
HOPF ALGEBRA STRUCTURES AND

TENSOR PRODUCTS FOR GROUP ALGEBRAS

JON F. CARLSON AND SRIKANTH B. IYENGAR

Abstract. The modular group algebra of an elementary abelian p-group is iso-
morphic to the restricted enveloping algebra of a commutative restricted Lie alge-
bra. The different ways of regarding this algebra result in different Hopf algebra
structures that determine cup products on cohomology of modules. However, it is
proved in this paper that the products with elements of the polynomial subring of
the cohomology ring generated by the Bocksteins of the degree one elements are
independent of the choice of these coalgebra structures.

1. Introduction

This paper concerns the group algebra kE of an elementary abelian p-group E
of order pr over a field k of characteristic p. This algebra has a natural coalgebra
structure kE → kE ⊗k kE given by g 7→ g ⊗ g for each g in E. On the other hand,
if E = 〈g1, . . . , gr〉, a change of variables xi = gi − 1, realizes kE as a truncated
polynomial ring k[x1, . . . , xr]/(x

p
1, . . . , x

p
r). This is isomorphic to the restricted en-

veloping algebra of the restricted p-Lie algebra kr with trivial bracket and p-power
operation. Again, there is a natural Hopf algebra structure, this time given by the
map xi 7→ xi ⊗ 1 + 1⊗ xi. The two coalgebra structures are not the same and they
define different tensor products on kE-modules as well as different actions of the
cohomology ring H∗(E, k) ∼= Ext∗kE(k, k) on Ext∗kE(M,N) for kE-modules M,N .

The differences in the Hopf structure have shown up in several works. For example,
Avrunin and Scott [1] exploited a change in the coalgebra structure to prove a
conjecture of the first author [3] that the rank variety and the support variety of a
kE-module are homeomorphic. In [6, 10] the authors define bundles on projective
space using modules of constant Jordan type and the Lie coalgebra map. The
construction is not available with the group coalgebra map. Both of these works
used the fact that with the Lie algebra structure there is an abundance of sub-Hopf
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algebras generated by units in the algebra. The immediate motivation for this paper
is the desire to make efficient use of categorical equivalences and functors relating
commutative algebra and group representation theory; see [7]. The fact that the
Hopf algebra structures differ has been an obstruction to this end.

For any Hopf algebraA over k andA-moduleM , the cohomology ring Ext∗A(M,M)
is a module over the cohomology ring Ext∗A(k, k). The action is given by a homo-
morphism of rings

θM : Ext∗A(k, k) −→ Ext∗A(M,M)

that can be described as follows: take a homogeneous element ζ of ExtnA(k, k), regard
is as a length-n exact sequence beginning and ending in the trivial module k, then
tensor over k withM . The image is the class of that sequence. The map, in general,
depends on the coalgebra structure. The primary result of this paper is that for the
group algebra of an elementary abelian group the dependence is not so bad.

Specifically, for E an elementary abelian p-group, if S is the polynomial subring of
H∗(E, k) generated by the Bocksteins of the degree one elements, then the restriction
of θM to S is the same for both the group and the Lie coalgebras structures on kE.
As a direct corollary one gets that for ζ ∈ S and Lζ the kE-module introduced in
[4], the isomorphism class of Lζ ⊗k M does not depend on which of the two Hopf
algebra structures is used to define the action on the tensor product.

A key input in our work is the fact, proved by Pevtsova and Witherspoon [12],
that for any Hopf algebra A, the map θM factors through the Hochschild cohomology
ring HH∗(A/k;A). The advantage gained by this observation is that the first map,
to HH∗(A/k;A), depends on the coalgebra structure and not onM , while the second
depends on M and not on the choice of coalgebra structures. So it is sufficient to
show that, for A = kE, the first map is the same on the elements of S regardless of
the coalgebra. This is accomplished by a straightforward calculation using the fact
that E is a direct product of cyclic groups.

Section 2 of the paper is devoted to preliminaries on Hopf algebras and cohomol-
ogy, mainly a detailed proof of the factorization of θM discussed above. Basic facts
about the cohomology of elementary abelian p-groups are recalled in Section 3, while
Section 4 presents a proof of the main theorem. Results on the tensor products of
Lζ modules are presented in Section 5.

2. Hopf algebras and cohomology

This section concerns the cohomology of modules over Hopf algebras. The main
result is Theorem 2.7, due to Pevtsova and Witherspoon [12, Lemma 13]. We present
a detailed proof because the constructions of the maps involved in the statement of
the result are of critical importance in the next section.
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Let k denote a field and A a Hopf algebra over k, with unit η : k → A, coalgebra
map ∆: A→ A⊗k A, and counit ε : A→ k. We assume that A has an antipode σ,
that is to say, σ is the inverse of the identity on A, under the convolution product.
We adapt Sweedler’s notation and write

∆(α) =
∑

(α)

α1 ⊗ α2 for α ∈ A.

Unless stated to the contrary, the term “module” is assumed to mean a finitely
generated left module.

Construction 2.1. Let M be an A-module. Recall that for each A-module X,
there is a structure of an A-module on X ⊗k M induced by the diagonal:

α · (x⊗m) =
∑

(α)

α1x⊗ α2m

The assignment X 7→ X ⊗k M defines an additive functor, that we denote θM∆ , on
the category of A-modules, and has the following properties.

(1) The natural map M → k ⊗k M = θM∆ (k) that sends m to 1 ⊗ m is an
isomorphism of left A-modules.

(2) When M is projective, so is the A-module θM∆ (X) = X ⊗k M .

These are standard computations. It follows that there is an induced homomorphism
of graded k-algebras:

ΘM

∆ : Ext∗A(k, k) −→ Ext∗A(M,M) . (2.2)

The notation is intended to emphasize the fact that the map depends on the coal-
gebra structure on A.

We write Ae for the enveloping algebra A ⊗k A
op of A. Since k is a field, the

Hochschild cohomology of A as a k-algebra can be introduced as

HH∗(A/k;A) = Ext∗Ae(A,A) .

An Ae-module is the same thing as a left-right A-bimodule. In particular, A is
naturally an Ae-module, with action defined by (α⊗ β) · a = αaβ.

Construction 2.3. Given an A-moduleM and an Ae-module Y , there is a residual
A-module structure on Y ⊗A M , defined by

α · (y ⊗m) = (αy)⊗m,

for α ∈ A, y ∈ Y and m ∈M . The assignment Y 7→ Y ⊗AM is an additive functor,
denoted ψM , from Ae-modules to A-modules. The next assertions are immediate.

(1) The natural map ψM(A) = A ⊗A M → M that sends a ⊗ m to am, is an
isomorphism of A-modules.
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(2) When P is a projective Ae-module, the A-module ψM(P ) is projective.

It follows that ψM induces a homomorphism of graded k-algebras:

ΨM : HH∗(A/k;A) −→ Ext∗A(M,M) . (2.4)

Note that this map is entirely independent of the coalgebra structure on A.

Construction 2.5. Let X be an A-module. Then X ⊗k A has a structure of an
A-module induced by the diagonal ∆. It also has a right A-module action induced
by the right action of A on itself. In short, X ⊗k A is a left Ae-module, with action
determined by

(α⊗ β) · (x⊗ a) =
∑

(α)

α1x⊗ α2aβ

The assignment X 7→ X ⊗k A defines an additive functor, that we denote φ∆, from
A-modules to Ae-modules. This has the following properties.

(1) The natural isomorphism A
∼=
−→ k ⊗k A = φ∆(k), mapping a → 1 ⊗ a, is one

of Ae-modules, where the Ae-action on A is the usual one.
(2) The Ae-linear map ι : Ae → φ∆(A) = A⊗k A where 1⊗ 1 maps to 1⊗ 1, is an

isomorphism, with inverse defined by the assignment

α⊗ β 7→
∑

(α)

α1 ⊗ σ(α2)β .

In particular, φ∆(A) is a free Ae-module of rank one, and φ∆(P ) is projective
whenever P is a projective A-module.

Statement (1) is readily verified, given that ε : A→ k is the counit of the coalgebra
structure on A; that is to say, for any α ∈ A, one has

∑

(α)

ε(α1)α2 = α .

As to (2), since the map ι is Ae-linear, by construction, it suffices to verify that
its composition with the given map (henceforth denoted ι−1, in anticipation) is the
identity. Moreover, ι−1 is evidently a homomorphism of right A-modules, and since

ι(α⊗ 1) = (α⊗ 1) · (1⊗ 1) =
∑

(α)

α1 ⊗ α2

it suffices to verify that ι−1 maps the term on the right to α⊗ 1, for any α ∈ A. To
this end, recall that ∆ is coassociative, so that

∑

(α)

∑

(α1)

α11 ⊗ α12 ⊗ α2 =
∑

(α)

∑

(α2)

α1 ⊗ α21 ⊗ α22
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This explains the second of the following equalities.

ι−1
(

∑

(α)

α1 ⊗ α2

)

=
∑

(α)

∑

(α1)

α11 ⊗ σ(α12)α2

=
∑

(α)

∑

(α2)

α1 ⊗ σ(α21)α22

=
∑

(α)

α1 ⊗ ε(α2)

=
(

∑

(α)

α1ε(α2)
)

⊗ 1

= α⊗ 1

The third equality is a consequence of the definition of the antipode and the last
equality holds because ε is the counit of the coalgebra structure on A.

Given properties (1) and (2) of φ∆, it is immediate that it induces a homomor-
phism of graded k-algebras:

Φ∆ : Ext∗A(k, k) −→ HH∗(A/k;A) . (2.6)

The result below, proved by Pevtsova and Witherspoon [12], links the three ho-
momorphisms, (2.2), (2.4), and (2.6), constructed above.

Theorem 2.7. Let A be a Hopf algebra over k. For each A-module M , the following

diagram of graded k-algebras commutes.

Ext∗A(k, k)
ΘM

∆

**
Φ∆

��

Ext∗A(M,M)

HH∗(A/k;A)
ΨM

44

Proof. Let X be an A-module. Using the description of the A-action on X ⊗k M
and the Ae-action on φ∆(X), it is a direct verification that the canonical bijection

X ⊗k M −→ (X ⊗k A)⊗A M = φ∆(X)⊗A M where x⊗m 7→ x⊗ 1⊗m

is compatible with the A-module structures. It yields an isomorphism of functors
θM∆

∼= ψMφ∆ on the category of A-modules. Since φ∆ take projectives to projectives,
it follows that there is an equality of induced functors. This is the stated result. �
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Definition 2.8. Let k be a field and A a k-algebra. In what follows, we say that
A-modules M and N are stably isomorphic if there exist projective A-modules P
and Q such that M ⊕ P ∼= N ⊕Q.

Let P∗ be a projective resolution of an A-module M . For any integer d ≥ 0, the
image of the boundary map ∂ : Pd → Pd−1 is independent of the choice of P , up to
a stable isomorphism. We denote it Ωd(M), and call it a dth syzygy module of M .

Fix an element ζ ∈ ExtdA(k, k) and a dth syzygy module Ωd(k). Then ζ is rep-
resented by a homomorphism on Ωd(k), that we also call ζ. So we get an exact
sequence of A-modules:

0 // Lζ
// Ωd(k)

ζ // k // 0 (2.9)

That is, the module Lζ is defined to be the kernel of map ζ on Ωd(k). Up to a stable
isomorphism, this is independent of the choice of a syzygy module.

Given a k-algebra A, we say that a map ∆: A→ A⊗kA induces a Hopf structure

on A if there exists a Hopf algebra structure on A (and this includes an antipode)
with ∆ as the comultiplication. For ease of comprehension, given a coalgebra map
∆ and A-modules X,M, the A-module defined on the vector space X ⊗k M using
the Hopf structure ∆ is denoted

∆(X ⊗k M)

This is precisely the module θM∆ (X) defined in Construction 2.1.

Corollary 2.10. Let ∆1,∆2 : A→ A⊗k A be maps that induce Hopf algebra struc-

tures on A. If ζ ∈ ExtdA(k, k) is such that Φ∆1
(ζ) = Φ∆2

(ζ), then for each A-module

M , the A-modules ∆1(Lζ ⊗k M) and ∆2(Lζ ⊗k M) are stably isomorphic.

Proof. Let P∗ be a projective resolution of k. For i = 1, 2 the complex θM∆i
(P∗) is a

projective resolution of θM∆i
(k) ∼= M . Thus, the A-modules θM∆i

(Ωd(k)) and Ωd(M)
are stably isomorphic. Therefore, the exact sequence (2.9) induces an exact sequence

0 // θM∆i
(Lζ) // Ωd(M)⊕ (proj)

ΘM
∆i

(ζ)
// M // 0

of A-modules, where ΘM
∆i

is the map (2.2). Since ∆1(ζ) = ∆2(ζ), by hypothesis, it

follows from Theorem 2.7 that ΘM
∆1
(ζ) = ΘM

∆2
(ζ). This yields the desired result. �

Remark 2.11. Assume that the k-algebra A is finite dimensional. Then finitely
generated modules over A admit minimal projective resolutions, and hence syzygy
modules are well-defined, up to isomorphism of A-modules. What is more, each
ζ ∈ ExtdA(k, k) is represented by a unique homomorphism Ωd(k) → k, and then
setting Lζ to be its kernel pins down the latter, up to isomorphism. In the same
vein, Ωd(k)⊗k M ∼= Ωd(M), so we get a well-defined module Lζ ⊗k M .
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It then follows from the argument in Corollary 2.10 that if Φ∆1
(ζ) = Φ∆2

(ζ) the
A-modules ∆1(Lζ ⊗k M) and ∆2(Lζ ⊗k M) are in fact isomorphic.

3. Cohomology of elementary abelian p-groups

In this section, we set notation and review some facts about the cohomology, and
Hochschild cohomology, of elementary abelian p-groups; see [8, Section 4.5] and [11]
for details. Throughout k will be a field of positive characteristic p.
Let E := 〈g〉 be a cyclic group of order p. Setting x = g−1 we may write A := kE,

the group algebra of E over k, as a truncated polynomial ring A ∼= k[x]/(xp).
Consider the complex of projective A-modules

P∗ : · · · // A
x // A

xp−1
// A

x // A // 0 , (3.1)

that is nonzero in degrees ≥ 0. The augmentation ε : P∗ → k, that maps Pi to zero
for i > 0 and is the canonical surjection for i = 0, is a morphism of complexes, and
a quasi-isomorphism; thus (P∗, ε) is a minimal projective resolution of k, over A.

Let E := 〈g1, . . . , gr〉 be an elementary abelian group of order pr. For each integer
i = 1, . . . , r, set Ai := k[xi]/(x

p
i ). Then A := A1 ⊗k · · · ⊗k Ar is the group algebra

of E, where xi = gi − 1 for each i. With (P
(i)
∗ , εi) the projective Ai-resolution of k,

from (3.1), the complex

(P∗, ε) := (P (1)
∗

⊗k · · · ⊗k P
(r)
∗
, ε1 ⊗ · · · ⊗ εr) . (3.2)

is a projective A-resolution of k. Set

Pj1,··· ,jr := P
(1)
j1

⊗k · · · ⊗k P
(r)
jr

= A1 ⊗k · · · ⊗k Ar = A

and let θj1,...,jr : P∗ → k be the map whose restriction to Pj1,...,jr is the augmentation
A→ k and whose restriction to P`1,...,`r is zero if ji 6= `i for some i. Let η̂i := θj1,...,jr
where ji = 1 and j` = 0 for ` 6= i. Let ζ̂i := θj1,...,jr where ji = 2 and j` = 0 for ` 6= i.
The cohomology ring of A has the form

Ext∗A(k, k) =

{

k[η1, . . . , ηr] if p = 2,

Λ(η1, . . . , ηr)⊗k k[ζ1, . . . , ζr] otherwise,

where each ηi is represented by the cocycle η̂i and each ζi is represented by ζ̂i. Here
ηi is in degree 1 and ζi is in degree 2. Since the resolution (P∗, ε) is minimal, ηi is

uniquely represented by η̂i and ζi is uniquely represented by ζ̂i.
When p = 2, let ζi = η2i for i = 1, . . . , r. Let S be the polynomial subring of

Ext∗A(k, k) generated by the ζi’s, so that

S = k[ζ1, . . . , ζr] . (3.3)
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The Bockstein map is an operation on cohomology that raises degrees by one. If
p = 2 it coincides with the Steenrod square. For each i, the Bockstein of the
cohomology class ηi is the class ζi. Thus, when k = Fp, the subring S is the subring
generated by the images of the degree one classes under the Bockstein map.
Now consider the Hochschild cohomology. As before, set A := k[x]/(xp). The

enveloping algebra Ae is a truncated polynomial ring in variables y := x ⊗ 1 and
z := 1 ⊗ x, so that Ae = k[y, z]/(yp, zp). The Ae action on A is defined by the
surjection µ : Ae → A that maps y and z to x. Thus Ae ∼= A[y − z]/(y − z)p. The
kernel of µ is the ideal (y − z) and the minimal projective resolution of A as an
Ae-module has the form:

Q∗ : . . . // Ae y−z // Ae
(y−z)p−1

// Ae y−z // Ae // 0 (3.4)

with canonical augmentation Q∗ → A, also denoted µ.

Let A := k[x1, . . . , xr]/(x
p
1, . . . , x

p
r) and set Ai := k[xi]/(x

p
i ). With (Q

(i)
∗ , µi) the

projective Ai
e-resolution of Ai from (3.4), the complex

(Q∗, µ) := (Q(1)
∗

⊗k · · · ⊗k Q
(r)
∗
, µ1 ⊗ · · · ⊗ µr) . (3.5)

is a projective Ae-resolution of A. Set

Qj1,··· ,jr := Q
(1)
j1

⊗k · · · ⊗k Q
(r)
jr

= A1
e ⊗k · · · ⊗k Ar

e ∼= Ae .

Let σj1,...,jr : Q∗ → A be the map whose restriction to Qj1,...,jr is the canonical map

Ae → A and whose restriction to Q`1,...,`r is zero if ji 6= `i for some i. Let δ̂i := σj1,...,jr
where ji = 1 and j` = 0 for ` 6= i and χ̂i := σj1,...,jr where ji = 2 and j` = 0 for ` 6= i.

The Hochschild cohomology ring of A over k has the form

Ext∗Ae(A,A) =

{

A[δ1, . . . , δr] if p = 2,

ΛA(δ1, . . . , δr)⊗A A[χ1, . . . , χr] otherwise,

with δi and χi the cohomology classes corresponding to δ̂i and χ̂i respectively.

4. Changing the coalgebra structure on kE

Let k be a field of positive characteristic p and set A = k[x1, . . . , xr]/(x
p
1, . . . , x

p
r).

There are two often-used coalgebra structures on A that make it a Hopf algebra.
The first comes from viewing A as the group algebra of an elementary abelian

p-group, say 〈g1, . . . , gc〉 with base field of characteristic p. Then A has comultipli-
cation ∆Gr : A→ A⊗ A given by g 7→ g ⊗ g; equivalently,

∆Gr(xi) = xi ⊗ 1 + xi ⊗ xi + 1⊗ xi .
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The antipode is the homomorphism of k-algebras (note that A is commutative)
induced by the map gi 7→ g−1

i , which translates to

σGr(xi) = (1 + xi)
−1 − 1 = −xi + x2i − · · ·+ xp−1

i

The other coalgebra structure on A comes from viewing it as the restricted en-
veloping algebra of the restricted p-Lie algebra kr, with trivial bracket and p-power
operation. Then the comultiplication ∆Lie : A→ A⊗ A is given by

∆Lie(xi) = xi ⊗ 1 + 1⊗ xi .

The antipode is the homomorphism of k-algebras A→ A defined by

σLie(xi) = −xi

The different coalgebra structures induce different actions of Ext∗A(k, k) on the co-
homology of modules; see Example 5.4. However, the actions do agree on the subal-
gebra generated by the Bocksteins of the degree one elements. This is the content of
Theorem 4.4. A key step in its proof is an explicit computation of the map Φ∆ from
Construction 2.5 for the different coalgebra structures. In view of the computations
recalled in Section 3, this amounts to describing the maps

Φ∆Gr
,Φ∆Lie

: k[η1, . . . , ηr, ζ1, . . . , ζr] −→ A[δ1, . . . , δr, χ1, . . . , χr]

from the cohomology of A to its Hochschild cohomology.

Theorem 4.1. With the Hopf algebra structure on A induced by ∆Gr and σGr, the

homomorphism Φ∆Gr
: Ext∗A(k, k) → Ext∗Ae(A,A) of k-algebras is given by

Φ∆Gr
(ηi) = (1 + xi)δi and Φ∆Gr

(ζi) = χi for i = 1, . . . , r.

Proof. We first verify the result for r = 1; that is to say, when A = k[x]/(xp). In
what follows we use the maps φ∆Gr

and ι, and their properties, from Construction 2.5
without comment. Let P∗ be the minimal projective resolution of k over A from
(3.1) and Q∗ the minimal projective resolution of A over Ae from (3.4). Applying
φ∆Gr

to P∗ yields a projective resolution of A over Ae. This gives the top row in the
following commutative diagram of complexes of Ae-modules:

· · · // φ∆Gr
(A)

φ∆Gr
(x)

// φ∆Gr
(A)

φ∆Gr
(xp−1)

// φ∆Gr
(A)

φ∆Gr
(x)

// φ∆Gr
(A)

φ∆Gr
(ε)
// // φ∆Gr

(k)

· · · // Ae

ι

OO

y−z

1+z // Ae

ι

OO

( y−z

1+z
)p−1

// Ae

ι

OO

y−z

1+z // Ae

ι

OO

µ // // A

∼=

OO

· · · // Ae

(1+z)

OO

y−z
// Ae

(y−z)p−1

// Ae

(1+z)

OO

y−z
// Ae µ // // A
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The bottom row is the augmentation of the minimal projective resolution (3.4) of
A over Ae. It is clear that the lower part of the diagram is commutative. As to
the upper part, the commutativity of the square on the top right corner is clear.
For the next square, we note that φ∆Gr

(x) is the map that takes 1 ⊗ 1 to x ⊗ 1 in
φ∆Gr

(A). However, this is not multiplication by the element y = x ⊗ 1 in Ae. See
Construction 2.5. Instead, we have that

y(1⊗ 1) = x⊗ 1 + x⊗ x+ 1⊗ x and z(1⊗ 1) = 1⊗ x

in φ∆Gr
(A). Hence, one has

(y − z)(1⊗ 1) = (1 + z)(x⊗ 1)

and φ∆Gr
(x) is multiplication by (y− z)/(1+ z) as asserted. Likewise, φ∆Gr

(xp−1) is
multiplication by ((y − z)/(1 + z))p−1.

It is clear from the construction that the cocycles η̂ and ζ̂, from P∗ → k, are
mapped to the cocycles (1 + z)δ̂ and χ̂, respectively, from Q∗ → A. This yields the
desired result. For later use we denote

κ : Q∗ −→ φ∆Gr
(P∗) (4.2)

the morphism of complexes of Ae-modules constructed above.
Assume r ≥ 2. Let P∗ be the resolution of k over A, and let Q∗ be the resolution

of A over Ae. The tensor product, over k, of the morphisms κ(i) : Q
(i)
∗ → φ∆Gr

(P
(i)
∗ )

from (4.2) yields a morphism

κ := κ(1) ⊗k · · · ⊗k κ
(r) : Q∗ −→ φ∆Gr

(P∗) ,

of complexes of Ae-modules that lifts the isomorphism A ∼= φ∆Gr
(k). Once again,

it is evident, by inspection, that the cocycles η̂i and ζ̂i are mapped to the cocycles
(1 + z)δ̂i and χ̂i, respectively. �

An analogous argument gives also the next result.

Theorem 4.3. With the Hopf algebra structure on A induced by ∆Lie and σLie, the
homomorphism Φ∆Lie

: Ext∗A(k, k) → Ext∗Ae(A,A) of k-algebras is given by

Φ∆Lie
(ηi) = δi and Φ∆Lie

(ζi) = χi for i = 1, . . . , r
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Proof. The key point, as in the proof of the preceding theorem, is to verify that one
has a commutative diagram of complexes of Ae-modules:

· · · // φ∆Lie
(A)

φ∆Lie
(x)

// φ∆Lie
(A)

φ∆Lie
(xp−1)

// φ∆Lie
(A)

φ∆Lie
(x)

// φ∆Lie
(A)

φ∆Lie
(ε)
// // φ∆Lie

(k)

· · · // Ae

ι

OO

y−z // Ae

ι

OO

(y−z)p−1

// Ae

ι

OO

y−z // Ae

ι

OO

µ // // A

∼=

OO

· · · // Ae

(1+z)

OO

y−z
// Ae

(y−z)p−1

// Ae

(1+z)

OO

y−z
// Ae µ // // A

This proof of the commutativity is similar to that of the previous case. �

The next result is direct consequence of the preceding computations.

Theorem 4.4. Let A = k[x1, . . . , xr]/(x
p
1, . . . , x

p
r), with k a field of positive charac-

teristic p. For any A-module M , the homomorphisms

ΘM
∆Gr

,ΘM
∆Lie

: Ext∗A(k, k) −→ Ext∗A(M,M)

defined in (2.2) using the coalgebra maps ∆Gr and ∆Lie, respectively, coincide on the

subring S = k[ζ1, . . . , ζr] of Ext
∗

A(k, k) defined in (3.3). �

Remark 4.5. In ongoing work, in collaboration with Luchezar L. Avramov, we
have been able to establish a version of the preceding theorem for more general
finite dimensional commutative algebras; the techniques required are rather more
involved and will be presented elsewhere. This raises that possibility that such a
result may be true for any finite dimensional commutative Hopf algebra.

5. Tensor products of Lζ-modules

As in Section 4, let k be a field of positive characteristic p and set

A = k[x1, . . . , xr]/(x
p
1, . . . , x

p
r) .

Let S be the subalgebra of Ext∗A(k, k) identified in (3.3). We investigate the cir-
cumstances under which the tensor products of Lζ modules (see Definition 2.8) are
independent of the Hopf algebra structures on A described in Section 4. The main
result is as follows; see the paragraph preceding Corollary 2.10 for notation.

Theorem 5.1. Let ζ be a homogeneous element of S. For any A-module M , there

is an isomorphism ∆Gr(Lζ ⊗k M) ∼= ∆Lie(Lζ ⊗k M) of A-modules.

Proof. The statement is a direct consequence of Corollary 2.10 and Theorem 4.4. �
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Corollary 5.2. Suppose that ζ1, . . . , ζn are homogeneous elements of positive degree

in Ext∗A(k, k). If all but one of ζ1, . . . , ζn is in the subring S, then there is an

isomorphism of A-modules

∆Gr(Lζ1 ⊗k · · · ⊗k Lζn)
∼= ∆Lie(Lζ1 ⊗k · · · ⊗k Lζn) .

Proof. Without loss of generality, it may be assumed that ζ1, . . . , ζn−1 are in S. The
proof is by a backwards induction on n, the base case n = 1 being a tautology. The
induction hypothesis yields the second isomorphism below

∆Gr(Lζ1 ⊗k · · · ⊗k Lζn)
∼= ∆Gr(Lζ1 ⊗k ∆Gr(Lζ2 ⊗k · · · ⊗k Lζn))
∼= ∆Gr(Lζ1 ⊗k ∆Lie(Lζ2 ⊗k · · · ⊗k Lζn))
∼= ∆Lie(Lζ1 ⊗k ∆Lie(Lζ2 ⊗k · · · ⊗k Lζn))
∼= ∆Lie(Lζ1 ⊗k · · · ⊗k Lζn)

The third one is by Theorem 5.1, and the other two are standard. �

Remark 5.3. The modules Lζ have some remarkable properties. Under certain
circumstances, the annihilator in H∗(E, k) of Ext∗kE(Lζ , Lζ) is the ideal generated
by ζ. This happens, for example, if p > 2 and n is even [5]. In general, the annihilator
of the cohomology of Lζ depends on the choice of the coalgebra structure as we see
in Example 5.4. The sequence (2.9) has a translation

Eζ : 0 // Ω1(k) // Lζ ⊕Q // Ωd(k) // 0

where Q is the projective cover of the trivial module. The translated sequence rep-
resents the cohomology class ζ ∈ Ext1kE(Ω

d(k),Ω1(k)) ∼= ExtdkE(k, k). Consequently,
ζ is in the annihilator of Ext∗kE(M,M) for a moduleM , if and only if Eζ⊗kM splits.
This is equivalent to the requirement that there is a stable isomorphism

Lζ ⊗k M ∼= Ωd(M)⊕ Ω1(M)

The following example, noted already in [3, 9], shows that the conclusion of The-
orem 5.1 may fail if ζ is not in S.

Example 5.4. Let k be a field of characteristic 2 and E an elementary abelian group
of order 4; thus H(E, k) = k[η1, η2]; see Section 3. Set ζ = η1−αη2 ∈ H1(E, k) where
α ∈ k with α 6= 0 or 1. The module Lζ has a k-basis consisting of elements u, v such
that x1u = αx2u and x1v = x2v. Using the Lie coalgebra structure, we can compute
that Lζ ⊗k Lζ is isomorphic to a direct sum of two copies of Lζ generated by u⊗ u
and u⊗v. However, with the group coalgebra structure, Lζ⊗kLζ is indecomposable.
Indeed, under this structure, one has

x1(u⊗ u) = α(u⊗ v) + α(v ⊗ u) + α2(v ⊗ v) = x2(u⊗ u) + α2(v ⊗ v).

and the last term that makes it impossible to decompose Lζ ⊗k Lζ .
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Remark 5.5. Computer calculations using the computer algebra system Magma [2]
give evidence that Corollary 5.2 might have a strong converse. In one experiment,
two random elements γ1 and γ2 were chosen in H4(E, k) with E an elementary
abelian group of order 8 and k the field with 8 elements. The tensor product of
modules Lγ1 and Lγ2 was taken using both of the coalgebra structures and the two
results were compared. This operation was performed several times and in every
case, the two tensor products were isomorphic if and only if one of the two chosen
cohomology elements was in the subring S. The same experiment was performed
taking two elements in degree two of an elementary abelian group of order 27 over
a field of order 9, with the same result.

6. An equality of varieties

Let E be an elementary abelian p-group and k an algebraically closed field of
characteristic p. In the paper [1], Avrunin and Scott prove a conjecture of the first
author (see [3]) asserting the equivalence of the support variety of a module with a
rank variety for that same module. For notation, let kE = k[x1, . . . , xr]/(x

p
1, . . . , x

p
r).

Let M be a kE-module. The support variety VG(M) of M is the closed subset of
Proj H∗(G, k) consisting of all homogeneous prime ideals that contain the annihilator
J(M) in H∗(E, k) of the cohomology ring Ext∗kE(M,M). The rank variety of M ,
denoted V r

G(M) is the set of all points [α1, . . . , αr] in P
r−1 such that α∗(M) is not

a free module. Here α : k[t]/(tp) → kE is given by α(t) = α1x1 + · · · + αrxr and
α∗(M) is the restriction of M to a k[t]/(tP )-module along the map α.
The conjecture states that for α ∈ P

r−1, α ∈ V r
G(M) if and only if α∗(J(M)) =

{0}, where α∗(J(M)) is the restriction of the ideal to the cohomology ring of k[t]/(tp)
along α. This all makes sense because α is a flat embedding. The most difficult part
is the proof of the assertion that if α∗(J(M)) = {0}, then α∗(M) is a free module over
k[t]/(tp). The proof by Avrunin and Scott uses a spectral sequence argument under
the assumption that kE has the coalgebra structure of the restricted enveloping
algebra of an elementary Lie algebra. In this case any such α is a map of Hopf
algebras and this point is important in the proof. The other key step is their proof
that the variety is independent of the coalgebra structure.

This last step is an easy consequence of Theorem 4.4. The point is to restrict to the
subring S. The annihilator in S of Ext∗kE(M,M) is S∩J(M). Moreover VG(J(M)) =
VG(S ∩ J(M)). While the ideal J(M) depends on the coalgebra structure, the ideal
J(M) ∩ S does not, by Theorem 4.4.
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