trafic deflay optfimafl.

5.2 Prooff off Proposfitfion3.14

Let us first flook at assertfion 1, fi.e., JBT-dfis finΠunder homogeneous servers. Based on Eq.(15),we
can concflude that ffor anyt≥0, the dfispatchfing dfistrfibutfion fis a tfiflted dfistrfibutfion ffor aflflZ(t).We
are flefft to show that at tfime sflotrT+1,r∈{0,1,2,...}, the dfispatchfing dfistrfibutfion fis at fleast a
δ-dfistrfibutfion ffor some posfitfiveδ. Thfis fis equfivaflent to findfing the maxfimum vaflue fforPN(rT+1)
and the mfinfimum vaflue offP1(rT+1)ffor aflfl queue flength states. In ffact, they are achfieved at the
same tfime whenpNfis fin fits flargest vaflue based on Eq. (14), whfich fis repeated as ffoflflows.

Pn(t)=
N

fi=n

pfi(t)
1

fi
.

Then, there are two cases to consfider.
(a) At tfime sflotrT+1, the probabfiflfity ffor the event that there areNIDs fin memory fis equafl to 1,
fi.e.,pN(rT+1)=1, fiff and onfly fiff aflfl the servers have the same queue flength at the end off tfime
sflotsrT(fi.e., sampflfing sflots ffor updatfing the threshofld), whfich are aflso the queue flength state at
the begfinnfing offrT+1, fi.e.,Q(rT+1). In thfis case, fit can be easfifly seen thatPn(rT+1)=

1
N ffor

aflfln, whfich fis not aδ-tfiflted dfistrfibutfion. However, fit fis an equfivaflent dfistrfibutfion fin finner-product
tôP1(rT+1)=1 andP̂n=0 ffor 2≤n≤Nas aflfl the queue flengths are equafl, whfich fis findeed a
δ-dfistrfibutfion.
(b) Iff the queue flengths are not aflfl equafl at the end off tfime sflotsrT, then the maxfimum vaflue ffor

pN(rT+1)fis strfictfly fless than 1 and fit fis obtafined when the queue flength fin the state that there
areN−1 servers that have the same queue flength, whfich fis strfictfly flarger than the remafinfing one.
In thfis case, by sampflfingdservers unfifformfly at random at the end off tfimes sflotsrT, the probabfiflfity
ffor the event that there areNIDs fin memory, fi.e.,pN(rT+1)fis gfiven by

pN(rT+1)=1−p1(rT+1)=1−
d

N
.

Thereffore, we haveP1(rT+1)=
d
N+

N−d
N2
andPn(rT+1)=

N−d
N2
ffor 2≤n≤N, whfich fis equfivaflent

fin finner product tôP1(rT+1)=
d
N +

N−d
N2
,̂P2(rT+1)=(N−1)

N−d
N2
andP̂n(rT+1)=0 ffor aflfl

3≤n≤Nas theN−1 queues have the same queue flength. As a resuflt, we have ffor thfis state
Z(rT+1)

Δ̂1(rT+1)=
d

N
(1−

1

N
)andΔ̂N(rT+1)=−

1

N
.

Thus, fit fis aδ-dfistrfibutfion wfithδ=mfin{dN(1−
1
N),

1
N}, whfich fis the flower bound fforδ. That fis, ffor

any stateZ(rT+1), the dfispatchfing dfistrfibutfion fis at fleast aδ-dfistrfibutfion. Thereffore, everyT+1
tfime sflots, there exfists one tfime sflot fin whfich the dfispatchfing dfistrfibutfion (or an finner product
equfivaflent dfistrfibutfion) fis at fleast aδ-tfiflted dfistrfibutfion wfithδ=mfin{dN(1−

1
N),

1
N}.
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The prooff ffor heterogeneous servers ffoflflows exact the same fidea wfith addfitfionafl care on the
servfice rate. The probabfiflfity ffor the serverσt(n)to be seflected at tfimet, fi.e.,Pn(t)fis gfiven by

Pn(t)=μσt(n)

N

fi=n

pfi(t)

{j∈m(t),|m(t)|=fi}μj
.

From fit we can easfifly see that fiffΔn(t)=Pn(t)−
μσt(n)
μΣ
fis posfitfive, then we must have thatΔn−1(t)

fis aflso posfitfive as fit has one more term fin the equatfion above. Thereffore, we can find akbetween
2 andNsuch thatΔn(t)=Pn(t)−

μσt(n)
μΣ
≥0 ffor aflfln<kandΔn(t)≤0 ffor aflfln≥k. Thereffore,

condfitfion (fi) offΠfis satfisfied.
For the condfitfion (fifi), we need to find the maxfimum vaflue offpN(rT+1)to boundδ. There are

aflso two cases as beffore.
(a) IffpN(rT+1)=1, then we must have that the queue flengths are aflfl equafl at the end off tfime

sflotsrT, whfich fis the same as that at the begfinnfing off tfime sflotrT+1. In thfis case,Pn(rT+1)=
μσt(n)
μΣ

ffor aflfln. Note that thfis dfispatchfing dfistrfibutfion fis an equfivaflent dfistrfibutfion fin finner-product to
P̂1(rT+1)=1 andP̂n=0 ffor 2≤n≤Nas aflfl the queue flengths are equafl, whfich fis aδ-dfistrfibutfion.
(b) IffpN(rT+1) 1, the maxfimum vaflue offpN(rT+1)fis obtafined when there areN−1 servers
that have the same queue flength, whfich fis strfictfly flarger than the remafinfing one. In thfis case, we
havepN(rT+1)=1−p1(rT+1)=1−

d
N as beffore. Thus, we can obtafin

P1(rT+1)=
d

N
+ 1−

d

N

μσt(1)

μΣ
,

andPn(rT+1)=(1−
d
N)
μσt(n)
μΣ
ffor 2≤n≤N. Thfis fis equfivaflent fin finner product tôP1(rT+1)=

P1(rT+1),̂P2(rT+1)=
N
n=2Pn(rT+1)andP̂n(rT+1)=0 ffor aflfl 3≤n≤Nsfince the flastN−1

servers have the same queue flengths. As a resuflt, we have ffor thfisZ(rT+1)

Δ̂1(rT+1)=
d

N
1−
μσt(1)

μΣ
andΔ̂N(rT+1)=−

μσt(N)

μΣ
.

Thus, fit fis aδ-dfistrfibutfion wfithδ=mfin{dN(1−
μmax
μΣ
),
μmfin
μΣ
}, fin whfichμmax =maxn∈Nμnand

μmfin =mfinn∈Nμn, whfich fis the flower bound offδ. Hence, ffor anyZ(rT+1), the dfispatchfing
probabfiflfity dfistrfibutfion (or fits finner product equfivaflent one) fis at fleast aδ-dfistrfibutfion.

6 CONCLUSION

We fintroduce a cflassΠoff flexfibfle fload baflancfing poflficfies, whfich are shown to be throughput and
heavy-trafic deflay optfimafl. Thfis cflass fincfludes as specfiafl cases JSQ, power-off-d, and aflso aflflows
flexfibfiflfity fin desfignfing other new poflficfies. The JIQ poflficy, aflbefit exhfibfitfing a good perfformance
when the trafic fload fis not heavy, fis not finΠsfince fit fis not heavy-trafic deflay optfimafl even ffor
homogeneous servers. A new poflficy caflfled JBT-dfis proposed fin the cflassΠ, whfich enjoys the
sfimpflficfity off JIQ whfifle guaranteefing heavy-trafic deflay optfimafl. A unfified anaflytfic fframework
fis estabflfished to characterfize thfis cflass off poflficfies by expflorfing thefir common characterfistfics and
provfide suficfient condfitfions that guarantee the heavy-trafic deflay optfimaflfity. Extensfive sfimuflatfions
are used to demonstrate the good perfformance and flow compflexfity off the proposed poflficy compared
to other exfistfing ones.
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A PROOFOFLEMMA3.5

BefforewepresenttheprooffoffLemma3.5,wefirstfintroducetwoflemmaswhfichwfiflflbethe
keyfingredfientsfintheprooff.Thefirstflemmaenabflesustoboundthemomentsoffastatfionary
dfistrfibutfionbasedondrfifftcondfitfion,whfichcanbesfimpflfifiedbythesecondflemma.
Theffoflflowfingflemmafisfintroducedfin[18],whfichfisanextensfionoffLemma1fin[2]andcanbe

provedffromtheresufltsfin[7].

LemmaA.1.ForanfirreducfibfleaperfiodficandposfitfiverecurrentMarkovchafin{X(t),t≥0}overa

countabflestatespaceX,whfichconvergesfindfistrfibutfiontoX,andsupposeV:X→R+fisaLyapunov
ffunctfion.WedefinetheTtfimesflotdrfifftoffVatXas

∆V(X):=[V(X(t0+T))−V(X(t0))]I(X(t0)=X),
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whereI(.)fis the findficator ffunctfion. Suppose ffor some posfitfive finfite fintegerT, theTtfime sflot drfifft off
Vsatfisfies the ffoflflowfing condfitfions:

•(C1) There exfists anγ>0and aκ<∞such that ffor anyt0=1,2,...and ffor aflflX∈Xwfith
V(X)≥κ,

E[ΔV(X)|X(t0)=X]≤−γ.

•(C2) There exfists a constantD<∞such that ffor aflflX∈X,

P(|ΔV(X)|≤D)=1.

Then{V(X(t)),t≥0}converges fin dfistrfibutfion to a random varfiabfleV, and there exfists constants

θ∗>0andC∗<∞such thatEeθ
∗V ≤C∗, whfich dfirectfly fimpflfies that aflfl moments off random

varfiabfleVexfist and are finfite. More specfificaflfly, there exfist finfite constants{Mr,r∈N}such that ffor

each posfitfiver,EV(X)r ≤Mr, whereMrare ffuflfly determfined byκ,γandD.

Lemma A.2.For anyt≥0, we have

Q(t+1)2− Q(t)2≤2Q(t),A(t)−S(t)+K (20)

whereKfis a finfite constant.

Prooff. Consfider the flefft-hand-sfide (LHS) off Eq. (20).

LHS= Q(t)+A(t)−S(t)+U(t)2− Q(t)2

(a)
≤ Q(t)+A(t)−S(t)2− Q(t)2

=2Q(t),A(t)−S(t)+ A(t)−S(t)2

(b)
≤2Q(t),A(t)−S(t)+K

where finequaflfity (a) hoflds as [max(a,0)]2≤a2ffor anya∈R; fin finequaflfity (b),K Nmax(Amax,Smax)
2

hoflds due to the assumptfions thatAΣ(t)≤AmaxandSn(t)≤Smaxffor aflflt≥0 and aflfln∈N, and
findependent off the queue flength.

We are now ready to prove Lemma3.5.
Prooff off Lemma3.5:The prooff ffoflflows ffrom the appflficatfion off LemmaA.1to the Markov chafin

{Z(ϵ)(t),t≥0}wfith Lyapunov ffunctfionV(Z(ϵ)):= Q(ϵ)andT=T1sfincem
(ϵ)(t)fis aflways finfite.

In partficuflar, thfis prooff fis compfleted fin two steps, where the superscrfipt(ϵ)wfiflfl be omfitted ffor ease
off notatfions.
(fi) Ffirst, fin order to appfly LemmaA.1, we need to show that the Markov chafin{Z(t),t≥0}fis
firreducfibfle, aperfiodfic and posfitfive recurrent under the hypothesfis off Lemma3.5. It can be easfifly
seen that{Z(t),t≥0}fis firreducfibfle and aperfiodfic. Thus, we are flefft wfith the task to prove that the
Markov chafin fis posfitfive recurrent. By the extensfion off Foster-Lyapunov theorem, fit sufices to
find a Lyapunov ffunctfion and a posfitfive constantTsuch that the expectedTtfime sflot Lyapunov
drfifft fis bounded wfithfin a finfite subset off the state space and negatfive outsfide thfis subset.
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Consfider the Lyapunov ffunctfionW(Z):= Q2, and the correspondfing expectedT1tfime sflot
mean condfitfionafl Lyapunov drfifft under the hypothesfis off Lemma3.5.

E[W(Z(t0+T1))−W(Z(t0))|Z(t0)]

=E Q(t0+T1)
2− Q(t0)

2|Z(t0)

=E
⎡⎢⎢⎢⎢⎣

t0+T1−1

t=t0

Q(t+1)2− Q(t)2 |Z(t0)
⎤⎥⎥⎥⎥⎦

(a)
≤E
⎡⎢⎢⎢⎢⎣

t0+T1−1

t=t0

2Q(t),A(t)−S(t)+K|Z(t0)
⎤⎥⎥⎥⎥⎦

(b)
≤−2γQ(t0)+2K1+KT1

(21)

where finequaflfity (a) ffoflflows ffrom LemmaA.2, and finequaflfity (b) resuflts dfirectfly ffrom the hypothesfis

fin Eq.(7). Pfick anyβ>0 and fletB={Z∈S:Q ≤
2K1+KT1+β

2γ }. ThenBfis a finfite subset offSas

m(t)fis finfite. Moreover, ffor anyZ∈B, the condfitfionafl mean drfifft fis fless or equafl to 2K1+KT1,
and ffor anyZ∈Bc, fit fis fless than or equafl to−β. Thfis finfishes the prooff off posfitfive recurrence ffor
anyϵ>0, and hence throughput optfimafl.
(fifi) Second, fin order to show that the hypothesfis fin Lemma3.5aflso ensures the bounded moments
ffor the statfionary dfistrfibutfion, we wfiflfl resort to LemmaA.1. Thus, we need to check Condfitfions
(C1) and (C2), respectfivefly.
For Condfitfion (C1), we have

E[ΔV(Z)|Z(t0)=Z]

=E[Q(t0+T1)−Q(t0)|Z(t0)=Z]

=E Q(t0+T1)
2− Q(t0)

2|Z(t0)=Z

(a)
≤

1

2Q(t0)
E Q(t0+T1)

2− Q(t0)
2|Z(t0)=Z

(b)
≤−γ+

2K1+KT1
2Q(t0)

where finequaflfity (a) ffoflflows ffrom the ffact thatff(x)=
√
xfis concave; (b) comes ffrom the upper

bound fin Eq. (21). Hence, (C1) fin LemmaA.1fis verfified.
For Condfitfion (C2), we have

|ΔV(Z)|=|Q(t0+T1)−Q(t0)|I(Z(t0)=Z)

(a)
≤ Q(t0+T1)−Q(t0)I(Z(t0)=Z)

(b)
≤T1
√
Nmax(Amax,Smax)

where finequaflfity (a) ffoflflows ffrom the ffact that|x− y|≤x−yhoflds ffor anyx,y∈RN;
finequaflfity (b) hoflds due to the assumptfions that theAΣ(t)≤AmaxandSn(t)≤Smaxffor aflflt≥0 and
aflfln∈N, and findependent off the queue flength. Thfis verfifies Condfitfion (C2) and hence compflete
the prooff off Lemma3.5.
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B PROOF OF LEMMA3.6

We now proceed to prove Lemma3.6. Beffore we present the prooff, the ffoflflowfing flemmas whfich
serve as useffufl preflfimfinary steps are first fintroduced. Denote byQ andQ⊥the paraflflefl and
perpendficuflar components off the queue flength vectorQwfith respect to the flfinec= 1√

N
1, fi.e.,

Q :=c,Qc Q⊥:=Q−Q (22)

The ffoflflowfing flemma fis a naturafl extensfion off Lemma 7 fin [2]toTtfime sflots.

Lemma B.1.Define the ffoflflowfing Lyapunov ffunctfions

V⊥(Z):= Q⊥ ,W(Z):= Q
2andW (Z):= Q 2

wfith the correspondfingTtfime-sflot drfifft gfiven by

ΔV⊥(Z):=[V⊥(Z(t0+T))−V⊥(Z(t0))]I(Z(t0)=Z)

ΔW(Z):=[W(Z(t0+T))−W(Z(t0))]I(Z(t0)=Z)

ΔW (Z):=[W (Z(t0+T))−W (Z(t0))]I(Z(t0)=Z)

Then, the drfifft offV⊥(.)can be bounded fin terms offW(.)andW (.)as ffoflflows.

ΔV⊥(Z)≤
1

2Q⊥
(ΔW(Z)−ΔW (Z))

ffor aflflZ∈S.

Lemma B.2.For anyt≥0, we have

Q(t+1)2− Q(t)2≥2Q(t),A(t)−S(t).

Prooff.

Q(t+1)2− Q(t)2

=2Q(t),Q(t+1)−Q(t)+Q(t+1)−Q(t)2

≥2Q(t),Q(t+1)−Q(t)

=2Q(t),Q(t+1)−Q(t)−2Q(t),Q⊥(t+1)−Q⊥(t)

(a)
≥2Q(t),Q(t+1)−Q(t)

(b)
≥2Q(t),A(t)−S(t)

where the finequaflfity (a) fis true because Q(t),Q⊥(t)=0 andQ⊥(t+1),Q(t)=0; (b) ffoflflows
ffrom the ffact that aflfl the components offQ(t)andU(t)are nonnegatfive.

We are now ready to prove the ffoflflowfing resuflt, whfich fis offten caflfledstate space coflflapseand fis
the key fingredfient ffor estabflfishfing heavy trafic deflay optfimaflfity. It shows that under the hypothesfis
off Lemma3.6, the mufltfi-dfimensfion space ffor the queue flength vector wfiflfl reduce to one dfimensfion
fin the sense that the devfiatfion ffrom the flfinecfis bounded by a constant, whfich fis findependent wfith
the heavy-trafic parameterϵ.

Lemma B.3.Iff the assumptfions fin Lemma3.6hofld, then we have thatQ⊥fis bounded fin the sense
that fin steady state there exfists finfite constants{Lr,r∈N}such that

E Q
(ϵ)
⊥

r

≤Lr

ffor aflflϵ∈(0,ϵ0)andr∈N.
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Prooff.It sufices to show thatV⊥(Z)satfisfies the Condfitfions (C1) and (C2) fin LemmaA.1. Ffix
ϵ∈(0,ϵ0), and the superscrfipt wfiflfl be omfitted ffor sfimpflficfity fin the ffoflflowfing arguments.
(fi) For the Condfitfion (C1), fletΛ(t):= Q(t+1)2−Q(t)2andΛ(t):= Q(t+1)2−Q(t)2.

Then, we have

E[ΔV⊥(Z)|Z(t0)=Z]

(a)
≤

1

2Q⊥
EΔW(Z)−ΔW (Z)|Z(t0)=Z

=
1

2Q⊥
E
⎡⎢⎢⎢⎢⎣

t0+T2−1

t=t0

Λ(t)−Λ(t)|Z(t0)=Z
⎤⎥⎥⎥⎥⎦

(b)
≤

1

2Q⊥(t0)
E
⎡⎢⎢⎢⎢⎣

t0+T2−1

t=t0

2Q⊥(t),A(t)−S(t)+K|Z(t0)=Z
⎤⎥⎥⎥⎥⎦

(c)
≤−η+

2K2+KT2
2Q⊥(t0)

,

where the finequaflfity (a) ffoflflows ffrom LemmaB.1; the finequaflfity (b) hoflds as a resuflt off Lemmas
A.2andB.2; the finequaflfity (c) ffoflflows dfirectfly ffrom the assumptfion fin Eq.(8). Hence, the Condfitfion
(C1) fis verfified.
(fifi) For the Condfitfion (C2), we have

|ΔV⊥(Z)|

=|Q⊥(t0+T2)−Q⊥(t0)|I(Z(t0)=Z)

(a)
≤ Q⊥(t0+T2)−Q⊥(t0)I(Z(t0)=Z)

=Q(t0+T2)−Q(t0+T2)−Q(t0)+Q(t0)I(Z(t0)=Z)

(b)
≤ Q(t0+T2)−Q(t0)+Q(t0+T2)−Q(t0)I(Z(t0)=Z)

(c)
≤2Q(t0+T2)−Q(t0)I(Z(t0)=Z)

(d)
≤2T2

√
Nmax(Amax,Smax) (23)

where the finequaflfity (a) ffoflflows ffrom the ffact that|x−y|≤x−yhoflds ffor anyx,y∈RN;
finequaflfity (b) ffoflflows ffrom trfiangfle finequaflfity; (c) hoflds due to the non-expansfive property off
projectfion to a convex set. (d) hoflds due to the assumptfions that theAΣ(t)≤AmaxandSn(t)≤Smax
ffor aflflt≥0 and aflfln∈N, and findependent off the queue flength. Thfis verfifies Condfitfion (C2) and
hence compflete the prooff off LemmaB.3.

The ffoflflowfing resuflt on the unused servfice fis another key fingredfient ffor estabflfishfing heavy-trafic
deflay optfimafl.

Lemma B.4.For anyϵ>0andt≥0, we have

Q(ϵ)n (t+1)U
(ϵ)
n (t)=0andq

(ϵ)(t+1)u(ϵ)(t)=0.

Iff the system has a finfite first moment, then we have ffor some constantsc1andc2

E U
(ϵ)2

≤c1ϵandE(u
(ϵ))2 ≤c2ϵ
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Prooff.Accordfing to the queue dynamfic fin Eq.(1), we can see whenUn(t)fis posfitfive,Qn(t+1)

must be zero, whfich gfives the resufltsQ(ϵ)n (t+1)U
(ϵ)
n (t)=0 ffor aflfln∈Nand aflflt≥0, and the

correspondfing resuflt ffor the resource-poofled systemq(ϵ)(t+1)u(ϵ)(t)=0.
Then, flet us consfider the Lyapunov ffunctfionW1(Z(t))= Q(t)1. In the steady state wfith a finfite

first moment, the mean drfifft offW1(Z(t))fis zero. Then, we have

0=E A(ϵ)
1
− S1+ U

(ϵ)

1

whfich dfirectfly fimpflfies

E U
(ϵ)

1
=ϵ (24)

Moreover, due to the ffact thatUn(t)≤Smaxffor aflfln∈Nandt≥0, we haveU
(ϵ)2

≤Smax U
(ϵ)

1
.

Thereffore, we can concflude thatE U
(ϵ)2

≤SmaxϵandE(u
(ϵ))
2
≤NSmaxϵ.

Now, we are weflfl prepared to prove Lemma3.6
Prooff off Lemma3.6:Ffirst, flet us consfider the Lyapunov ffunctfionV1(Z):= Q

2
1and the corre-

spondfing condfitfionafl mean drfifft, defined asD1(Z(t)):=E[V1(Z(t+1))−V1(Z(t))|Z(t)=Z].
Then, we have the ffoflflowfing equatfion, fin whfich the tfime refference(t)wfiflfl be omfitted affter the

second step ffor brevfity andQ+:=Q(t+1).

D1(Z(t))

=E Q(t+1)21− Q(t)
2
1|Z(t)=Z

=E Q(t)1+ A(t)1− S(t)1+ U(t)1
2|Z(t)=Z −E Q(t)21|Z(t)=Z

=E2Q1(A1− S1)+(A1− S1)
2+2 Q1+ A1− S1 U1+ U

2
1|Z

=E2Q1(A1− S1)+(A1− S1)
2+2Q+1 U1− U

2
1|Z

≤E2Q1(A1− S1)+(A1− S1)
2+2Q+1 U1|Z

(25)

Under the assumptfions off Lemma3.6, there exfists a steady-state dfistrfibutfion wfith finfite moments

ffor anyϵ>0. Thereffore, the mean drfifft fin steady-state fis zero, fi.e.,ED1(Z
(ϵ)
)=0. Thereffore,

takfing the expectatfion off both sfides off Eq.(25)wfith respect to the steady-state dfistrfibutfionZ
(ϵ)
,

yfieflds

ϵE
⎡⎢⎢⎢⎢⎣

N

n=1

Q
(ϵ)
n

⎤⎥⎥⎥⎥⎦
≤
ζ(ϵ)

2
+E Q

(ϵ)
(t+1)

1
U
(ϵ)
(t)

1

whereζ(ϵ)=(σ(ϵ)Σ )
2+ν2Σ+ϵ

2. For the resource-poofled system, by flettfingN=1 fin Eq.(25)and

takfing the expectatfion wfith respect toq(ϵ), we have

ϵEq(ϵ) =
ζ(ϵ)

2
+Eq(ϵ)(t+1)u(ϵ)(t)−

1

2
E(u(ϵ))2 .

Then, based on the property on the unused servfice fin LemmaB.4, we have

ζ(ϵ)

2
−
c2
2
ϵ≤ϵEq(ϵ) ≤ϵE

⎡⎢⎢⎢⎢⎣

N

n=1

Q
(ϵ)
n

⎤⎥⎥⎥⎥⎦
≤
ζ(ϵ)

2
+B

(ϵ)
(26)
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whereB
(ϵ)
:=E Q

(ϵ)
(t+1)

1
U
(ϵ)
(t)

1
.

Thereffore, fin order to show heavy-trafic deflay optfimaflfity, aflfl we need to show fis thatflfimϵ↓0B
(ϵ)
=

0. Note thatB
(ϵ)
can be bounded as ffoflflows.

B
(ϵ)(a)
=NE U

(ϵ)
(t),−Q

(ϵ)
⊥ (t+1)

(b)
≤N E U

(ϵ)
⊥ (t)

2

E Q
(ϵ)
⊥ (t+1)

2

(c)
=N E U

(ϵ)
⊥ (t)

2

E Q
(ϵ)
⊥ (t)

2

,

where the equaflfity (a) comes ffrom the propertyQ(ϵ)n (t+1)U
(ϵ)
n (t)=0 ffor aflfln∈Nand aflflt≥0fin

LemmaB.4and the definfitfion offQ⊥; the finequaflfity (b) hoflds due to Cauchy-Schwartz finequaflfity;

the flast equaflfity (c) fis true sfince the dfistrfibutfions offQ
(ϵ)
⊥ (t+1)andQ

(ϵ)
⊥ (t)are the same fin steady

state.

As shown fin LemmaB.3,E Q
(ϵ)
⊥

2

≤L2hoflds ffor aflflϵ∈(0,ϵ0)and some constantL2whfich

fis findependent offϵ. Meanwhfifle, note thatE U
(ϵ)2

≤c1ϵffor somec1findependent offϵbased on

LemmaB.4. Then, we have ffor aflflϵ∈(0,ϵ0)

B
(ϵ)
≤N c1ϵL2 (27)

Thereffore, fit can be seen ffrom Eq.(27)thatflfimϵ↓0B
(ϵ)
=0, whfich dfirectfly fimpflfiesflfimϵ↓0ϵE nQ

(ϵ)
n =

flfimϵ↓0ϵEq
(ϵ), and thus the prooff off Lemma3.6fis compfleted.

Proc. ACM Meas. Anafl. Comput. Syst., Vofl. 1, No. 2, Artficfle 39. Pubflficatfion date: December 2017.


