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The concepts of diffraction and scattering are well known and considered fundamental in optics and
other wave phenomena. For any type of wave, one way to define diffraction is the spreading of waves,
i.e.,, no change in the average propagation direction, while scattering is the deflection of waves with a
clear change of propagation direction. However, the terms “diffraction” and “scattering” are often used
interchangeably, and hence, a clear distinction between the two is difficult to find. This review considers
electromagnetic waves and retains the simple definition that diffraction is the spreading of waves but
demonstrates that all diffraction patterns are the result of scattering. It is shown that for electromagnetic
waves, the “diffracted” wave from an object is the Ewald-Oseen extinction wave in the far-field zone. The
intensity distribution of this wave yields what is commonly called the diffraction pattern. Moreover, this
is the same Ewald-Oseen wave that cancels the incident wave inside the object and thereafter continues
to do so immediately behind the object to create a shadow. If the object is much wider than the beam
but has a hole, e.g., a screen with an aperture, the Ewald-Oseen extinction wave creates the shadow
behind the screen and the incident light that passes through the aperture creates the diffraction pattern.
This point of view also illustrates Babinet’s principle. Thus, it is the Ewald-Oseen extinction theorem that

binds together diffraction, scattering, and shadows.

© 2018 Published by Elsevier Ltd.

1. Introduction

Diffraction can be thought of as the spreading of a wave into
the geometrical shadow behind an impervious obstacle [1-3]. The
mechanism of diffraction depends upon the type of wave. Gener-
ally, waves divide into two types; those that require a material
medium in which to propagate and those that do not. For those
propagating in a material medium, e.g., water and sound waves, a
wave is blocked by an obstacle and the portion of the wave pass-
ing near the edge of the obstacle spreads into the geometrically
shaded region due to the elastic nature of the medium. In this con-
text, “blocking” refers to a discontinuity in the medium that sup-
ports the wave propagation wherein propagation is not allowed.
Waves that require no material medium, such as electromagnetic
(EM) waves, fundamentally cannot be blocked because a discon-
tinuity in a medium does not change the fact that these waves
require no medium to propagate. Said less formally, there is no
medium to be blocked. What then is the mechanism that creates
an optical diffraction pattern? Here, it is shown that secondary ra-
diation from an obstacle in the path of incident light, which is in-
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duced by that light, produces a scattering pattern identical to the
diffraction pattern predicted by Huygens’ description. Thus, for EM
waves, secondary radiation is the mechanism of diffraction.

A clear definition of what optical diffraction is and, in partic-
ular, how it may be different, or not, from scattering is rare in
the literature. One could propose that diffraction relates to waves
at sharp edges of two-dimensional (2D) objects, while scattering
relates to three-dimensional (3D) objects. Such delineation, how-
ever, leads to ambiguity. For example, it would be difficult to un-
derstand the striking, albeit qualitative, similarity of the angular
spread of light in the far-field from an opaque circular disk and a
transparent sphere of the same diameter. Indeed, some references
state that there is no logical separation between the two concepts
[1,4]. An aim of this review is to clearly illustrate that the general
concepts of diffraction and scattering relate to the same physical
phenomenon.

The focus here is on EM waves due to the enduring interest in
the topic and because these waves require no medium to propa-
gate. As a consequence, optical shadows can form from destruc-
tive interference only, and definitely not due to obstacles in the
medium “blocking” the wave in a mechanical-like sense. A novel
insight revealed by this description is that the interference process
creating shadows is always active, whether an object is absorbing
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or not, is larger than the wavelength or not, and it is fundamen-
tally linked to the observed phenomena associated with diffraction
or scattering. It is also shown that these phenomena are produced
from secondary radiation emanating throughout the entire volume
of an obstacle. Thus, statements often encountered in the literature
like “light diffracts around the obstacle” are misleading as they
imply only a surface effect. Given the extensive amount of study on
these concepts, this review cannot summarize all previous work.
Rather, the focus will be on the mathematical treatments involved
and their physical interpretations.

2. Huygens—Fresnel and Babiner principles: conceprual basis

It is helpful to first review the common description of optical
diffraction. Begin with the familiar example of light of wavelength
A incident upon a rectangular aperture X3, or slit, of width 2w
and length 2f with £ % w in an otherwise opaque screen E; in-
finite in extent. The term “opague” will refer to a perfectly con-
ducting screen. Alternatively, a perfectly absorbing screen could be
considered, but due to complications with the concept of a perfect
absorber in electrodynamics, this case is not considered, cf. [5,6].
Suppose that the incident light is a well-collimated laser beam
propagating along the positive z-axis. A good approximation for
this wave is a Gaussian beam with a waist-width of 2wy [7]. At
the beam waist, the wave fronts are planar, but the beam pro-
file is finite in size. In Section 6, this will allow the intrinsic an-
gular spreading of the beam with distance from the waist to be
incorporated in the analysis. At the waist, the beam encounters
the aperture, which is much smaller than the waist, w; % w and
wp = £. Consequently, the aperture may — despite use of a beam
— be regarded as uniformly illuminated by a plane wave following
the customary treatment. The first objective is to examine the dis-
tribution of light beyond the aperture across an observation plane
o that is parallel to X located a distance z =d from it as shown
in Fig. 1. Also, o will be assumed to be in the far-field zone of
the aperture, which is defined by d = kw?[2, where k=2x[A [8].
This condition is commonly known as the Fraunhofer approxima-
tion [1].

The incident beam at the aperture appears blocked by E. and
across @ one observes a spread of light intensity modulated by a
series of band-like interference maxima and minima, i.e., fringes,
commonly called the single-slit diffraction pattern. It is thus cus-
tomary to say that the light “diffracts into the shadow.” The
diffraction pattern can be approximately calculated in the farfield
zone from the Huygens-Fresnel principle [1,9,10]. One imagines fic-
titious point sources of light that span the aperture X ; where each
radiates a spherical wave of wavelength A into the z = 0 region.
A point source, located at r' in Fiz. 1, is driven in-phase and in
magnitude with the incident wave across the aperture; this is the
Kirchhoff approximation [4]. Adding the contributions from these
sources at I ona appraximates the observed diffraction pattern.
With reference to Fig. 1 and following the trearment of [1], the
normalized pattern in the far-field zone is given by:

Iir) f[ kb g
L.

2
A s (1)
where [ is the diffracted light-intensity (irradiance) and I, is the
intensity along the z-axis (beam direction). The fringe structure of
the pattern is then explained from the phase difference introduced
by each source-point's differing location within ;. In other words,
the Huygens-Fresnel principle explains the diffraction pattern as
interference from radiation emitted across a free-space region, ie.,
the aperture. Eq. (1] also shows that the diffraction pattern is the
absolute square of the Fourier transform of the aperture; another
characteristic of the Huygens-Fresnel treatment.
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Fig. 1. Diffraction from a slit aperture. An aperture E; in an opague screen s
is illuminated by a plane wave traveling along the positive z-awis. The aperture
length is much larger than its width, ie. £ 3% w, whereas both dimensions are
smaller than the beam waist wy. Spanning the aperture are fictitious “Huygens"
point-sources (red dots) that each emit a spherical wave into the region beyond
the screen. Adding these waves across o in the far-field zone gives an approximate
description for the linear fringes of diffracted light observed on o. In particular, the
outcome predicts the observation of light in the geometric shadow of the aperture,
shown in dash, and is a classic phenomenon associated with diffraction [1]. [For
interpretation of the references to color in this fgure legend, the reader is referred
to the web version of this article.)

Diffraction is said to occur not only through apertures but also
around barriers [1]. In 2D, any barrier may be envisioned as a
screen that is the inverse of, or compliment to, an aperture. The
complimentary screen to the rectangular aperture is a thin, opague
rectangular strip with dimensions 2w = 2¢. If a screen E; is com-
bined with its complimentary screen XY, the result is a complete
opague screen X, ie, E; + Ef = I, Diffraction of a beam from an
aperture and its complimentary screen is related by Babinet's prin-
ciple [1]. As stated by [11],“the diffraction patterns which are pro-
duced by two complementary screens are identical excepting the
central spot, which is diffraction angle zero.”

A demonstration of Babinet's principle is instructive wherein
two distinct scenarios, labeled 1 and 2, are compared. In scenario
1, an infinite screen Eé‘” containing aperture E&”‘ is illuminated
by the beam and the resulting pattern is observed on o. In sce-
nario 2 however, only the complimentary screen is present, Eé‘zl,
which is illuminated by the same beam and the resulting pattern
is again observed on . If Ey and E; are the scalar light-fields at the
same point T on ¢ in scenario 1 or 2 respectively, then Babinet's
principle states that [1,3]

E1(r) +Ea(r) = Eq(r). (2)

Here, Eq(r) is the (complex-valued) scalar light-field amplitude of
the beam at r on ¢ when neither screen is present, i.e., when
the beam is freely illuminating . Conceptually, one can under
stand Eq. (2) from the Huygens-Fresnel principle. As stated, the
diffracted light (Ey) for scenario 1 from screen Eé“ is given in
Eq. (1) by an integral over the aperture opening, E;}”‘. In scenario
2, Eq. (1) provides the diffracted light (E2) as an integral over the
planar region of free space mot occupied by the complementary
screen E}I}, which could be regarded as a large aperture E.m, seg
Fig. 2. Adding these two surface integrals in Eq. (2) amounts to an
integral of fictitious Huygens point sources over a complete plane
Y in empty space, and thus, reproduces the incident beam. Note



M. Berg CM. Sorensen, Journal of Quantitative Spectroscopy & Radiative Transfer 210 (2018) 225-239 257

scenario 1 scenario 2

n(1) EE} E:ZLTJ EEE}

Fig. 2. Babinet's principle. Scenarios 1 and 2 contain complimentary screens. The
first shows a screen with an aperture as in Fig. 1, while the second shows the com-
pliment. If combined, the two screens form a complete opaque sheet E, while the
combined apertures form a plane of empty space filled with Huygens point sources,

that Babinet's principle is an exact relationship despite its illustra-
tion here through the approximate Huygens-Fresnel principle.
Mow, consider application of Eq. (2) to the rectangular aperture
where Esm = E.. The complementary screen would be a rectan-
gular strip of the same dimensions, EE}'. When the beam is unob-
structed, i.e., no screens are present, and if T is not along the beam
direction (z-axis), but is rather at an angle & = Afwg, then E, =0
at that point. Eq. (2) then shows that Ey = —E» where the negative
sign implies that the two fields are 180° out of phase. Their mag-
nitudes, and hence intensities, are equal so the diffraction patterns
will be the same in both scenarios. The rectangular aperture and
its complimentary screen (strip) show the same diffraction pattern.
Mote that Eg. (2) makes no stipulation on the type of wave, ez
EM, elastic, etc., and so Babinet's principle should apply to all such
waves, e.g., see [1213]. Babinet's principle is only qualitative when
the screen and its compliment reside in spaces of differing dimen-
sions, i.e., 2D vs. 3D. For example, although the fringe pattern for a
slit and the scattering pattern for an opaque fiber look qualitatively
similar, the intensity minima for a slit's pattern go to zero whereas
the minima in scattered intensity from the fiber never reach zero

at any angle [14].

3. Elecrromagnetic formulation of diffraction

Eg. (1) is an approximate description of the field intensity
across , even in the farfield zone. Nevertheless, the approxima-
tion is often excellent, agreeing well with the observed patterns for
arbitrarily shaped apertures larger than A, e.g., see [1,15). Eq. (1) is
also heuristically pleasing in that it gives one a way to under
stand the spreading of light into the geometric shadow: it links
diffraction to radiation from the open space in a screen, whether
the space is an aperture E; or the free space surrounding a com-
plimentary screen Ef. These spaces, however, are precisely where
there are no physical sources to radiate. This apparent inconsis-
tency is recognized by some authors but often goes unaddressed
[1]. When it is addressed, the treatment is generally qualitative.

Jine  disk

Fig. 3. Division of space in the Green function description of diffraction from an
aperture in a screen. The disk shown here, which is later deformed to become a
thin screen, spans a portion of the x-y plane and is normal to the incident wave.
The external region Ve is defined by the volume outside of this disk and the re-
mainder of space. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Thus, it is worthwhile to see how the Huygens—Fresnel description
originates from a rigorous treatment wherein the salient effects are
linked only to physical sources of radiation within the framework
of the macroscopic Maxwell equations. Similar analyses can be in-
vestigated analytically such as diffraction from ribbons [16], wide
slits [17], circular disks [18,19], subwavelength apertures and arrays
thereof [20,21], knife edges [22], and arbitrary apertures [22-24],

3.1. Green function description

While the objective is to ultimately consider the infinitesimally
thin, infinitely wide, screen Xs in Section 2, the treatment here be-
gins with a finite-sized, thick, disk-shaped object for mathemat-
ical expediency. Later, this disk will be deformed to become Xs
through a limiting process. Using this disk will also enable a direct
connection to Section 4 where 3D objects are considered. Fig. 3
shows the disk with radius R; that is oriented perpendicular to
the z-axis and centered on the origin. The thickness of the disk
is 2y along the axis and the surface and volume are 5 and Vi,
respectively. The disk material is assumed uniform and character-
ized by permittivity £ and permeability gt and is surrounded by
free space (£o, ito). Far from the disk is current density J™ that
produces the incident beam, and as such, is considered a known
quantity independent of the presence of the disk. Enclosing both
the source and disk is a large spherical surface 5., of radius R
defining an exterior region Veg. In the limit B, — oo, all space is
enclosed. Lastly, all field quantities in the following are assumed to
contain the same time-harmonic dependence e~ ™ where w=kc;
these are suppressed for brevity.

The time-harmonic (or frequency domain [25]) Maxwell equa-
tions for T in regions Vi, or Ve are [26]

V = E(r) — iwB{r) =0

V =« B(r)+ ia:e;.:E{r}=l]} r & Vinc, ()
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V « E(r) — iwB(r) =0

V o« B{r) + imweg ugE(r) = T & Vi (4)

™ (1) l

Given that no free charge is present (V - E=0), applying the
curl operation to Egs. (3) and (4] yields the following wave equa-
tions in each region:

Vo Vx E(ry —m*2E(ry=0

Vo« V< B(r)—mk?B(r) =0 l T Ving, (5)

where m = Jei/eg iy is the refractive index of the disk and

V x V x E(r) — K2E(r) = e peg 05 (1)
VoV 2 B(r)—K°B(r) = poV = J™(r)

The fields E and B satisfy the usual boundary conditions at the
disk surface 5 [26],

i x [E*(r) — E™(r)] =

T & Vi (6)

res )]

fi < [B™(r) - B™(r)] =

where E™ and E™ are, respectively, the fields in V,;; and Vex: with
the unit-vector normal fi directed outward from V; as shown in
Fig. 3. Here, K is any induced surface current that may reside on 5.

Because the disk will eventually be turned into a screen, which
has no volume, the focus will be on Eq. (6) rather than Eq. (5).
Here, the wave equations are inhomogeneous and a solution can
be formulated in terms of Green's functions. These functions satisfy
the point-source analogs of Eq. (6) i.e, [26]

V % V x Ge(r, 1) —k*Ge(r. ') = 18(r — '), (9

poKir), res (8)

V % V x Gn(1 ) — Ken(r, ) = V x [ 5(r 1) | (10)

Here, Ee and au are the dyadic Green functions of the electric

and magnetic type, respectively, 1 is the 3 « 3 identity dyad, and
& iz the 3D Dirac delta function. The Green functions are found
by solving Eqs. (9) and (10) subject to specified boundary condi-
tions. Once known, the solution to Eq. (6) is given as a convolution
integral of the Green function with the source J™ and a surface
integral over 5 involving the Green function and field boundary-
values. This will be seen below. Note that the intent is usually to
impose the same boundary conditions on Eqgs. (9) and (10) that
apply o the fields themselves such that the surface integral either
vanishes or is known. Another option, pursued here, is to employ
the free-space dyadic Green functions, which are the solutions to
Eqgs. (9) and (10) in the absence of any boundaries, i.e, no disk 5
in Fiz. 3, and therefore take on a simplified mathematical form.
Importantly, one will see that the functions facilitate a clear physi-
cal interpretation. The price paid, however, is that if 5 (the disk) is
to be reintroduced into the analysis, the resulting surface integral
must then be evaluated by other means.

As shown by [26,27], the solutions to Egs. (9) and (10) for a
boundary-free system are the free-space dyadic Green functions:

Ge(rr) = (+ 5V o V)Go(rr), an
and
Gm(r.F) =V x [ic,,{r, r’}], (12)
where

|r—=]
Go(r.¥) = 4Li‘n e (13)

is the (scalar) free-space Green function and in Eqs. (11) and (12],

@ represents the direct product. Physically, G and Em are 3 =
3 tensors where each column represents the electric or magnetic
field, respectively, at r produced by an infinitesimal current el-
ement located at I oriented along one of the Cartesian direc-
tions [26]. As such, they describe outward traveling vector spher
ical waves from three orthogonal point sources that may be su-
perimposed to represent any solution to the Maxwell equations.
Equivalently, the Green functions can be thought of as propagators
for the electric and magnetic field from r’ to r. Consequently, qG,
satisfies the Sommerfeld radiation condition on Sa:

lim [v x Ge(r, ') — ikf x Ge(r, r"]] = 0. (14)

The same condition holds for Em [26]. The scattered fields also
must also satisfy a similar relation at infinity known as rhe Slhrer—

Muller radiation condition, see [26]. Note that both G, and G-m
are singular at r=r"; this will be an important consideration in
Section 4.

MNow consider Green's second vector identity

‘L[ﬂ-[?x?xf]—c-[?x?xﬂ.]] dv
=i[fx[vxﬂ]+[?xf]xﬂ.}-ﬁdﬂ, (15)

which, in essence, is a generalization of the divergence theorem
[28]. To connect this to the discussion above, focus on the electric-
field part of Eq. (6) and its Green function companion, Eq. (9).

Then, let A=E and C = E-a in Eq. (15) where a is a constant “pi-
lot™ vector. Applying Eq. (15) to Vet, which is bounded by the two
surfaces 5 and 5., gives:

JL [Em- [v %V % Ge(r.F) .a] - [E._.{r, r) .a] 1V =V < B dv
= f& [[Beter)-a] <1V <E@1+ [V < Ge(r.r)-a] x Em)] - da

_ﬁ[‘ﬁ,{r.f} ..] « [V = E@r)] + [v « Ge(r.T) ..] <Em)-nda
(16)

The last surface integral has a negative sign because the surface
normal i is directed into Ve for that integral. The first integral
over 5. is zero via the radiation condition, Eq. (14) [26,27]. With
Eqgs. (4], (&), (9], (11) and (13}, Eg. (16) simplifies o

_’;m [E(r} -ad(rr)- [ﬁe[l' r) -a] .im#u]inf{r}] du

_ i [jm[ﬁ,_,{r r). a] x B(r) + [ﬁm{r r). a] x E(r}] - da.

(17)
Using [(Ge-a) x B]-A = —(Ge -2) - (A xB), [(Gm-a) = E]-A—
— (G -a) - (I = E), evaluating the delta-function term, and cancel-

ing the (arbitrary) pilot vector a from each side of Eq. (17), one
finds:

E(f) if reVe
0 i eV

e

Eq. (18) has several implications. To see this, first return to
Eq. (16) and remove the boundary 5 by removing the disk from

} = fwpig -L ﬁ,{r, r') -J*(r) dv

) - [t  Br)] + Gm(r. 1) - [ x E{r}]] da. (18)
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Fiz. 3. With Eq. (14) in mind, the result is

f;, [E(r}.[\? x V x Ge(r, r'}-a]
_[ﬁ,_{r,rf]. - a] AV =V x E(r}]] dv =0 (19)

where Vg — BT (all space). Use of Egs. (6) and (9), and again re-
moving the pilot vector shows that Eq. (19) becomes,

[ {E® 8(r.7) —iwopsate(r.¥) 3@} av=0,

BE

or, evaluating the delta-function integral, this becomes

E™(r') = iwpo L ’E,{r, r') -J™(r) dv. (20)

Eqg. (20) is the Green function solution to Eg. (6) when no disk
is present and all that exists is the source J™, i.e., this is the inci-
dent field. Next, assume that J™ is nonzero only in a well-defined
volume within Vext that excludes regions where the field is de-
sired such that the singularity in Eq. (20) at r=r' is avoided. Phys-
ically, this would correspond to the source of the incident wave
being localized in a region far removed from where the fields are
wanted. Then, the volume integral in Eq. (18] is identical to that in
Eq. (20) and the former equation becomes,

E[r) if reVm
0 if eV

+ ﬁ I iaGe (£, F) - [ % Bry] + Gn(r.F) - [ 2 E)] I da. (21)

—E"(r)

Motice that En. (21) now applies when the disk is present. How-
ever, the expression utilizes a somewhat unconventional notation
where the field point I’ is expressed in the primed coordinate sys
tem while the source integrals, Eq. (20) and the surface integral
in Eq. (21), are expressed in unprimed coordinates r. The standard
notation is retrieved by interchanging the coordinates, r—r' and
I —r and using the symmetry relations of the Green functions,

Ge(r'.T) = Ge(r. ') and Gm(r'. 1) = —Gm(r. '), giving [26]

E(r) if reVa: _
0 if reiﬂul_w{r)

+ ﬁ [ (r.2) - [« B(r)] - Gunfr.r) - [ < E()]| dor. (22)

This interchange of coordinates is not simply a choice of nota-
tion. That is, taking r—r" and r —r in Egs. (2) and (10) would
correspond to placing the (Green function) point current-source at
r rather than at I, and thus, the derivatives would switch from
¥ to V'. Ultimately, it is a consequence of the electromagnetic
reciprocity theorem that yields the symmetry properties leading to
Eq. (22) [26].

Eqg. (22), and its magnetic-field companion [via Eqgs. (12) and
(13) but not shown] are the central result of this section. The
Maxwell equations for the fields in Vg are now given in an ex-
act way by the incident field E™ and a surface integral of the
tangential components of the fields across the disk 5. As is stands,
Eq. (22) does not directly provide the total fields E and B since
their surface components are generally not known. Thus, Eq. (22] is
an integral equation for the unknown fields, which can be solved
through various methods including the extended boundary con-
ditions method [29-31). This is the price paid for using the free-
space Green functions mentioned earlier. However, Eq. (22) per-
mits use of approximations for the surface-field components, one
of which is the vector analog of the Kirchhoff approximation intro-
duced in Section 2. More importantly, there is a clear distinction
between the portion of the total field E due to the incident wave
and that attributed solely to the disk, with the latter being encap-
sulated by the surface integral in Eq. (22). This will have implica-
tions for physical interpretations below.

3.2, Example: a mirror

As the next step on the way to describing diffraction through
Eq. (22), consider a limiting operation that transforms the 3D disk
into an opague, flat 2D sheet. This is done by taking R— oo, -0
in Fiz. 3, =gy, and & — oo, The result is the same infinites-
imally thin 2D sheet £ of perfectly conducting material as in
Section 2 that has no enclosed volume, i.e., Vi — 0. Physically, this
could correspond to a non-magnetic metal film of negligible thick-
ness that can be regarded as a perfect electric conductor, i.e., sim-
ply an uncoated first-surface mirror [32,33]. An aperture X is still
not present, but will be incorporated later. For now, focus on the
implications of Eq. (22) for r in V.

The sheet splits space into two regions, Vi-) for locations with
z = 0 and VIt forz = 0. Given that the incident wave approaches
E from Vi), these two regions will be called the illuminated and
shaded sides, respectively. Yet, before Eq. (22) can be applied, a
subtle point must be addressed. The disk surface 5 is a dosed sur-
face. Upon drawing the disk thickness 5 to zero, the two surfaces
constituting the illuminated and shaded side of the (thick) disk
are brought into coincidence [9)]. Let these be called 5-) and 5]
with surface normals A') = —7 and A} =2, respectively. When
the limiting process is complete, 5! and 5(*) become the z=0
plane and the surface integral in Eq. (22 splits:

B0 = B0 + [[fiobe(r.r)- [3 <B()]
~Gam(r.r) [0 x E(r)]} oo

+ [ iwke(r.v) - [0 < B(r)]
~Ga(r.r) [0 < E(r)]} oo (23)
Meamwhile, the boundary conditions of Eqs. (7) and (&) are
A« [ED(F) —EO(r)] =0, rex, (24)

A [BUr) B ()] = woK(r), reXE, (25)
where El*) and E-) are, respectively, the total (and physical) fields
on the VW and V) sides of E. Noting that i = —i™ and
§-1_8+1_E, the integrals in Eq. {23) combine via Egs. (24) and
(25) to give

E(rl=E"”‘(r}+fcuuqu Ge(r, ) -K(r') da’, r eV, VD

(26)

Eq. (26) now has a clear interpretation. With the Green function
envisioned as the field propagator for a point-current source, the
surface integral describes the field radiated by the physical surface
current on the sheet. Thus, the influence of the sheet on the total
field is distinguished from the incident field as

E(r) = E™(r) + E™(r), (27)

where E™ is the integral in Eq. (26
Next, take the incident wave source J*™ to be such that it pro-
duces a plane wave at the sheet. Then, the fields are

E™(r) = E,e*" &, B™(r) = %2 x E™(r), reV(), v+ (28)
Indeed, this case is simple enough that the rtotal field
[Eq. (27]) is known a priord; it includes Eq. (28) and a reflected

plane wave in V=) [1],

E™(r) = —E,e ™7 2 B™(r) = _ﬁt «E®(r), reVi),  (29)
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Meamwhile, the total fields on the shaded side of the sheet are
ZErD,

E)(r) = B(r) =0, re V), (30)

Thus, on the illuminated side of the sheet, the field is the super
position of Egs. (28) and (29), which forms a standing wave [11],

E')(r) = 2iE, sin (kz-r)&, BO)(r) = %Encos{ki-r}?, revil,

(31)

Using Eqs. (28) and (29) in Eq. (25) reveals the surface current
that must be present:

Kir)= 1 EE.;.l re k.. (32)
g @

This is consistent with the expectation that the incident electric
field drives current via Ohm's law, i.e., uniformly along the polar-
ization direction X.

Eq. (32) can now be used in Eg. (26) to describe the fields,
or lack thereof, on either side of the sheet in terms of rodio-
tion from K. To do so, let r=r—r" and evaluate the derivatives
in Eq. (11 while retaining only the terms with +~! dependence,
which describe the radiation contribution. With ¥ = ¢/|«|, his gives
[34]:

: 1 e
Ge(r.¥) = E(' - r@:)T. (33)

Then, the field radiated by the induced current follows from the

integral in Eq. (26):

E™(r) = %Enf]:z ?(f _‘i@‘:‘) SR dxé'dy’, eVl v
(34)

This can be simplified by realizing that (T@%)-X=%cos g
where # is the angle formed by ¥ and the positive x-axis. Because
K is a constant over the x-y plane, i.e., E, r may be placed arbi-
trarily along the z-axis in V=) or V*). Thus, B ranges from =0
when x=—co to f =m whenx=o0. Then, cos # is an odd function
in x' and ¥ so its contribution to Eq. (34) cancels, leaving:

'* oo
Tad - —
ER() = 5Bk [ [
This integral can be evaluated by transforming to cylindrical co-
ordinates (o', ¢, z') where p? =x"? 4+ y'? giving

- dy'dy’, reVi) v, (35)

o gity/FTIET

E™(r) — ixz.,ﬂf BV pdp £ eV, Ve, (36)
0?42

where the ¢’ integral has been evaluated. Mext, use the substitu-

tion £(p) =,/ p? + 22, which converts Eq. (36) into

E™(r) — 'ucmf“ e i (37)
E(n

As it stands, Eq. [37) will yield an indeterminate result due to
the integral’s upper limit. One way to resolve this is to add a small
imaginary part ¢ to the wave number such that k— k + ia, evalu-
ate the integral, and then take the limit o — 0, i.e. [32],

E*r) =E, lim [ehee e _ gtsheet] g, (38)

Lastly, one must recognize that the value for £(0) appearing in
the lower limit in Eq. (37) tacitly depends on the sign of z. If z = 0,
then £(0)=z, while if z = 0, then £(0)=—z. With these limits and
Eqgs. (28) and (29), Eq. (38) vields

—ilz § __ el
£ 1) {_E,,e £ =E™(r), z <0,

—Ege™= % = —Ery, z = 0. (39

The total field present on either side of the sheet is then, via
Eqg. (27),

E™(r) + E™(r), z =0,
Eir) = {E:l:u:(r} _ Eil:“:(r] =0 z=0

Eq. (40) reveals the remarkable fact that the shadow behind the
sheet (z = 0) can be exactly described by radiation from the induced
current on the sheet. That is, the current radiates a copy of the inci-
dent field travelling into z = 0 but 180° out of phase, which extin-
guishes the incident field, and hence, is often called the extinction
wave. On the illuminated side, z < 0, the sheet again radiates a
copy of the incident field 1807 out of phase, but that wave trav-
els in the opposite direction. Thus, the radiated field superposes
with the incident field to create a standing wave, as expected from
Eqg. (311

This interference explanation of the sheet's shadow may seem
unnecessary from the Huyegens-Fresnel perspective. Because the
sheet is a perfect conductor, it is nmatural to think that the sheet
simply “blocks" the incident light in the same way that a water
wave is blocked, then reflected, by a rigid barrier. However, re-
member that EM waves require no medium to support their propa-
gation. This is obvious from the ability of light to propagate in vac-
uum and is consistent with the absence of a luminiferous aether.
Moreover, it is the non-existence of the aether that (partly) under
lies the special theory of relativity and accounts for the different
descriptions of the Doppler shift for light and sound waves [1].
Consequently, there is no mechanical-like mechanism of blodking a
light wave. As such, the only way that light can be removed from
any region of space is through destructive interference, and this
requires the appearance of a secondary, or induced, source of ra-
diation. In the example above, this source is the physical surface
current on the sheet.

(40)

3.3. Electromagnetic origin of the Huygens—Fresnel principle

Given Section 3.2, a direct way to incorporate an aperture in the
above treatment is to null the surface current where the aperture
%, is to be. Of course, this is equivalent to removing the portion
of the conductor occupying this region. Then, an alternative to the
Huygens-Fresnel explanation for light spreading into an aperture's
shadow becomes possible, see Fig. 4. The secondary radiation from
the current induced on the remainder of the sheet, which is now
a screen I, cannot completely cancel the incident wave in V),
Moreover, the missing current in X3 will alter the current that
does develop across E., meaning that the cancellation of the inci-
dent wave remains incomplete even within the geometric shadow.
As one moves along E; far from E;, the effect of this missing cur-
rent on the current that is induced decays and one regains Eq. (32).
Thus, points “deep” in the geometric shadow but near the screen
show negligible field because the current is nearly able to produce
the extinction wave.

One now has two seemingly different ways to understand
diffraction from an aperture: The Huygens-Fresnel principle de-
scribes the light on @ as radiation from fictitious sources across
the empty space of the aperture. Meanwhile, Eq. (26 describes this
same distribution on & as the superposition of the original (in-
cident) wave with that radiated by (real) induced surface current
on the screen. These two views are related, and in fact, the famil-
iar Huygens-Fresnel principle is contained in Eq. (26) via Babinet's
principle.

To see how, recall that Babinet's principle compares two sepa-
rate scenarios, 1 and 2, as described in 5ection 2. The former in-
volves a screen BV with aperture TV, while the latter contains
only the aperture’s complimentary screen Eéz}', recall Fiz. 2. Im-
plicit in scenario 2 is the free space region that would otherwise
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Fig. 4. Radiation description of shadows and diffraction. In (a) is the sheet E
with induced surface current Ks. This current [red), induced by the incident wave
(green), radiates a copy (dashed purple) of the incident wave that interferes de-
structively on the shaded side (z == 0] of the sheet and a counter-propagating copy
to produce a standing wave on the illuminated side (z - 0). In (b) is the screen Ex
with an aperture E;. Here the induced surface current K, is modified by the aper
ture to become K and the radiation is incomplete with regard to its ability to cancel
the incident wave in (z = 0). The result is an uncancelled, ie., diffracted wave sur-
viving in z = 0. The sheet and screen are shown with finite width for clarity, but
are infinitesimally thick in reality. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

be occupied by E;“ to form a complete sheet; this can be envi-
sioned as the aperture B! in scenario 2. Each scenario has asso-
ciated fields:

Ei = E™ + E™, By = B™ 4 B™, (41)

Ez =Ei2|I+E2m, Bz =Bi;'u:+ﬂd_ {42)

Take r € VI*) in both scenarios but assume that r ¢ Eé” in
scenario 1 and r ¢ E?} in scenario 2. Then, Ea. (4) will not in-
volve the current source-term and Eqgs. (3) and (4) exhibit duality.
That means, e.g., that Eq. (4) is obtained from Eq. (3) upon mak
ing the substitutions E — (m/k)B and B — —(kfaw)E and vice versa.
Mote that transformation of the volumes of Section 3.2 to the sur
faces Vi — Eﬂ 2}LIE(1 ?) and Vg — V10V s assumed here,
where the superscript (1,2) represents either scenario 1 or 2. This
duality can be exploited if the polarization of the incident beam
is rotated by 90° from scenario 1 to 2, ie., EM = —(w/k)B™ and

= (k/w)EM™ as shown in Fig. 5.

Using the boundary conditions on the screens, [9] shows that
the electrodynamic version of Babinet's principle is realized by the
following substitutions:

ER %B, for £ . 51, (43)

scenario 1 scenario 2
E €T )
£l £
Eil:u-:: Biznr.

B 1_.-'|'+] E;nc V[-HI

Z k— -
. n
Bllﬁl'
1 2
] miL v S

Fig. 5. Babinet's principle for EM waves, The concept here is identical to that in
Fig. 2 except that the vector nature of the waves is taken into account. To do so,
the polarization of the incident wave is rotated 907 as shown bebween scenario 1
and 2. Mote that this rotation means that the vectorbased treatment of Babinet's
principle is different from that for the scalar case in Sec. 2 in that the illomination
source is different between the two scenarios with regard to its polarization. As
such, the induced surface current is also rotated, eg., Eq. (15) below [9].

BE —£E1 for £ - M. (44)

For example, if one knows the radiated field for scenario 2, then
the total field for scenario 1 is given by Eqs. (43) and (44). Labora-
tory results demonstrating this relationship are given in [35] .One
should note, however, that this specific relation only holds for
points in Vi) although it is possible to find analogs in V- [2].

Mow, let the surface current induced on E!" be K; and that on
the complimentary screen Esw be Ks. Then, the radiated fields in
each scenario are given by the integral term in Eq. (26). For sce-
nario 2, that is

EF(r) = iwpo | [

Babinet's principle connects this radiation to scenario 1 via
Eq. (43) as

B = ikuso [[[ Ge(r

Using Eq. (4) for points not on the screen such that no source
term is present, Eq. (46) can be re-expressed to yield the total
electric field for scenario 1 in terms of K: on the complimentary
SCIEEN as

E1(0) = —ptoc [ fz,m Gun(r, ') - Ko(r) de, (47)

where Egs. (12) and (13) have also been used. Simplification is
achieved via Eq. (11) to show that

Ge(r. ) - Ky () ad. (45)

r')-K(r) da'. (46)

G‘n:l{l' r)= (v 3 I) e (48)
With the relations
V x 1f(r.r') = Vf(r.r') x I and v? - (ﬂ;_ %)? 3

where f is any well-behaved scalar function, and using the far-field
lirnit [4],

1? — % and #** E.*{r_"r},
Eq. (48) becomes

G (r, ) %? (r % )e-iﬁ-"_ (49)
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Combining Eqs. (47) and (49) yields,

Ei(r) = _m’_'u’ﬂﬂ ff . (rx [) Ko(r') e 7da,

r = VU in far — field. (500

Lastly, employ the electrodynamic equivalent of the Kirchhoff
approximation. This means that the surface current on the compli-
MEeNntary Screen Eéz}'is approximated by Eq. (32) with the recog-
nition that the direction of the current is now along the negative
y-axis via Fig. 5, i.e,

2 k
K;{r}=_EEEJ, re . (51)

Moting that (F = T} -¥=F=¥, Eqg. (50) via Eqg. (51) becomes:
Ey(r) = _E,,_ (9 ff eMray o), (52)

Returning to Eq. (46), using Eqs. (33) and (51), and implement-

ing the farfield limit in qG, yields the expression for the magnetic

field
By(r) = ——ED — (¢-9)2] ff e it g,
r e VT in far — field, (53)

where the identity (T—l‘@l‘} -¥ =¥ — (F-¥)F is used. Before pro-
ceeding, notice that the integrals in Eqs. (52) and (53 are nearly
Fourier transforms of the complimentary screen E}IJ. They can be
cast into the familiar form by defining an aperture function

@)
A = {1, re i,

54
0, rqiEf}. (54)

With the recognition that E':z} resides in the a~y plane, the
integrand can be multiplied by 1 =™ since 2.r' =0 on E[z}'

and introducing the scattering wave vector q = k(Z — ), one finds
that:
ffz ey _ ff g (-1 ag ff r)ei g’

(5] )

With this, the total fields can be used to calculate the elec-
tromagnetic energy flow from the time-averaged Poynting vec-
tor as (8); = (1/2pg)Re{Ey = By}, where the asterisk denotes com-
plex conjugation. The radiated intensity then follows from I = (5:);,
which is most readily expressed in spherical coordinates (r, &, m).
Finally, if [ is evaluated on a large hemispherical surface of radius
r=d (for z = 0) where r is large enough that the small angle ap-
proximations for sin & and cos @ may be used, the normalized ra-
diated intensity becomes

G- [ ervrad]

where (Fx¥) = [(T-FIF-¥]=[1- {l‘-f}l]l' is used and the small
angle approximations are equivalent to assuming that the hemi-
spherical surface approximately coincides with the observation
screen o in Section 2.

Eq. (55) is the classic result that the diffraction pattern for E}”
in the far-field zone is the absolute square of the Fourier trans-
form of the (open) aperture, ie., Eq. (1). Yet, notice the signifi-
cance of this result. Eq. (55) derives from a formal solution to
the Maxwell equations. The duality of the Maxwell equations al-
lows formulation of the fields radiated by the induced current on a
screen in terms of the current induced on its complimentary screen
via Babinet's principle. The Kirchhoff and farfield approximations

(55)

then lead to the Fourier transform property of the end result with-
out the need to introduce fictitious Huygens point sources. In other
words, when employing Huygens point sources in the Huygens-Fresnel
principle, one is tacitly using both Babinet's principle and the Kirch-
hoff approximation. Lastly, note that the treatment above is not the
only way to formulate an EM analog of the Huygens-Fresnel prin-
ciple, e.g., see [4,2728). The general conclusions, however, remain
the same.

Before proceeding a subtle point in this treatment should be
addressed. When the aperture is cut in the sheet X, the induced
current must, obviously, vanish in the free-space region of the re-
sulting aperture. This means that the current on the screen is dis-
continuous upon crossing the aperture rim, which is defined by a
contour, C. Yet Eqgs. (45) and (46) derive from Green's second vec-
tor identity, Eq. (15), which is a generalization of the divergence
theorem. Thus, Eqs. (45) and (46) appear to be imvalid due to the
discontinuity of K across C [36]. Moreover, this concern extends to
the fields as well via Egs. (24) and (25). Stratton and Chu recog-
nize this issue and propose a resolution by adding line integrals
of the fields along C to variants of Eq. (22) [36). Physically, the
idea is that in order for the current to discontinuously vanish at
the aperture rim, there must be an accumulation of charge den-
sity there. For example, in the case of the slit aperture in Section
2, this charge density looks like the slit is a strip of electric dipole
moments oscillating in antiphase with the incident electric field.
Eventually, one finds that the behavior of the fields across C is
such that the line-integral corrections are not needed if the exact
(correct) values of the fields are used [37]. That is, using Eq. (32],
which is tantamount to the Kirchhoff approximation, means that
Egs. (45) and (46) are only approximate descriptions for the ra-
diated fields and the line-integral corrections should apply. How-
ever, as will be mentioned in Section 4, there now exist meth-
ods to find the (numerically) exact fields in the aperture, and thus
Eqgs. (45) and (46) are valid in practice.

4. Bwald-0seen theorem

The preceding section highlights two important concepts. First,
diffraction can be viewed as secondary radiation from sources of
current induced on screens. Second, the special case of a complete
sheet shows that its shadow arises from this same radiation, where
it both perfectly cancels the incident wave in the shaded region
and produces the reflected wave in the illuminated region. Thus,
the shadow is a consequence of interference rather than a mechanical-
like blocking of the incident light as may be implied by the Huygens-
Fresnel principle. In fact, this concept is general and applies to
transparent or opague 3D objects in addition to the 2D screens
above. The aim now is to show how and examine several impli-
cations.

To begin, replace the disk in Section 3.1 by a single 3D parti-
cle of arbitrary size, shape, and uniform refractive index m, which
may correspond to either absorbing or non-absorbing materials. For
simplicity, assume that the particle is nonmagnetic with gt = jg.
Again, a source J° is present far from the particle to produce an
incident wave. The exact same treatment in 5ection 3.1 may be ap-
plied to this situation, culminating in Eq. (22, First consider loca-
tions I that are inside the particle volume Vg,

a2 ] — ¥ ]

§ {iwte(r.r) - [ < B(r)] - Gn(r.¢) - [8 x E(¥)] | aa
= —E™(r), reVp. (56)
In view of Eq. (56), the integral over § can be interpreted as ra-
diation emitted from the particle surface in analogy to that from

the sheet in Eq. (26). Yet, one must not take this literally as the
actual source of radiation is less obvious than K above; more will
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be said on this point below. Eq. (56) also reveals that this radia-
tion is an exact copy of the incident field but 180° out of phase,
i.e., such that the incident field is extinguished everywhere inside
the particle. This result is known as the Ewald-Oseen (EQ) extinc-
tion theorem [27]. More precisely, it is a particle-surface formula-
tion of the EQ theorem. Motice that Eq. (56) does not rely on an
assumed value for m, thus the cancellation of the incident wave oc-
curs for absorbing and non-absorbing partides alike. It follows that
the theorem should also apply to any wavelength, including X-rays,
and evidence for this is given in [38].

Outside the particle this same integral yields the particle's scat-
tered wave,

E=(r) = jE [ (r.7) - [ B(F')] ~ Gu(r.1) - [ < E()] | 00, Fe Ve
(57)

Both Eqgs. (56) and (57) are exact relationships with much phys-
ical meaning. Recall from Section 3.1 that the appearance of the
surface integral here is essentially a consequence of applying the
divergence theorem to the fields in V. Thus, in this case where 5
bounds Vg, the surface integral is a “short-hand™ representation of
a volume effect in the same way that Gauss's law in electrostatics
equates a surface expression involving the normal components of
the field to a volume quantity, the enclosed charge density. While
Eq. (56) shows that the incident field is canceled inside the par
ticle, it is important to realize that does not mean the total field
in the particle is zero. Because Eq. (56) results from integrating
throughout Vg, any source of radiation in V, is not explicitly cap-
tured in the treatment, and one will see below that the particle’s
(material) polarization fills this conceptual void.

Pursuing the analogy with Gauss's law, the source responsible
for the radiation expressed in Eqs. (56) and (57) should appear in
the volume integral representation of these equations. One way to
see this is to recast Eq. (5) to build-in an ad hoc current density
J™ that is nonzero only in Viy and will be seen later to relate
the polarization of the particle’s material [39]. Define

F™(r) = —iwes(m? — 1)E(r) € Vine, (58)

where E is the total (macroscopic) electric field inside the particle.
Then the Maxwell equations for the electric field in either region
can be written as

reVn

r < Vexr. {59}

V x V x E(r) — KE(r) = {Eﬁ:‘;fﬁ

MNote that k here is the vacuum wave number and while J¢ is
an external specified current, J™ relates to the internal field, and
thus, ultimately depends on J"°. Now Eq. (59) has the correct form
to be solved via the method of dyadic Green functions as defined
by Eq. (9). Apply Greens second identity, Eq. (15)-(52) for the vol-
ume Vip,. If the vector ¥ is restricted to Ve, then the delta func-
tion makes no contribution and after implementing the symmetry
properties following Eq. (17), the result is

!; ﬁ,{r, r') -F™(r) dv
= § {iwte(r.¥) - [ x B@)] +Ca(r.F) - [ < ED)] | da.
reVe (60}
where the pilot vector a has been canceled as in Eq. (18). Next,

with Eq. (58), interchanging the coordinates, r—r' and ' —r, and
again using the symmetry relations of the Green functions where

Ge(r'.T) = Ge(r. T') and Gm(F.T) = —Gm(r. 1), Eq. (60) yields

k1[m1—1]!; Ge(r, ¥') -E(r') dv/

- ﬁ_ [iwke(r.r) - [ x B(F)] - Gu(r.r) - [ x E(r)] | oo
I e Ve (61)

The key step now is to notice that the surface integral in
Eq. (61) is the same as in Eq. (57), showing that

B9 =k(m 1) [ G(rr)-E(F) o, revee  (62)

Eq. (62) is equivalent to the surface integral expression of
Eq. (57). Aside from a constant prefactor, the intermal field E is
viewed as a radiating source in analogy to K in Section 3.2, In fact,
this interpretation can be made explicit by relating the field to the
particle's polarization P as P = £,({m* — 1)E. Dividing the volume in-
tegral into a collection of differential elements dv' of polarization,
the scattered field can then be viewed as collective radiation from
electric dipole moments p each related to the internal field within
dv'.

If Green's second identity is next applied to Vg, the source is
now J and the result is exactly the same as Eq. (22). Exchanging
the resulting surface integral by Eg. (62), the complete solution to
Eq. (59) for r € Ve is obtained as all space is now integrated, i.e.,
Vint and Vexe, giving

E(r) = E™(r) + ’;—IL Ge(r,r') -P(r) dv, 1 eVex, (63)

This is one form of the volume integral equation (VIE) and is
valid for locations outside of the particle. It shows that the total
field is the superposition of the incident and scattered fields, the
latter of which is due to radiation from the polarization of the par-
ticle material.

The question now is what is the volume-integral equivalent of
Eq. (57, which would be the volume analog to the EQ theorem.
One may think that all that is required is to allow ' [the field
point in the derivation leading to Eq. (60]] to reside in V. Re-
member that r and r are not exchanged until after Eq. (60). How-
ever, because the volume integral in Eq. (60) runs over Vi in the
coordinate r, it will include the point I =r where the Green func-
tion becomes singular, recall Eq. (11). In that case, Green's second
identity, Eq. (15), cannot be applied. This is resolved by excluding
the singular point by removing a small volume V;, called the prin-
ciple volume, at I =r and then taking the limit that this volume
vanishes. After exchanging ' and r, Eq. (63) for points (r) inside
the particle becomes [39-41]

Ce(r.r)-p(r) av + X0 IO

iV o

(64)

That is, the field inside the particle is still given by the VIE ex-
cept with the principle volume removed and the addition of a cor-
rection term to account for this missing contribution. The correc-
tion term involves the so-called selfinteraction dyadic [40]

. k2
— DE — i
E(r) =E™({r+ . LI,;_rpu

| =

Y T
]..(r} = E iﬁ E_I da . {ES)

where v =1 — I [recall Eq. (33)] and 5; is the surface bounding V;
with outward normal I'. Note that Eq. (64) requires yet another
dyadic term if the limit in Eq. (64) is not taken and V; remians
finite; this happens when one employs Eq. (64) to solve EM scat-
tering problems in practice [39-41].

If 55 is taken to be a sphere of radius Ej;, the self-interaction

dyadic is L= T,.-’3 [40]. Moreover, the current appearing in the cor-
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rection term can be expressed as a time-derivative of the polariza-
tion within V3, J™ = —iwP. Then, Eq. (64) becomes

Ko p 1
E(r) = E™(r) + - J{:ﬂ .Lﬂ.-v, Ge(r.r') - P(r) dv — Epm,
reV, (66)

With these parameters specified, the terms in En. (66) can be
interpreted. Since the limit Ry — 0 means that the principle volume
is much smaller than the refracted wavelength AfRe[m], the po-
larization within this volume may be assumed uniform. Thus, the
last term describes the field at the center of a uniformly polarized
sphere, representing the self-field in the microscopic description
of dielectrics [40]. The sum of the first two terms on the right-
hand side of Eg. (66) is then the Lorentz, or local field, ie., the
field at r due to the incident field and that radiated from all the
volume elements throughout the particle other than the principle
volume.

A utility of Eg. (66) is that one can use it to solve for the
unknown intermal field E. In short, the particle volume is dis-
cretized into volume elements much smaller than A/Re{m), where
the polarization within each element can reasonably be replaced
with a single, point electric dipole moment p [41]. By assuming
a linear relationship between p and the so-called exciting field
E®* —E + P{3&¢ through a polarizability factor @, Eq. (66) is recast
as a system of linear algebraic equations for the unknown dipole
moments. Solving the system yields the dipole moments, and thus,
the field E. This is known as the discrete dipole approximation
(DDA) [39.41].

In the context of the DDA, Eq. (66) can be understood in an
intuitive way by imagining the interaction between the dipoles in
a contrived temporal context. First consider the dipoles, which are
distributed throughout Vi, on a lattice, in the case when the inci-
dent plane wave is not present, i.e., J™ =0. In this case, the mo-
ments have zero magnitude because there is no electric field to
polarize them. Now suppose that J™ is ®“turned on." Each dipole
becomes polarized and oscillates with the incident wave. A given
dipole then radiates a secondary wave that propagates through the
vacuum filling the lattice and influences the polarization of the
other dipoles. The secondary radiation from these other dipoles
then acts back on the first dipole, and so on, ad mfinitum. This in-
teraction, enabled by the secondary waves, couples the moments.
Eventually, a “steady state” is reached, where the dipoles’ magni-
tude, direction, and phase stops evolving under this coupling ac-
tion and the dipoles collectively attain a state of common time-
harmonic oscillation. The end result is that each dipole behaves
(aside from a constant prefactor) as if it is driven by the inter-
nal electric field E that would otherwise be found by solving the
Maxwell equations as a boundary value problem (BVP), eg., Mie
theory for a spherical particle. From this point of view, it is the
coupling that causes the phenomenon one associates with refrac-
tion.

MNotice that this picture is a different description of EM scat-
tering than what one may see from the BVP point of view. The
concept of a refractive index is in a sense absent here, replaced by
the requirement that the coupling between the dipoles results in
a self-consistent solution for the dipole-dipole interactions. In the
BVP approach, one simply scales the wavenumber in the particle
by the refractive index, ie., k;y; =mk, and the fields in Vi, and Vg
are expanded over a complete set of vector spherical wave func-
tions [&]. At that point, it is only a matter of imposing the bound-
ary conditions at 5 to relate the expansion coefficients and have a
complete solution. It is remarkable then, that the complicated cou-
pling between the dipoles results in the same fields and associated
phenomena of reflection, refraction, and scattering, as are also pro-
vided in the BVP approach [42 43].

The strength of the coupling between the dipoles depends, in
part on the polarizability @, and on the angular structure of the
dipole fields. The polarizability does depend on m, and overall, the
dipoles are more strongly coupled as the real part of m increases.
If the real part of m is close to one, o is small and the coupling be-
tween the dipoles is weak. This means that the incident wave will
dominate the polarization of the particle, resulting in a situation
where E deviates little from EPC. This weak-refraction limit is often
called the Rayleigh-Debye-Gans (RDG) or first Born-approximation
[2]. If the real part of m is increased, the coupling also increases
and the dipole moments become further deviated from the RDG
Ex pectation.

Elementary texts often describe refraction as the “slowing
down" of light as it enters a medium from vacuum [1,32]. The
speed of light is reduced to cfRe{m] and the wavelength is reduced
to A/Re[m). However, in the context of Eq. (G5) where the effects
of refraction are caused by dipole-dipole coupling, one could pro-
pose that light actually travels inside the particle medium at the
same speed as it does through vacuum, ¢ [44). This is supported
by the presence of the vacuum wave number k in the Green func-
tion in Eq. {65), which acts as the free space propagator for the
field. Indeed, this is expected if one views the medium as Democri-
tus does; “...there are only atoms and the void,” (and no medium)
[45].

The apparent reduction of the wavelength of light upon enter
ing a medium from vacuum can be observed, e.g., from thin-film
interference [1). 5o, if the waves exchanged between the parti-
cle’s dipoles travel at ¢, how may one to account for the observed
reduced intermal wavelength? The key is to realize that it is the
dipole moments, or equivalently the polarization P, that constitute
the radiating source of the scattered wawve, which is the wave that
is observed. The distribution of P has a wavelength less than A due
to the shift in phase, relative to the incident wave, of the dipole
oscillations brought about by coupling, which itself depends on m
[1]. Yet, the coupling interactions that establish P are realized by
the exchange of dipole waves of wavelength A and speed c [46].
Mote, however, that there is some debate on this interpretation, see
[47].

Also, consider the specific region of space Vi;; when the particle
is absent and when it is present. When it is absent, only E™C oc-
cupies V. When it is present, E occupies V. Thus, E™ is some-
how replaced by the internal field E, the latter of which is equiva-
lent to polarization P= sa(m? — 1)E. Because EM waves require no
medium to support their propagation, there is no mechanism for
mechanical-like blocking of a wave and the only way this replace-
ment can occur is through interference [44 48-50]. That is, the sec-
ondary radiation emitted by P as described by Eq. (66) must cancel
E™ throughout V,,, via destructive interference. While this is not
directly revealed in Eq. (66, it is seen in Eq. (56) — the EQ the-
orem — where the same E (and B) leading to P act as the source
of this radiation. Motice though, that it is not just the fields at the
particle surface in Eq. (56) that are responsible for the extinction
of E™ since those surface fields are established from secondary
radiation emitted throughout V,;; [44]. The EO extinction of the in-
cident field should be physically regarded as originating from the
complete volume of the particle, although the practically useful
form of the EQ theorem is usually the surface integral, Eq. (56].

5. The role of Ewald-0seen in scatering and diffraction

Section 4 hints at a connection between several apparently in-
dependent effects. The EQ-theorem's cancellation of E™° within the
particle, the appearance of E in its place displaying the charac-
teristics of refraction, and E*® outside of the particle all originate
from secondary radiation from an induced current source J™, Con-
sequently, whether it is light (seemingly) “diffracting” through an
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Fig. 6. Demonstration of EO extinction and its connection to scattering for a spherical particle illuminated by a linearly polarized wave as shown in (a). The size parameter
of the particle is kR=151.5 and the refractive index is m=1.33 + 0i. Plot (b) shows the total electric-field magnitude |[E™ +E*%| in the x-z plane through the origin outside
the particle and the internal field |E| inside the particle as calculated from Mie theory. In (c) however, is shown the superposition of the incident wave and the EO extinction
wave of Eq. (56), i.e., |[E" +Eq. (56)|. The internal field is not shown here although Eq. (56) is evaluated from it. The dark appearance of the interior region demonstrates
that the extinction wave cancels the incident wave in the particle. Outside of the particle, Eq. (56) becomes Eq. (57), and the total-field magnitude is again shown except
calculated from Eq. (57) i.e., |[E™ +Eq. (57)|. One can see agreement with this external field and that from Mie theory in (b).

aperture in an opaque screen or “scattering” from a particle, the
observed distribution of light is due to, and completely explained
by, radiation from one Ji" or the other in either case. And, accom-
panying this radiation is the inherent process of extinguishing the
incident wave for all points within the particle.

One can see refraction, diffraction, scattering, and EO extinction
all in Fig. 6. Here, Mie theory is used to find the internal fields,
E and B, in a spherical particle with m=1.33 +0i and size param-
eter kR=151.5 where R is the particle radius. The particle is illu-
minated by a linearly polarized plane wave as shown in Fig. 6(a).
Fig. 6(b) shows the magnitude of the total electric field |ENC + ES|
outside the particle in the near-field zone as calculated from Mie
theory. Inside the particle, the physical field present is the inter-
nal field E and |E| is shown. From the internal field, it is possi-
ble to demonstrate that radiation from the associated polarization
P extinguishes the incident field inside the particle. This is done
in Fig. 6(c) by plotting the superposition of E"® and the integral
in Eq. (56) using the Mie-calculated internal fields E and B in the
integral. The entire interior of the particle appears dark, showing
that the incident field is extinguished by the integral in Eq. (56).
Remember that this (surface) integral physically represents radi-
ation from the induced polarization throughout the entire particle
volume, i.e., the surface dependence in Eq. (56) merely results from
use of the divergence theorem. Also realize that the dark particle-
interior does not mean that there is no field present in reality; the
internal field is present and (with B) leads to this cancellation of
Ei"¢ via Eq. (56). Note that this EO extinction is also fundamentally
connected to the extinction cross section of the particle but that is
beyond the scope of this discussion, see [51].

Outside of the particle in Fig. 6(c), the total electric-field mag-
nitude [EM¢+ES?| is shown, except now E? is calculated by
Eq. (57), which is what Eq. (56) becomes for locations outside of
the particle. There is exact agreement between the external field
magnitude here and the Mie result in Fig. 6(b). Looking more
closely at Fig. 6(c), one can see that the particle’s dark interior
“leaks out” of the particle parallel to the z-axis on either side of
the high magnitude focused feature. What this is communicating is
that the scattered field in this external region has much the same
character of the extinction wave inside the particle and is what
may be called the near-field shadow for this transparent particle.

Comparing Egs. (56) and (57) shows that exactly the same inte-
gral appears in each, demonstrating that it is radiation from the
same source, the internal field (or more appropriately its polar-

ization), that establishes the scattered field and extinguishes the
incident field inside the particle. Of course, this does not mean
there is no field inside the particle, just that the incident field has
been canceled. Indeed, the refractive index in this example corre-
sponds to a strongly refractive transparent particle for visible light
and one can clearly see the expected characteristics of refraction
in Fig. 6(b).

It is now possible to illustrate the fundamental equivalence of
diffraction and scattering. Notice from Fig. 6(c) that the end effect
of the EO theorem is to extinguish a portion of the incident wave-
front across the area of the geometric cross section C8¢° =mR2 of
the particle as seen along fi. With respect to this extinction area,
one has exactly the same situation that would occur for an opaque
2D screen with the same size and shape as C8¢°. In this anal-
ogy, the screen would be a disk of radius R. As demonstrated by
Egs. (26) and (57), exactly the same source is responsible for extin-
guishing the incident wave and generating the scattered wave for
the screen [Eq. (26)] or the particle [Eq. (57)]. From the recognition
in Sections 3.1 and 3.2 that the finite size of the source producing
the extinction wave means that the incident wave’s cancellation is
not complete over all space, the spread of light across the observa-
tion screen o for small 6 will be the same for a spherical particle
or its corresponding screen. This is because the induced source for
each of these objects extends over the same cross-sectional area
(80, Moreover, via Babinet’s principle, this spread will also be the
same as a circular aperture in an infinite screen. There will, how-
ever, be differences between the angular distribution of scattered
light for larger 6 for a sphere and the disk-shaped screen (or its
complimentary aperture) due to the fact that the sphere has finite
extent along the z-axis while the screen does not [15]. This can
be understood from the z-dependence present in Eq. (57) that is
absent in Eq. (26).

6. How diffraction works in electrodynamics

In the title of this section the term “diffraction” follows the
common usage to mean a spreading wave scattered from an ob-
ject to create a diffraction pattern. Now recall that earlier, diffrac-
tion was defined as simply the spreading of a propagating wave.
However, the common usage has value in its brevity for the com-
plex scattering mechanism, i.e., re-radiation, that forms a diffrac-
tion pattern. Yet, the goal here is to clearly describe the relation-
ship between diffraction, both as defined and as used, with scat-
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Fig. 7. A wave (green) incident upon a semi-infinite slab of glass. To aid discussion, the incident wave is imagined to have a finite width much larger than the wavelength
such that it can be thought of qualitatively as a plane wave. This wave causes polarization in the glass (blue) which radiates an EO extinction wave (dashed purple) 180°
out of phase with the incident wave both inside the slab and after where both propagate out the exit side. The interior polarization wave (blue) also radiates the exterior
reflected and transmitted waves, which are scattered waves (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

tering. The exposition above demonstrates that diffraction patterns
are generated by scattering and they are the intensity distribution
of the diffracting (spreading) EO extinction wave. With this sound
mathematical foundation, a heuristic explanation of “diffraction” is
now possible.

This explanation begins by examining the EO extinction the-
orem in a familiar example. Fig. 7 shows a semi-infinite slab of
glass illuminated by a wave with finite width much greater than
the wavelength such that it can be approximated by a plane wave.
From the EO point-of-view this wave passes unperturbed into the
glass, through it, and back out the exit side. However, when it is in
the slab, it induces the EO extinction wave (through polarization of
the glass) that propagates along with the incident wave but is 180°
out of phase. Thus, the well-known EO extinction occurs within the
slab via destructive interference between these two waves. Note,
however, that these waves continue to propagate together out of
the slab on the exit side as drawn such that the destructive in-
terference continues as well. One might say that on the exit side
of the slab, the EO wave destructively interferes with the incident
wave to create a shadow. Furthermore, because these two waves
have the same width, they diffract, i.e., spread, the exact same way
and the complete destructive interference continues into the far
field.

The polarization of the glass induced by the incident wave
propagates as to constitute the interior refracted wave as drawn.
This polarization radiates a reflected wave at the entrance side of
the slab and an exterior transmitted wave on the exit side. One
might say that these two waves outside the slab are the waves that
are scattered by it.

Now consider the same plane wave incident on a glass sphere
with diameter 2R much less than the width of the wave 2w, as
drawn in Fig. 8. From Section 4, there are several components to
the total wave present either inside or outside the particle, which
are tagged according to the source producing them. Specifically,
outside the particle, there is the incident wave shown in green and

the scattered wave shown in red. Inside the particle, there is again
the incident wave (green), and two additional waves: the EO ex-
tinction wave (dashed purple), and the internal, i.e., polarization,
wave (blue). Notice that all of these have complements in Fig. 7 for
the glass slab.

From the EO point of view the incident wave passes into the
sphere and continues forward out of the sphere unperturbed. Yet,
when inside the sphere it induces the EO extinction wave that
propagates along with it, but 180° out of phase. Thus, EO extinc-
tion occurs within the sphere via destructive interference between
these two waves. As with the glass slab, these waves continue to
propagate together out of the sphere along the forward direction
as drawn in the figure, and the destructive interference continues
as well. Thus, immediately behind the sphere, this interference cre-
ates a shadow equal in extent to the circular geometric cross sec-
tion of the sphere. Now the situation differs from that of the slab
because the sphere diameter is smaller than the width of the in-
cident beam. Given this, the geometric shadow is surrounded by
a bright halo of the incident beam. Remarkably, as the two waves
continue to propagate into the far field, the narrower EO wave will
diffract (spread) more than the incident wave to the point where
wave overlap, and hence destructive interference, will be minimal;
recall that this is not the situation for the slab. The end result is
the diffraction pattern of a circular obstacle of diameter 2R on the
distant screen o with a bright central spot, i.e., “Drude’s spot” [5].
The diffraction pattern is the intensity of the EO extinction wave in
the far field; the Drude spot is the lesser diffracted (lesser spread)
remainder of the incident wave.

To use more common terminology, the wider incident beam
diffracts less than the narrower EO extinction wave so the com-
plete destructive interference between the two (occurring inside
the particle and immediately after it) cannot continue as one pro-
ceeds along the propagation axis. The narrower incident beam
will form a diffraction pattern consistent with the (perhaps Gaus-
sian) beam profile. Because the diffraction is “narrow” for this
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wide beam, the intensity will remain relatively large; this is, again,
Drude’s spot. The narrower EO extinction wave, which is also the
scattered wave when outside the particle, will spread more than
the incident wave. Given the circular profile of the particle from
which it is radiated, the diffraction pattern will resemble that of a
circular aperture. The key point with this description of diffraction
by a particle is that light is never blocked. Furthermore, light does
not “diffraction around the particle” ; it is in fact radiated light
from the particle itself. Finally, Drude’s spot results from what re-
mains of the incident beam after the EO extinction wave removes
a portion of it across C8¢°.

It is now useful to consider Babinet’s principle from this per-
spective. Fig. 9 shows a screen with a circular aperture. This screen
is the complement to a circular disk, hence, via Babinet’s principle,
it should have approximately the same diffraction pattern in the
far field. In Fig. 9 we see the incident wave passing unperturbed
through the screen. At the screen, the EO extinction wave is cre-
ated. Immediately behind the screen, the destructive interference
between the incident and EO waves creates an annular shadow
with outer diameter equal to the diameter of the incident wave
and inner diameter equal to the aperture diameter (see dashed
purple in Fig. 9). Immediately behind the aperture, there is no
EO wave, and hence, no destructive interference for the incident
wave. As the two waves in the annulus continue to propagate into
the far field, they diffract (spread) by the same amount, and thus,
continue to completely, destructively interfere. On the other hand,
the narrower incident wave part that passed through the aperture
will diffract (spread) to create a circular aperture diffraction pat-
tern in the far field as drawn. This is the same diffraction pat-
tern as for the complimentary circular-disk and approximately the
same as for a sphere, and hence, is consistent with Babinet’s prin-

ciple [52,53]. Note, however, that wave that is responsible for the
diffraction pattern of the aperture is the remainder of the incident
wave, whereas the particle’s diffraction pattern was due to the EO
extinction wave. Also, note that for the screen there is no Drude
spot.

7. Summary

Diffraction is the spreading of waves. However, common usage
often applies the word “diffraction” to a scattering phenomenon in
which the scattered waves spread, especially around the forward
direction, to create a diffraction pattern. In this review, Maxwell’s
equations are applied to understand how electromagnetic radiation
interacts with an object to create the resulting diffraction patterns.
In particular, it is shown that the diffracted wave from an object,
such as a particle, smaller that the width of the incident beam
is the Ewald-Oseen extinction wave radiated from the object into
the far field zone. This same Ewald-Oseen extinction wave extin-
guishes the incident wave inside the object and immediately be-
hind the object to create a shadow.

We have also shown that if the object is wider than the inci-
dent beam and contains an aperture, the Ewald-Oseen extinction
wave radiated from the screen destructively interferes with the in-
cident wave immediately behind the screen to create a shadow.
Meanwhile, the portion of the incident wave that passes through
the aperture propagates into the far field to create the diffrac-
tion pattern. If the aperture and the obstacle have the same cross-
sectional shape, i.e., are complimentary, the diffraction patterns are
the same, thus giving another explanation of Babinet’s principle.
However, this review adds that while the diffraction patterns of



238 M,J. Berg, C.M. Sorensen/Journal of Quantitative Spectroscopy & Radiative Transfer 210 (2018) 225-239

g K
— incident

I I l|‘/ incident wave
I : I; - EO extinction wave
I

9 Bl

Wo Fofr
(| 7/

ﬁinc 1N //

;

incident wave

¢ far-field intensity

? 7/

shadow
boundary

g —

~—geometric
shadow

near-field waves - //~ far-field intensity

Fig. 9. Diffraction of a beam of light with width 2w, incident upon a wider screen with a circular aperture of radius R smaller than the beam width. The sketch is split
with the left portion showing the screen and near-field zone with the component waves, and the right portion showing the far-field zone intensities. The component waves
are indicated by the color coding as: incident wave is green and the EO extinction wave is dashed purple. The intent here is to emphasize the extinction, via destructive
interference, of the incident wave by the EO extinction wave in an annulus immediately behind the screen and to show the remaining circular incident wave. The screen
does not block the incident wave, instead the screen radiates the EO wave that eliminates the incident wave except for that portion passing through the aperture. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

complimentary objects are the same, the waves that lead to the
observed diffraction patterns are different.

These explanations rely on the radiation of the Ewald-Oseen
extinction wave induced by the incident wave’s interaction with
the entire object. Thus, this is essentially a scattering process and
the incident wave is not “blocked” by the object. Rather, the object
radiates a wave, the Ewald-Oseen extinction wave, which can can-
cel the incident wave and create near field shadows and far-field
diffraction patterns. Furthermore, with this explanation, the inci-
dent beam does not diffract around the edge of objects. Instead,
the differing degrees of spreading, i.e., diffraction, of the incident
and Ewald-Oseen waves lead to finite wave-intensities within the
far-field projections of the near field shadows. In summary, diffrac-
tion patterns are created by the manipulation of the incident wave
through the Ewald-Oseen extinction wave.
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