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SUPER KAC-MOODY 2-CATEGORIES

JONATHAN BRUNDAN AND ALEXANDER P. ELLIS

ABSTRACT. We introduce generalizations of Kac-Moody 2-categories in which
the quiver Hecke algebras of Khovanov, Lauda and Rouquier are replaced by
the quiver Hecke superalgebras of Kang, Kashiwara and Tsuchioka.

1. INTRODUCTION

Overview. Kac-Moody 2-categories were introduced by Khovanov and Lauda
[KL3] and Rouquier [R]. They have rapidly become accepted as fundamental ob-
jects in representation theory, with intimate connections especially to quantum
groups, canonical bases and knot invariants. Rouquier gave a seemingly different
definition to Khovanov and Lauda:

e Rouquier’s presentation starts from generators and relations for certain
underlying quiver Hecke algebras, adjoins right duals of all the generating
1-morphisms, then imposes one more “inversion relation” at the level of
2-morphisms.

e The Khovanov-Lauda presentation incorporates various additional generat-
ing 2-morphisms, and extra relations including biadjointness and cyclicity.
These additional generators and relations are useful for various applica-
tions, e.g. they are needed in order to extract a candidate for a basis in
each space of 2-morphisms.

In [B], the first author has shown that the two versions are actually equivalent. The
main purpose of this article is to extend the computations made in [B] to include
super Kac-Moody 2-categories. We will define these shortly following Rouquier’s
approach, starting from certain underlying quiver Hecke superalgebras which were
introduced already by Kang, Kashiwara and Tsuchioka [KKT]. For the quiver with
one odd vertex, the quiver Hecke superalgebra is the odd nilHecke algebra defined
independently in [EKL]; see also [Wa, §3.3] which introduced the closely related
degenerate spin affine Hecke algebras. In this case, a super analog of the Kac-
Moody 2-category was defined and studied already in [EL]. We will work here in
the setting of 2-supercategories following [BE], since it leads to some conceptual
simplifications compared to the approach of [EL].

2-Supercategories. We proceed to the definitions. Fix once and for all a super-
commutative ground ring k = ky @ ky. We are mainly interested in the situation
that k is a field concentrated in even parity.

Definition 1.1. A superspace is a Z/2-graded (k, k)-bimodule in which the left and
right actions are related by cv = (—1)ll!lyc; here and subsequently, |z| denotes
the parity of a homogeneous vector in a superspace. An even linear map between
superspaces is a parity-preserving k-module homomorphism.
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Let SVec be the Abelian category of all (small) superspaces and even linear
maps. It is a symmetric monoidal category with tensor functor

—® — : SVec x SVec — SVec

being the usual tensor product over k, and symmetric braiding defined on objects
by u®@wv — (=1)I“*ly @ u. (Our notation here follows [BE]: SVec is the underlying
category to the monoidal supercategory SVec whose morphisms are not necessarily
homogeneous linear maps.)

Definition 1.2. A supercategory means a SVec-enriched category, i.e. each mor-
phism space is a superspace and composition induces an even linear map. A
superfunctor between supercategories is a SVec-enriched functor, i.e. a functor
F : A — B such that the function Hom (A, u) — Homg(FX, Fu), f — Ff is an
even linear map for all A\, u € ob A.

Let SCat be the category of all (small) supercategories, with morphisms being
superfunctors. Given two supercategories A and B, we define AX B to be the super-
category whose objects are ordered pairs (), u) of objects of A and B, respectively,
and

Hom gmp((A, 1), (0,7)) := Hom4 (), o) ® Hompg(u, 7).
Composition in A X B is defined using the symmetric braiding in SVec, so that
(fog)o(h®k) = (=D9P(foh)® (gok). Given superfunctors F : A — A’
and G : B — B’, there is a superfunctor FX G : AKX B — A X B’ sending
M) = (FAGp) and f ® g — Ff ® Gg. We have now defined a functor

— X —:SCat x SCat — SCat

which makes SCat into a monoidal category.

Definition 1.3. A 2-supercategory is a category enriched in SCat. See also [BE,
Definition 2.2] for the definition of a 2-superfunctor between 2-supercategories.

Remark 1.4. In [BE, Definition 2.1], the 2-supercategories of Definition 1.3 are
called strict 2-supercategories. Since we will not encounter any 2-supercategories
below that are not strict, we have suppressed the adjective from the outset. On the
other hand, we will occasionally meet 2-superfunctors that are not strict.

According to Definition 1.3, for objects A, i in a 2-supercategory 2, there is given
a supercategory Homs (A, 1) of morphisms from A to p. Elements of Homg (), ) :=
obHomg (A, p) are I-morphisms in 2. For l-morphisms F,G € Homgy (A, p), we
also use the shorthand Homg (F,G) for the superspace Homy oy (x,p) (F; G). Its
elements are 2-morphisms. We often represent « € Homg( (F, G) by the picture

G
b (1.1)
A

The composition y o x of x with another 2-morphism y € Homgy (G, H) is obtained
by vertically stacking pictures:

T—EO—0-O—=x
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The composition law in 2 gives a coherent family of superfunctors
Typx 2 Home (p, v) B Homg (A, 1) = Homeg (A, v)

for A, pu, v € ob 2. Given 2-morphisms « : F' — H,y : G — K between 1-morphisms
F.H:\X— p,G K : p— v, we denote T, , x(y @) : T,y (G, F) = T, y \(K, H)
simply by yz : GF — K H, and represent it by horizontally stacking pictures:

K H
ZRE-R
G F

When confusion seems unlikely, we will use the same notation for a 1-morphism F
as for its identity 2-morphism. With this convention, we have that yH o Gx = yx =
(=)W K2 0 yF, or in pictures:

K H K H K H
V?Mé)x = VQ}‘DMA. = (‘U'm”y'uéu@?)\.-
G F G F G F

This identity is the super interchange law. The presence of the sign here means that
a 2-supercategory is not a 2-category in the usual sense. In particular, diagrams
for 2-morphisms in 2-supercategories are only invariant under rectilinear isotopy
modulo signs. Consequently, care is needed with horizontal levels when working
with odd 2-morphisms diagrammatically: a more complicated diagram such as

K H
O, O

v m A
® ©
G F

should be interpreted by first composing horizontally then composing vertically.
The example just given represents (vu) o (yx) not (v oy)(uo x).

Super Kac-Moody 2-categories. With these foundational definitions behind us,
we are ready to introduce the main object of study. We need to fix some additional
data:

e Let I be a (possibly infinite) index set equipped with a parity function
I — Z/2,i— |i|; we will say that ¢ € I is even or odd according to whether
li| = 0 or 1, respectively. If I has odd elements, we make the additional
assumption that 2 is invertible in the ground ring k.

o Let (—d;j)ijer be a generalized Cartan matrix, so d;; = —2, d;; > 0 for
i # j, and d;; = 0 & d;; = 0. We make the additional assumption that

li| = 1= d,; is even. (1.2)

e Pick a complex vector space h and linearly independent subsets {«; |7 € I}
and {h; | i € I} of h* and b, respectively, such that (h;,a;) = —d;; for all
i,j € I. Let P :={\ € b*| (h;,\) € Z for all i € I} be the weight lattice
and Q := P, Za; be the root lattice.

e Let g be the Kac-Moody algebra associated to this data with Chevalley
generators {e;, fi, h; | i € I} and Cartan subalgebra b.
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e Finally fix units #;; € kj such that

tii = 1 dij =0= tij = fji, (13)
and scalars sy} € kg for 0 < p < d;;, 0 < g < dj; such that
squ =sit, plil=1= s =0. (1.4)

In case all elements of I are even, the following is the same as the Rouquier’s defi-
nition of Kac-Moody 2-category from [R] (viewing the latter as a 2-supercategory
by declaring that all of its 2-morphisms are even).

Definition 1.5. The Kac-Moody 2-supercategory is the 2-supercategory il(g) with
objects P, generating l-morphisms F;1y : A =& A+ «; and F;ly : A = A — oy
for each i+ € I and A\ € P, and generating 2-morphisms x : E;1y, — E;1, of
parity |i|, 7 : E;E;1, — E;E;1, of parity |i|[j], n : 1 — F;E;1, of parity 0
and ¢ : E;F;1y — 1, of parity 0, subject to certain relations. To record the
relations among these generators, we switch to diagrams, representing the identity
2-morphisms of F;1, and F;1, by HO‘%‘IA and ’\—O‘i%*, respectively, and the other
generators by

ZZ?Z}\)\, T:><,\, n:U, €= f\A, (1.5)

A i

(parity [i[) (parity [i[|j]) (parity 0) (parity 0)
We denote the nth power of z (under vertical composition) by
2o = T X (1.6)
i
(parity |i[n)
First, we have the quiver Hecke superalgebra relations from [KKT:
if i = 7,

0
tijT TA if dij =0,
A L

- (1.7)

[} ..dz?T +tﬂT dii 4 ZS ‘?/{ otherwise,
7

0<p<d;;
0<g<d;j;

>< ()||J|>< ,>< ||J|'><'A:5iijTA’ 18)

> v g,
r,s>0 i 7 k
r+s=d ij—1
B _ + 3 (il gpa T ?$ ifi=k+#j,
) A A 0<p<dij
I % 0<q<dj;
r,s>0
r+s=p—1
0 otherwise.

(1.9)
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n (1.7), we have drawn multiple dots on the same horizontal level, which is poten-
tially ambiguous: our convention for this is that it means the horizontal composition

of 2°? and x°?, so that
oo 1
| LA T
1 J 1]

Note further by the assumption (1.4) that

CATEELI

Similar remarks apply to (1.9) and all other such situations below.
Next we have the right adjunction relations:

mx = Tx , MA = lx : (1.10)

These imply that F;lxi,, is a right dual of E;1,.
Finally there are some inversion relations. To formulate these, we first introduce

a new 2-morphism
>< m L E;jFily — FiE;1,. (1.11)

(parity [i];])

Then we require that the following (not necessarily homogeneous) 2-morphisms are
isomorphisms:

><A L EjFily S FE;L, it 47, (1.12)
J

[ A
><>\69 P FVEELSEELe™Y i (A 20, (113)

7 7<hiv>‘>71 .
><>\ o D \f" CEF L, o197 X E B if (b, \) <0 (114)
H n=0

Note that (1.13)—(1.14) are 2-morphisms in the additive envelope of $i(g). Never-
theless this defines some genuine relations for 4(g) itself (rather than its additive
envelope): we mean that there are some as yet unnamed generating 2-morphisms
in $1(g) which are the matrix entries of two-sided inverses to (1.13)—(1.14).

Second adjunction. Let
[, Al := [l ((Riy A) +1). (1.15)

Since |, A| = i, A + o] for any j € I, this only depends on the coset of A modulo
Q. In section 2, we will define some additional 2-morphisms 7’ : 1, — E;F;1, and
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e’ : F;E;1)\ — 1) represented diagrammatically by leftward cups and caps:

7 A
n =, e=4\. (1.16)
(parity |i, A|) (parity |7, Al)

Following the idea of [BHLW], we will normalize these in a different way to [CL, B],
in order to salvage some cyclicity. Consequently, our definitions of ¢’ and n’ depend
on the additional choice of units cy;; € kg for each ¢ € I and A € P such that

Catayyi = bijChie (1.17)

In section 6, we will show that 7" and &’ satisfy the following left adjunction relations:

m,\ = (‘UIMIT,\ , m,\ = l,\ . (1.18)

7

Consequently, ITI“M Fj1y 4, is a left dual of E;1y, working now in the II-envelope
31 (g) of U(g) from [BE, Definition 4.4]; cf. Definition 1.6 below.

Further relations. In sections 37, we also derive various other relations from the
defining relations, enough to see in particular that the inverses of the 2-morphisms
(1.12)—(1.14) can be written as certain horizontal and vertical compositions of
z,7,&,m,¢ and 7/, i.e. the 2-morphisms named so far are enough to generate all
other 2-morphisms in #((g). Some of our extra relations are as follows.

e The super analog of Lauda’s infinite Grassmannian relation: Let Sym be
the algebra of symmetric functions over k. Recall Sym is generated both
by the elementary symmetric functions e, (r > 0) and by the complete
symmetric functions hg (s > 0); we view it as a superalgebra by declaring
that all these generators are even. By [M, (I1.2.6")], elementary and complete
symmetric functions are related by the equations

eo =hg =1, Z (—1)°e;hs =0 for all n > 0.
r4+s=n

Take i € I, A € P and set h := (h;, \). If i is even, Lauda [L] observed
already that there exists a unique homomorphism

Bx;i : Sym — Endy gy (1x) (1.19)
such that

e, c;; ”+"_1©>‘ ifn>—h, h,— (=1)"cry )‘Q”_}”_l if n > h,

bearing in mind the new normalization of bubbles. The analog of this when
i is odd is as follows. Let Syml[d] be the supercommutative superalgebra
obtained from Sym by adjoining an odd generator d with d> = 0. Then
there exists a unique homomorphism

Bxyi : Syml[d] — Endu(g)(lx) (1.20)
such that
. h . h
en — c;é 2’”}2*1{;’\ if n > 5 hy, — (=1)"cny /\C?Z”*h'*l if n > 5
h h
de,, — c;;% 2n+h {Z))‘ ifn > —3 dh,, = (—1)"cry A(;} n=hif p > o
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Furthermore, letting
SYM := (X) Sym (X) Sym|[d] (1.21)
ieven io0dd

where the tensor products are taken in some fixed order, there is surjective
homomorphism
B)\ :SYM — Endu(g)(l)\), (1.22)

defined by taking the product of the maps S\, applied to the ith tensor
factor of SYM for all i € [.
o Centrality of odd bubbles: Assuming i € I is odd, we introduce the odd

2-morphism
AQ) = Bri(d). (1.23)

We call this the odd bubble of color i. By the super interchange law it
squares to zero:

( 1-(2)A ) =0. (1.24)

We show moreover that odd bubbles are central in ${(g) in the sense that

& IA Z}(X)w ®l>\ _J,®* (1.25)

for all j € I. (This means that it would be reasonable to set odd bubbles to
zero, imposing additional relations A® =0foralloddie I and A € P.)

o (Clyclicity properties: If i is even then

-0 (126

i.e. even dots are cyclic. However if ¢ is odd we have that

mA —2@\[A—NA ) (1.27)

In all cases, crossings satisfy

Nondegeneracy Conjecture. Let F, G : A\ — u be some 1-morphisms in ${(g). In
section 8, we construct an explicit set { f(0) |0 € M (F,G)} of 2-morphisms which
generates Homy ) (F, G) as a right SYM-module; here the action of p € SYM is
by horizontally composing on the right with Sx(p). This puts us in position to
formulate the following conjecture, which is the appropriate generalization of the
nondegeneracy condition formulated by Khovanov and Lauda in [KL3, §3.2.3]; for
example, taking F' = G = 1,, it implies that the homomorphism S from (1.22) is
an isomorphism.
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Conjecture: Homy ) (F, G) is a free SYM-module with basis { f(o) ‘ o€ M\(F, G)}.

We cannot prove this at present. We will discuss its signficance and some possible
approaches to its proof later on in the introduction.

Gradings. By a graded superspace, we mean a superspace equipped with an addi-
tional Z-grading V =P, c;, Vo = B,,cz Vo ® Viu,1- Let GSVec be the symmetric
monoidal category of graded superspaces and degree-preserving even linear maps.
Mimicking Definition 1.2, a graded supercategory means a GSVec-enriched category.
Let GSCat be the monoidal category of all (small) graded supercategories. Finally,
mimicking Definition 1.3, a graded 2-supercategory means a category enriched in
GSCat. Thus, it is a 2-supercategory whose 2-morphism spaces are graded super-
spaces, and horizontal and vertical composition respect these gradings. We will
soon need the following universal construction from [BE, Definition 6.10]:

Definition 1.6. Suppose that 2 is a graded 2-supercategory. Its (Q, II)-envelope
4.~ is the graded 2-supercategory with the same objects as 2, 1-morphisms defined
from

Homg, . (A, p1) := {Q™II*F | for all F € Homg(\, ), m € Z and a € Z/2}

with the horizontal composition law (Q"II°G)(Q™II*F) := Q™ "I1***(GF), and
2-morphisms defined from

Homgy, , (QII*F,Q"II’G) := {x[", | for all 2 € Homy(F,G)}

viewed as a superspace with operations xmfa + y,’}l’f’a = (z +y)nL, c(x:};f)a) =

(cx)b, for ¢ € k, and grading deg(z7%",) := deg(z) + n —m, |:c%f’a| = |x| +a+b.
Representing x%f’a by the picture

G
n b
I § A
m a
F

for x as in (1.1), the vertical and horizontal composition laws for 2-morphisms in
.+ are defined in terms of the ones in 2 as follows:

n (&

n c m b
§ o : : (1.29)
m b l a
n d 1 b l+n b+d
E = (_1)c\w\+b\y\+ac+bc @‘0 ) (130)
m c k a k+m a+c

For each object A, there are distinguished 1-morphisms ¢, := Q'II1,, q{l =
Q_lf[al)\ and ) = QOHil)\ in Endg, , (A). Moreover, there are 2-isomorphisms
Ox g = 1y, G q/(l 5 1, and SR\ 5 14, all induced by the identity 2-
morphism 1y,. These give the required structure maps to make 2, » into a graded
(Q, II)-2-supercategory in the sense of [BE, Definition 6.5].

Assume for the remainder of the introduction that the Cartan matrix A is sym-
metrizable, so that there exist positive integers (d;);er such that d;d;; = d;d;; for
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all 4,7 € I. Assume moreover that k is a field, and that the parameters chosen
above satisfy the following homogeneity condition:

S;Z-D;I 75 0= pdji + qdz‘j - dijdji- (1'31)

Then we can put an additional Z-grading on $(g) making it into a graded 2-
supercategory, by declaring that the generators from (1.5) and (1.16) are of the
degrees listed in the following table:

T T 7 € n e’

2d; | didij | di(1 + (hi, A) | di(1 = (hi, N) | di(1 = (R, A)) | di(1 + (his A))

Let £ly ~(g) denote the (Q, II)-envelope of £(g) in the sense of Definition 1.6. The un-
derlying 2-category i, . (g) consists of the same objects and 1-morphisms as i, ~(g)

but only its even 2-morphisms of degree zero. Also let gqﬁﬂ(g) be the idempotent
completion of the additive envelope of U, (g). Both of L, (g) and 4. . (g) are

2, 2q,m
(Q,TI)-2-categories in the sense of [BE, Definition 6.14]. In particular, they are
equipped with distinguished objects ¢ = (g») and © = () in their Drinfeld cen-

ters.

Relation to the Ellis-Lauda 2-category. Suppose that g is odd sls, i.e. [ is
an odd singleton. Then the 2-category gqﬁﬂ(g) is 2-equivalent to the 2-category
introduced [EL]. We do not think that this is an important result going forward,
so we will only give a rough sketch of its proof in the next paragraph. Our new
approach to the definition seems to be both conceptually more satisfactory and less
prone to errors when working with the relations. So our point of view really is that,
henceforth, one should simply replace the object in [EL] with the one here.

Briefly, the idea is simply to construct quasi-inverse 2-functors between the Ellis-
Lauda 2-category U g, and our gqm(g) by verifying relations. Let us write simply
E,F and h for E;, F; and h; for the unique i € I. Also we take d; := 1 and
identify P <> Z so A <> (h,\). Then, the appropriate 2-functor in the direction
Upr — ;Iqm(g) is the identity on the object set P. It sends the generating 1-
morphisms Ely,F1y and Il from [EL, §3.2.1] to our 1-morphisms E1y, I’ 1F1,
and my, respectively. On the generating 2-morphisms from [EL, §3.2.2], it goes as
follows:
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We leave it to the reader to compare the relations in [EL] with our relations, and
to construct a quasi-inverse 2-functor in the other direction. In fact, when doing
this carefully, one uncovers some inconsistencies in the relations of [EL]; e.g. the
relation [EL, (3.1)] is wrong in the case A = 0 (due to an error in the last sentence
of the proof of [EL, Lemma 5.1] related to the nilpotency of the odd bubble).

Decategorification Conjecture. Recall finally that the Grothendieck ring of an
additive 2-category 2 is

Ko@) := @ Ko(Homa(\ p)) (1.32)
A,p€ob A

where the Ky on the right hand side is the usual split Grothendieck group of
the additive category Homg (A, ). It is a locally unital ring with distinguished
idempotents {15 | A € ob2}. If 2 is a (Q, IT)-2-category, then K(2l) is also linear
over £ := Z[q,q~ ', 7]/(7? — 1), with ¢ and 7 acting by multiplication by the classes

of the distinguished objects ¢ and 7 of the Drinfeld center.
This discussion applies in particular to the (@, II)-2-category gqm(g), so that

KoY, ~(g)) is a locally unital L-algebra with idempotents {1 | A\ € P}. Also
let U, «(g)z be the L-form of the idempotented version of the covering quantized
enveloping algebra associated to g introduced by Clark, Hill and Wang in [CHW1];
see section 9. By similar arguments to those of [KL3], using also some results from
[HW], we will show in section 11 that there is a surjective homomorphism of locally
unital L-algebras

7 Ugn(9) e — Ko(¥, ~(a)) (1.33)
sending e;1y and f;1, to [E;1,] and [F;1,], respectively. Moreover, also just like in
[KL3], we will show in section 12 that the Nondegeneracy Conjecture formulated
above, together with an additional assumption of bar-consistency on the Cartan
datum, implies the truth of the following;:

Conjecture: 7 is an isomorphism.

Discussion. In the purely even case, i.e. when all ¢ € I are even, the Nonde-
generacy Conjecture (hence, the Decategorification Conjecture) was established by
Khovanov and Lauda in [KL3, §6.4] in case g = sl,,. In [W], Webster has proposed
a proof of the Nondegeneracy Conjecture for all purely even types. There is also a
completely different proof of the Decategorification Conjecture based on results of
[KK], which is valid in all finite types; see e.g. [BD, Corollary 4.21].

Turning to the odd case, the Decategorification Conjecture for odd sls is proved
in [EL, Theorem 8.4]. The only additional finite type possibilities come from odd
b,, i.e. type b, with the element of I corresponding to the short simple root
chosen to be odd. For these, the Decategorification Conjecture may be deduced
from [KKO1, KKO2]. We hope that Webster’s methods from [W] can be extended
to the super case to prove the Nondegeneracy Conjecture in general, but there is a
great deal of work still to be done in order to see this through. As a first step, we
would like to see the proof of the Nondegeneracy Conjecture from [KL3] extended
in order to include all odd b,,, and hope to address this in subsequent work.

Assuming the Decategorification Conjecture, one gets an interesting basis for
the covering quantum group U, »(g) coming from the isomorphism classes of the
indecomposable objects of quy,, (g). In symmetric types, this should coincide (up
to parity shift) with the canonical basis from [C, Theorem 4.14]. For odd by, this
assertion follows already from the results of [EL].



SUPER KAC-MOODY 2-CATEGORIES 11

In a different direction, it should now be possible to develop super analogs
of many of the foundational structural results proved by Chuang-Rouquier and
Rouquier in [CR, R]. Various applications, e.g. to spin representations of symmet-
ric groups and to representations of the Lie superalgebra q(n), are expected.

2. MORE GENERATORS

In sections 2-8, we assume that the ground ring k is as in Definition 1.1, and let
$1(g) be the Kac-Moody 2-supercategory from Definition 1.5. We begin by defining
various additional 2-morphisms in $4(g).

Definition 2.1. We have the downward dots and crossings, which are the right
mates of the upward dots and crossings:

i m ><{ m (2.1)

(parity |i]) (parity [i]7])

on

7,&:: iA PENUIEY b[} (2.2)

(parity [iln)

The sign in (2.2) is easily checked using the diagrammatics; see also [KKO2, Propo-
sition 7.14]. Using (1.10) and (1.11), we deduce:

Uﬂ — (—1)lils] nU, ”m: (—1)liLs] [\i", (2.3)

A

>
Il
Ty
—~
[N}
=
~—

v = (2.5)
X

Definition 2.2. We define the leftward crossing and various leftward cups and caps.
First define

g:
S

j i Y
><,\ FEL - EFEL, N\ L s ERL, L) REL 1,
j n
(2.6)
(parity |i||]) (parity [i[n) (parity [i[n)

by declaring that

><ig - <XA)1 i), (27)

J J
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i (hi,A)—1 i (hi, A)— AN -1
_XA@ ) N = <><A@ @ {\) if (hi,A\) >0
\ n—0 n
(2.8)
X

(hi,\)

Do @ V()

—(hi,\)—1 4 -1
@ \); ) if (hi, \) <0
(2.9)

working in the additive envelope of £(g). Then, remembering the scalars cy,; chosen
for (1.17), we set

n':A\j} — o (2.10)

o fe\ix if (hi, \) < 0,

I = A= ) )
€ f\l : —(=1)lilheN 1 (IL;,A)Q if (hi, ) >0, (2.11)
' A

7

both of which are of parity |i, A|. The following are immediate from these definitions.

’%A le A <}21;\§f _jIA’ (2.12)

(hiA)—1

6\>\ - n@’\ =0 "QA = Op, (hi, ) —1Cxsi L1, all for 0 <n < (hy, A),
(2.13)
Q —0, %53 _0, O S—thony—165i11, all for 0 < n < —(hy, A).
A n v ’
1
(2.14)

Definition 2.3. We give meaning to negatively dotted bubbles by making the fol-
lowing definitions for n < 0:

—n—1
—(=1)lil(n+(hi, 2 +1) . ’ (hi;ny ifm > (hg, A) — 1,
O 2] D A i ) L
g C)\;ill/\ ifn= <h“)\> —
0 if n < <h“)\> —
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& S O e v ”@l it > —(hi, ) — 1,
AT = ’ o . (2.16)
chlA ifn=—(h;,\) =1,

0 if n < —(hj,\) — 1

Sometimes we will use the following convenient shorthand for dotted bubbles for
any n € Z:

+*©>\ = n+<hi./\>7]©)\7 /\OnJr* — /\O (hiA)y— 1 (2'17)

both of which are of parity |i[n. Also, assuming that i € I is odd, we introduce the
odd bubble

A
) e €D iy A) 20,
Q) = N (2.18)
Cx;i ¢(§7<im> if (h;, A) <O0.

There is no ambiguity in this definition in the case (h;, A} = 0 thanks to the following

calculation:
i ; i

() (2.12 2.10 211 2.12) ;M.
-é(:)—cw @10 NS A(:))\iAOZ'

3. THE CHEVALLEY INVOLUTION

The next task is to construct an important symmetry of 4l(g). For this, we need
some preliminary lemmas.

Lemma 3.1. The following relations hold for all n > 0:

7><_*—<—1>'””><A’ D DI G  ERNRN TR
g ( j r,s>0 ()

r4+s=n—1
l><)\_ (_1)|1HJ‘" ><)L‘ — 5i,j Z (_1)\l|s ,/f 1\,’ A , (32)
’ ’ i o
g ! g U"
A (—1)\lillgln A _1)\lilr A )
Z>< ( 1) 7;,>< 9i,j Tgo ( 1) ,ﬂ ) (3 3)
r+s=n—1
TU
| Ililm _1)lr A 3.4
Ko demn g o
r+s n—1
\ [1iln >< '\>< (_1)|i\8 fi i;\ 7 (3.5)
’r‘S>0

r4+s=n—1
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r,s>0
r4+s=n—1

Proof. The first two relations follow inductively from (1.8). The rest then follow by
rotating clockwise, i.e. attach rightward caps to the top right strands and rightward
cups to the bottom left strands then use (2.3)—(2.5). O

Lemma 3.2. The following relations hold:
ifi=7j,

P tijl l)\ if dij =0,
(1) Ny =4 il lil 1)ILS ] ¢, li
+ Z \IL 1+ILE] ¢ b I’ii otherwise,

0<p<d;j;
0<q<d;;
(3.7)
Proof. Rotate (1.7) clockwise as explained in the proof of Lemma 3.1. O
Lemma 3.3. The following relations hold:
> (=1l v%
r,s>0 m
’I‘-‘rs:dij—l J k
i
_ = s r . . (3.8)
] . Y pq\% fi=k#,
0<p<dij 1 ]f\/
0<q<dj;
r,s>0
r+s=p—1
0 otherwise,

i jok
i|(| Ld T r S
E ' (=)l +1)tij ili\

i ik i J ok 520

r+s=d;;—1
e » T+ (- nllE L) pq,i%b ifi=k+j,
0<p<d;j;
0<q<d;;
7,520
r4+s=p—1
0 otherwise,
(3.9)
Proof. Rotate (1.9) clockwise. O

Definition 3.4. For a supercategory A, we write A%°P for the supercategory with
the same objects, morphisms

Hom.ASOP (Av ,LL) = HOHl_A (:u‘v )\)a
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and new composition law defined from %P o g%°P := (—1)/1l9l(g o £)%°P  where
we denote a morphism f : A — p in A viewed as a morphism in AP by f5°P :
u — A. For a 2-supercategory 2, we write A%°P for the 2-supercategory with
the same objects as 2, and morphism categories defined from Homgsor (A, ) 1=
Homg (A, p)*°P. Horizontal composition in %P is the same as in 2A. Here is the
check of the super interchange law in 2(5°P:

(25°P4*°P) o (uPy™°P) 2y)*°P o (uv)*P = (_1)(|r|+\y\)(\UI+\vl)((m) o (zy))*°P
1)\1\\u|+\yHu|+\va|((u o z)(voy))PP
1)\1\\u|+\yHUI+\val(u 0 2)*°P (v o y)*°P

= (_1)\y\\UI($sop o US%P) (%P o p™OP).

= (
=
=

We will often appeal to the following proposition to establish mirror images of
relations in a horizontal axis. (This formulation is more convenient than the version
in [B, Theorem 2.3], since w really is an involution of 4I(g) rather than a map to
another Kac-Moody 2-category.)

Proposition 3.5. There is a 2-supercategory isomorphism w : $(g) = L(g)%°P
defined by the strict 2-superfunctor w given on objects by w(\) := —\, on generating
I-morphisms by w(E;1y) := F;1_y and w(F;1)) := E;1_», and on generating 2-
morphisms by

i SOp

. .i j sop 7 —A__ sop 1 Sop
—(—1)lelldl
Pamdor B e e YT A U
7 J

%

Moreover we have that w? = id, as follows from the following describing the effect
of w on the other named 2-morphisms in $4(g):

i sop i sop
iw—) }\—,\ , ><,\ = —(=1)lll] )><\—,\ ;
i v J
{ i sop j j SOp
X,\ > —(=1)lldl ><—,\ ; ><,\ .—>—><_,\ :
i

7 J

n

vk — (—=1)liIn _W.Sop | ﬂ_k — (=1)lin vjop ;

n K2 K2

) —A sop A . L % sop
A\,{ = (—D)PNeie s LN L e ()Pl R
K2 K2

—A
. sop A . sop
H'O)‘ — (—1)(n+1)‘Z’A‘CA;iC,)\;ii/\C?TL R 1® — (—1)‘1’)\‘ i®_)\ s

, sop
3Orr oy (NG “"Q_A :
Proof. This is very similar to the proof of [B, Theorem 2.3] but the signs are
considerably more subtle, so we include a few remarks. Note to start with that
w should send z°™ (vertical composition computed in (g)) to w(z)°™ (vertical
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composition computed in $4(g)%°P), so that

5 SOpP
w nTA — (~1)lilLg] ni,A, (3.10)

7

It is important that the sign here matches the signs in (2.3). The proof of the
existence of w amounts to checking relations. For example, to verify (1.9) in the
case i = k # j, one needs to show in view of (3.10) that

i i i ] i
(—1)lellal+el >§é - §§v<} =Y (—1)i|(|j|+s+L%J+L%J)fij7i1£
r,s>0

’r‘JrS:d,;j*l
i g i
(s r s a .
£ ()it L) LS g i }'qb
0<p<d;;
O<q<dji
r,s>0
r4+s=p—1

in $((g). This follows from (3.9). The other relations follow similarly using (1.10),
(1.12)—(1.14), (3.7) and (3.5)—(3.6). The computation of the effect of w on the other
2-morphisms is a mostly routine application of the definitions, but care is needed to
distinguish multiplication (hence, multiplicative inverses) in 4(g) from in $i(g)%°P.

3 SOp . j SOp
For example, when i # j, the inverse of ><,\ is (—1)“”3‘><>\ . O
J J

4. LEFTWARD DOT SLIDES

We proceed to prove analogs of the relations (2.3) and (3.3)—(3.4) for leftward
cups, caps and crossings.

Proposition 4.1. The following relations hold for all n > 0:

><A _(_1)|z‘jn><* =0, >, (=1l }\}A (4.1)
r,s>0 J

r4+s=n—1

(_1)|'L\\j\n><?\l _ v§</\ =6, Z (_1)I1\(<hi,A>+s) \[\'PA’ (4.2)
J J J

r,s>0
r+s=n—1

S if liln = 0,
(—)lLE) AL Y :
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7

N if liln = 0,
i 7

NSV 10 +2U”*1 if |iln = 1.

(=1 &

(—=1)litsl 7 A=

Proof. Let h := (h;, \). The relations (4.1)—(4.2) follow easily by induction starting
from the case n = 1, which asserts:

><,\ - (_1)\illjl><f\ = (_1)|i\\j\(h+1)><f\ — (_1)\illjlh><} =6, X‘/\ )
J J J J J

It suffices to prove this under the assumption that h > 0; the case h < 0 then follows
by applying the Chevalley involution from Proposition 3.5. Under this assumption,
one vertically composes the n = 1 case of (3.3)—(3.4) on top and bottom with a
leftward crossing, then simplifies using (2.7) in case i # j or (2.3) and (2.10)—(2.14)
in case ¢ = j.

For (4.3)—(4.4), we just need to prove the former, since the latter then follows
on applying w. When i is even, (4.3) was already established in [B, Theorem 5.6],
so let us assume for brevity that i is odd (though the argument here can easily be
adapted to even i too). When n = 1 we must prove:

Ay N N
LY =()r e +2

3

If h < 0 we vertically compose this on the bottom with the isomorphism F;F;1, &
197" 5 FE;1 from (1.14) to reduce to checking

QA = (_1)h Q)\ + 2 Q ) Al@m = (_1)h A (ym + 2 l%A

for all 0 < m < —h. The first identity here is easily deduced from (3.3) and (2.14),
while the second follows using (2.14) and the definition (2.18). Now assume that
h > 0. Then we have:

2.11 1 4.2 h .
Ay Dy QA e QA + ’f)\x

K 7 P

h i h i
@18 o Qx +;%A 4h A +2§%

21D gy 2}5% |

%

Thus we have proved the desired relation when n = 1. Applying it twice and using
(1.24), we deduce that )‘ﬂ =- n_A , which is the desired relation for n = 2.

The general case follows easily from the two special cases established so far. O
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5. INFINITE GRASSMANNIAN RELATIONS

Recall the shorthand for dotted bubbles from (2.17), and that the odd bubble
i®)\ squares to zero. Our next proposition implies that the homomorphisms Sj;;
from (1.19)—(1.20) in the introduction are well defined. In terms of these maps, it
shows moreover that

Ck;iﬁ)\ 3% (en if | | (_)

"’**GA — ! cxnibBi L"J if |i| =1 and n is even, (5.1)
CxiiBasi dem if |i| = 1 and n is odd,
C;iﬁAz( if |Z| :()a

/\O”JF* ={ ¢ LB (— )L2J hL%J) if |i| =1 and n is even, (5.2)

B (=D b)) i Ji = T and n s odd,

for all n > 0. This extends the infinite Grassmannian relation first introduced in
[L]; see also [EL, Proposition 3.5] for a related result in the odd case.

Proposition 5.1. The following relations hold:
n4x Q)\ =0 lf n <0, O+ QA = C)\;illA7 (53)
)\O ndx 0 lf’n < 0, AO O+ _ C;;llx (54)

K2 2

Also the following hold for all t > 0:

T4* OZ
Z i@)\“‘* =0 if i is even, (5.5)

r,s>0
r+s=t
274k OZ
O =0 if i is odd. (5.6)
. 25+*
r,s>0 g A
r4+s=t

Finally if i is odd, the following hold for all n € Z:

A 2n-+* Cz A i@ 2n-+*
2n+1+%* Cz = i® NE lé 2n+14+%x = i® N . (57)
Proof. Let h := (h;, \). The equations (5.3)—(5.4) are implied by (2.13)—(2.16). For
the rest, we first assume that A > 0 and calculate:

O 15 & O 'eX
(—1)lils (P20 N plil 1) n (=1)lls
ng IAOZ (2.16) n;() n+t71)\©i T‘>§S>O 7)\01
r+s=t—2 r+s=t—2
(226)( )\ i|(h+1) —1 htt— 1@ |\h+1) —1 ! nog Z (_1)“8:‘8
A

S

n+l 1 r>—1,5>0 i
AT r4+s=t—2
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h ,
(2.12) li|(h 1) —1 O \I(t+1) ié t—1
=" —(-1 1
(—1) Crii At z; O +( *101-

rSs=2
t—1 T+ s:t—2 A

2.11) ; ) L O

(2.15) - t—1 + Z (-1l G + (=DM, geng A@’ !

r—:QZO—Q A
t—1
(3;3)(—1)i|t8A + (_1)“'(”1)511,00);1- ;O i1
it_
(2.10) i i — 2.12
213 (—1)EDg, e L4 )\Gt | el

This establishes the first of the following identities, and the second follows from
that on supercommuting the bubbles then applying the Chevalley involution from
Proposition 3.5: for all ¢ > 0 we have that

> (=1l g =0ifh>0, (—1)|”Tgi =0if h <0.

r,SEL r,SEL
r+s=t—2 A r+s=t—2 A

(5.8)

If i is even, (5.8) implies (5.5), and there is nothing more to be done.
For the remainder of the proof we assume that ¢ is odd. Take n > 0 such that
n+ h+1is odd. We have that

) iQ A (2.3 A Q& A
Ol )" €52 +2 G © O +2 o

This shows that

A i®)\

n

i L =
i@nfl

assuming n > 0 and n + h + 1 is odd. A similar argument for clockwise bubbles
shows that

(5.9)

N O A nﬁl{)i
€ ), = l® \
assuming that n > 0 and n + h + 1 is odd. Now we proceed to show by ascending
induction on n that (5.10) also holds when n < 0 and n + h + 1 is odd. This

statement is vacuous if n < h, and it is also clear in case n = h thanks to the
definition (2.18). So assume that h < n <0, n+ h + 1 is odd, and that (5.10) has

(5.10)
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been proved for all smaller n with n + h + 1 odd. From (5.8), we get that

r {) i r Cz
— =0.
r,.szez iO; T,SZEZ 'LG)\S

r+s=n—h—1 r+s=n—h—1

r+h+1 odd r+h+1 even
The terms in the first summation here are zero unless s > —h — 1, hence, 7 < n. In
the second summation we always have that s + h + 1 is odd, hence, terms here are
zero unless s > —h — 1 > 0. Applying (5.9) to each non-zero term in the second
summation, we deduce that

3 g_ 3 & o

r,s€Z r,8CZ _®q71
r4+s=n—h—1 r4+s=n—h—1 7 N

r+h+1 odd r+h+1 even A

Now we reindex the second summation, replacing » by » — 1 and s by s + 1, to
deduce that

r,SEL ‘ ° O
r4+s=n—h—1 A ? s

r+h+1 odd

In view of the induction hypothesis, all of the terms here in which r < n vanish.

This just leaves us with the term r = n, when s = —h — 1 so iO/\s = c;‘illk,

which we can cancel to establish the desired instance of (5.10). This completes
the induction. Hence, we have established the first equation from (5.7); the second
follows from that using Proposition 3.5.

It just remains to prove (5.6). We explain this assuming that h < 0; then one
can apply the Chevalley involution to get the other case. From (5.8) we get for any

t > 0 that
Z r4+h—1 OZ
(—1)" ~0.
r,s>0 i<§>\57}171
r4s=2t

In all the terms of this summation we have that r = s (mod 2). If both r and s
are odd, we can apply (5.7) twice to pull out two odd bubbles, hence, these terms
vanish thanks to (1.24). This leaves just the terms in which both r and s are even,
which is exactly what is needed to establish the identity (5.6). O

Once we have proved the next two corollaries, we will not need to refer to the
decorated leftward cups and caps again.

Corollary 5.2. The following relations hold:

w/\ _ Z(_l)\i|(<hi,>\>+n+r+1) T%A if0<n < (hi,\), (5.11)
n —n—r—2

r>0
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f}\ = (=1l e *"*HCA f0<n<—(hi,\). (5.12)
r>0 r
Proof. We explain the proof of (5.11); the proof of (5.12) is entirely similar or it
may be deduced by applying w using also (4.4). Let h := (h;, A) > 0. Remembering
the definition (2.8), it suffices to show that the vertical composition consisting of
(1.13) on top of

></\ @ @Z \ |(h+n-+r-+1) 7%’\”712

n=0r>0
[

is equal to the identity. Using (2.12)—(2.13), this reduces to checking that

{ A
Z(_l)li\(h+n+r+1) A -0 if0<n<h, (5.13)
>0 '
—n—r—2
i

m+r OZ

3 (=l A =0mnly, fO0<m,n<h (5.14)

r>0 iO*’I’L*?'*Q

For (5.13), each term in the summation is zero: if » > h the counterclockwise dotted
bubble is zero by (5.4); if 0 < r < h one commutes the dots past the crossing using
(3.3) then applies (2.13). To prove (5.14), note by (5.3)—(5.4) that in order for

O ‘G

mHr® ) A to be non-zero we must have that » > h —m — 1, while for » ("2
to be non-zero we must have r < h —n — 1. Hence, we may assume that m > n,
and are done for the same reasons in case m = n. If m > n the left hand side of

(5.14) is equal to
r+h—1 OZ

(= 1)lilomtnte) A
rgo iO s—h—1

r+s=m-—-n

Now one shows that this is zero using (5.5)—(5.7) and (1.24); when 4 is odd it
is convenient when checking this to treat the cases m = n (mod 2) and m # n
(mod 2) separately. O

Corollary 5.3. The following relations hold:

Z 1)l (i, X +ntr1) %771”2 — TJ/A , (5.15)

(hi,\)—
n=0 r>0 ”m i
? @

7 7

Z Z )il (s N+t z\(’)j _ lTA (5.16)
n=0 r>0 A L

r K2

7 A
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Proof. Substitute (5.11)—(5.12) into (2.12). O

Corollary 5.4. The following relations hold:

(hA

- p)litn C* ES (e U
A

Hence, for n > 0 we have:

n+(hi,\)+2 r
Q‘%‘ = Z (_1)|i‘<hi»A>T©n,—r—l T A, (518)
A

r=0 ¢

n—i—(hl,)\
|\T @n r— 1I (5.19)
A r= 0
n—(h1,>\>
}@—— > (Fplte ey I,Hfl{y, (5.20)
A r

r=0 ( 7
7 7
n7<hi,A> i
%:F - > (=prity T 1€ A (5.21)
A r=0 i Q

%

Proof. We first prove (5.17). By our usual argument with the Chevalley involution,
it suffices to prove the left hand relation. We are done already by (2.14) if h :=
(hiy A) < 0. If h > 0 then:

(2.11) -1 "
QA =7 (- Cxii A

2

i
(5. 15) lilh,. 71 m Z \ |(n+r+1) A1 “TgA

0<n<h —n—r—2

r>0 n

h . 7

(53) Z i Z(}nfl ; —1 r+h—1
=S Ot S g -
(54) "0 nm 0<n<h sAfhfl

) r,s>0
r+s=h—n ’Lf\/
It remains to observe just like at the end of the proof of Corollary 5.2 that the
second summation on the right hand side vanishes.

Finally to deduce (5.18)—(5.21), use (3.1)-(3.2) to commute the dots past the
upward crossing, then convert the crossing to a rightward one using (1.10)—(1.11)
and apply (5.17). O
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6. LEFT ADJUNCTION

The leftward cups and caps form the unit and counit of another adjunction.

Lemma 6.1. The following relations hold:

[?< >Q if (hi \) < —1, 6.1)
Yj/\ _®< if (hiy A) > —1. (6.2)

Proof. Let h := (h;, \) for short. First we prove (6.1), so h < —1. We claim that
fﬂ =T =t N (63)

To establish the claim, we vertically compose on the bottom with the isomorphism
—h—1

T ><,\ &) @ T k/f,,, arising from (1.14) to reduce to showing equivalently that

] Qe K @4
A A P

1 3

_/i@/\ _ A 1®n — 5}1)_10;1 m/\ for0<n<-h-1. (65)
n A

Here is the verification of (6.4):

/% /8/ oy —1>‘i'",i©‘

h+2
e

i

(1.8) (2.14) 1
= — & _ = — 05 _ : .
@0 h,—1C Az l><i\/,\ (2.4 T Q}\ h,—1Cy; OC)\

i1
T

For (6.5), by (5.4) and (1.10), the right hand side is ¢ ; TA ifn=-h—1>0,and
it is zero otherwise. On the other hand, the left hand side equals

T (2.4) in i CRY '
—(=1)lin ﬁn = (=1l @g = > (—pllter )
i A 2 .1 .

r+s=n—1 7

This is obviously zero if n = 0. Assuming n > 0, we apply (5.18) to see that it is
zero unless n = —h — 1, when the term with r = —h — 2, s = 0 contributes ciﬁ)‘.
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This completes the proof of the claim. Now we can establish (6.1):

9.¢ o2 o .t O e IS o

n=0 r>0 ﬂ,,

(5.16) (6.3) 5 o] (2.13)
2.3) T NA o MQ TA B >QA
\ | 1 1 y | 1 1

2 ? (]

The proof of (6.2) follows by a very similar argument; one first checks that

—% = U T’\ - 5h7—lc>\;iT U

7

when A > —1. O
Proposition 6.2. The following relations hold:

m P (—1)|i’A|T,\ ) m,\ = l,\ . (6.6)

3

Proof. Tt suffices to prove the first equality; the second one then follows using
Proposition 3.5. Let h := (h;, A) for short, and recall that |i,A] = |i|(h + 1). If
h > 0 then

(2.11) “1ln
mA = —(- )I e /\;@A
(6.2) ilh — (5.20)
=" —(-1) ‘hC,\,l A 54 (-1)F ‘(hH)T,\
7
If h < —2 then

m/\ a0 (=Dl Dey %% ‘

6.1 (5 18) i
.1 (=)l (D) ¢y (—1) |(h+1)TA )

)



SUPER KAC-MOODY 2-CATEGORIES 25

Finally if h = —1 then

1l h+l)T T C)\z (525) — Cxii 4 +
A (5.4 | \ S
(2.4 4) 1.7
6.1 (1.10) A :

This completes the proof. (I

7. FINAL RELATIONS

There are just a few more important relations to be derived.

Lemma 7.1. The following hold for all i # j:

A = A Zf <hz, >\> S Hl&X(dij — 1, 0), (71)

Proof. Let h := (h;,A\). First we prove (7.1) assuming that 0 < h < d;; — 1

K3
Vertically composing on the bottom with the isomorphism >< /|\>\ , we reduce
5 .

Yaiab

Then to check this, we apply (5.16) to transform the left hand side into

T, s>0
r4+s= d”-—l

The first term on the right hand side here vanishes by (2.14). Also the terms in the
summations are zero unless r > d;; —h — 1 and s > h by (2.13) and (5.4), hence,
we are left just with the r = d;; — h — 1, s = h term, which equals

; - 2.11 A
_(_1)l|htijcxiaj;iTQ A 2 tUC)\Jra AN lTﬂ T[\ :

to proving that

This is equal to the right hand side of (7.3) thanks to (2.7).
To complete the proof of (7.1), we need to show that it holds when h < 0. By
(1.12) and (1.14), the following 2-morphism is invertible:

7h17,

i
%+ & k-
J n=0 j
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Vertically composing with this on the bottom, we deduce that the relation we are
trying to prove is equivalent to the following relations:

= Ez ) @n - @n, fOI‘ O S n < —h (74)
/ A J A A
J 1

To establish the first of these, we pull the j-string past the éi-crossing:

) 7,
\ |5t E \ Is Pq )
>o A o<p<d; 2
7,8 p ij
rsedi;—1 PEN 0<g<d; (SR

J1 7r,5>0 J ot
r+s:p—l

If h < 0 then all the terms on the right hand side vanish thanks to (2.14) and (5.4).
If h = 0 and d;; > 0 everything except for the r = d;; — 1 term from the first sum

A
vanishes, and we get tijc;iaj.i/r /. Finally if h = d;; = 0, we only have the
T

A
first term on the right hand side, which contributes ¢;; c;}_aﬂ T m again thanks
VAN

o (5.17), (5.4), (2.4) and (1.7). This is what we want because:

(2.7 (5. 17) (1. 17)
= T Q (5_4 hO AZT m 6h Otl.]c)\+a zT m
A A

J J

We are just left with the right hand relations from (7.4) involving bubbles:

i@ 24 4 (L&) HJIRQS
A

J

LD (qyillaing, Q TA + | alin. comb. of Q q% with 1 < p < n + di;
n dej D L
(5-4) n (1. 17> " 2.7)
= S () e, T S D T ! @
J

The relation (7.2) follows by very similar arguments to the previous paragraph;
the first step is to vertically compose on the top with the isomorphism

h—dij—1

De @

7 i J

Proposition 7.2. The following relations hold for all i,j:
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{X} _(_1)i||j|\’>0k, I>Q_A _ (_1)|ij\[2<>\. (7.6)

Proof. We get (7.5) in half of the cases from Lemmas 6.1 and 7.1. To deduce the
other half of the cases, attach leftward cups (resp. caps) to the two strands at the
bottom (resp. the top) of the relations established in these two lemma, then simplify
using (6.6). Finally (7.6) follows from (7.5) using Proposition 3.5 as usual. O

The final two propositions of the section extend [KL3, Propositions 3.3-3.5].
Proposition 7.3. The following hold for alln >0 and X\ € P.

(i) If i is even then
S (r+1) C. M,? (7.7)
>0

+© TA =3 (r+1) $ i) (7.8)

r>0 z

(ii) If1i is odd then

T C.+ - 2r+1)®,l_2,.+*¥gr,\, (7.9)

r>0 ? !
7

+© T)\ =Y (@r+1) ¥ neari - (7.10)

>0 7

(ili) Fori # j with d;; > 0 we have that

TkOn,Jr* :tij 71+*T>\+tji©n djj+ $dﬂ)\+ g ZJ ®7I+p dij+* }\q)‘a
7

;o I 0<i<a )
(7.11)
n+*©T T n+* )‘+th d”$n d”+*©)\+ Z (}\ n—+p— d”+*©)\
g 0<p<d;; 4
0<q<dj; J
(7.12)

(iv) Fori # j with d;j = 0 we have that

T,\QH* = QH* T,\, (7.13)
+© TA - T +©)\ (7.14)

Proof. Let h := (h;, A) throughout the proof.

(i)—(ii) When i is even, this was already established in [L]. So we just need to
prove (ii), assuming 4 is odd. We observe to start with that the identities (7.9)
and (7.10) (for fixed A and all n > 0) are equivalent. To see this, let us rephrase
them in terms of power series. We make Endyg)(£;1,) into a k[z]-module so that
x acts as by vertically composing on top with a dot. Let ¢ be an indeterminate
and e(t) := >, <oent”, h(t) := >, -, hat™, which are power series in Syml][t]].
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Recalling (5.1)—(5.2), the identities (7.9) and (7.10) for all n > 0 are equivalent to
the generating function identities

TA Bri((1=anh(=t%) = [ Y (2r + 1)a* " | Brra,ul((l - dt)h(—tz))TA,

r>0 |
7

Brtasi((1+ dlﬁ)e(lfz))TA = | D@+ 12 TA Brii((1 + dt)e(t?)),

L r>0 L
7 7

respectively, as follows by equating coefficients of ¢. Since e(¢t)h(—t) = 1 in Sym
and d% = 0, we deduce that (1+ dt)e(t?) and (1 — dt)h(—t?) are two-sided inverses.
Using this, it is easy to see that the two generating function identities are indeed
equivalent, e.g. multiplying the first on the right by £x.;((1 + dt)e(t?)) and on the
left by Bata;:i((1 — dt)e(t?)) transforms it into the second.

To complete the proof of (ii), we need to show that one of (7.9) or (7.10) holds
for each fixed h. We proceed to verify (7.9) in case h < —1; a similar argument
establishes (7.10) in case h > —1. So assume that h < —1. The identity to be proved
is trivial in case n = 0 so suppose moreover that n > 0, so that n—h—1 > 1. Then
we have that

515) he1
* -1)""
T @”* 2.3) ) b
(2.4) —he1
—. _1 " 3 n—h—1 5 — * n
6.6) (=1) i : h—1 + On, 1(Z§o+ }\ A

7

(3.2) rsths s
D G IR e T
A v ;

r,s>0

r+s=n—h—2 i
r+h+2 s
(5.19) O :
A Z Z (—1yrsthstt Bl I O - '{” N
r,s>0 t=0 Pt ? !
r+s=n—h—2 ? g

r+h+2

_ Z Z s+1)t C} —t—1 1\5+;\ + -1 (;} 0+ }\n A
! i

r,s>0 t=0
r+s:n7h72

_ Z Z(_l)(s-i-l)t O'nth* ]\)\4_5}%_100_&_* $n)‘
p v & 7 |
i i

min(t,n—h—2)

(_1)(s+1)t On,—t+* ]\ A+ 6h,71 O 0+* *n, A
? ‘t 7 L
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-S| am S ernGr b

t>0
t even 4

This is what we wanted.

(iii)—(iv) By an argument with generating functions similar to the one explained
in the proof of (ii) above, the identities (7.11) and (7.12) are equivalent, as are
(7.13) and (7.14). Therefore it suffices just to prove one of them for each fixed h
and all n > 0. For any n > 0, we have that

(2.7) lillj1 (2.4 111 3.1)
i n = —1)tHiain n = —1)rain n = i
]\ZO 2 ( ) A (75) ( ) i i A
by A A n\.
J J J J

A )\

| 0<p<d;;
1.7 J J 0<q<d;;

tij l@ if d;; = 0.
A

This proves both (7.11) and (7.13) for n > h+ 1. Also, the case n = 0 follows from
(1.17), hence, we are completely done if h < 0. A similar argument establishes
(7.12) and (7.14) for n > d;; — h + 1, hence, we are completely done if h > d;;.

We are left with proving (7.11)-(7.12) when 1 < h < d;;—1. We claim that (7.11)
holds for all n < d;; —h. The claim implies that (7.12) holds for all n < d;; — h too,
and we have already established (7.12) for n > d;; — h + 1, so the claim is enough
to finish the proof. For the claim, we proceed by induction on n =0,1,...,d;; — h.
The base case n = 0 is trivial. For the induction step, take 1 < n < d;; —h. By
(3.8), we have that

r,s>0
r+s=dj;—1 7 7 O<q<dﬂ

v @@ iy @f

r,s>0
r+s:p—l

Both terms on the left hand side are zero: for the first this follows immediately
from (2.13); for the second one this follows from (2.14) and (5.4) on applying (3.3)
to pull the dots past the crossing. Replacing s by s + h — 1, we have proved that

i(—l)li‘s ®n73+* I Z SPQQIL7.5+11711U+*

t’Lj 7 A q A =0.

)
s=0 s+*© 0<p<d;; s+*©
J

T 0<g<dj; ] T
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Also because n < d;; we have that

Now consider the identity obtained by adding these two expressions together. We
use the induction hypothesis (7.11) to simplify all of the terms with s > 1, keeping
the s = 0 terms on the left hand side, to obtain

pq
tzj O’n,+* TA + tjz Onfdi]ﬁ»* *d_” A+ E 5” On+p7d7,_j+* *(1 A
7 3 T 3
J J

0<p<d;; g A
O<q<dj,- J

n ién—s+* 5.8
= —Z(—l)‘ils 2 (:) T)\énJr* .
jh—&-* OZ

s=1 i 2
J

This completes the proof of the claim. O

Corollary 7.4. Fori,j € I with i odd, we have that

i®TA = T;(X)Av i®L = L—@A. (7.15)

Proof. Remembering the definition (2.18), the first relation follows from the n =1
cases of (7.9), (7.11) and (7.13); to see that the lower terms in (7.11) vanish, recall
that d;; is even. Hence, it satisfies d;; > 2, and s} = 0 if p = d;; — 1. The second
relation follows from the first by applying w. O

Remark 7.5. One can invert the formulae in Proposition 7.3 to obtain also various

bubble slides in the other direction. For example, inverting (7.7)—(7.10) produces
the following, for ¢ even, ¢ even, ¢ odd and ¢ odd, respectively:

O'r1+* A T = T A On-}—* -2 }\ A 071714»* + }\2 A @71724»* , (7.16)
T)\ )= e ) T)\ —2 o1 ) ? + n2ee ) %A, (7.17)
O"H A T = T/\ (‘}w* -3 }\2 A 071724»* +4Z(—1)’” }\2, A ®n72r+* ,

r>2

(7.18)

TA n+*© = n+*© TA — 3 n—2+x {z) }\2 A+ 4;(—1)T n—2r‘+*© }\% A
K3 K3 3 - K3

(7.19)
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Proposition 7.6. The following relation holds:

; t
Z (—1)lil (RN Frst1) grstg ifi=j=k,
r,s,t>0 sm by

7 [

= i (7.20)

t S
+ Z (_1)‘i|(<hi’)\>+r+s+t) —7>—s—f/—38
r,s,t>0 ﬂr/\

K2 (2

0 otherwise.

Proof. Assuming either i = j = k or i # k, we attach crossings to the top left and
bottom right pairs of strands of (3.8) to deduce that

/g{ : g | o
A
J k J k

When i # k, the lemma follows easily from this on simplifying using (2.7). A similar
argument treats the case i # j, attaching crossings to the top right and bottom left

pairs of strands in the relation
; j
: z/\ ; :,\
J ok ik

which may be deduced by attaching a leftward cap to the top left and a leftward
cup to the bottom right of (1.9) and using (6.6) and (7.5). We are just left with
the case that ¢ = j = k. For this we use (7.21) again to reduce to checking;:

7

[ i

i t
_ i|((hiy A)+r+s+1
[ == X = Xy SR L
> A

{ y r,s,t>0 sm

K3 K3
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7 t { s
r,8,t>0 [\‘r)\
[ 7 i 7;

These two identities are proved in similar ways. One first uses (5.15)—(5.16) to
reduce the double crossings, then (3.1)—(3.2) to pull the dots to the boundary,
remembering also (2.13)—(2.14), (2.4) and (1.7). By now we can safely leave the
details to the reader! O

8. THE NONDEGENERACY CONJECTURE

The main result of this section is a generalization of [KL3, Proposition 3.11]. We
need some further notation which is adapted from [KL3]. Let Seq be the set of all
words in the alphabet {1;, ;| € I'}; our words correspond to the signed sequences
of [KL3]. For a = a,, ---a; € Seq, let

wi(a) == > (#{n =1,....mlap =1} —#{n=1,...,mla, = m)ai €Q. (8.1)

iel
To A € P and a = a,, ---a; € Seq, we associate the 1-morphism

FE.,1\ = F

am

By Iy A= A4 wt(a) (8.2)

in #(g), with the convention that E;, = E; and E|, = F;. As A and a vary, these
give all of the 1-morphisms in (g).

Suppose that we are given a = a,,, ---a; and b = b, - - - b; € Seq. An ab-matching
is a planar diagram with

e m distinct vertices on a horizontal axis at the bottom labeled from right to
left by the letters ay, ..., amn;

e n distinct vertices on a horizontal axis at the top labeled from right to left
by the letters by,...,by;

e (m + n)/2 smoothly immersed directed I-colored strands drawn between
the horizontal axes whose endpoints are the given (m + n) vertices.

We require moreover that:

e the strands have only finitely many intersections and critical points (=
points of slope zero);

e there are no intersections at critical points, no triple intersections, and no
tangencies;

e the colors and directions of the strands are consistent with the letters at
their endpoints.

Note at least one ab-matching exists if and only if wt(a) = wt(b). Here is an
example with a = 1, |; T |x and b =15 [x T3
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A matching is reduced if each strand has at most one critical point which should
either be a minimum or a maximum, there are no self-intersections of strands, and
distinct strands intersect at most once.

Any ab-matching defines a pairing between the letters of the words a and b,
two letters being paired if they are endpoints of the same strand. We say that
two matchings are equivalent if they define the same pairing. Every matching
is equivalent to at least one reduced matching. For example, here is a reduced
matching equivalent to the matching displayed above:

M

A decorated ab-matching is an ab-matching whose strands have been decorated by
finitely many dots located away from intersections and critical points, each of which
is labeled by a non-negative integer. Given any decorated ab-matching o and A € P,
there is a unique way to label the regions of ¢ by elements of P so that it becomes
the diagrammatic representation of a 2-morphism f (o, A) € Homyg)(Ealx, Euly)
as above.

For each a,b € Seq, we choose a set M(a,b) of representatives for the equiva-
lence classes of reduced ab-matchings. For each element of M (a,b), we also choose
a distinguished point on each of its strands located away from intersections and
critical points. Then let M (a,b) be the set of decorated ab-matchings obtained
by taking each of the matchings in M (a,b) and putting a dot labeled with a non-
negative integer at each of its distinguished points. Finally recall the homorphism
ﬂ)\ :SYM — Endu(g)(l)\) from (122)

Theorem 8.1. Take a,b € Seq with wt(a) = wt(b) and any A € P. Viewing
Homy(g)(Falx, Ep1x) as a right SYM-module so that p € SYM acts by horizontally
composing on the right with Bx(p), the 2-morphisms { f(o, \) |0 € M\(a7 b)} generate
Homy(g)(Ealx, Exly) as a right SYM-module.

Proof. By the definitions, any 2-morphism in Homyg)(Ealx, Er1y) is a linear com-
bination of diagrams obtained by horizontally and vertically composing the gener-
ators x,7,m,¢,n" and . Now the point is that we have derived enough relations
above to be able to algorithmically rewrite any 2-morphism represented by such a
diagram as a linear combination of the 2-morphisms f(o, )8, (p) for o € M (a,b)
and p € SYM. This proceeds by induction on the total number of crossings in the
diagram. We omit the details since it is essentially the same argument as used to
prove [KL3, Proposition 3.11]. O

Now we can properly state the Nondegeneracy Conjecture from the introduction:

Nondegeneracy Conjecture. For all a,b € Seq with wt(a) = wt(b) and any
A € P, the superspace Homy gy (Ealy, Evly) is a free right SYM-module with basis

{f(o,)) | o € M(a,b)}.
9. THE COVERING QUANTUM GROUP

Henceforth, we assume that the Cartan matrix is symmetrized by positive inte-
gers (d;);er, and that the parameters are chosen to satisfy the homogeneity condi-
tion (1.31). Let (—, —) be the symmetric bilinear form on the root lattice ) defined
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from (a;, ;) := —d;d;j. In this section, we recall the definition of the covering
quantum group Uq,ﬂ(g) of Clark, Hill and Wang [CHW1, CHW2]. Our exposition
is based mostly on [CFLW] and [C]. Note that our ¢ is the parameter denoted
¢~ in [CHW1, CHW2, CFLW], which is v=! in [C]. We write ;1) and f;1, in
place of F;1, and Fjly; we would also write k; for the generator K ! although
we won’t actually need this here. In [CHW2, CFLW, C], an additional assumption
of “bar-consistency” is made on the super Cartan datum; we do not insist on this
until later.

Let L be the ring Q(q)[r]/(7? — 1), and L := Z[q,q¢ *,7]/(x* — 1) as in the
introduction. For n € Z, we let

B At D I B oV SR o A A if n>0,
= q— (Fq)_l - _Wn(q—n—l + ﬂ_q—n—S R ﬂ_—n—lql-i-n) if n <0.
There are corresponding quantum factorials and binomial coefficients:

[y = [Plgrln = Ugor - [Wgoms [nL = w[n#'

r gl = Tlgx

[]q,r :

We let — be the involution of L (or £) with § = ¢! and ® = 7. Note this is
different from the bar involution used in [CFLW, CJ; in particular, our quantum
integers are not bar invariant, but satisfy

mq,ﬂ = Wn_l[n]qﬂr = —m[—n]gx- (9.1)

We have that [Z]q .= ar(n=r) mq _» so that the quantum binomial coefficient is
bar invariant if n is odd. For ¢ € I, we set

o di O
gii=q%  m=all

Let Uq,,r (g) be the locally unital L-algebra with mutually orthogonal idempotents
{1, | A € P}, and generators e;1y = 1xjqa,6; and filyx = 1y_q, f; for all i € I and
A € P, subject to the following relations:

(eifs = W fie)1n = 6 5[(his Mg 1as - (9:2)
dij+1

; _ i+ 1 R g .,
Z (_1)rﬂir|3|+r(r 1)/2 {dg + } efu"ﬂ‘l ejelly =0 (i # 5),
r=0 r Qi T
(9.3)
dij+1
r_rlgl4+r(r— dz+1 dij+1—r r . .
> (e ”/2{ ’ } TN =0 (i # J).
r=0 r qiTi
(9.4)

Also let qu(g)g be the L-subalgebra of Uq,ﬂ(g) generated by the divided powers

My i= e/l A= F 95)

for all i € I,\ € P and n > 1; see also [C, Lemma 3.5].

We also need the antilinear (with respect to the bar involution of the ground
ring) algebra automorphisms 9, w : U, »(g) — U, (g) and the linear algebra anti-
automorphism p : U, »(g) — U, «(g), which are defined on generators by

w(b\) = 1,)\, w(eib\) = filf)\, w(fl-b\) = eilf)\, (96)
P(1y) = 1y, Y(eily) = eily, P(filx) = ml"Mfi15, (9.7)
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p(Ly) = 1y, pleila) = ¢ "NV p(fila) = g T e (9.8)
Note all of these are involutions. Let % := po ) and ! := 1) o p. These are mutually
inverse antilinear antiautomorphisms with

=1 (al) =q V00 (i) =g e, (9.9)
=1y, (ely) =alMNg TN (1)) =g "V e (9.10)

The notation here varies somewhat across the literature, e.g. the counterparts of
our w,® and p in the purely even setting are denoted by w o ¢, and p in [KL3].
In the remainder of the section, we are going to explain how to lift w,% and p to
the Kac-Moody 2-supercategory.

First, we must explain how to deal with antilinearity at the level of 2-categories.
Let A be a graded supercategory. The supercategory AP from Definition 3.4 is ac-
tually a graded supercategory with the same grading as A, i.e. deg(f*°P) = deg(f).
Similarly, if 2 is a graded 2-supercategory then 2A*°P is a graded 2-supercategory.
If 2 is a graded (Q,II)-2-supercategory in the sense of [BE, Definition 6.5], with
structure maps oy : gx — 1x,&) : q;1 5 1y and ¢y : mx = 1y, we can regard
AP as a graded (Q,II)-2-supercategory by declaring that its structure maps are
(B3P gt S 1y, (071 gy = 1y and (¢{1)%°P : my = 1. The key point

here is that we have interchanged the roles of ¢ and ¢~ !.

Lemma 9.1. Suppose that A and B are graded 2-supercategories, and recall the
definition of their (Q,II)-envelopes g » and By from Definition 1.6. Given a
graded 2-superfunctor ¢ : A — (By )P, there is a canonical induced graded 2-
superfunctor ¢ : g x — (By.x)*P.

Proof. View (B, - )*°P as a graded (Q, IT)-2-supercategory as explained above. Then
apply the universal property of (@, IT)-envelopes from [BE, Lemma 6.11(i)]. O

Remark 9.2. In the setup of Lemma 9.1, the construction from the proof of [BE,
Lemma 6.11(i)] implies the following explicit description for ¢. It is equal to ¢ on
objects. On a l-morphism F' in 2 with ¢(F) = Q™I F’ for a 1-morphism F’
in B, we have that é(QmH“F) = Q™' ~™II°t% I’ Given another 1-morphism G
in A with ¢(G) = Q"I &’ and z € Homgy(F,G) with ¢(z) = ((x’)g',gf’)wp for
z' € Homg (G, F'), we have that

& (anh,) = (=1)alel+blel+ab+d ((z,yn//,mé%a,)mp.
., o

Note also that ¢ is not strict (even if ¢ itself is strict). Its coherence map
Corma,grier : S(Q'TI'G)H(QTIIF) 5 $(Q™ "I GF)

is (—1)‘“’( ?;ﬁi:’;;gfjbﬂurb/)sop, where ( ,:7/; "/’“/er/)sop denotes the coher-

ence map cg r : ¢(G)p(F) = ¢(GF) for ¢, for H' defined so that ¢(GF) =

QM1 H' and f € Homy (H',G'F").

Since we are assuming now that the parameters satisfy (1.31), the Kac-Moody
2-supercategory (g) is a graded 2-supercategory with Z-grading defined as in the
introduction. Let , (g) be its (Q, II)-envelope from Definition 1.6. We now pro-
ceed to define the categorical counterparts of the antilinear automorphisms (9.6)—
(9.7). Actually, the first was already defined in Proposition 3.5, but we need to
extend this to the envelope.
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Proposition 9.3. There is an isomorphism of graded 2-supercategories
@ 2 g r(g) = Ug,r ()P

defined on objects by A — —X and 1-morphisms by QMII*E;1\ — Q™ ™II*F;1_,,
QMIIF;1y — Q- ™II*E;1_».

Proof. If we compose the strict 2-superfunctor from Proposition 3.5 with the canon-
ical inclusion U(g)*°P — $, ~(g)®°P, we obtain a strict graded 2-superfunctor w :
(g) — g -(g)*°P. This is defined on objects by A — A, on l-morphisms by
E;ily — QII°F;1_y, F;1, — Q°I°E;1_5, and on 2-morphisms by the following:

0 7 o sop 0 A J 0 sop
}\,\»—> £7>\ ; X x> —(=1)lldl Xx ;
H 0 0 7 J 0 0
_ sop A N1 _ SOp
0 0 0
S as I e T v
6 v 0 0

It remains to apply Lemma 9.1 to get the desired graded 2-superfunctor & (which
is no longer strict). O

Proposition 9.4. Assume that there is a given element \/—1 € kg which squares
to —1. Then there is an isomorphism of graded 2-supercategories

b Uy (g) = Uon(g)™P

defined on objects by A — X and I-morphisms by QMII*E;1x — Q ™IIE;l,,
QI Fi1y — Q ™IIoHEA F1 .

Proof. We claim that there is a strict graded 2-superfunctor ¢ : 4(g) — Uy (g)%P
which is defined on objects by A — A, 1-morphisms by E;1y — Q°II°E;1,, F 1y —
Q "M F1,, and 2-morphisms by the following:

o sop

0 _
?A if 7] =
0 i 0
}\AH
0 —— 0 %P

: v=1 T, if Ji| = 1

0 . 0

A Sop

0 0 _

X if [i|j| = 0,
0 5 i 0

0 o %P _

7 V=1 X if Jalj] = 1,
0 5 4 0

: _ SO
t o %°P
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To prove the claim, one needs to verify the relations. Note to start with that

0 sSop

0 I _
ne \ lf TL|’L| = 0,
0——0
n}\ A=
0 o sop B
v \/—1 ne \ lf TL|’L| =1.
0——0
Using this, the quiver Hecke superalgebra relations (1.7)—(1.9) are straightforward.
The inversion relations (1.12)—(1.14) are also fine. The adjunction relations (1.10)
need a little more care since the signs coming from (1.30) play a role. Then apply
Lemma 9.1 to get the desired graded 2-superfunctor ¢ (which is no longer strict).
O

Definition 9.5. Let 2 be a graded 2-supercategory. Define 205"V to be the graded
2-supercategory with the same objects as 2, and morphism categories

Homgysrev (11, A) := Homg (A, ).
We write F¥ @y — X (resp. 2V : F¥'V — G%V) for the 1-morphism (resp.
2-morphism) in "¢V defined by the l-morphism F' : A — pu (resp. = : F —
G) in 2. Then, horizontal composition in A is defined on 1-morphisms by
(FeV)(GSY) := (GF)®¥ and on homogeneous 2-morphisms by (%) (y*®) :=
(—1)=ll¥l(ya)srev. Vertical composition of 2-morphisms in 2%V is the same as in
2. Here is the check of the super interchange law in 2(5™¢V:

(xsrcvysrcv) ° (usrcvvsrcv) _ (_1)|m||y|+\u||v\(yI)srcv o (vu)srcv
= (_1)|w||y|+\u||v\((yx) o (vu))srev
= (_1)|I||y|+\u||v\+|x||v\((y ° U)(CE Ou))srcv
= (_1)|y||u\(x o u)¥ (y o v
= (=1 |y||ul 25TV o 5TV STEV () 4 STeVY
(1) y
If A is a graded (Q, I1)-2-supercategory with structure maps oy : qgx — 1y, :
q;l S 1y and ¢y - my = 1y, we can regard 2™V as a graded (Q, II)-2-supercategory

~

by declaring that its structure maps are (o)™ : ()™ = (11)%Y, (G2)%°Y :
()7 3 (1) and (G = ()™ 3 (1)

Lemma 9.6. Suppose that A and B are graded 2-supercategories. Given a graded 2-
superfunctor ¢ : A — (Bg )", there is a canonical induced graded 2-superfunctor
(l; Agm = (Bgn )™

Proof. View (Bg-)"®" as a graded (Q,II)-2-supercategory as explained above.
Then apply [BE, Lemma 6.11(i)]. O

Remark 9.7. In the setup of Lemma 9.6, the construction from the proof of
[BE, Lemma 6.11(i)] implies the following explicit description for é It is equal
to ¢ on objects. On a l-morphism F in 2 with ¢(F) = (Q™ TI* F')*" for a 1-
morphism F’ in B, we have that ¢(Q™II*F) = (Q™+™ TI% F/)s**¥ Given another
1-morphism G in 2 with ¢(G) = (Q™'TI"' G’)**¥ and x € Homy (F, G) with ¢(x) =
((z’)"/’b;/)brev for 2/ € Homg (F', G’), we have that

m/,
o b Y +n/ b0\
(b (‘T:ln),a) = (_1)1111 - ((x/)zz-ﬁn’,a-l-a’) :
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The coherence map
Eonma.gmmer  G(Q'IIPG)G(QMII"F) 5 (Qm "I GF)

’ ’ ’ ’ ’ / srev ro srev
is (—1)a+b)+(a+b)(a’+b/+c) (f;::::iﬁﬁ;iwa%b’) , where (f::/inf,aurbf)
denotes the coherence map cq, r : ¢(G)p(F) 5 #(GF) for ¢, for H' defined so that
$(GF) = QFTI H' and f € Homep (F'G’, H).

Proposition 9.8. Assume that there is a given element \/—1 € kg which squares
to —1. Then there is an isomorphism of graded 2-supercategories

p: uq,ﬂ(g) = uqm(g)srev

such that X — X and QMII*E;1y — (QMm~ %0+ ANTIe], F)srev, QM Fily —
(Qm—di(1—<hi,)\>)Ha1>\Ei)srev'

Proof. We claim that there is a strict graded 2-superfunctor p : 4(g) — g (g)>"
defined on objects by A — A, 1-morphisms by E;1y — (Q~4(1+(hi:ANTI01 ) Fyysrev,
Fily = (Q~4(=(he, TTIEAITy B;)5¢Y | and 2-morphisms by the following:

—d; (1+(hi,\)) —i— @ stev )
AI if [i| =0,
0

7d;(1+<h;,)\>>
TH A
! —d; (14+(hi,\)) —— @ srev _
i ) AI if i = 1,
—di (14 (hs,\)) 0
—di (14, A)) —dy (14-(hy A)) — (v a0 ) 2—— § srev B
> il =0,
—d; (14 (hi,A))—dj (14 (hj M) — (i) 0
o

0

/\ —dy (1 (R A —dy (14 (hy A — (a0 )4 g srev -

v ! A< if il ] = 1,
0

—di(1+(hi,A)) —d; (14, A)) — (e, 05)

i 0 7 OSYEV d 0 Osrev
q = \UA = A
0 5 g ol.@c@

To prove the claim, one needs to verify the relations. The quiver Hecke relations are
the most complicated; for these, use (3.5)—(3.6), (3.7) and (3.9). (Note the degree
shifts actually play no role in this argument; they are included to match (9.8).)
Finally, apply Lemma 9.6 to get p. O

Suppose in this paragraph that k = kg is a field. Then the underlying 2-category
U, -(g) is a (Q, II)-2-category in the sense of [BE, Definition 6.14], as is its additive

=g, . .
Karoubi envelope i, . (g). The Grothendieck ring Ko (&L, .(g)) is a locally unital £-
algebra with distinguished idempotents {1 | A € P}. The analogous Grothendieck

ring arising from 4, - (g)%°P may be identified with Ko (4, .(g)) as a ring, but now ¢

=T
acts as ¢~ !. This means that the isomorphisms & and 7 from Propositions 9.3-9.4
induce antilinear locally unital algebra automorphisms

@], [¥] : Ko(Y, (9)) = KoY, (9))-
Also, the Grothendieck ring arising from {l, ~(g)*"®¥ may be identified with the

opposite Ko, .(g))°P, so that the isomorphism p from Proposition 9.8 induces a

=q,™
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linear algebra antiautomorphism

(6] : Ko, -(9) = Ko(td, ~(g))-

The epimorphism 7 : U, »(g)z — Ko(tl, .(g)) to be constructed in Theorem 11.7

==q,T

below intertwines the maps w, ¥ and p from (9.6)(9.8) with [@], [/ and [3)].

Remark 9.9. One can also consider the compositions p o 1/3 and 1/3 o p. Both of
these maps can be defined directly on generators, revealing that they actually do not
require the existence of v/—1 € k, unlike j and @[NJ themselves. Just as discussed in
[KL3, (3.46)—(3.47], these maps may also be interpreted as taking right duals/mates
and left duals/mates, respectively. They decategorify to the maps * and ! from
(9.9)-(9.10).

10. THE SESQUILINEAR FORM

Continue with the assumptions from section 9. Let f be the L-superalgebra on

generators {0, | i € I} with |0;| := |i|, subject to relations
di]‘+1
r|g|+r(r— di‘ 1 ij+1—mr
> (e T g0 o)
r
r=0 qi, T

for all 4 # j. There is a Q-grading f = ®a€Q f, on f compatible with the Z/2-
grading defined by declaring that each 0; is of degree a;. Viewing f ® f as an
algebra with the twisted multiplication (z ® y)(z/ ® ') := 7¥!I1*'lg=Ba)ga @
for homogeneous = € f,,y € fg,2" € £,y € £z, welet r : f — f @ f be the
superalgebra homomorphism defined from r(6;) = 6, ® 1 + 1 ® 6; for each ¢ € I.
By [CHW1, Proposition 3.4.1], there is a (non-degenerate) symmetric bilinear form
(—,—) on f defined by the following properties:

o (0:,0;) = 0i3/(1 — miq?);

hd (:Eyv Z) = (:E ® y,T(Z));

o (z,y2) = (r(x),y ®2).
Here, the form on f ® f is defined from (z @ y,2’ ® y') := (z,2")(y,y’). Note that
f, and f3 are orthogonal for o # 3.

Theorem 10.1 (Lusztig, Clark). There is a unique sesquilinear form (= antilinear
in the first argument, linear in the second) (—, —) : Uy (g) x Uy =(g) — L such that
the following hold:

(1) (Lpxlx, 1pa’ly) =0if X# N or p# s

(2) (xy, z) = (y,2"2);

(3) <eid eIy, ey 'ej11>\> = (65, - Big, 05, - 'ejd)'
Moreover:

(4) (z,y) = (W(y), ¥(x));

(5) (x,y2) = (y'z,2).
Assuming in addition that the bar-consistency assumption of [C, Definition 2.1(d)]
holds, i.e.

d; =1|i] (mod 2) for eachi€l, (10.2)

the form (—,—) is non-degenerate.

Proof. There is clearly at most one sesquilinear form on Uq,,,(g) satisfying properties
(1)—(3). To see that there is indeed such a form, we appeal to [C, Proposition 5.8],
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which defines a bilinear form (—,—)" on U, (g) satisfying four properties. Our
form (—, —) is obtained from Clark’s form by setting
(@,y) = (o(d(w)),o(v))', (10.3)

where 1) is the antilinear automorphism from (9.7) and o is the linear antiautomor-
phism defined by declaring that o(1,) = 1y, o(e;1x) = 1, f; and o(f;1x) = 1ae;.
We leave it as an exercise to the reader to check that Clark’s four properties trans-
late into our properties (1)—(4); actually, one needs the opposite formulation of
Clark’s second property which may be derived from [C, Proposition 5.3], noting
that Clark’s 71 is our o o x 09 o o. The property (5) is immediate from (2) and (4)
plus the definition of (9.10). Finally, assuming bar-consistency, the non-degeneracy
follows from [C, Theorem 5.12]. O

Remark 10.2. One could also define a bilinear (rather than sesquilinear) form
(—,—) on U, »(g) by setting (z,y) := (¥(z),y). This is a generalization of Lusztig’s
form from [Lu, Theorem 26.1.2] which is slightly different from the one introduced

in [C]. Theorem 10.1 implies that (—, —) is symmetric and it satisfies (zy,z) =
(y, p(x)z).
The next theorem gives a graphical description of the form (—, —) in the spirit

of [KL3, Theorem 2.7]. Recall the notation Seq from section 8. For a,b € Seq,
let J/\/[\(a,b) be chosen as in Theorem 8.1. For o € J/\/[\(a, b) and A € P, define the
degree deg(o, A) and the parity |o, A| to be the degree and parity of the homogeneous
2-morphism f(o, A), i.e. we sum the degrees and parities of all of the generating
dots, cups, caps and crossings in the diagram for f(o, A) as listed in the following
table:

Generator Degree Parity || Generator Degree Parity

}\k 2d H i,\ 2d H
YO | ~tesa) || 0 il
o | tawen | il | S 0 il

\/Z di(1+ (h,N)) | 0 u di(1 = (hi; X)) | 10, A|
m di(l - <hi7 )‘>) 0 ﬂ di(l + <hi7 )‘>) |i7 /\|

Just as we did in (8.2), a word a = a,, - --a; € Seq defines a monomial
aly = ea,, - € 1x € Uyx(g), (10.4)

where ey, :=e; and e, := f;. Clearly, these monomials taken over all a € Seq and
all A € P span Uy (g).

Theorem 10.3. The sesquilinear form (—, =) from Theorem 10.1 satisfies

(ealn,eply) =dxr Z qdee(@A) rloAl (10.5)
Ueﬁ(a,b)
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for each a,b € Seq and \,u € P.

Proof. This argument parallels the proof of [KL3, Theorem 2.7] closely. We can
clearly assume p = \. Let (a, b)) denote the expression on the right hand side of
(10.5). Note to start with that (a,b) does not depend on the particular choice
made for M (a,b). This follows because one can pass between any two choices of
decorated reduced matchings by a sequence of isotopies which do not change degrees
or parities of diagrams. (This is similar to the proof of Theorem 8.1, which applied
more complicated relations which are the same as these isotopies plus terms with
fewer crossings.) To complete the proof of the theorem, we must show:

<€a1)\, 6b1>\> = (a, b>)\. (10.6)
We proceed with a series of claims, which mimic [KL3, Lemmas 2.8-2.12].
Claim 1. The identity (10.6) is true in case a and b are positive, i.e. they only
involve upward arrows.

To see this, ifa="1;, -+ 15, and b =1, ---T;,, then M(a,b) is empty unless ¢ = d,
in which case its elements are in bijection with permutations w € Sy such that

bw(r) = Jr for each 7 =1,...,d, and we have that
d 5 )
() o irllis| (o,
(a,b)y = 6ea 3 (H #X ] lilgCen s>)'
weSy “r=1 ir i, 1<r<s<d
w(r)>w(s)

Using Theorem 10.1(iv), it remains to check that this equals (6;, - --0;,,0;,,...,6;,).

This follows by the explicit definition of the latter form on f.

Claim 2. (eiealy, enly) = (Tia,b)x & (ealy, fievln) = (2, lib)x.

Claim 3. (fiealy,eply) = (Lia,b)x & (ealy, eieply) = (a, Tib)a.

The proofs of these are the same as for [KL3, Lemma 2.9]. For example, for Claim 2,

one considers the bijection between M (1;a,b) and M(a, |;b) obtained by attaching

a cup on the bottom left. On the algebraic side, one uses Theorem 10.1(2) and

(9.9).

Claim 4. (eaeifjenly,1x) = (alil;b,@)x & (eafjeienly, 1n) = (al;Tib, @)x, as-

suming i # j.

Since (eaeifjeply, 1n) = lilldl (eafjeienln, 1)) by (9.2), we must show that
(atil b, @)x = 7l(al 10, @),

This follows by considering the bijection between ]\/Z(aﬁijb, @) and ]\/Z(aijﬁb, &)
obtained attaching a rightward crossing under the 1;/; to convert it to |;1;; see the
proof of [KL3, Lemma 2.11] for further explanations. The only difference for us is
that the crossing is odd in case |i||j| = 1.

Claim 5. Assuming that (eseply, 1)) = (ab, @)y, we have that (eqe; fiepla, 1)) =
(alilib, @)\ & (eaficienln, 1n) = (aliTib, @)x.

Define 1 so that ep1) = 1,ep. In view of (9.2), we must show that

<aTi\Libv ®>>\ - ﬂ-m <a¢1¢ib7 ®>>\ = [<h17 /L>]¢h7ﬂ'i <ab7 ®>>\' (107)

To see this, we divide the decorated matchings in M(aTi@b, @) and ]\/4\(a¢ﬁib, @)
into three classes exactly as explained in the proof of [KL3, Lemma 2.12]. It is
then easy to see that the contributions to the left hand side of (10.7) from the first

two classes cancel. The third classes arise from decorated matchings in M (ab) by
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inserting a cap (clockwise or counterclockwise in the two cases) between a and b.
Hence, like in the proof of [KL3, Lemma 2.12] remembering also the sesquilinearity
of (—, =), we see that the left hand side of (10.7) expands to

gt (1 = ig2) — mmlinl g (1= ) (@b, @)

This simplifies to the right hand side of (10.7).

Now we can complete the proof of (10.6) in general. Using Claims 2 and 3, we
reduce to checking (10.6) in the special case that b = @. Under this assumption,
we then proceed by induction on the length of a. Using Claims 4 and 5 plus the

induction hypothesis, we can rearrange a to assume that all |’s appear to the left
of all 1’s. Then we use Claims 3 and 1 to finish the proof. (]

Example 10.4 (cf. [C, Example 5.7]).

T

T T T T 1
<6§ )1Av€z(* )1A> = <fz'( )hvfi( )1A> - H 1— (mig?)s’
s=1 g
1—(hs,A)
(eifilx, 1n) = "M (15, ei fila) = &
’ ’ 1—mqg?’
T + qi2
(eifilx, fieiln) = (fieilx, eifily) = 1= 122

11. SURJECTIVITY OF =y

In this section, we continue with the assumptions of §9, and also assume that
k = kg is a field. For a graded superalgebra A, we write A-GSMod for the Abelian
category of graded left A-supermodules with morphisms that preserve degree and
parity. Let @ and II denote the grading and parity shift functors on A-GSMod, so
that (QV), = V,—1 and (IIV), = V, 1. Let A-GSProj be the full subcategory of
A-GSMod consisting of the finitely generated projective supermodules. Let Ky(A)
denote the split Grothendieck group of A-GSProj. It is naturally an L-module
with ¢ and 7 acting by [@] and [II], respectively. For a detailed discussion of the
following basic facts, we refer the reader to [KL3, §§3.8.1-3.8.2], all of which is
easily extended to the case of supermodules.

e Assume the graded superalgebra A is Laurentian, i.e. its graded pieces are
finite-dimensional and are zero in sufficiently negative degree. Then, the
Krull-Schmidt property holds in A-GSProj. Moreover, Ky(A) is free as an
L-module, with basis as a free Z-module given by the isomorphism classes
of indecomposable projectives in A-GSProj.

e If « : A — B is a homomorphism of graded superalgebras, there is an
induced £-module homomorphism [a] : Ko(A4) — Ko(B). If A and B are
finite-dimensional and « is surjective, then [«] is surjective.

e Assume A is Laurentian, and let I be a two-sided homogeneous ideal that
is non-zero only in strictly positive degree. Then, the canonical quotient
map A — A/I induces an isomorphism Ko(A4) = Ko(A/I).

e If A and B are finite-dimensional graded superalgebras all of whose irre-
ducible graded supermodules are absolutely irreducible of type M, then there
is an isomorphism Ky(A4) ®, Ko(B) = Ko(A® B),[P] ® [Q] — [P ® Q.

For more background about K for supercategories, see [BE, §1.5].
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We also need to review some basic facts about quiver Hecke superalgebras es-
tablished in [KL1, KL2] in the even case, and in [HW] in general. Note in [HW]
that the additional assumption (10.2) of bar-consistency is made throughout, but
it is not needed for the proofs of the particular results from [HW] cited below.

The quiver Hecke supercategory H is the (strict) monoidal supercategory gener-

ated by objects I and morphisms T 14— i and 5(‘ 1 1®7 — j®i of parities |i| and

i J
[i]|7], respectively, subject to the relations (1.7)—(1.9) (omitting the label A from
these diagrams). For objects 1 =i, @ -+ - ®i1 € [®" and j = jp, @ - -+ ® j1 € [®™]
there are no non-zero morphisms ¢ — j in H unless m = n. The graded endomor-
phism superalgebra

H,:= @ Homy(i,j5) (11.1)
i,jeI®n

is the quiver Hecke superalgebra from [KKT]. Let My~ be the (Q,II)-envelope of
the monoidal supercategory H, which is defined like in Definition 1.6 remembering
that monoidal supercategories are 2-supercategories with one object; see also [BE,
Definition 1.16]. Let H, » be the underlying monoidal category (same objects, even
morphisms of degree zero). The idempotent completion of the additive envelope of
H, _is denoted #, _ as usual. It is equivalent to the category DB,,~o Hn-GSProj,

g, Iy
hence, we may identify

Ko(H, ) = P Ko(Hy). (11.2)

n>0

In particular, this means that the £-module on the right hand side of (11.2) is
actually an L-algebra; its multiplication comes from the usual induction product
— o — on graded H,-supermodules.

Fix ¢+ € I and consider the idempotent 1;» := l;gi%...9i € H,. The graded
subalgebra 1;» H,1;» is a copy of the nil-Hecke algebra in case |i| = 0, or the
odd nil-Hecke algebra in case |i| = 1. In either case, we write simply X, for the
dot on the rth strand and T, for the crossing of the rth and (r + 1)th strands
(numbering strands by 1,...,n from right to left). The elements D, = —T,.X,
from [HW, (5.20)] are homogeneous idempotents which satisfy the braid relations
of the symmetric group S,. Hence, for each w € S,, there is an element D,, defined
as usual from a reduced expression for w. Letting wy be the longest element of S,,,
we define

17:(77,) = Dwo S 11'"Hn1i”- (113)
This is known to be a primitive homogeneous idempotent, hence,
Py = Q@ m(n=1/2 1 1. (11.4)

is an indecomposable projective graded H,-supermodule.

Lemma 11.1. There is a graded supermodule isomorphism H,1;n =2 P(i("))ﬂa[n];im
(meaning the obvious direct sum of copies of P(i(™) with parity and degree shifts

matching the expansion of [n]'qlm)

Proof. This is well known in the even case, and is noted after [HW, (5.28)] in the
odd case. A different convention for (g, 7)-integers is adopted in [HW], which we

have taken into account by changing the parity shift in (11.4) compared to [HW,
(5.28)]. O
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Next suppose that we are given two different elements ¢, 5 € I. For r,s > 0, the
tensor product in H gives a superalgebra embedding H, ® Hy ® Hs — H,y44+1. Let
1Z-<T)ji(s) denote the image of 1,» ® 1; ® 1, under this map, then set

P(i(r)ji(s)) — Q*dﬂ(rfl)/Q*diS(Sfl)/Q Hytsr1Lion jico- (11.5)

In other words, P(i("ji(®)) = P(i")) o P(j) o P(i(*)). This is a graded projective
H, 4 1-supermodule.

Proposition 11.2 (Khovanov-Lauda, Rouquier, Hill-Wang). For i # j € I, let
n = d;j+1. Then there exists a split exact sequence of graded H, s 1-supermodules

0 — PEMj) — .o T lirlilldl pin=r) i)y

s Rl p( 0y s o,

In particular, there is an isomorphism

%5+ 5]
k=0 k=0
Proof. See [HW, Theorem 5.9]. O

Recall the L-algebra f defined at the beginning of section 10. Let f; be the
L-subalgebra generated by the divided powers Ogn) := 07 /[n]}, x, for all i € I and
n > 1. Using Lemma 11.1 and Proposition 11.2, it follows that there is a unique
L-algebra homomorphism

¥ife = @ Ko(H,), 67— [P(EM)). (11.6)
n>0

Theorem 11.3 (Khovanov-Lauda, Hill-Wang). The homomorphism 7 from (11.6)
is an isomorphism.

Proof. See [HW, Theorem 6.14]. O
Corollary 11.4. FEvery irreducible graded H,-supermodule is absolutely irreducible
of type M.

Proof. The absolute irreducibility follows from Theorem 11.3; see the proof of [KL1,
Corollary 3.19]. They are all of type M by [HW, Proposition 6.15]. O

Now we are going upgrade some of these results to t(g). For each A € P, there
is a graded superalgebra homomorphism

Qp )t H, — @ Homu(g)(EilA,Ejl,\), (11.7)
1,jeI®n
where for 1 = i, ® --- ® 91 we write E;1 for E; ---E;;1x. In diagrammatic

terms, au, » takes the string diagram for an element of H,, to the 2-morphism
whose diagram is obtained by adding the label A on the right hand edge. Applying
this to 1,e), we obtain the homogeneous idempotent a, x (1)) € Endyq) (EJ 15).
Then define the divided power Ei(")lA to be the l-morphism in the idempotent
completion qu(g) associated to the idempotent (cun,x (11-(")))8?8 in the (Q,II)-
envelope. Composing with the isomorphism w from Proposition 3.5, we get also a
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graded superalgebra homomorphism

O‘;;,A =wWoap) HZOp — @ Homu(g)(Fil,\,Fle), (11.8)

i,jeI®n
where F;1y := F; ---F;; 1. Let Fi(")l)\ be the 1-morphism in gqm(g) associated

to the idempotent (o, (1i<n)))g:g.

Lemma 11.5. In Ko(t, . (g)), we have that [Q°TI°EP1,] = [n]}, . [EM1,] and
QIR 1] = [l v, [FV 1.

Proof. This follows from the definitions and Lemma 11.1. To give some more
detail, Lemma 11.1 means that the idempotent 1,» € H, splits as a sum of n!
idempotents, each of which is conjugate via some unit in H,, to 1(;»). These units
are homogeneous of various degrees and parities encoded in the (g, )-factorial

[n] ih_’m. When we apply the homomorphism a, » to this decomposition, we deduce
that the 2-morphism 1gry splits as a sum of n! idempotents, each of which is

conjugate by some homogeneous unit in Endyg)(E7'1x) to apa (1;)). Passing to

4, - (g), we get from this an isomorphism QUII°Er1, S Efn)lf[n]'“’” by taking the
direct sum of these units appropriately shifted so that they become even of degree
Z€ro. (]

Lemma 11.6. In Ko(Y, .(g)), we have that

QT B, Fj15] — [QTMIVIFy Ei13) = 63 5[ (s Mgi,m. [10],

dij-'rl ]

Z (—I)TW:‘]‘+T(T_1)/2[EZ-(dij-i_l_r)EJ(»l)Ei(r)l)\] =0 (Z 7& ,]),

r=0

dij-'rl ]

Z (_l)rW:\J\+T(T—1)/2[Fi(dij"‘l_r)Fj(l)Fi(T)1)\] =0 (Z 7& ,])

r=0
Proof. The first identity follows from the inversion relations (1.12)—(1.14). For
example, to prove it in the case i = j and (h;, A} < 0, we use (1.14) to see that
there is an isomorphism in U,, . (g)

—(hi\)—1 i
QUMEF1L 0 @ NI, 5 QIO E;l,.
n=0
Since [(his Mg m = — Z;gg”\)_l q;<hi’A>7172"wf, this gives what we need on

passing to the Grothendieck group.

The second two identities are consequences of Proposition 11.2. One needs to
interpret the isomorphism there first in terms of idempotents, then apply the ho-
momorphisms a1 x and O‘;l+1,>\- O

Theorem 11.7. There is a unique surjective L-algebra homomorphism
v U‘Lﬂ'(g)ﬁ - Ko(gq,ﬂ(g))
sending lA,el(-")lA and fi(n)lA to [1,], [El-(n)b\] and [Fi(n)lA], respectively.

Proof. To establish the existence of the homomorphism -y, note to start with that
there is an L-algebra homomorphism U, . (g) — L®. Ko (L, (g)) sending 15, e,

=q,™ 4
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and fi(T)lA to [14], [EZ-(T)lA] and [Fi(r)lA], respectively. To see this, we just have to
check the defining relations of U, .(g) from (9.2)—(9.4), which follow by Lemma 11.6.
Then we restrict this homomorphism to U, (g)z, observing that the image of the

restriction lies in Ko (4, (g)) thanks to Lemma 11.5.
It remains to prove that «y is surjective. The proof of this is essentially the same
as the proof in the purely even case given in [KL3, §3.8], so we will try to be brief.

For n,n’ > 0 and A € P, we let

Hn,n’)\ = @ Homu(g)(EiFi/l)\,Eij/l)\).
i,jeI®m
il 7j/ €I®n’
Idempotents in this algebra are idempotent 2-morphisms in 4(g), hence, there is a
canonical homomorphism

S, x 2 Ko(Hnm 2) — Ko(8h, - (g))-
Moreover, there is an L-algebra homomorphism
Qpon/ A\ - H, ® HZ(/)p ®SYM — Hn,n’)\

sending a ®@ a’ @ p to ay, u(a)ay, y(a’)Br(p), where p is the weight labeling the left
hand edge of the diagram a;,ﬁA(a’)l,\. Let I, ,/,x be the two-sided ideal of H,, s »
spanned by all string diagrams which involve a U-turn, i.e. they involve at least
one arc whose endpoints are both on the top edge; cf. [KL3, Proposition 3.17]. Let

ﬁn,n’,)\ : Hn,n’)\ - Hn,n’,k/ln,n’,)\
be the canonical quotient map. The composition v,/ x = Bpn/ A © Qpnrx 1S
surjective. We get induced a commutative diagram at the level of Grothendieck
groups:

["/n,n’,x]

Ko(H, ® H,)* @ SYM) Ko (Hnn' 2/ Innr )

[y nral %A]

KO(Hn,n’,)\)

Following the proof of [KL3, Proposition 3.36], using the facts summarized at the
start of this section plus the fact that H,, is finite as a module over its center, one
shows that [y, n,2] is onto, hence, so t00 is [Bn,n/2]-

Now let X be an indecomposable object in gw (g). Define its width to be the
smallest N > 0 such that X is isomorphic to a summand of Q™II’E,1, for some
a € Seq of length N and some m € Z,b € Z/2 and A\ € P. We are going to show
by induction on width that each [X] is in the image of 7. For the base case, if X is
of width zero, we claim that it is isomorphic to some Q™II’1y. To see this, recall
that Endgq) (1) is a quotient of SYM, which is strictly postively graded with k in
degree zero. Hence, 1) is either indecomposable or zero, which implies our claim.
Since [1,] is in the image of 7, the base of the induction is now established.

For the induction step, take X of width N > 0. We can find some n,n’ > 0 with
n+n' = N and i € I®" 3’ € I®" such that X is isomorphic to a summand of
Q™MIPE;F;1,. This is a consequence of the relations (1.12)—(1.14); cf. the proof of
[KL3, Lemma 3.38]. It follows that [X] is in the image of d,, » x, i.e. there is some
Y € H,, v A-GSProj such that 0, A([Y]) = [X]. The minimality in the definition
of width ensures that 3, A([Y]) # 0. Pick Z € H, ® H,;* ® SYM-GSPro0j such



SUPER KAC-MOODY 2-CATEGORIES 47

that [Yn,n/ A]([Z]) = [Brn.nA)J([Y]). Then one argues explicitly with idempotents as
in [KL3, §3.8.4] to see that

[ AN([Z]) = [Y] + [Y]
for Y' € Hy, o 2a-GSProj with [Bn.n 2]([Y']) = 0. By induction, d, ./ A([Y']) is
in the image of v. Hence, to show that [X] = d,, n A([Y]) is so, we are reduced

to showing that 0y ns A ([an,n/ 2]([Z])) is in the image of . This follows using the
following commutative diagram:

fr @, f,
Ugr(9)e ) ©c Ko(Hw)
Y Jn,n!
Ko(&,-(9)) o(H, ® HP @ SYM)
57:/‘71,’\ (/nn
KO(Hn,n’,A)

Here, 4 is the isomorphism from Theorem 11.3. the isomorphism j, s exists because
of COI‘OH&I‘y 114, and iA sends 91'1 ce 9% X 93‘1 cee Hjm =€y einfjl s fjml)\ [l

12. THE DECATEGORIFICATION CONJECTURE

We continue to assume the homogeneity condition (1.31) holds and that k = kg
is a field. Let us restate the Decategorification Conjecture from the introduction:

Decategorification Conjecture. The surjective homomorphism = from Theo-
rem 11.7 1s an isomorphism.

The proof of the following theorem mimics [KL3, §3.9].

Theorem 12.1. Assume that the Nondegeneracy Conjecture holds and moreover
that the Cartan datum is bar-consistent, i.e. (10.2) holds. Then the Decategorifi-
cation Conjecture holds as well.

Proof. For a graded superspace V', we let dimg » V := 3", .7 > c7/0(dim Vi, o)g" ¢
For example, viewing the algebra SYM from (1.21) as a graded superalgebra so that
the isomorphism (1.22) preserves degrees and parities, we have that

S :=dimg 2 _ ).
imy - SYM = [T I e € 2/ =)
el r>1
The Nondegeneracy Conjecture implies (indeed, is equivalent to) the assertion that
(ealx, enln) = S~ dimg ~ Homg gy (Falx, Ep1y) (12.1)
for a,b € Seq with wt(a) = wt(b) and X\ € P.
Now consider the sesquilinear form on K (i_lqm(g)) defined by letting ([X], [Y]) be

zero if X, Y are 1-morphisms in gqm(g) whose domains or codomains are different,
and setting

(X1, YD =571 ) dim Homy, ) (Q"TI*X, Y)q"n*

n€Z a€Z/2
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if X and Y have the same domain and codomain. Equivalently, for 1-morphisms
X, Y : X — pin Y, -(g), we have that

(X],[Y]) = S dimg, Homy, _(4)(X,Y).

Comparing with (12.1), using also Theorem 10.3, we deduce that the forms (—, —)
on U, »(g)z and Ko (gqm(g)) are intertwined by the homomorphism v in the sense
that (z,y) = (y(2),7(y)).

Finally, suppose that € Uy (g)z is in the kernel of . By the previous para-
graph, we have that (z,y) = 0 for all y € U, »(g)z. In view of the non-degeneracy
of the form (—, —) from Theorem 10.1, this implies that z = 0. O

Remark 12.2. The assumption of bar-consistency made in both of Theorems 10.1
and 12.1 is probably unnecessary. We have included it because we have appealed
to [C, Theorem 5.12], where it is assumed from the outset. Providing one allows
that the canonical basis should be bar-invariant only up to multiplication by 7, we
expect that the arguments of [C] should still be valid without bar-consistency, but
we have not checked this assertion in detail.

Example 12.3. Take g to be odd b; and identify P with Z as in the introduction.
Then, [EL, Proposition 8.3] implies that the indecomposable 1-morphisms in i, . (g)
(up to degree and parity shift) are

{E@WF®1, [a,b>0, e ZX<b—a}U{FOED1,|a,b>0,A€Z,X>b—a}.

Also by [EL, Theorem 8.4], the Decategorification Conjecture holds in this case,
i.e. 7 is an isomorphism. As has already been noted in [C, Example 4.16], v maps
the classes of the indecomposable 1-morphisms listed above to the canonical basis
for U, »(g) from [CW, Theorem 6.2] (up to multiplication by 7).
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