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Abstract

We consider numerical solutions in which the linear elastic response to an opening- or sliding-
mode fracture couples with one or more processes. Classic examples of such problems include
traction-free cracks leading to stress singularities or cracks with cohesive-zone strength requirements
leading to non-singular stress distributions. These classical problems have characteristic square-
root asymptotic behavior for stress, relative displacement, or their derivatives. Prior work has
shown that such asymptotics lead to a natural quadrature of the singular integrals at roots of
Chebyhsev polynomials of the first, second, third, or fourth kind. We show that such quadratures
lead to convenient techniques for interpolation, differentiation, and integration, with the potential
for spectral accuracy. We further show that these techniques, with slight amendment, may continue
to be used for non-classical problems which lack the classical asymptotic behavior. We consider
solutions to example problems of both the classical and non-classical variety (e.g., fluid-driven
opening-mode fracture and fault shear rupture driven by thermal weakening), with comparisons to
analytical solutions or asymptotes, where available.

Keywords: fracture mechanics; cohesive zone; singular integral equations; Gauss-Chebyshev
quadrature; barycentric Lagrange interpolation and differentiation; hydraulic fracture; fault rupture
with thermal weakening

1 Introduction

We focus on integral equations of the (non-dimensional) form

1
o(x) = o,(x) + % /_1 K(x — S)Z—ids (1)

For the crack problems we consider, x is the coordinate along which a straight crack lies. o is the
stress component whose traction is oriented either normal or parallel to the crack face and assumed
to be equal in magnitude on each crack face at a given position along the crack. The relative
displacement § is the difference in displacement of each side of the crack face (i.e., crack opening
or slip), with the displacement direction on each face paralleling that of the traction of o there. A
positive convention of ¢ is defined as that in which od is a positive, work-conjugate product, per
unit crack face area. o, is the traction o that would be resolved on the crack faces in the absence of
any relative displacement. K () is a kernel whose most singular term will be 1/£. Equations with



this form arise in, for instance, problems of in-plane, anti-plane, or axisymmetric rupture (opening
or sliding) of a linear elastic material [e.g., Hills et al., 1996].
Furthermore, (1) may be complemented by a system of additional equations of the form

Glo(x),0(x), &i(2)] = 0 (2)

in which G is an operator that may include, but is not limited to, derivatives and convolutions
involving the arguments, and ;(z) is a placeholder function for any number of potential fields
of interest distributed, and possibly evolving, on . These additional equations may reflect rela-
tions among the arguments determined by physical processes in addition to the elastic response to
discontinuous deformation embodied in (1).

Within the context of fracture mechanics, there has been an increasing complexity of problems
of the type (1-2). Early solutions were often concerned, for example, with the determination of
stress intensity factors for different crack geometries and loading configurations [e.g., Tada et al.,
2000], in which the corresponding problem can often be reduced to one of the form of (1) without
additional conditions (2). These were paralleled by the development of cohesive-zone crack solutions
[e.g., Barenblatt, 1959; Dugdale, 1960], in which the additional constraint (2) is in the form of a
relation between the traction ¢ and relative displacement §. The field of fracture mechanics has
subsequently given rise to rich families of crack problems involving the coupling of the mechanical
response of a medium to fracture with other processes. An illustrative sample includes problems
concerned with fluid-driven fracture propagation [e.g., Spence and Sharp, 1985; Lister and Kerr,
1991; Desroches et al., 1994; Rubin, 1995], ion migration and electrode fracture in lithium-ion
batteries [e.g., Huggins and Niz, 2000; Aifantis and Dempsey, 2005; Zhao et al., 2010; Bhandakkar
and Gao, 2010, 2011], and earthquake rupture nucleation [e.g., Uenishi and Rice, 2003; Rubin and
Ampuero, 2005; Viesca, 2016].

Several numerical methods are commonly employed to solve singular integral equations of the
form (1). One method, colloquially known as the displacement discontinuity method, permits the
numerical evaluation of the singular integral if the unknown function (e.g. d) is approximated by
piecewise-continuous intervals of uniform §, the magnitudes of which are to be determined [Crouch,
1976]. While among the simplest methods to implement (as dd/ds reduces to a series of Dirac
deltas, the convolution is readily evaluated), the method converges only to first order in the number
of equally-spaced intervals into which the crack domain is divided. While improvements to the
order of continuity among intervals (e.g., instead being piecewise continuous in the first derivative)
leads to a higher-order of convergence, it comes at a cost of more cumbersome implementation
[Gerasoulis and Srivastav, 1981; Gerasoulis, 1982]. Erdogan [1969] noted that approximating an
unknown quantity, such as the relative displacement gradient dd/ds in (1), as the product of an
appropriate weight function with a truncated Chebyshev polynomial series reduces the problem
to a numerical solution of a system of equations for the coefficients of the polynomial expansion.
While yielding rapid convergence with increasing size of the Chebyshev polynomial series, this
method also requires an evaluation of a series of integrals in establishing the system of equations
governing the coefficients. Another method reduces the evaluation of the singular integral to a
Gauss-Chebyshev-type quadrature in which the solution reduces to determining evaluations of an
unknown function at quadrature points [Erdogan and Gupta, 1972; Erdogan et al., 1973]. As we
will highlight in the sections to follow, this latter method of evaluating the singular integral also
permits the ready evaluation of a number of other operations, and thus may be the method of
choice for solving problem (1) coupled with a wide range of equations of the form (2).



The paper is organized as follows. Section 2 presents the essentials of the numerical method, in-
cluding the discretization of the singular (Hilbert) integral transform, interpolation, differentiation,
and integration over a set of Chebyshev points. Section 3 illustrates the numerical technique on a
set of crack problems of classical variety, including singular (uniform stress drop) and non-singular
(cohesive) cracks. Section 4 suggests an amended numerical approach to tackle non-classical crack
problems that may lack the classical square-root asymptotic behavior. This amended method is
applied to the problem of a fault rupture driven by the thermal pressurization of pore fluid and an
opening-mode fracture driven by the injection of a viscous fluid in Sections 5 and 6, respectively.
The final Section 7 offers a summary of main results.

2 Discretization schemes

Anticipating the range of possible systems encompassed in (1) and (2), we review numerical
methods to approximately differentiate, integrate, interpolate, as well as to perform the convolution
in (1). The methods are known to be spectrally accurate when the function F(s) on which the
operation is to be performed is analytic [e.g., Boyd, 2001; Berrut and Trefethen, 2004].

2.1 Finite Hilbert transform

We recall that Gauss-Chebyshev quadrature of a integral [e.g., Mason and Handscomb, 2003]
takes the form

-1

/ w(s)F(s)ds ~ ijF(sj) (3)

where w(s) = (1 — s)%(1 + s)” and « and 8 each are :1/2. The set of quadrature weights w; and
points s; correspond to each possible pair of o and 5 (Table 1).
The above quadrature may be extended to approximate integrals with singular convolution

kernels of the form .
F
oy = [,
1 xr— S

for f evaluated at a set of points z; (Table 1) that are complementary to the quadrature set s;
[Erdogan et al., 1973]

n

3 F(s;)
f(ﬂ?l) ~ w; J
— Ti — S5
7j=1
Given the form of the integral equation (1), this suggests that a convenient means of evaluating
the convolution integral is by the decomposition of the slip gradient

dd
T w(s)F(s)

where the choice of the w(s) arises naturally from anticipation of the behavior of dd/ds approaching
the endpoints s = 1, and, as will be apparent from problem examples to follow, F'(s) will be part
of the sought solution.



Implicit in the latter quadrature is the expansion of F(s) in terms of the orthogonal set of
Chebyshev polynomials ¢y () whose weight function is w(zx)

F(s) =) Apdi(s)
k=0

¢1(s) belong to the set of Chebyshev polynomials of the first (7}), second (Uy), third (V}), or fourth
(W) kind, which, with s(f) = cos#), are defined by [e.g., Mason and Handscomb, 2003]

cos((k +1/2)0)
cos(0/2)

Ti[s(0)] = cos(k0) Vie[s(0)] =

sin((k + 1)0)
sin

sin((k + 1/2)6)

Ukls(0)] = sin(0/2)

Wi [s(0)] =

whose corresponding weight functions are in Table 1. The polynomials within a set have the
orthogonality relation
! h(m) k=m
w(s S s)ds =
[ we)one)6n (e {0 o

with h(7) given in Table 2.
If we take the coefficients A to be precisely defined as those which satisify

F(s;) = Z Apdr(sj)
k=0

(requiring p = n — 1) we may easily retrieve the coefficients Ay of the Chebyshev polynomial
expansion, if given F'(s;). To do so we take advantage of discrete orthogonality relations for a set

A E)) .
> wp(s;)pr(s;)dm(s;) =

=1

gn) k=m
0 k#m

(where wp(s;) and g(n) are given in Table 2), to invert for
A= S wp()oule) s
= —— Y wp(s;)or(sj)F(s;
g(n) = J J J

or more concisely

A= BijF(s))
j=1

where trigonometric identities permit concise expressions for By; (Table 2).



Table 1: Gauss-Chebyshev quadrature weights w; and positions s;, which are the roots of ¢, (x), as
well as positions x; for extension of Gauss-Chebyshev quadrature for singular convolution integrals
[after Erdogan et al., 1973]. ¢ (z) are the complimentary set of Chebyshev polynomials to ¢ (x).
For the first row, x; are roots of ¢,_1(z); for the second row, z; are roots of 1, 1; for the remaining
rows, x; are roots of ¥, (x). For problems where the interval = € (0,00) is mapped to z € (—1, 1),
z and u take the place of z and s.

Pr(s) | w(s) w; /T 5 i i V()
Tols) | —— L cos<”(j_1/2)) cos(”) i=1n—1 Uk

n n

2 . .
Uk(s) | V1—s? 1= cos [ —2 cos mi=1/2) i=1,..,n+1 Ty(x)
n+1 n+1 n+1 T

Vi(s) \/E nljf/ﬂé cos(W) cos,(nfl/z) i=1n Wi

Wi(s) \/z n1+_13;2 Cos(nf‘]im) cos<7r7(j;11//22)> i=1n V(o)

2.2 Interpolation

Given F'(s;), we may use the above truncated Chebyshev polynomial expansion to provide an

interpolation for F'(z;) as
n—1
Fm) ~ Y Apor(ai)
k=0

recalling that the coefficients Ay are determined by F'(s;),

n—1 n

F(z:) ~ Y > BiiF(s;)én(xi)

k=0 j=1

which may be more simply written in terms of an interpolation matrix L;;
n
F(z;) =Y LijF(s;)
j=1

where
n—1
Lij = Z o (i) B
k=0

The function F'(s) was carried forward from the previous section as a convenient, nominal example,
and we emphasize that this interpolation method may be used to interpolate any function whose
values at points s; are known or presumed. Likewise, the interpolation may be done to any set of
points z; (i.e., not just the set of points complementary to s; defined in Table 1).

We note that due to uniqueness of the interpolating polynomial of order n — 1 fitting a func-
tion at n points [e.g., Powell, 1981], L;; will be identical to an interpolation matrix derived from
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Table 2: Discrete orthogonality weights wp(s;), discrete inner product values g(n), continuous
inner product values h(7), and matrix By; for inferring Chebyshev polynomial expansion coefficients
Ay, given known collocation point values F'(sj). We use the shorthand 6; = arccos(s;).

o(s) | wp(s)) g(n) h(m) By
To(s) . n k=0 ™ k=0 1/n k=0
K n/2 k>0 /2 k>0 2cos(kb;)/n k>0
n+1 2sin(6;) sin((k + 1)8,)
Uk(s) 1—sj2 5 /2 J 1 J
Vi(s) | 14, - % - 2cos(9j/22lcis§(/l;+ 1/2)0;)
1 2sin(#;/2) sin((k + 1/2)6;)
Wk(S) 1—8]' n+§ ™ TL+1/2

other means of constructing the polynomial interpolant from the set of points s;. The celebrated
barycentric form of Lagrange interpolation [e.g., Berrut and Trefethen, 2004] is a very convenient
alternative and represents L;; as

Lij = (wloi]é,]) / <§: xzcimsm> (4)

=1

where the weights w; depend on the set of points s; and are provided in Table 3.

This latter expression for L;; has several advantages over the former. The foremost is that
switching among the set of points s; simply requires an accompanying switch in the weights w;: no
other explicit consideration of the Chebyshev polynomial kind is needed to evaluate the entries of
L;;. Additionally, the latter expression (4) carries the same advantage for constructing a differenti-
ation matrix, as will be noted in the following section. Another, comparatively minor advantage is
that the barycentric form, along with trigonometric identities, quickly leads to simple expressions
for interpolating to the endpoints +1

F(-1)= Y PiF(sj)), F(1)=~> Q;F(s))
j=1 j=1

where the vectors P; and @); for each set of s; are provided in Table 3. The expressions for P; and
(); therein provide concise alternatives to those given by Krenk [1975b].

2.3 Differentiation

The truncated Chebyshev expansion of a function permits a straightforward estimation of the
derivative, e.g., at points s;. Here, for example, the expansion of F'(s) leads to

P
F'(s;) = ) Ardi(s;)
k=0
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Table 3: Weights w; for the barycentric form of Lagrange polynomial interpolation using F(s;);
weights w; for interpolation using F'(z;); vectors P; and @); to interpolate using F'(s;) to find F(£1),
respectively. We continue to use the shorthand #; = arccos(s;) and introduce §; = arccos(x;), where
sj and x; are those sets of points which correspond to a given set of polynomials ¢, from Table 1.

or(s) | wi/(=1) wi/(=1)° P;/(=1)? —Q;/(=1)
Tu(s) | sin(6y) sin?(0;) tan®;/2) cot(;/2)
Uk(s) ‘ sin?(6;) sin(6;) 2sin%(0;/2) 2cos?(0;/2)

. . : . cos(6;/2) cot(6;/2)
Vi(s) | cos(0;/2)sin(f;) sin(6;/2)sin(6;) 2sin(0;/2) w1/
Wi(s) | sin(0;/2)sin(6;) cos(0;/2)sin(6;) — sin(HjT/l2—i)_t1a/n2(9j/2) 2cos(6;/2)

However, expressions for ¢} (s) are only concisely written for the case of the Chebyshev polynomial
of the first kind: T} (z) = kUj_1(x). For the remaining kinds, expressions of the derivatives in
terms of Chebyshev polynomials are comparatively cumbersome. Nevertheless, recalling that Ag
are defined in terms of F'(s;), we may construct a differentiation matrix D

n—1 n—1 n
~ ZA;C@C(SJ Z Z A ACTACH Z D, F(s1)
k=0 k=0j'=1

where here

n—1
Djjr = Bijrdi(s5)
However, again owing to the uniqueness of the polynomial interpolant, the barycentric form
of the Lagrange polynomial interpolation provides an identical differentiation matrix that is more
conveniently expressed for all sets of points s; as [Berrut and Trefethen, 2004]

wjr Jwj o,
Djjy= == j#7 (5)
S5 — S]
Djj = Z Djj (5b)
J'=13'#j

where here the weights w; are those found in Table 3.

2.4 Integration

We now look for techniques to evaluate integrals such as

5(z) — 6(—1) = / %ds - /1 w(s)F(s)ds



Table 4: Function ®(x) for use in developing an integral quadrature, where x = cos# and k > 0.
®r—o(z) is found by taking the limit £ — 0 of ®y(x).

di(s) | — ()
Ty(s) smé]f@)

1 (sin(k0)  sin((k +2)6)
Urs) | 3 < ko k42 >
Vals) siniﬁk@) sin(;k—:—ll)ﬁ)
Wi (s) Singﬁ) B sin(;k++11)9)

To do so, we use the result that

[ ws)onts)as = veta) - @i-1)

-1

(where the corresponding @ (x) are given in Table 4) such that the approximation of F'(s) in terms
of a truncated Chebyshev polynomial expansion in ¢(s) leads to

5(1’) — (5(—1) ~ E_:Ak[q)k(x) — @k(—l)]
k=0

Recalling that Ay, are determined by F'(s;) via By, we may write the above approximation as

n—1 n

O(x) = 8(=1) = Y > B F(s))[@(x) — By(-1)]

k=0 j=1

If we restrict ourselves to a set of points x;, the approximation is
n
S(xi) — 6(—=1) = > SiF(sy)
j=1

where

i
L

Sij = [‘I)k(l'z) - q)k:(_l)]Bkj
0

=
Il

3 Classical fracture examples

Here we highlight numerical solutions using the above discretization schemes to problems with
known or previously unknown solutions. The problems are of the classical variety, which we define
as a problem in which, aside from so-called cohesive zone laws, there are no additional equations of
the form of G = 0 to be satisfied, and that the end-point asymptotic behavior is of the square-root
variety of the Chebyshev polynomial weight functions.



3.1 Crack with uniform stress drop (single solution)

We begin by considering the classical problem of a traction-free crack of length 2a under a
uniform far-field loading ¢,. The dimensional form of the problem is

rore ds/d
po[e dé/ds

2t J_, x —s

(6)

o(x) =0,

where o(z) = 0 for |z| < a and the modulus ¢/ = /(1 — v) for modes I and II (plane strain), and
i’ = p for mode III, with p being the shear modulus and v the Poisson ratio of the medium hosting
the crack. After non-dimensionalization z/a = x and du'/(20,a) = §, the problem becomes

1
1:/ d(S/dst for |z] < 1

mJ_1T—S

Anticipating, due to the crack singularity, that dd/ds ~ 1/1/1 — |s| as |s| — 1, we look for a solution
of the form ddé/ds = F(s)/v1 — s2, the Gaussian quadrature for the singular integral implies the
discretization

1%%211)]- F(S]) (7)

with, as can be read in Table 1,

The discretization yields n-unknowns F'(s;) and only n—1 equations. This under-determinancy
is resolved by an additional constraint. Classically, such a constraint is the requirement of zero
cumulative relative displacement, which can be expressed as

B B L ds B L F(s) N - .
0=4(1)—d(-1) —/_1 dsds_/_l mdSNj;ij(Sj)

but could, in principle, be replaced with a different statement of symmetry

do(s =0)

=0 6(0)=0

Solving the system of equations (7) with either of the last two constraints provides the approximate
solution. The known solution is §(x) = v/1 — a2, for which F(s) = —s = —Ti(s). Given the basis
for our discretization, the approximate solution for §(z) is expected and observed to be computed
to within machine precision of the known solution for n > 2.



3.2 Cohesive-zone crack (one-parameter family of solutions)

A variation of the above problem that results in a one-parameter family of solutions is to impose
a simple strength criterion on the crack interface. Specifically, we imagine the Dugdale-Barenblatt
scenario of a crack, again under uniform far-field loading o,, whose interface has a peak strength
op up to a critical relative displacement J., beyond which the strength reduces to a residual value
o, (which may be zero). This problem is given by (6) where now

op 0 < () < e
o(xz) =4 (op+0,)/2 6(x) =0 (8)
oy 0(z) > o

for |z| < a. If the relative displacement increases monotonically from the end-points of the crack
towards the interior, we may impose the strength condition in terms of a known spatial distribution
of stress, where x = *4c is the position at which the relative displacement reaches the critical value.
The problem is then alternatively posed as

o c<lz|<a
W[ do/ds b 2
o~ o _ax_sds: (op+0r)/2 |z|=c
oy lz| < ¢

With z/a = =, §4//[2(0p — 0r)a] = 6, ¢/a = c and (0, —0,)/(0p — 0,) = 7, this latter problem
non-dimensionalizes to

1 ds)d c<lz| <1
r—/ % ds = 1/2 |z|=c¢ where 0 < 7,c <1 9)
T)_1x—s
0 lz| < c

Requiring a non-singular stress distribution at the crack tips implies dj/ds ~ /1 — |s| as
|s] — 1. Therefore, we look for solutions of the form dd/ds = /1 — s2F(s), and the problem
discretizes to

c< |z <1
1 & F(S]’)
- L = 812 |ay| = 10
" sz]xi—sj /2 |wil=c (10)
g=1 0 ‘$1| <c

where sj, x;, and w; are those found in Table 1 corresponding to w(s) = V1 —s?. Here we
have n unknowns F(s;), and n+1 equations. For a given r, we have the additional unknown
¢(r). The solution for the crack half length a can be recovered from the value of the normalized
displacement discontinuity at the cohezive zone edge, 6(c) which, as per the scaling used, is equal
to the normalized critical displacement d.4//[2(0p — 07 )a]. Alternatively, we may consider that c is
specified and the unknown is (c). Practically speaking, the latter approach provides more accurate
solutions and is also more readily implementable for the problem as posed in (10) given than we
may assign the positions +c to gridpoints of ;.

For comparison, we present the closed-form solution to the problem of an in-plane or anti-plane
Dugdale-Barenblatt cohesive zone crack. To begin, we note that the absence of a stress singularity
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of the crack tips requires that the stress distribution of the dimensional problem satisfies [e.g., Rice,
1968]

“o(z)—o,

u VaZ = 22

which implies, after non-dimensionalizing as for (9), that ¢ = sin[(1 — r)7/2]. Continuing to follow

the scaling as in (9), we note that after taking the derivative of (9) and integrating the integral
transform by parts, we arrive to

dz =0 (11)

— = —0p(x+c)+dp(xr—c)

_1/1 d?§/ds* | _do  do
t) 4 x—s dx’ dx

(where dp(x) is the Dirac delta function). This integral equation may be inverted [e.g., Muskhel-

ishvili, 1953] to
de?  \/1—a22 J1—ax27m ), v—s ds

where the constant C' is determined by requiring that f_ll(dzé /dz?)dxr = 0. The relative displace-
ment 0 and its gradient is determined by also requiring that 6(£1) = 0 and ¢’(£1) = 0. Imposing
these conditions we find that C = 0,

s 1 [1—-¢2 ¢ ds 1 |
—_—— —_—mmmm _——= n
dz?2 7V 1—-2222—-c2" dx 271 — 2

2

V1 —c2—cv1— 22
V1 — 2+ eVl — 22

and

)

5(z) = SIn

s

‘ -z V1 —¢c2— eVl — 22
T

+ n
(V1 —c2 =1 —x2)2 V1 -2+ eVl —a?

The solution to this classic problem was first found by other means with alternative scalings by
Bilby et al. [1963].

In Figure 1 we compare the results from the approximate solution given by the solution to the
discretized system of equations to the above exact solution. We find that the method is second-
order accurate with n in solving for the slip distribution §(z). We find that the solution for r is
computed to machine precision for all n.

As a brief aside, we consider an alternative to the numerical solution procedure proposed to
arrive at the system (10). Specifically, we consider a search for a solution by choosing a value of
r and letting ¢ be determined as part of the problem solution. To do so, we must consider the
problem as posed in (13). However, for an arbitrarily chosen value of 0 < r < 1, the point c¢ is
imprecisely determined as it likely will fall between collocation points. Numerical solutions found
by this route are less accurate than those found when seeking r(c). Proceeding nevertheless, we
may nondimensionalize (13) with §/0. = 0, x/a = =, and 2a(7, — 7,.)/(1/'d.) = a to arrive to

L L[t dd/ds
Ta J_1x— S8

ds=<¢1/2 §(x)

0<d(x)<1
=1
0 d(z)>1

11
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Figure 1: For the problem of a Dugdale-Barenblatt cohesive zone crack in equilibrium with a
uniform far-field loading, in (a—c) we compare the exact solution (curves) to the approximate
solution (dots) with a fixed value of n (the number of points s;), and in (d) we show how a residual
vanishes with increasing n to show the rate of convergence. (a) and (b) show the distribution of the
relative displacement (symmetric about = = 0) and its derivative for a fixed value of the problem
parameter c. Note the singularity in the latter at z = £¢. (c¢) shows how one variable of the problem
solution, the scaled background loading stress r, varies with the parameter ¢, which is the position
at which the strength drops from a peak to a residual value. As part of the solution, the position
¢ is chosen to coincide with a point in the set ;. (d) The difference between the true solution and
the approximate solution for the relative displacement at a fixed position (z = ¢) decreases with
an increasing n in a manner indicating that the method is second-order accurate in n (line here is
2/n?).
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With this scaling, we see that if we fix the parameter r, the nondimensional crack length a is now
the additional unknown. The discretized problem is

Lo 1 5($Z) >1 n
- = Z ) ={1/2 §(z;)=1 with §(z;) Z (12)
J=1 % 0 (5(1‘1) <1 =t

where wj, x;, and s; are as before, and S;; is the integration quadrature matrix.

An adjustment to this alternative approach that would preserve solution accuracy would be to
add the constraint that at the m-th gridpoint, d(x,,) = 1 (where 1 < m < n), allowing for both r
and a to be considered as unknowns in addition to F'(s;), and, with the scaling ¢/a = ¢, identifying
+x,, as £c. The slip at x,,, may be approximated as

5($m)—/ md—gdSNZSmJF (s5)

-1

where the quadrature vector Sy,; is pulled from a row of the quadrature matrix S;;. This additional
equation completes the system to allow for the solution of F(s;), r, and a.

Here we take the opportunity to make a brief aside on the accuracy of this approach for cohesive
zone problems. We note that the solution for §(x) contains logarithmic singularities in §'(x), and
thus in F'(s) as well, at s = +¢. Consequently, the numerical solution is only second-order accurate.
This logarithmic singularity is owed to the discontinuity in the Dugdale-Barenblatt cohesive zone
relation o(J). Generally, a discontinuity in the m-th derivative of a cohesive zone relation gives rise
to a logarithmic singularity in the m-th derivative of F(s) (or stated alternatively, a discontinuity in
d™o /da™ within an interior point (|s| < 1) gives rise to a logarithmic singularity in d(™+1)§/dz(m+1)
at that point; Appendix A). However, while eliminating discontinuities in the cohesive zone law or
its derivatives, i.e., when o(d) is an analytic function, is sufficient to ensure there are no singularities
present in F'(s) or its derivatives for |s| < 1, any cohesive zone law that linearizes about 6 = 0
will yield a logarithmic singularity in F’(£1) (Appendix A). However, we also show in Appendix
A that the absence of such a linearization (i.e., when do/dé = 0 at § = 0) eliminates that end-
point singularity. As a result, if the cohesive relation is, for instance, an exponential weakening
o(6) = op — (0p — o) exp(—0/0.), which linearizes about ¢ = 0, the end-point singularity is present
and we expect the method to be fourth-order accurate in n. However, the minor modification to
a half-bell-curve distribution of cohesive strength with slip o(8) = o, — (0, — o) exp[—(5/d¢)?]
eliminates the singularity in F”, as well as higher-order derivatives, such that F(s) is now analytic,
leading to the expectation of spectral convergence. These expectations are confirmed in practice
(Figure 2), where for exponential slip-weakening, the problem is

® do/ds

r— S

ds = 0, — (0p — o) exp(—0/0.) (13)

0o — —

2 J_,
With z/a = z, 6/6. = 9, 2a(op — 0,)/ (1) = a, and (0, — 0,)/(0p — o) = r, this problem
non-dimensionalizes to

1 [t ds/ds

- = ds = exp(—6 14
T ra | st = ew(=0) (14)

where, for a given r, the solution consists of §(z) and a. The quadratic-exponential weakening is
treated similarly and the discretization of both is as for the Dugdale-Barenblatt problem as posed
n (12).
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Figure 2: (a) lllustration of Dugdale-Barenblatt, exponential weakening, and quadratic-exponential
weakening cohesive zone relations. Considering the problem of a cohesive-zone crack in equilibrum
with a uniform background stress (r = 1/2), we demonstrate the improvement from (b) fourth-order
to (c¢) exponential convergence with n by a change of the cohesive zone law from one that linearizes
about 6 = 0 (exponential) to one whose leading-order term is quadratic (quadratic-exponential).
Given that analytical solutions for the problems of (b—c) do not exist, convergence is determined
by observing the decay of residuals calculated by substracting from solutions at each n a solution
for which (b) n = 6401 and (c) n = 101.

As a minor aside, we note that for cohesive cracks in which we write o(9), such as the two
exponential forms above or the piecewise linear form considered in the next section (and not alter-
natively written as o(x), as in the Dugdale-Barenblatt problem), it may be shown that solutions are
not unique. Rather, for a given value of r, there may exist a countably infinite family of solutions
[e.g., Uenishi and Rice, 2003; Dempsey et al., 2010], only a subset of which may be symmetric and
also respect physical principles underlying the cohesive law (e.g., that of frictional resistance for
sliding-mode cracks). In Figure 2, the solutions are those for which ¢ is symmetric and monoton-
ically increasing from the crack tips # = £1 toward the center x = 0. An alternative pulse-like
solution, characterized by a monotonic accumulation of the displacement discontinuity along the
crack, has been explored by Garagash [2012] in the case of the exponential cohesive law. Other
cohesive-zone problems in which the procedure used here has been applied and documented in
detail include Viesca and Rice [2012] and Brantut and Viesca [2015].

3.3 Cohesive zone tip solution (single solution with semi-infinite domain)

Here we consider a semi-infinite crack in equilibrium with a background load o,, and whose
strength weakens linearly with relative displacement from a peak value, o, to a residual, o, over
a critical amount of displacement J. [considered in the context of a shear rupture by Ida, 1972], or

o ,LL/ o dé/dS _ O'p - (Up - U’r‘) 5C

2 0 xr— S o, (5(.%') Z 56

(15)
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For this problem, due to equilibrium considerations, we require that the background loading o, =
oy, the residual strength. We define the distance R as that at which the relative displacement
reaches the critical value, §(R) = .. Choosing the scalings z/R = x, /). = 6, and 2R(0), —
o.)/(i'd.) = R, the problem non-dimensionalizes to

TRy s—x |0 d(z) >1

L[> ds/ds {1 —5(z) 0<d(z)<1
In analogy to the last formulation of the cohesive zone crack problem in the previous section (in
which we needed to determine §, a, and ), here the problem is that of determining the slip § and
the distance R. However, the problem is posed on a semi-infinite interval; nonetheless, we may
pursue a solution by using an appropriate change of variable to transform the problem to one on
a finite domain, in which we may use the convenient Gaussian quadrature for the finite Hilbert
transform.
We use the following coordinate transformation from x € (0,00) to z € (—1,1)

142z do 2

S R S g

to transform (15) into a problem of the form,

TR J_u—=z
where
o(w) = (1 - w P
he) = {20 0BEN/0=2) 0< i) <1
0 Sla(z)] = 1

To evaluate the left hand side of (16) using the Gaussian quadrature, we look to find an appropriate
weight function for the decomposition of g. The non-singular stress condition at the crack tip and
the uniform stress drop imply the following asymptotic scalings for dd/ds

dé

ds

dd 1
~ \/g _ ~ —
s—0 ds §—00 \/g

which imply that, at its endpoints, g(u) behaves as

glu = —1) ~ V1 + u, glu— 1)~

—
|
S

suggesting the appropriate decomposition is
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Figure 3: (a) Distributions of stress (blue) and relative displacement (red) with distance x behind
the crack tip of a fracture whose strength weakens relative displacement in a piecewise-linear fashion,
as found by numerical solution. (b) Distribution of the solution variable F'(z), where dd/dx =
Flz(z)]\/z/(1+2)? and z(z) = (z — 1)/(z 4+ 1) is the compactly mapped spatial coordinate.
Analytical expressions for limit values F'(+1) are given in the main text for validation.

such that the problem discretizes to

2(1 — d6lx(z; 1—2) 0<dx(z)] <1
WRZ _ZZ {( [ (z)]) /(1 — 2i) 0 < dla(z)]

0 Oxz(z)] > 1 (a7)

where u;, z;, and w; are those found in Table 1 corresponding to w(u) = /(1 +u)/(1 — u). The
above provides only n equations for n + 1 unknowns F'(u;) and R.

The necessary additional constraint comes from requiring that §(1) = 1. The position z = 1
corresponds to z = 0, which does not exist within the sets of quadrature points u; and z; for this
problem. Instead, to impose this constraint, we first calculate

5[36(%)]—(5[35(—1)]—/_?Zidu:/ g, / \/El_ud Nstl_u

where the matrix S;; is determined by the integration scheme from the previous section corre-
sponding to w(u) = /(1 +u)/(1 —u). The crack tip relative displacement 6[z(—1)] = 0. Using
the resulting expression for d[z(z;)] we may then interpolate to find

~ Z M;0[x(z;)]
i=1

where the interpolation vector M; constructed by substituting 0 for x; and z;, 2, for s;, s, in (4)
and using the weights w; = (—1)sin(#;/2) sin(6;) from Table 4 with 6; = arccos(z;). Requiring this
approximate value of §(1) to equal 1 provides the additional constraint.

In Figure 3 we show the solution to the discretized problem, in which R = 1.46229... . Figure
3a shows the distribution of stress and relative displacement with distance behind the crack tip z.
Stress ahead of the crack tip (x < 0) is calculated at the set of points z; = (z; — 1)/(z; +1). We
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compute o(x;) by evaluating the left hand side of (17) with 2" = z(z;) = —1/2; in place of z;, u;
as defined previously, and R and F(u;) from the solution. The points z°* lie outside the interval
(—=1,1). While this problem eludes an exact solution, as a convenient validation, we show in what
follows that we may anticipate the value of F'(1) and have a consistency check for the value F'(—1).

The value of F'(1) reflects the asymptotic behavior of the slip gradient as * — oo, which is
determined by using a small-scale yielding analysis [e.g., Rice, 1968]. A stress intensity factor for a
tip of a crack dictates the strength of the stress singularity just ahead of a singular crack tip is of the
form o(x) = K/\/2m(—x), where —z is the distance ahead of the tip, as taken in (15). Such singular
cracks have relative displacements of §(x) = 2(K/u')\/2x/m when approaching the crack tip. The
energy release rate of such singular cracks is given by K?2/(2u'). When considering non-singular
cohesive zone cracks with a proscribed cohesive law (), the fracture energy G = fgc [0(0) — op]dd
le.g., Palmer and Rice, 1973], which is G = (o), —0,)d./2 for the piecewise-linear weakening relation
of this section. The small-scale-yielding approximation of a cohesive-zone crack is its representation
as a singular crack for z > R with an effective stress intensity factor K determined by matching
the energy release rate for the singular crack with the fracture energy G. For the cohesive law of
this section this implies K = \/p/(0p — 07)d.. Switching to dimensionless variables by taking the
scalings of this section results in the asymptotic behavior of the relative displacement as z — oo
taking the form

T dx T

6 _ [Ty =odiyl 4 _ [T
dx

With the change of coordinates from x to z and the decomposition (1 — z)dd/dz = w(z)F(z), this

asymptotic behavior requires that
IR
F(1) =4/ — =~ 0.6822...
7r

On the other hand, the value of F(—1) reflects the asymptotic behavior of approaching the
crack tip, or £ — 0, the determination of which requires explicit consideration of evolution within
the cohesive zone, the details of which were previously subsumed in the small-scale-yielding ap-
proximation. We begin by considering the scaled version of (15), taking a spatial derivative, and
integrating by parts to arrive to

1 [ d?6/ds? _do
7R 0o s—x  dx

This equation may be inverted [e.g., Rice, 1968]

#C Lkt i,
de?  Jx  w/z J, x—sds

where C' is a constant determined by requiring that fooo d%§/dx?dx = 0, which leads to C = 0. We
further note that as

dd
=0, —=F(-1
v o0, T =F(-1a
the above inversion implies that
2R [ 1 d
F(-1)=-—" [ —%%4s

T 0 \/5%
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The piecewise-linear cohesive zone law has the property that do/ds = —dd/ds on 0 < s < 1 and 0
for s > 1 such that the expression for F'(—1) is further reduced to an integral over only the cohesive
zone domain,

dz =~ 1.4262...

B 2R/1 1 d6 _ 2R O F(z ZR/ 1+z F(z2)
\fds T 1—z 1—2+1-22

where the final approximation was calculated using the numerical solution for R and

1+z F(z) n F(u;)
/_1 1—z1-22 ZMZSM\/?JU? (18)

where M; and Sj; are as previously defined in this subsection, and F(u;) also result from the
numerical solution.

4 Non-classical fracture problems and amended asymptotics

In this section we consider an amendment to determine solution procedures for non-classical
fracture problems. We define a non-classical problem as one in which fields, such as ¢ or dd/dz
near or far behind the tip, or the stress field o ahead of the tip, follow a power-law in space with
an exponent other than one of the classically characteristic values +1/2. This simple definition
of a non-classical problem includes the problem of a singular crack within a power-law hardening
material [e.g., Hutchinson, 1968; Rice and Rosengren, 1968] as well those involving cracks along
a bimaterial interface [e.g., Rice and Sih, 1965; Erdogan, 1965; England, 1965]; however, we limit
ourselves into the presumption that the material surrounding the crack responds in a homogenous
linearly elastic fashion. Here the non-classical asymptotic behavior arises from the coupling of
that elastic response with additional relations to be satisfied along the crack path that are beyond
the simple relative-displacement dependent cohesive zone laws examined in the preceding section.
The non-classical behavior may arise as a consequence of any number of physical couplings, for
examples: the fluid-driven propagation of an open-mode fracture [e.g., Spence and Sharp, 1985;
Desroches et al., 1994; Garagash et al., 2011]; a rate- and state-dependent friction acting along a
sliding interface [Perrin et al., 1995]; frictional heating of the interface of fluid-saturated materials
[Viesca and Garagash, 2015].

We recall that, to numerically evaluate the finite Hilbert transform of a function f(s), we are
interested in finding a decomposition of that function in the form f(s) = w(s)F(s) where w(s) is
a known weight function chosen such that F'(s) takes on finite values at the endpoints (and, often,
is a function to be solved for). When w(s) takes on one of the forms in Table 1, with square-root
or inverse-square-root asymptotic behavior at the endpoints s = +1, the appropriate quadrature
to compute the Hilbert transform is known. However, such a decomposition may not be possible
when the function f(s) has power-law asymptotics not of the square-root variety. In such cases, we
instead look for a decomposition of the form

f(s) = w(s)[AF(s) + F*¥(s)] (19)

where w(s) is restricted to the forms in Table 1, F**¥(s) contains the anticipated departure from
the square-root asymptotics. This is done as a convenient alternative to directly incorporating the
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non-classical asymptotics in the weight function w, in the form w(s) = (1 — s)®(1 + s)? where
—1 < a,B < 1. The general set of orthogonal polynomials with such a weight function are the
Jacobi polynomials, of which the four kinds of Chebyshev polynomials are the particular sets when
a, = £1/2. Solutions routes may proceed using expansions in these orthogonal polynomials [e.g.,
Erdogan et al., 1973] or by integral quadrature, for which Krenk [1975a] found general expressions of
the appropriate quadrature points and weights for the Cauchy singular integral for the permissible
range of exponents «, . Such routes have been taken for specific problems [e.g., Adachi and
Detournay, 2002; Ma and Korsunsky, 2004]. However, that the well-studied and concisely expressed
Chebyshev polynomials permit the ready determination of the quadrature points and weights and
methods for interpolation, differentiation, and integration, encourages the search for an amendment,
such as that of (19), that permits their continued use. We highlight the practical implementation
of such an amendment in two examples to follow: the sliding rupture of a fault aided by thermal
pressurization, and the propagation of a hydraulic fracture. These examples also draw from the
discretization schemes outlined in section 2.

5 Fault rupture facilitated by thermal pressurization

5.1 Problem overview and formulation

We consider the problem of a shear rupture (mode-II or mode-III) of a planar frictional interface
within a fluid saturated medium. The shear strength of the interface is assumed to be the product
of a constant friction coefficient f and the local effective normal stress on the interface, which is
understood to be the difference between the total normal stress (positive in compression) and a
pore fluid pressure at the interface. The initial, pre-rupture value of this effective normal stress is
denoted as o,.

For a shear rupture of a planar interface of elastically identical materials, the total normal stress
remains constant at its initial value; however, heating due to frictional sliding can elevate the pore
fluid pressure along the ruptured portion of the interface, due to the thermal expansivity of pore
water and the porous matrix and the limited flux of pore fluid and heat away from the interface.
This weakening process, known as thermal pressurization, has been a proposed mechanism for
strong weakening of interfaces, particularly during the rapid, seismogenic rupture of geologic faults
[Lachenbruch, 1980; Mase and Smith, 1985; Garagash and Rudnicki, 2003; Rice, 2006]. Three
key properties of porous materials in this process are the volumetric heat capacity pc; a thermal
pressurization coefficient A (providing the increment in pore fluid pressure for a given increment
in temperature under conditions in which no fluid flux is permitted); and «, a lumped hydro-
thermal diffusivity, defined in terms of the thermal and hydraulic diffusivities of the porous medium
(respectively, oy, and apy) as o = (\/oﬁy—k \/@)2.

In this section we search for the crack-tip solution for a rupture propagating at a constant
speed v,. When thermal pressurization results in a complete strength loss far behind the tip (i.e.,
by complete reduction of the initial effective normal stress), then necessarily the pre-rupture shear
stress o,(x) = 0 (i.e., negligible shear stress is needed to propagate the rupture). Taking z to be
the moving coordinate whose origin is coincident with the crack tip and positive behind the rupture
front, the shear stress along the interface is

w0 do/ds

2 Jo x—s

o(x) = ds
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where p’ is as before for quasi-static rupture propagation and is modified by a mode- and rupture-
velocity-dependent prefactor accounting for the general case of elastodynamic rupture propagation
[e.g., Weertman, 1969).

The strength behind the rupture front is determined by a Green’s function approach to deter-
mine the pore pressure increase owed to a continuous, variable heat source behind the rupture front
[Rice, 2006; Garagash, 2012]. The heat source is simply the product of the shear stress and the slip
velocity, which is proportional to the spatial gradient of slip in the moving coordinate frame. The
resulting expression for the shear strength behind the rupture tip is

r )dé/d
o(x) fan——,/v \/#s for z >0
m(z — s)

where the numerator of the integrand is the variable source term and the denominator is the Green’s
function.

With o/(fo,) = o, §/0, = 6, and z/x. = x, where x. = [pcy'/(fonN)]?a/v, and 6, =
(2fon/1)xy, the problem nondimensionalizes to the pair of equations involving o(x) and dd/ds

1 [*dd/d
o(x) = / ﬁds (20a)
T s—=

T o(s)dd/ds
0 Vm(x—s)
The latter expression falls in the class of relations identified by (2) and is one that deviates from
the classical forms given in section 3 (i.e., an explicitly prescribed spatial distribution o(z) or

an explicit relation between o and ). As a result, the problem solution exhibits non-classical
asymptotic behavior in the far field [Viesca and Garagash, 2015]

o(x)=1- ds for x >0 (20b)

o) = S o) = (m) ! (21)

In the following subsection we take this non-classical behavior into account in the numerical solution
method.

x — 00, d—:(ﬂ
x

5.2 Numerical procedure and solution

To provide a numerical solution of the full problem posed above, we begin by again using a
coordinate transformation to reduce the problem from one on the semi-infinite interval = € (0, c0)
to the finite interval z € (—1,1) via

1+2z dz 2

) =T G T e

such that

—Zz 1 u
ola(2)] _11/ 9() g,

2 m)Jqu—=z

/ 1= ols(wlg(w)
I u\/2n(e —u)
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where again ()]
déols(u
(1— u)idu
When we last considered crack tip problems in section 3.3, we found that the non-singular stress
condition at the crack tip and the uniform stress drop in that problem implied the asymptotic
scalings do/ds ~ /s as s — 0 and dd/ds ~ 1/\/s as s — oo. When accounting for the change of
variables, these scalings suggested a decomposition of the form

g(u) =

1+4+wu
1—wu

g(u) = F(u) (22)
However, the far-field asymptotics (21) is not one of a uniform strength drop, but of a gradual
decay in strength. Specifically, the near-tip field remains dd/ds ~ /s as s — 0, but the far-field
asymptotic behavior is dé/ds — As? as s — oo where the exponent v = —1/4 and the constant
A = (4m)~'/4. The asymptotic decay in strength behind the rupture front is o(x) — A cot(my)z?.
With these asymptotics in mind we may further decompose (22) by writing

F(u) = AF(u) + Fo(u)

where F,, provides the correct asymptotic behavior for g(u) as u — 1 if

9 )1/2+'y

1—u

Fo¥(y) = A <

and AF will be finite and differentiable at its endpoints.
Substituting the decomposed g(u) into the equation for stress, we may decompose

olz(z)] = Ao(z) + 0%Y(2)

O.asy 1_21/ 1+uF asy
\/l—u uU—=z

Aoz 1—21/ 14+uA
l—u u—2z

The latter expression may be approximated using the appropriate quadrature for the Hilbert trans-
form, owing to the regular behavior of AF'(u) at its end-points,

where

uj—zi

1—21 < AF(u;
Ao(z) = L3y, BT (23)
j=1

where u;, z;, and w; are those found in Table 1 corresponding to w(u) = /(1 +u)/(1 — u). The
above provides n equations for 2n unknowns AF(u;) and Ac(z;). Given the known function Fygy,
the expression for 0,5y may be determined analytically or otherwise pre-calculated at the set of
points z;.
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Likewise, considering the decomposed strength description

asy l+u [1=2z[Ac(u)+ o®¥(uw)][AF(u) + F*Y(u)]
Ao(z) +o —1—/ Ul—uwl—u Nc=eem du

we may also precalculate at the set of points z; the term found on the right hand side

asy / /1+u asy )Fasy( )
1—u 1—u \/2 z—u

Consequently, we may write the discretized set of equations as

ZLJka 2k)

AO'(Zz')—l—O'asy(Z ) Sasy(zl =1- Z Sszz] ]) - [Z ijo.asy(zk)

_— F*%(u;
=1 v 2m(uj = 2i) { k=1 ( ])}
(24)

where the matrix S;; is determined by the integration scheme of Section 3 for w(u) = /(1 + u)/(1 — u);
M;; = /(1 —z;)/(1 — u;); and, to evaluate the convolution as a quadrature on u, we have used
the interpolation matrix L, defined for the set of points z; to interpolate values of o from the set
of points z; to that of u;: i.e., we can take the quantities o(u;) and 0%*¥(u;) to be approximated
by the above terms in square brackets. We have reduced the original problem to a system of 2n
equations, (23) and (24), for 2n unknowns Ac(z;) and AF(u;). Using the shorthand o; = o(2;),
oj =o(uj), Fj = F(u;), etc., we may further reduce the expressions of (23) and (24) to

1—2z1 <
Aoy = Z—E T
(2

- (Acj + o) (AF; + F*™Y) — oV F™Y
AO’i—'—O’?Sy—S?Sy:l—ZSﬁMiJ J )( J J ) j j

21 (u; — 2z;)

The numerical solution for the slip gradient and the stress, as well as their far-field asymptotic
behavior, (21), are illustrated in Figure 4.

6 Propagation of a hydraulic fracture with power-law viscous fluid

6.1 Problem overview and formulation

Here we consider the problem of the propagation of an opening rupture (mode I) that is driven
by the pressurization and motion of a power-law fluid within the crack aperture. The medium
is under an initial stress state corresponding to a uniform compression, o, < 0, acting normal to
the eventual rupture plane. The fluid itself may or may not penetrate to the leading edge of the
rupture. The latter inability of the viscous fracturing fluid flow to catch up with the moving crack
tip results in the fracture tip cavity (“lag”) of extent A filled by the fracturing fluid volatiles or the
pore fluid and its volatiles leaked-in from the formation.

The interest in such problems range among the fracturing of rock to enhance hydrocarbon
production [e.g., Detournay, 2016]; the magma-driven propagation of dikes [e.g., Rubin, 1995]; as
well as the turbulent drainage of supraglacial lakes [e.g., T'sai and Rice, 2010]. The implications of
a power-law viscous fluid for behavior near the crack tip of a fluid-driven rupture was considered by
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Figure 4: Distributions, as found by numerical solution, of stress (blue) and the gradient of the rel-
ative displacement (red) with distance = behind the crack tip of a fracture whose interfacial strength
weakens due to a frictional-heating induced pressurization of pore fluid. The top black dashed-line
is the leading-order asymptotic behavior of both quantities, while the underlying dashed line con-
tains the next-order correction to the asymptotic behavior of the gradient of relative displacement,
given in (21).

Desroches et al. [1994]; subsequent consideration of fluid lag for a Newtonian (linear) viscous fluid
was given by Garagash and Detournay [2000]. More recently, the near-tip behavior of fluid-driven
fractures have been studied for non-linear fracturing rheologies and transient (laminar-to-turbulent)
flow regimes by Moukhtari and Lecampion [2017] and Dontsov [2016], respectively. In this section
we formulate the general problem considering both a non-linear viscous fluid and the presence of
fluid lag, and outline a procedure for its solution. We carry out the procedure for the linear viscous
case and validate the numerical solutions with the anticipated behavior.

Again taking x to be the moving coordinate whose origin is coincident with the rupture tip,
and positive behind, the normal stress (positive in tension) along the crack path for a rupture
propagating at a speed v, is commonly written for such problems in the form equivalent to (6)

! o0
o(z) = oy — E/ dé/dsds

A Jo T —35

which utlizes the plane-strain modulus E’ = 2u’ where p’ is as previously defined. Moreover, the
crack propagation condition requires that 6(x) = 4(K/E’)/2z/m where K is the critical mode-I
stress intensity factor. We consider that the normal tractions along the crack walls are due to a
fluid pressure distribution p(x), i.e.,

o(x) = —p(x) forx >0

and the fluid pressure within the cavity between the rupture and fluid fronts is assumed to have a
uniform value p,, i.e.,
p(x)=p, for0<ax <A

which can range from a value near zero (saturated vapor pressure), when compared to the repre-
sentative stress value o,, up to the virgin formation pore pressure value.
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Conservation of the incompressible fracturing fluid in the rest of the fracture, together with the
Poiseuille law for a power-law fluid (7; = M~4™ with consistency index M and power-law exponent
n) leads to [e.g. Desroches et al., 1994]

n+1
N = %j—i for z > A
Here M’ = 1(n)M and ¢(n) = 22"(2n +1)"/n™.

The above equations govern the solution for the problem in terms of the distribution of the
fracture opening d(z), the net fluid pressure p + 0,, and the extent of the lag A\. We also note that
the above formulation for the power-law fluid-driven fracture reduces to that for a Newtonian fluid-
driven crack with fully-turbulent Manning-Strickler flow if n = 1/3 and M’v® in the lubrication
equation is replaced by (fo/4)pv2k!/? [see, for example, Tsai and Rice, 2010] where fo ~ 0.143 and
k is the fracture wall roughness.

With (p + 0,)/0, = p, §/0« = 0, /2w = v, K/(0L\/Tx+/2) = K, A\/zx = A, where x, is the
lengthscale

v

E' /4 1+1/nM/1/n,U
Tx = (/) 1+2/n - (25)
Oo
0y = (40l JE" )z, and o, = —(0p+p,) is the underpressure in the lag, the problem non-dimensionalizes

to the following equations involving p(x) and §(z)

oy = L [,

™ r— S

px)=—-1 forO<z <\

d
5““—1) =1 forz> M\
dx
with the additional constraint that
d(z) =rVx asxz—0 (26)

The solution for A, p(x), and d(x) is a function of a single parameter 0 < x < co. As noted by
Garagash and Detournay [2000], it is advantageous for numerical solutions to instead parameterize
the problem by A, leaving x as one of the solution variables. We note that for the Newtonian fluid
case (n = 1), the scaling reduces to that of Garagash and Detournay [2000] up to the prefactor in
the expression for the lengthscale, specifically z, = L,/ 42 in terms of the L,, used by these authors.
The difference stems from the use of E’/4 in (25) rather than E’ in the work of Garagash and
Detournay [2000].

As an aside, in the particular case of zero toughness (x = 0), the more direct route to the
solution is to prescribe a zero toughness value and solve for the lag. In this case, we will resort
to solving the problem in a different scaling: (p + 0,)/0, = p, 6/(4 o, /E') = §, z/\ = =,
K/(ol\/7A/2) = K, Az, = A. In this scaling, the normalized position of the fluid front in the
crack is at z = 1, and the lubrication equation is modified to 6™ dp/dz = A™ (for x > 1).

To leading order, the solution to the problem possesses a non-classical behavior in the far field,
xr — 00, corresponding to the far-field behavior of the propagating fracture in the absence of a
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cavity (i.e., the presence of the fluid lag and finite toughness encountered at the crack tip is not
apparent to the leading order of the solution in the far-field), which is [Desroches et al., 1994]

do
T 00, o= Az, p(z) = Acot(my)x?
x
where the exponent v = —n/(2 + n) < 0 and assumes a value of 0 for a Bingham fluid (n =

0) and a value of —1/3 for a Newtonian fluid (n = 1), while the prefactor A = (1 + ~)[y(1 +
) cot(my)]~(1+7)/2 (The case of the Bingham fluid is obtained in the limit v — 0 of the above
asymptotic form, leading to dé/dx = A = /7 and p(x) = Inz/\/m + constant.) The next-order
correction to the above far-field asymptotic behavior can be obtained, by extending the analysis of
Garagash and Detournay [2005]

x — 00, 3—5 = Az7 + Bx", p(x) = Acot(my)z” + B cot(mn)z"
x

where the exponent 7(n) is the solution of the transcendental equation

n(1 +n) cot(mn)
Y(1 — ) cot(my)

=-1 (27)

as shown in Figure 5. The influence of the near-tip processes due to the toughness and the fluid lag
is included in the coefficient B (i.e., B(\) or B(k), depending on the problem parameterization),
which cannot be determined from the asymptotic analysis alone and, therefore, is part of the full
solution.

Prior numerical solutions of the above problem for a linear-viscous fluid often rely on piecewise
approximation of fields, such as pressure or relative displacement or of their gradients, with con-
vergence that has not been systematically studied [e.g., Garagash and Detournay, 2000; Garagash
et al., 2011], but expected to be between first to second-order in the number of intervals. How-
ever, greater (e.g., fourth-order) convergence has been reported with piecewise approximation, for
instance, for comparable hydraulic fracturing problems of plane-strain fracturing initiation or frac-
ture propagation with fluid leak-off [e.g., Peirce, 2010; Dontsov and Peirce, 2011]. In the following
sub-section, we outline a solution procedure for the above problem via the discretization of Section
2 with amended asymptotics.

6.2 Numerical procedure and solution

We begin by following the mapping of the semi-infinite crack on = € (0,00) to z € (—1,1) by
x = (142)/(1—z), which transforms the equations governing the crack opening and fluid pressure
distributions to

dz d
5[x(z)]n+1£d—]: =1 A <z<l1

plz(z))=-1 0<z<A\,

where A\, = (A —1)/(A+ 1) is the mapped position of the fluid front, as well as

1/1 9 gy — b

T _1z—u
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Figure 5: Solution to the transcendental equation (27) for the exponent 1 of the next-order
term of the far-field asymptotics for fluid pressure and the gradient of relative displacement.
The solution for 7 is given as it depends on the exponent n of the power-law viscous fluid.
There are two solution branches and the appropriate value for 7 is given by the greatest value
of the two (solid line), which is well approximated by a bilinear function defined by three points
(n,n) = (0,—1), (—0.2866, —1.1254), and (1, —0.86133).

where

with the propagation condition

[ 2
= — —1
glu) = x Ttu

We look for the solution in the form of the decomposition

1 asy (y,
g(u) = N [AF(u) + F*Y(u)]

where F'*Y provides the correct asymptotic behavior of g(u) as u — 1 if

T+u/ 2 V¥
FOSY(y) = 24
() 2 <1 - u)

while also ensuring that there is no contribution of F**¥ to the crack-tip singularity (i.e., F*¥(—1) =
0). Thus, the regular part AF(u) is continuous and differentiable at the interval’s ends and is
constrained by the propagation condition as AF(—1) = k. We may decompose the net fluid
pressure and crack opening as

plz(z)] = Ap(z) +p*(2)

d[z(2)] = Ad(2) + 6*Y(z)
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Figure 6: Distributions of (a) stress and (b) relative displacement with distance behind the rupture
front for a rupture driven by a Newtonian viscous fluid with variable values of fracture toughness &,
with universal far-field asymptotic behavior (blue-dashed). Red-dashed lines in (b) show transition
in near-tip asymptotic behavior as fracture toughness vanishes. (c¢) A fluid lag A exists and de-
pends on the fracture toughness x, with the large toughness asymptotic behavior of Garagash and
Detournay [2000] shown as a blue dashed line. (d) The coefficient B of the next-order correction
to the far-field asymptotics for stress and displacement, as it depends on the fracture toughness.
The large-toughness asymptotic behavior is shown as a dashed blue line [Garagash and Detournay,
2005]. Solutions shown are for n = 200.

where we denote the contributions of F'¥ to each as

1-2)1 [ 1 F*Y(u)
asy — ( = d
) 2 ?T/_lx/l—u2 z—u

Z 1 Fﬂu?y(u)
8% (z :/ du
) aV1I—u? 1-u

Using the Gauss-Chebyshev discretization with the weight function w(z) = 1/v/1 — 22 to dis-
cretize AF; = AF(uj), pi = plz(zi)], di = 6[z(zi)], etc., (where the points u; and z;, and weights
wj to follow are those found in Table 1) we can write the discretized set of governing equations as

1—zily~ AF
Aps — et . J
pi 2 W;w‘qzi—uj
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Figure 7: Convergence of the zero-toughness Newtonian hydraulic fracture tip solution with respect
to the reference numerical solution, in which n = 1000. The straight line indicates a ~ 1/n? slope.

with
pi = —1’ P = p?sy + Apt —1<z < Ziy, (288‘)
gort (32 (dp) _,  (dp) _ (@77 +ED-- Apy 2> z (28b)
i dr ) dz . =4 dz . - dz i i AP 1 1)

where grid point z;, = A, corresponds to the prescribed location of the fluid front; (dz/dz); =
(1— zf)/ 2; and the differentiation matrix [J;; on the set of points z; is determined analogously to
D;j in (5) by using appropriate weights w; in Table 3. The crack opening is given by

b
AF;
a8y J
=0 +ZS¢51_W
j=1
where S;; is determined by the integration scheme of Section 3 for w(u) = 1/v/1 — u2. The values of

6%, pi™Y, and (dp™V /dz); may be precalculated. The system of 2(n— 1) equations is complemented

by the propagation condition and by the condition of the vanishing net pressure at the far field

Y PAF;=AF(-1) ==k

Jj=1

n—1
ZQ@A}% = Ap(1)=0
i=1
to yield an algebraic system of 2n equations for 2n unknowns AF}, Ap;, and .

As a final note on the numerical method of the solution, we acknowledge that the fluid pressure
gradient in the crack is discontinuous at the fluid front, which is expected to severely limit the
accuracy of Gauss-Chebyshev differentiation (otherwise spectral for regular, infinitely differentiable
functions) in the discretized lubrication equation (28b). In order to improve the accuracy of the
discrete differentiation of a function Ap[z(z)] with a discontinuous derivative at z = z;, , we replace
it with its “to-the-left” continuation

Ape[(2)] = Apla(2)] + Ja (= — 24 H(zi, - 2)
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where H(z) is the Heaviside unit-step function, and

Iy = <dp> _ <dp) o Piam1 =P Piy+1 — Piy
dz) ., w0 \dz) . o 217 Z Zintl T 20
is the derivative jump approximated by a finite difference. We observe that the function Ap, [z(z)]
is everywhere differentiable with its values given by the original function Ap[z(z)] in z > z;, and
by that superimposed with a linear function Jy(z — z;,) in z < z;, .

The general problem solutions (k > 0) are presented in Figure 6. The convergence of the
method is evaluated for the zero-toughness (k = 0) case and presented in Figure 7.

7 Summary and Conclusion

We consider numerical solutions to linear elastic fracture problems in which crack-face trac-
tions and relative displacement are coupled both by the elasticity of the continuum containing the
crack as well as by any number of additional physical processes. We begin by highlighting that the
quadrature of Erdogan et al. [1973] for the numerical evaluation of the characteristic singular inte-
gral for crack problems, with collocation points occurring at the nodes of Chebyshev polynomials,
allows for the ready evaluation, with potential for spectral accuracy, of other operations that may
arise in constraints on relations among crack-face tractions, relative displacement, or other field
variables provided by the additional processes. We provide the necessary coefficients and weights
to integrate, differentiate, and interpolate functions whose values are known at a set of points lying
at the nodes of one of the four kinds of Chebyshev polynomials.

We highlight the convenience and accuracy of this approach by first considering classical prob-
lems in fracture mechanics, focusing on finite or semi-infinite cracks that are singular or obey
cohesive-zone traction-separation relations. Such problems have classical square-root asymptotics
appropriate for the singular integral quadrature and may have a single solution or a one-parameter
family of solutions and we detail procedures to find numerical solutions to such problems using
the aforementioned numerical methods. Among the results, we show that the smoothness of the
cohesive-zone relation imposes limits on the order of convergence of numerical solutions and we
provide conditions in which spectral accuracy may be achieved.

We finally consider the convenience the method provides for the numerical solution of fracture
problems with non-classical asymptotic behavior, owed to specific physical processes. The first
problem considered is the propagation of a sliding-mode rupture facilitated by the pressurization
of pore fluid at the interface due to rapid frictional shear heating. The second problem is the prop-
agation of an open-mode hydraulic fracture in a material of finite or negligible fracture toughness
driven by a power-law fluid. In addition to the evaluation of the singular integral, the solution
to these problems requires differentiation, integration, and interpolation. Furthermore, while each
problem lacks classical square-root asymptotics we show that we may continue to make convenient
use of the numerical methods with a slight amendment in the solution procedure.
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A Results on smoothness of function and its Hilbert transform

A.1 A discontinuity in stress or one of its derivatives within an interior point

We begin by considering the equation relating stress with the gradient of relative displacement
for an in-plane or anti-plane crack of finite extent

1 S
o(@) = o(w) - = [ L

mJ)_1—S

ds (A.1)

We further presume that a discontinuity in o(z) exists at # = b for some |b] < 1: i.e., o(b1)—0(b™) =
Ac. To examine behavior in the vicinity of the discontinuity, we use the following coordinate
transformation to center on and expand about the discontinuity: (z — b)/e = x with d/e = 9§,
where we take the limit that e — 0. In this limit, the discontinuity o(x) appears, to within a
constant, as a Heaviside step function of height Ao. Furthermore, if o,(x) is continuous at b, o,(x)
appears to take on a constant value: i.e., o,(x) — 0,(b) = 0p. Thus, following the transformation,
(A.1) reduces to

1 (% dd/ds
= _ — d A.2
o)== [ P (A2)
which inverts to &1 [ o(s)
o(s) — oy
— == ——d A3
de 7 /_Oo r—s5 (A.3)
Following an integration by parts,
d 1 00 1 [ do(s)
= —;[U(s) ln|x—sH_OO—|—ﬂ_/oo T In |z — s|ds (A.4)

Given that o(z) appears a step function, do/dz = Acdp(x), where dp(x) denotes the Dirac delta.
Substituting this expression in (A.4), we find that the discontinuity in o(z) at x = 0 leads to a
logarithmic singularity there for do/dz, i.e.,

|| =0, — = 7ln|x| (A.5)

We may similarly show that a discontinuity in the m-th derivative of o(z) leads to a logarithmic
singularity in the m-th derivative of dd/dx. This is done by first noting that the convolution on
the right hand side of (A.2) is the Hilbert transform #H(dd/dx), for which dH|[f(x)]/dx = H(df /dx)
[e.g., King, 2009]. Following m spatial derivatives of (A.2), we may arrive at the desired result by
following the steps reflected in (A.3—-A.5). Such discontinuities in o may arise, for example, from
discontinuities first encountered in the m-th derivative with respect to § of a cohesive zone law

a[o(x)]

dzm  dom do dz™

where the remainder consists of terms whose highest derivative is of order less than m. The
discontinuity in d™o/dé™ is thus reflected as a logarithmic singularity in d™*16/dz™*! with all
lower-ordered derivatives of (x) being continuous at the point of the discontinuity.

d"oc d™o (dd)m do d™0
it — — 4.
dx
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A.2 Cohesive-zone relations and singularities at the crack tip

We consider a cohesive zone relation in the form o(d) such that we may write

d5/ds
1$—S

oo = o)~ L [ (A6)
We recall that the quadrature of the integral transform for such a problem calls for a decomposition
in the form of d§/dx = +/1 — 2?2 F(z). Here we will show that any o(d) with a Taylor expansion
about § = 0 containing odd powers will lead to a logarithmic singularity in a derivative of F'(x) at
the crack tips z = +£1.

To examine the asymptotic behavior approaching the crack tip, say, at x = —1, we use the
following coordinate transformation: (x + 1)/e = z, such that the tip now corresponds to x = 0,
d/e = 9, and /eF = F. Similarly to the transformation in the previous subsection, we consider
the limit e — 0. In this limit o,(x) — 0,(0) = 09, such that (A.6), following the transformation,

reduces to 55/d
o(x) =00 — / / 4 (A.7)
0

™ x—s

d(5 f *© 1 o(s)—o,
/ N ———ds (A.8)

We now consider that the cohesive zone law o[d(x)] has a Taylor expansion about § = 0 in the
form

which inverts to

o(x) = o(0) + Ad(z) + Bé(z)* + ... (A.9)

Since, for a non-singular crack, d(x) = Cz%/? to leading order in z, the leading contribution from
each term in the expansion of the cohesive zone law in § results in

o0 _ i3/2 1 B3
d(S _ f/ 1o oo+ As®/* + Bs = (A.10)

r— S

where A = AC, and B = BC?. Evaluating (A.10) with a finite upper limit x, leads to

% = (0(0) — op)(ar2"/? + aga®? + aza®? 4 ...) (A.11)
+ A(b12'? + boa® 2 In(2/20) + b3az®? + ...) (A.12)
+ Bleyz'? + c9a®? + e + ) + ... (A.13)

where a,,, b,, and ¢, are constants.

Since, following our coordinate transformation, d§/dz = v/22F(x) as x — 0 we can conclude
that the linear term in the cohesive zone law expansion near the crack tip (A.9), when non-zero,
leads to a logarithmic singularity at the crack tip in F’(x). We can likewise show that the presence
of any odd term in the expansion (A.9) (e.g., linear, cubic, etc.), leads to a logarithmic singularity
at the crack tip in the (3m — 1)/2-th derivative of F'(z), where m is the exponent of the leading
order odd term in the expansion: e.g., if a cubic (and no linear) term is present in (A.9), then
m = 3 and a logarithmic singularity appears in F*)(z) at z = £1. This establishes that F(z) is
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a regular (infinitely differentiable) function at the crack tip when and only when d"o/§™ = 0 at
§ = 0 for all odd m. An example of such a cohesive law, o(J) = exp(—42), was explored in the
main text.
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