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The cohomology annihilator of a noetherian ring that is finitely generated as a module over its center is introduced.
Results are established linking the existence of non-trivial cohomology annihilators and the existence of strong
generators for the category of finitely generated modules. Exploiting this link, results of Popescu and Roczen, and
Wang concerning cohomology annihilators of commutative rings, and also results of Aihara and Takahashi, Keller and
Van den Bergh, and Rouquier on strong finite generation of the corresponding bounded derived category, are
generalized to cover excellent local rings and also rings essentially of finite type over a field.

1 Introduction

The central theme of this article is that the two topics that make up its title are intimately related. Inklings of
this can be found in the literature, both on annihilators of cohomology, notably work of Popescu and Roczen [26]
from 1990, and on generators for module categories that is of more recent vintage; principally the articles of
Dao and Takahashi [8], and Aihara and Takahashi [1]. We make precise the close link between the two topics,
by introducing and developing appropriate notions and constructions, and use it to obtain more comprehensive
results than are currently available in either one.

To set the stage for describing this relationship we consider a noetherian ring A that is finitely generated
as a module over its center, A°. We call such a A a noether algebra. For any non-negative integer n, the elements
of A° that annihilate Ext}{ (M, N), for all M and N in mod A, form an ideal that we denote ca™(A). It is not
difficult to see that one gets a tower of ideals --- C ca™(A) C ca®™(A) C -, so their union is also an ideal of
A that we denote ca(A), and call the cohomology annihilator of A. As A is noetherian there exists an integer s
such that ca(A) = ca®(A).

The questions that drive the development in this paper are the following: How big (in any measure of
size, for example, the dimension of the closed subset of Spec A° it determines) is ca(A)? Does it contain non-
zerodivisors? What is the least integer s as above? Not every ring has a non-zero cohomology annihilator ideal.
Indeed, consider the singular locus of A, that is to say, the subset

Sing A := {p € Spec A° | gldim A, is infinite} .

Here gldim denotes global dimension. It is easy to check (see Lemma 2.10) that this is contained in the closed
subset of Spec A defined by V(ca(A)), the set of prime ideals of A° containing ca(A). This means that when the
ideal ca(A) contains non-nilpotent elements, Sing A is contained in a proper closed subset of Spec A°. However,
there are even commutative noetherian rings for which this is not the case; the first examples were constructed
by Nagata [23]; see Example 2.11.

On the other hand, for any M in mod A and integer n > 1 there is an equality

ann x Ext) (M, Q" M) = ann x EX‘LI%"(JW7 mod A)

where Q"M denotes an nth syzygy module of M as a A-module; see Lemma 2.14. Observe that ca™(A) is
the intersection of the ideals on the right, as M varies over mod A. This suggests the following definition: A
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finitely generated A-module G is a strong generator for mod A if there exist integers s and n such that for each
M € mod A, there is A-module W and a filtration

{0y=2,C2,C---CZ, =2 whereZ:W@QSM,

with Z;11/Z; is in add G, for each i. We require also that G contains A as a direct summand, so that G is a
generator in the usual sense of the word.

This definition should be compared with that of a generator of a triangulated category introduced by Bondal
and Van den Bergh [4]. Unlike for triangulated categories, there are various possible notions of “generation”
for module categories, stemming from the fact that, in a module category, kernels and co-kernels are not
interchangeable; some of this is clarified in Section 4. The following result, extracted from Theorem 4.3, links
strong generation and existence of cohomology annihilators.

Theorem. Suppose d = sup{gldim A, | p & Sing A} is finite. If mod A has a strong generator with parameter s
as above, then

V(ca(A)) = V(ca®*T41(A)) = Sing A .
In particular, Sing A is a closed subset of Spec A°. O

One can also describe the cohomology annihilator ideal, at least up to radical, in terms of the generator of
mod A; see Theorem 4.3. Going in the other direction, we prove:

Theorem. When R is a commutative noetherian ring of finite Krull dimension and there exists an integer s
such that ca®(R/p) # 0 for each prime ideal p in R, then mod R has a strong generator. O

This is contained in Theorems 5.1 and 5.2. These results shift the focus to finding non-zero cohomology
annihilators, and one of the main tools for this is the noether different introduced by Auslander and Goldman [2],
under the name “homological different”. This is explained in Section 3. Building on these results we prove

Theorem. If R is a finitely generated algebra over a field or an equicharacteristic excellent local ring, then
mod R has a strong generator and V(ca(R)) = V(ca?**1(R)) = Sing R, where d = dim R. O

This statement is contained in Theorems 5.3 and 5.4. We tackle the case when R is an excellent local ring by
passage to its completion, and the argument illustrates well the flexibility afforded by considering cohomology
annihilator ideals, rather than focusing on ideals defining the singular locus.

The identification of the singular locus with the closed subset defined by the cohomology annihilator is
related to results of Wang [31, 32], that in turn extend work of Dieterich [9], Popescu and Roczen [26], and
Yoshino [34, 35] stemming from Brauer-Thrall conjectures for maximal Cohen-Macaulay modules over Cohen-
Macaulay rings; see the comments preceding Theorems 5.3 and 5.4.

On the other hand, the part of the statement above dealing with generators extends results of Dao and
Takahashi [8], who proved it for complete local rings, assuming that the coefficient field is perfect. As is explained
in Section 7, any strong generator for mod R gives one for its bounded derived category so one obtains:

Theorem. When R is commutative ring that is either essentially of finite type over a field or an equicharac-
teristic excellent local ring, DP(R) is strongly finitely generated. O

This is contained in Corollary 7.2. It generalizes work of Aihara and Takahashi [1] and Rouquier [27, 28]—see
also Keller and Van den Bergh [18]—on the existence of generators for bounded derived categories.

As mentioned before, the noether different is one of our main tools for finding cohomology annihilators.
In Section 6, we develop a different approach, based on tracking the ascent and descent of property that the
cohomology annihilator ideal contains a non-zerodivisor, between a commutative ring A and any A-algebra A
that is finitely generated as an A-module. The following result, contained in Corollary 6.7, is paradigmatic.

Theorem. When M is a torsion-free finitely generated A-module with rank, for any integer n the ideal ca™(A)
has a non-zero divisor if and only if so does ca™(End4(M)). O

A direct corollary is that if a domain admits a noncommutative resolution, in the sense of [7], then
its cohomology annihilator ideal is non-zero; see Remark 6.10. Results such as these highlight the benefit of
considering cohomology annihilators for (not necessarily commutative) noether algebras even if one is interested
only in commutative rings.
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2 Cohomology annihilators

In this section, A will be a noether algebra, that is to say, A is a noetherian ring that is finitely generated when
viewed as a module over its center, that we denote A°. Then the ring A® is also noetherian. We write Mod A
for the category of A-modules; its subcategory consisting of finitely generated modules is denoted mod A. Our
convention is that A acts on a module from the right; thus left modules will be viewed as modules over the
opposite ring to A, denoted A°. Subcategories are assumed full and closed under isomorphisms.

A A-module is finitely generated if and only if it has that property when viewed as a module over A
It follows then that Ext} (M, N) is a finitely generated A°-module for any M, N € mod A and integer n. This
remark will be used without further comment.

Definition 2.1. For each non-negative integer n, we consider the following ideal of AS:
ca”(A) := ann x Ext?"(mod A, mod A) ,

In words, this ideal consists of elements a € A such that a Exty (M, N) = 0 for all M, N in mod A and integers
i > n. Note that ca”(A) C ca”t1(A). The cohomology annihilator of A is the union of these ideals:

ca(A) := U ca(A).
n>0

We also call an element of ca(A) a cohomology annihilator; this should cause no confusion, for the context should
make it clear whether the ideal or an element is intended. Observe that, as the ring A is noetherian, there is
some integer s such that ca(A) = ca®*(A). In fact, more is true and is recorded in Remark 2.3. O

Syzygy modules

Let M be a A-module. We write QM for the kernel of any surjective A-linear map P — M, where P is a

projective A-module. When M is finitely generated, P can be chosen to be finitely generated; we will tacitly

assume that this is the case. By Schanuel’s lemma, Q2 y M depends only on M, up to projective summands. For

any integer n > 1, we set QMM := Q (2" 1 M), and call it an nth syzygy module of M; when M is finitely

generated, so are its syzygies. We omit A from the notation, when the ring in question is clear from the context.
The following well-known observations will be used repeatedly in the sequel.

Remark 2.2. Let 0 - L — M — N — 0 be an exact sequence of A-modules. For each non-negative integer n > 1,
there is an induced exact sequence

00— Q"L — Q"M — Q"N — 0

for some choice of syzygy modules for L, M, and N: It suffices to verify this for n = 1, and then it is immediate
from the Horseshoe Lemma. O

Remark 2.3. Fix M, N in Mod A and a sequence 0 - QM — P — M — 0 defining Q M. The induced map
Homp (Q A M, N) — Ext} (M, N)
is surjective and AS-linear, as are the isomorphisms
Exti T (M, N) = Ext} (QsM,N) forn > 1.
It follows that ca™(A) = ann s Exty (mod A, mod A) for each n. Summing up, there exists an integer s such that
ca(A) = ann yc Ext®(mod A, mod A)
The least such integer s is evidently an invariant of A. Here is a lower bound on it.

Proposition 2.4. Let A be a noether algebra. If the Jacboson radical of AS contains a A-regular sequence of

length d, then ca?(A) = 0. O
Proof. Let z = x1,...,24 be a A-regular sequence in the Jacobson radical of A. The for each integer n > 1,
the sequence 2" :=a¥,..., 27 is also A-regular; see [20, Theorem 26]. Given this, it is not hard to verify that

Ext} (A/(z™), A) is isomorphic to A/(z") as A-modules. Thus (z")A° annihilates this Ext-module and hence
ca’(A) € () (@)X = (0).
n>1

The inclusion is by Krull’s intersection theorem [23, Theorem 4.2]; this is where one needs the hypothesis that
x is in the Jacobson radical of AS. ]
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O

As we shall soon see there may be no non-zero cohomology annihilators, even for “reasonably nice” rings.
But first we describe some examples where we can readily identify some interesting annihilators.

Example 2.5. Recall that the ring A has global dimension < d, for some integer d, if
Ext4™ (mod A,mod A) = 0.
This is the case if and only if ca®!(A) = A O

In what follows, when discussing the commutative ring case, we use R instead of A. In this context, local,
means also noetherian.

Example 2.6. Let R be a local ring and let m denote its maximal ideal. The socle of R annihilates
Extil(mod R,mod R). In particular, if R is artinian and [ is its Loewy length:

I =inf{n>0|m" =0}

there is an inclusion m'~! C cal(R).

Indeed, let M be a finitely generated R-module and F' — M its projective cover; its kernel, Q M, is thus
contained in mF. In particular, the socle of R annihilates 2 M and hence also Homg(€2 M, N). Since there is a
surjection Homg(Q M, N) — Exth (M, N), the assertion follows; see Remark 2.3. O

Example 2.7. Let k be a field and k[z] the formal power series ring in commuting indeterminates z = xg, ..., 2q

over k. Let f be an element in k[z] and set R = k[z]/(f). Then

ca®(R) D ( o7 ﬁ) .

87550’ ey 8xd
This computation is due to Dieterich [9, Proposition 18]. O

Example 2.8. Let k be a field and R = k[z,y]/(2?). Then ca(R) = ca?(R) = (z).
Indeed, the R-module R/(z) has a free resolution

S REZRESR—0,

so Extn(R/(z), R/(x)) = R/(z) for all i > 0, so ca(R) C (z). It remains to check verify that there is an inclusion
(z) C ca?(R). When the characteristic of k is not two, this follows from Example 2.7. In the remaining case, one
can verify it by a direct calculation, using the classification of maximal Cohen-Macaulay R-modules. O

We record a basic obstruction to the existence of cohomology annihilators.

Regular and singular loci

Let A be a commutative noetherian ring. We say that A is a noether A-algebra if it is an A-algebra that is
finitely generated as an A-module; in particular, A is noetherian. In this situation, A is also finitely generated
over its center, since that the action of A on A factors through A°) that is to say, A is a noether algebra.

Lemma 2.9. If A is a noether A-algebra and free as an A-module, then gldim A < gldim A. O

Proof. This is a consequence of the fact that, since A is free A-module of finite rank, for any finitely generated
A-modules M, N and integer n, there are isomorphisms

Exty(M,N) ®a A 2 Exty (M @4 A, N ®@4A).
Note that M ®4 A and N ® 4 A are finitely generated A-modules. |

As usual, we write Spec R for the collection of prime ideals in a commutative ring R, with the Zariski
topology. Thus, the closed sets in the topology are the subsets

V(1) = {p € Spec R [ p 2 I},

for ideals I C R. Extending a notion from commutative algebra, we introduce the regular locus and the singular
locus of a noether algebra as the following subsets of Spec A®:

Reg A = {p € Spec A° | gldim A, < oo} and SingA = Spec A°\ Reg A.

When A is free as a A>-module, it follows from Lemma 2.9 that Reg A C Reg A°.
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Lemma 2.10. Let A be a noether algebra.

(1) For any multiplicatively closed subset U C AS there are inclusions
U lca™(A) Cca™(U'A) and U ‘'ca(A) Cca(U'A).

(2) There is an inclusion Sing A C V(ca(A)).
(3) If ca(A) is not nilpotent, Reg A contains a non-empty open subset of Spec A°.

O

Proof. The crux of the proof of (1) is that each finitely generated module over U ~!A has the form U~!M, for
some M € mod A. It remains to note that there are isomorphisms

U Ext} (M, N) = Extpy_. (U 'M,U'N),

for any M, N € mod A and integer n, and that (U~*A)f = U~1A.
(2) For p € Spec A° with p 2 ca(A), it follows from (1) that ca(A,) = (1), and hence that gldim A, is finite.
(3) This follows from (2) because V(ca(A)) # Spec A° when ca(A) contains non-nilpotent elements. L

Part (2) of the preceding result raises the question: For which rings is there an equality Sing A = V(ca(A))?
See Theorem 4.3 for a partial answer. Such an equality implies, in particular, that the singular locus of A is a
closed subset of Spec A°, and this is not always the case, even for commutative rings.

Example 2.11. The first systematic investigation of rings with non-closed singular loci is due to Nagata [22,
88 4,5]. A particularly simple procedure for constructing such examples was discovered by Hochster [12, Example
1], who used it to describe one-dimensional domain R with countably infinitely many prime ideals of height one
such that Reg R = {(0)}, and the intersection of any infinite set of maximal ideals of R is (0). Thus Sing R is not
contained in any closed set. Ferrand and Raynaud [10, Proposition 3.5] have constructed a three-dimensional
local domain containing C whose singular locus is not closed. O

Annihilators of Ext!

Let A be an associative ring and let M, N be A-modules. We record a few simple observations on the annihilators
of Ext} (M, N), for later use. The one below has been made before; see [11, Lemma 2.2] and [30, Lemma 2.1].

Remark 2.12. Let M be a A-module. If a € A° annihilates Ext} (M, Q 5 M), then there is an exact sequence of
A-modules
0— (0: ra) — MEDUAM — QA(M/aM) — 0.

Indeed, consider the commutative diagram with exact rows:

00— QM N M 0
00— QM P M 0

where the lower one, with P is projective, defines 2 M and the upper one is obtained from it by a pull-back
along the map M < M. Since a annihilates Ext}\(]\/[, Q A M), the upper sequence splits so that N = M @ QA M.
It remains to invoke the Snake Lemma. O

Remark 2.13. Fix & € Ext) (M, N) represented by the extension 0 — N — E < M — 0. It is easy to verify that
for a € A, one has a§ = 0 if and only if the homothety defined by a on M factors through ¢; that is to say, there
is a commutative diagram of A-modules:

M—2 M

N

O

Here is a consequence of this observation; it can also be deduced from Remark 2.12. This result will be used
repeatedly in what follows. Observe that, in view of the stated equality, the ideal on the right is independent of
the choice of the syzygy module, Q) M.
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Lemma 2.14. For any A-module M and choice of nth syzygy module Q2% M, for an integer n > 1, there is an
equality
ann A Ext/%n(M, Mod A) = ann x Extly (M, QR M) .

O

Proof. Evidently, the ideal on the left is contained in the one on the right, so it suffices to verify the reverse
containment. Replacing M by Q"M we can assume n = 1. Let 0 — Q M — P — M — 0 be the exact sequence
of A-modules, with P projective, defining 2 M, and let a be an element in A° that annihilates this, when viewed
as a class in Ext) (M, Q M). From Remark 2.13 one then gets the commutative diagram on the left:

a

M—" M Exty (M, N) Ext’ (M, N)
\P/ \ /

Ext) (P, N)

The one on the right is obtained from the one on the left by applying Exti(—, N), where N is any A-module
and 4 any integer. It remains to note that Ext} (P, N) = 0 when i > 1. u

3 The noether different

In this section we explain how certain ideas introduced by Noether [24], and developed by Auslander and
Goldman [2], and also Scheja and Storch [29], can be used to find cohomology annihilators, especially those that
are non-zerodivisors. The results presented are inspired by, and extend to not necessarily commutative rings,
those of Wang [31, 32]; see also [26, 35]. The novelty, if any, is that some arguments are simpler, and we contend
more transparent; confer the proofs of Lemma 3.2 below with that of [31, Proposition 5.9].

Let A be a commutative ring and A an A-algebra. The opposite ring of A, denoted A°, is also an A-
algebra, and so is its enveloping algebra A® := A° ® 4 A. Then A is a right module over A, with action given by
A (z ®y) = xAy. The map

u: A — A defined by p(z @ y) = zy (1)

is a surjective homomorphism of right A®-modules. Recall that Hompe (A, A) is the center, A, of A. The image
of the induced map
Hompe (A, 1) : Hompe (A, A°) — Hompe (A, A) = A°

is the noether different of A over A; we denote it N(A/A). It is an ideal in AS, and can be identified with
pu(ann e Ker p).

Remark 3.1. Fix an element x € A°. The homothety map A —— A is then AS-linear and it is immediate from
the definition that this map admits a AS-linear factorization

A pe B AL

if and only if = is in N(A/A). In this case, for each A-module M one gets, on applying M ®, —, a factorization

as A-modules:

M *>M®% M®a AM*W M (2)

O

When A is commutative, the following result is [31, Proposition 5.9]; the proof we offer is also different from
the one in op. cit.

Lemma 3.2. For any A-modules M and N, there is an inclusion

N(A/A) - ann 4 Ext (M, N) C ann  Ext} (M, N).



Annihilation and strong generators 7

Proof. Fix an extension 0 = N — L —Z5 M — 0 of A-modules and an element @ in A that annihilates it, when
viewed as an extension of A-modules. Thus, there exists an A-linear map h: M — L such that gh = a; see
Remark 2.13. The desired statement is that, given an element x in N(A/A), there is a A-linear map M — L
whose composition with g is the map M —— M. Such a map is furnished by composing maps along the unique
path from M to L in the commutative diagram of A-modules:

M
s
M Mo, M@AA hoh L®AA Ton L 5 M

The triangle on the left is from (2), and is commutative by construction; that of the one on the right is a direct
verification. u

In order to proceed we need the following result that elaborates the connection between degree-shifting
of Ext and syzygies; confer Remark 2.3. Henceforth let A be a noether A-algebra so that finitely generated
A-modules are also finitely generated as A-modules.

Lemma 3.3. Let A be a noether A-algebra and set I = ann 4 Ext! (A, Q 4A). For each integer n > 1, and for
0 < i <n—1, there is an inclusion

I'ann 4 Ext”; (mod A, mod A) C ann 4 Extz_i(Q “ (mod A), mod A) .
O
Proof. The proof is an induction on i; the base case i = 0 is a tautology. Assume that the desired inclusion
holds for some integer i with 0 <i <n — 1. Fix M and N in mod A. The exact sequence of A-modules
0-Q'M—>P—-Q\M—0
with P a finitely generated projective, induces an exact sequence of A-modules
Ext’y (P, N) — Ext’, "N Q4T M, N) — Exty (Q4 M, N)

Write J for the annihilator of Ext’j (mod A, mod A) as an A-module. In the sequence above, the module on the
right is annihilated by I°.J by the induction hypothesis, while the one on the left is annihilated by I; this follows
from Lemma 2.14, asn —i — 1 > 1 and P is a direct summand of a free A-module. Thus, I**'.J annihilates the
module in the middle. This completes the induction step. n

The result below is our main tool for finding cohomology annihilators. Its proof in fact shows that
I¢.N(A/A) annihilates Ext} (M, N) for n > d, where d = gldim A, for all A-modules M and N, and not only
for the finitely generated ones.

Proposition 3.4. Let A be commutative noetherian ring, A a noether A-algebra, and set I =
ann 4 Ext! (A, Q 4A). If d := gldim A is finite, then

I* - N(AJA) Cca™(A) forn >d+1.
O
Proof. The hypothesis on A is that Extflfl(mod A,mod A) = 0. Thus, for any A-modules M and N, Lemma 3.3
(applied with n = d 4 1 and i = d) yields an inclusion
I C ann 4 ExtYy (Q¢ M, N).

Lemma 3.2 then implies [?N(A/A) annihilates Ext}(Q %M, N) = Extit (M, N). This justifies the desired
inclusion for n = d + 1; it remains to recall Remark 2.3. n

The preceding result is effective only when the noether different is non-zero, whence the import of the next
one. An A-algebra A is separable is N(A/A) = AS; see [2].

Lemma 3.5. Let A be a commutative ring and @ its ring of fractions. If A is a noether A-algebra such that
the Q-algebra Q ®4 A is separable, then N(A/A) contains a non-zerodivisor of A°. O

Proof. The separability hypothesis and [2, Proposition 1.1] imply

N(Q®aA)/Q) = (Q®aAf.
As N((Q®a N)/Q) = Q ®4 N(A/A) by [2, Proposition 4.4], the desired result follows. ™
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Separable noether normalization

We say that a ring A has a separable noether normalization if there exists a subring A of A such that the
following conditions holds:

(i) A is noetherian and of finite global dimension;
(ii) A is finitely generated as an A-module, thus a noether A-algebra;
(iii) @ ®a A is separable over Q; here @) is the ring of fractions of A.

The next result plays a crucial role in Section 5 where it is used to prove that the module categories of
certain rings have generators, in the sense explained in next section. That in turn allows one to identify the full
cohomology annihilator ideal, at least up to radical.

Theorem 3.6. If A admits a separable noether normalization, then for d = dim A° the ideal ca*1(A) of A is
non-zero. O

Proof. Let A be a separable noether normalization of A and set I = ann 4 Ext’ (A, Q 4A). Since A is regular,
for any associated prime ideal p of A the ring A, is a field, so that

Exty (A, Q a0)p = Exty (Ap, (24A)p) =0.

Thus I contains a non-zero element, even a non-zerodivisor, of A; this element will also be non-zero in AS, as
A is its subring. Since N(A/A) contains a non-zerodivisor of A, by Lemma 3.5, the desired result follows from
Proposition 3.4. n

As noted before, the results in this section extend work in [26, 31, 32, 34]; please see [15] for details, and
further developments in this direction.

4 Generators for mod A

In the preceding section the noether different was used as a tool to find cohomology annihilators. In this section,
we take a different tack; one that is inspired by Lemma 2.14 that gives a method for finding annihilators of
cohomology with respect to a single module. The idea then is to find a generator, say GG, in a sense made precise
below, for mod A and use the annihilator of Ext} (G, QG) to find cohomology annihilators for all of mod A.

The arguments involve a construction of an ascending chain of subcategories built out of a single module,
introduced by Dao and Takahashi [8]. It is an analogue of a construction from Bondal and Van den Bergh [4]
for triangulated categories.

Throughout A will be a noetherian ring.

Generation in mod A

Let X be a subcategory of mod A. As usual, add X will denote the subcategory of mod A consisting of direct
summands of finite direct sums of copies of the modules in X.

Definition 4.1. We consider an ascending chain of subcategories of mod A built out of & as follows: Set
|X]o := {0} and |X|; = add X. For n > 2, let |X|, be the subcategory of mod A consisting of modules M that
fit into an exact sequence

0—Y —>MoeW —X—0 (3)

with ¥ in [X|,—1 and X in add X; said otherwise, M is a direct summand of a A-module Z that admits a finite
filtration {0} = Zy C Z; C --- C Z,, = Z with sub-quotients Z;1/Z; in add X for each 0 < i < n. Clearly, one
gets a tower of subcategories of mod A:
{0} =]Xlo S+ C X[ C[X[pp2 S+ .
O

In what follows, the focus is building modules out of syzygies of a given module. With that in mind, given
a subcategory X C mod A and integer s > 0, we set

QX = {QiM | M e X} and Q3 :=[]Q3x,
520

viewed as subcategories of mod A. Since syzygies are only well-defined up to projective summands, it will be
tacitly assumed that Q*X contains all finitely generated projective A-modules. When X consists of a single
module, say G, we write Q3G and Q3 G.
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Lemma 4.2. Let G be a A-module and set I = ann x Ext} (G, QG). For each integer n > 0 and A-module M
in |23 G]|,,, one then has

I" - Ext?!' (M, Mod A) = 0.
In particular, if Q5 (modA) C [5G/ for some integer s, then ca®!(A) D I™. O
Proof. We induce on n. The basis step n = 1 follows from Remark 2.3 and Lemma 2.14, for they yield that I
annihilates Extil(Q “ G,Mod A) for any i, and so also Extil(M, Mod A), for any M in |Q3G/,.

Assume n > 2 and that the desired conclusion holds for all integers less than n. Then, for any i > 1, applying
Ext) (—, N) to the sequence (3) defining M yields an exact sequence

Exth (X, N) — Ext} (M, N) ® Ext} (W, N) — Ext} (Y, N)

of A°-modules. By the induction hypotheses, I”~! annihilates the module on the right, while I annihilates the
one on the left. The exactness of the sequence above implies I annihilates Ext’y (M, N) as desired.

Suppose that Q3 (modA) C [Q3G|, and fix M and N in mod A. Then Q°M is in [Q3G]|,, so it follows
from the already established part of the result that, for each integer ¢ > 1, one has the second equality below

I"Ext*tY(M,N) = I"Ext'(Q°M,N) = 0.

The first one is standard; see Remark 2.3. [ |

Concerning the hypothesis in the preceding result, we note that there is an equality |[Q } X|, = [X],, where
the subcategory [X],, has been introduced in [8].

Finitistic global dimension

We introduce the finitistic global dimension of a noether algebra A as the number
sup{gldim A, | p € RegA}.

This can be infinite, as is the case for any (commutative noetherian) regular ring of infinite Krull dimension;
Nagata [23, Appendix, Example 1] has constructed such examples.
The result below sums up the discussion in this section up to this point.

Theorem 4.3. Let A be a noether algebra whose finitistic global dimension is at most d. If there exists
a G in modA and a non-negative integer s such that Q3 (modA) C [Q3G], for some n >0, then for

I = ann x Extiﬂ(G, Q X'HG), there are equalities
Sing A = V(ca(A)) = V(ca* T+ (A)) = V(I),
In particular, Sing A is a closed subset of Spec AS. O

Proof. Using Remark 2.2, it is easy to verify that the hypothesis on G yields
Q**t(mod A) C |2*(Q!G)|, for any I > 0.

Noting that Ext} (2¢G, Q (Q7G)) = Ext™ (G, Q41G) as A-modules, Lemma 4.2, applied to Q ?G, thus yields
the last inclusion below
Sing A C V(ca(A)) € V(ca*T¥ 1 (A)) C V().

The first one is from Lemma 2.10(2) while the second one is by definition of the ideals in question. It thus
remains to verify that V(I) C Sing A, that is to say that I Z p for any p in Reg A. Recall that for any finitely
generated module E over a commutative ring R and p in Spec R, one has £, = 0 if and only if ann g & Z p.
Thus, the desired conclusion follows because for any p in Reg A there are isomorphisms

Exti™ (G, Q1 G)p = Exty! Gy, (771 G)p) 20,

where the last one holds because gldim Ay < d, by hypotheses. n

Remark 4.4. The proof of Theorem 4.3 gives a more precise result: If G can be chosen to be an ith syzygy
module, for some i > 0, then V(ca(A)) = V(ca* T4 +1(A)). O
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Strong generators for mod A

Let A be a noetherian ring. We say that a finitely generated A-module G is a strong generator for mod A if the
following conditions holds:

(1) Ais a direct summand of G, and
(2) there exist non-negative integers s and n such that Q4 (modA) C |G|,

The first condition says that G is a generator for mod A in the usual sense of the word. This definition is
motivated by later considerations, especially the results on Section 5. Observe that the criterion for G to be a
strong generator is stronger than the conclusion of Theorem 4.3, for it does not allow for the syzygies of G.
We now reconcile this notion with one based on thick subcategories of mod A.
Let X' be a subcategory of mod A. Set thick”(X) := {0} and thick! (X) := add X'. For n > 2 let thick™(X)
be the subcategory of mod A consisting of direct summands of any module that appears in an exact sequence

0-X—-Y—>272—-0

such that, among the other two modules, one is in thickxfl()( ) and the other is in add X'.
Proposition 4.5. Let X, ) be subcategories of mod A. The following statements hold for each integer n > 1.

(1) |X|, C thick™(X).

2) QY (thick™ (X)) C |UZ Q4]

(2) Q3 i=0 A

(3) If Q% (Y) C thick(X) for some integer s > 1, then Y C thick™ (X U {A}).

O

Proof. The inclusion in (1) is immediate from definitions, as is (3) for when Q (M) is in thick™(X), it follows
from the exact sequence defining the syzygy module:

0—Q°M —P,y—-—P—M-—70,

with each P; a finitely generated projective, that M is in thick™* (X U {A}).
(2) For each n > 0, set C, = |J;—, 2 °X. The desired statement is that

Q" (thick™(X)) C |Ca(n—1)|n for each n > 1.

We verify this by an induction on n. The base case n =1 is clear, for both thick'(X) and |Co|; are add(X).
Assume that the inclusion holds for some n > 1, and for every subcategory & of mod A.

Since both thick”*(X) and C,41 are closed under direct summands, it suffices to verify that given X and
Y in mod A with one in thick'(X) and the other in thick™(X), and an exact sequence of A-modules of one of
the following types:

0 —W —>X—Y —0 (i)
0 —X—>W-—Y —0 (ii)
0—X—>Y —W-—0 (iii)

the A-module Q"W is in |Cap|n41. This can be verified by a direct case-by-case analysis; there are six cases to
consider, depending on whether X is in thick® (X)) or in thick™(X).

We do this when X is in thick! (X) and Y is in thick”(X); the argument in the other case is analogous. By
the induction hypothesis X is in [Col; and Q™'Y is in |Ca(n—1)|n, and then it is easy to verify that

Q"X Q"X €[Canli and Q"Y, Q"Y€ |Canly -

These remarks will be used without further comments in what follows.

Case (i): The exact sequence (i) gives rise to an exact sequence
0—QY — WP —X—0

for some finitely generative projective module P. Since Q"X is in |Ca,|1 and Q7Y is in |Copl, the exact
sequence above yields that Q"W is in |Cap|ny1, as desired.
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Case (ii): Since 27X is in |Cap|1 and Q7Y is in |Capln, it follows from the exact sequence (ii) that Q"W
is in ‘CQn|n+1-

Case (iii): The exact sequence (iii) gives rise to an exact sequence
0 —= QY QW — XoP —0

where P is a finitely generated projective module. Since Q"1 X is in |Ca,|; and Q7Y is in |Caplyn, the desired
result holds. [ |

The following result is an immediate consequence of Proposition 4.5.
Corollary 4.6. Let G be a finitely generated A-module.

(1) If Q*(mod A) C |G|, for some positive integers s,n, then mod A = thick®™™ (G @ A).
(2) If mod A = thick™(G) for an integer n > 1, then Q" (mod A) C |U?i%71) QG

O

Remark 4.7. The import of the preceding result is that mod A has a strong generator if and only if there exists
a finitely generated module such that the thick subcategory it generates is all of mod A. The latter condition is
akin to the one for a strong generator of the bounded derived category, DP(mod A), as a triangulated category.
However, for our applications the notion of a strong generator adopted here is the better one, for it distinguishes
between a module and its syzygy. This also suggest that for applications to module theory it would be useful to
investigate the set of pairs (s,n) of integers for which there exists a G in mod A with Q°(mod A) C |G|,,. This
is a two parameter version of the Orlov spectrum of a triangulated category; see [25, Definition 3]. O

A compactness argument

Let X be a subcategory of mod A. Let Add X denote the subcategory of Mod A consisting of direct summands
of arbitrary direct sums of copies of the modules in X'. Following the construction in Definition 4.1, one gets a
tower

{0} = | Add X]o C -+ € [Add X],, € [Add X]psy C -

of subcategories of Mod A. The result below is a module theoretic version of [4, Proposition 2.2.4]. It will be
used in the sequel to prove that rings essentially of finite type over a field have strong generators.

Lemma 4.8. Let A be a noetherian ring and X C mod A a subcategory. For each integer n > 1 there is an
equality | Add X|,, N mod A = |X|,. O

Proof. First we verify the following claim; confer [27, Proposition 3.13].

Claim. Let M be a finitely generated A-module and ¢: M — Z a homomorphism in Mod A, where Z admits a
filtration {0} =2y C Z; C --- C Z,, = Z with sub-quotients in Add X. Then ¢ factors as M — W — Z where
W is a finitely generated A-module with a filtration

where W, 1/W; is a direct summand of Z;/Z;_; and in add X, for each 0 < i < n. O

Indeed, set Z° = Z;/Z;_1 for each i > 1; this is in Add X, by hypotheses. Set M,, = M and ¢,, = ¢. We
construct, for 1 < ¢ < n, commutative diagrams with exact rows

0 Zi_1 Z; A 0

wil] (%‘ﬁi)T T

0 s My ——s M, @ F? 25, i 0

where W is a direct summand of Z* and in add X, and F? is a free A-module of finite rank. These are obtained

as follows: Since M, is finitely generated, the composed map M,, — Z,, — Z™ factors as M, Ymy wnr — Z",
where W™ is a direct summand of Z™ and in add X. Choose a surjective map e,: F* — W™ with F" a
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finitely generated free A-module, and a lifting k,,: F™ — Z,, of the composition F"* — W™ — Z™ through the
surjection Z,, — Z™. Setting M,,_1 to be the kernel of (¢,,€,,) and ¢,,—1 the induced map gives the data required
to construct the diagram above for ¢ = n; it is readily seen to be commutative. Observe that M, 1 is finitely
generated; now repeat the construction above for ¢,,_1.

Finally, set W; ;= M, @ F* @ F'"' @ ... @ F! for each 1 <i <n and Wy := My. There is then a canonical
inclusion W;_; C W;, with quotient W?, and the desired commutative diagram is as follows:

Zo—— 21— s Z,

It remains to note that the composition M,, - W,, — Z,, is precisely ¢.

This justifies the claim. Now suppose that M is a finitely generated module in | Add X|,, so that there
exists a split monomorphism ¢: M — Z, where Z has a n-step filtration with sub-quotients in Add(X). Thus
the claim applies, and we set C' to be the cokernel of the inclusion Wy C W; it is in |X|,, by construction. As
Zy = {0}, the map W — Z factors through C. Since M is a direct summand of W, it is also a direct summand
of C. Therefore M is in |X],, as desired. u

5 Commutative rings

The focus of this section is on converses to Theorem 4.3 that justify the claim made in the introduction; namely,
the existence of cohomology annihilators is intertwined with the existence of strong generators for module
categories. Though the fundamental result in this section, Theorem 5.1, can be formulated for noether algebras,
we have chosen to present it for commutative rings, for the statement appears most natural in that context. The
proof is an adaptation of [8, Theorem 5.7].

Theorem 5.1. Let R be a commutative noetherian ring of Krull dimension d. If there exists a positive integer
s such that ca®*(R/p) # 0 for each p € Spec R, then there is a finitely generated R-module G and an integer n
such that Q5 (mod R) C |G|, In particular, mod R has a strong generator. O

Proof. We induce on dim R, the base case dim R = 0 being clear for then mod R = |R/J(R)|; where J is the
Jacobson radical of R and [ is its Loewy length. Assume dim R > 1.

Consider first the case when R is a domain. Then, by hypothesis, ca®(R) contains a non-zero element a; we
can assume that it is not invertible, for dim R > 1. By the induction hypothesis, there exists an R/aR-module
G such that

Q?/i;f(m()d R/aR) C |G|, for some n € Z. (4)

Fix an R-module M and set N = ?d_lM . Since R is a domain, there is an isomorphism

N/aN = Q5@ 2(Q pM/aQ g M) ;
see, for example, [8, Lemma 5.6]. Viewing G as an R-module, it follows from (4) that N/aN is in |G|,, and hence
that Q g(N/aN) is in |Q gG|,. Since Extj(N, —) is isomorphic to Ext*(Q %M, —), the element a annihilates
it. Since N is at least a first syzygy, because s +d —1 > 1, and R is a domain, a is a non-zerodivisor on N.
Therefore Remark 2.12 yields that N is a direct summand of Q g(N/aN). In conclusion N, that is to say,
Q j;rd_l(M ) is in |Q g(G)|n. Since M was arbitrary, this gives the desired result for R.

This completes the proof when R is a domain. When it is not, one can choose ideals (0) = Iy CI; C--- C
I, = R such that I;;1/I; & R/p; for some p; in Spec R, for each i. By the already established part of the result,
there exists an integer n and R-modules G; such that 2 ?}ﬁ:l(mod R/p;) C |G;|n. For any M in mod R, there
are exact sequences

00— ;M — Ii+1M — IH,lM/IiM —0

for 0 <i < m — 1. It then follows from [8, Corollary 5.5] that there exists a G in mod R such that Q5™ is
in |Gl (s4d)n+1) for each M € mod R. u

Under stronger hypotheses, the argument in the proof of the theorem above gives the following, more precise,
statement.

Theorem 5.2. Let R be a commutative noetherian ring of Krull dimension d. If for each prime ideal p in R,
there exists an integer s < dim R/p + 1 such that ca®(R/p) # 0, then there exists a G in mod R and an integer
n such that Q% (mod R) C |G/,. u O
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Excellent local rings

For complete local rings, the part of the result below concerning the existence of the generator G was proved
in [8, Theorem 5.7] under the additional hypothesis that the residue field of R is perfect. The description of
the singular locus should be compared with [31, Corollary 5.15]. The latter result implies that when R is an
equidimensional complete local ring containing a perfect field, one can replace 2d + 1 by d 4 1 in the statement
below. We refer the reader to [20, (34.A)] for the notion of excellence.

Theorem 5.3. Let R be an equicharacteristic excellent local ring of Krull dimension d. There are equalities
V(ca(R)) = V(ca®*!(R)) = Sing R.

Furthermore, there exists a finitely generated R-module G and an integer n such that ©*(mod R) C |G/, for
s = 3d; if R is complete there is a G for which s = d suffices. In particular, mod R has a strong generator. [

Proof. First we verify the result when R is complete. Fix a prime ideal p in R. The ring R/p is then a complete
equicharacteristic local domain, and hence has a separable noether normalization: When the residue field of the
ring is perfect (for example, when its characteristic is 0), this is due to Cohen [6, Theorem 16)]; the general
positive characteristic case is a result of Gabber’s; see [13, IV, Théoréme 2.1.1]. Thus Theorem 3.6 applies
and yields that cad™ #/P+1(R/p) is non-zero. Since p was arbitrary, Theorem 5.2 guarantees the existence of a
module G with stated property. Given this Theorem 4.3 justifies the equalities involving the singular locus of R.

Next we verify this equality for a general excellent local ring. Given Lemma 2.10(2), the moot point is
that V(ca2?t1(R)) C Sing R holds. As R is excellent, Sing R is a closed subset of Spec R, by definition; see [20,
Definition (34.A) and (32.B)]. Let I be an ideal in R with V(I) = Sing R. Let ¢: R — R denote completion with

respect to the maximal ideal of R, and ®p: Specﬁ — Spec R the induced map. There are then equalities
V(IR) =2¢~Y(V(I)) = Sing R = V(ca®**!(R))

where the first one is standard, the second one holds because the fibers of ¢ are regular, by [20, Theorem 79],
and the last is from the already established part of the result, applied to the complete local ring R. Tt follows
that, for some non-negative integer n, there is an inclusion I"R C ca??*1(R). Fix finitely generated R-modules
M, N. Since R is flat as an R-module, the natural map

Exti ™1 (M, N) @ R — Ext3" (M @5 RN ©r R)

is an isomorphism, so we deduce that I"™ annihilates the module on the left, and hence also Ext?%d‘”'l(M ,N),
because R is also faithful as an R-module. In summary, I C ca?*1(R). This gives the desired inclusion.

It remains to justify the existence of a G with the stated properties. As in the first part of the proof, given
Theorems 5.1 it suffices to note that for p in Spec R, the ideal ca?¢*1(R/p) is non-zero: we already know that the

closed subset of Spec (R/p) that it defines coincides with Sing (R/p), and that is a proper closed subset because
R/p is a domain. |

Rings essentially of finite type over fields

Compare the next result with Theorem 5.3. When £ is perfect and R is itself a finitely generated k-algebra and
a domain, the equalities below can be improved: 2d 4+ 1 can be replaced by d + 1; this is by [32, Theorem 3.7].

Theorem 5.4. Let k be a field and R a localization of a finitely generated k-algebra of Krull dimension d.
There are equalities
V(ca(R)) = V(ca®**(R)) = Sing R.

Furthermore, there is a finitely generated R-module G such that Q9%(mod R) C |G/, for some integer n. In
particular, mod R has a strong generator. O

Proof. It suffices to prove that a G as desired exists, for then one can invoke Theorem 4.3 to justify the stated
equalities. Suppose R = U1 A for some finitely generated k-algebra A of Krull dimension d, and multiplicatively
closed subset U of A. Since every finitely generated R-module is a localization of a finitely generated A-module,
and localization preserves exact sequences, it suffices to prove the result for A. Thus, we may assume R is itself
a finitely generated k-algebra, of dimension d.

First, we consider the case where k is perfect. The argument that such a G exists is then the same as
for Theorem 5.3: For each prime ideal p in R, the ring R/p is also a finitely generated k-algebra, and hence
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has a separable noether normalization (see, for example, [23, Theorem 39.11)] so Theorem 3.6 yields that
cadm B/P+1(R /p) is non-zero. The desired result then follows from Theorem 5.2.

Next we tackle the case of an arbitrary field k by adapting an argument from [18, Proposition 5.1.2]. Let K
be an algebraic closure of k. Then R ®j K is a finitely generated K-algebra of dimension d. Since K is perfect,
the already establish part of the statement yields a finitely generated R ®) K-module C and an integer n > 0
such that

Q%(mod (R &y, K)) C|C|, .

Since C is finitely generated, there exists a finite field extension [ of k and a finitely generated (R ®y I)-module
G such that C =2 G ®; K. Note that R ®g [, hence also G, is finitely generated as an R-module. We claim that,
viewing G as an R-module, there is an inclusion

Q4modR) C |G, .

Indeed, let M be a finitely generated R-module. Then the (R ®; K)-module M ®j, K is finitely generated and
hence Q%o (M ®) K) belongs to |G ®; K|,. Since the R-module G @; K is a (possibly infinite) direct sum of
copies of (G, there is an inclusion

|G @, K|, C |Add{G}|, in Mod R.

The R-module Q%M is a direct summand of (Q4M) @ K = Q% (M @ K), so it follows that Q%M is in
| Add{G}|, N mod R. It remains to apply Lemma 4.8, recalling that G is finitely generated over R as well. This
completes the proof of the theorem. u

The rings in Example 2.11 and the results in this section suggest the following.
Question 5.5. Does mod R have a strong generator when R is an excellent ring? O

Any counter-example must have Krull dimension at least two; this follows from Corollary 5.7 below, which
is deduced from the next statement. In it, the Jacobson radical and the nil radical of a ring R are denoted rad R
and nil R, respectively. See [20, §31]for the definition of a Nagata ring,.

Proposition 5.6. Let R be a Nagata ring of Krull dimension one.

(1) Assume R is reduced, let S be the integral closure of R, and T the quotient of R by its conductor ideal.
With ¢ the Loewy length of T and n = 2 + 2¢, there is an inclusion

Qr(mod R) C [S® QR(S)@® (T/radT) & Q g(T/ rad T)|, .

(2) Let R denote the ring R/ nil R and G a finitely generated R-module with #(mod R) contained in |G|,
for some integer n. For j = min{i | (nil R)* = 0} one has

Qg(mod R) C |G @ nil(R)|2n; -

O

Proof. For (1), let C' be the conductor of R. Since R is a reduced Nagata ring, S is a finitely generated R-

module, and hence C contains a non-zerodivisor of R. Any finitely generated S-module is also finitely generated

as an R-module, and that the ring T is artinian; see, for example. These remarks will be used without comment.
Consider the exact sequence of R-modules

0—C—R—T—0.
Fix an R-module M. Applying M ®r — to this exact sequence yields exact sequences

0—N-—M-—>M®rT —0,

5
0 — Tor(M,T) — M ®r C — N — 0. 5)

Note that C' is also an ideal of S, so M ®p C acquires a structure of an S-module. Since S has global dimension
one, one can construct an exact sequence 0 - P — @Q - M ®r C' — 0 of S-modules with P and @ finitely
generated projective S-modules. This exact sequence yields an exact sequence of the form

0 —Qr(Q) —m QM ®rC)— P —0.



Annihilation and strong generators 15

It follows that Q r(M ®pg C) is contained in the subcategory |S @ Qg (S)|2 of mod R. On the other hand, M @ T
and Torf(M,T) are in |T/rad Ty, because the ring T is artinian. Given these, the desired result follows from
the exact sequences in (5).

(2) For any R-module M has a filtration {0} C I'M C...CIM C M that induces, up to projective
summands, a filtration

{0} CQR(IPM) C ... CQr(IM) C Qg(M).
The desired assertion follows from [8, Proposition 5.3(2)]. u

The next result is a direct consequence of the Proposition 5.6. Since excellent rings have the Nagata property,
see [20, (34.A)], it settles, in the affirmative, Question 5.5 for rings of Krull dimension one.

Corollary 5.7. Let R be a Nagata ring of Krull dimension one. Then there exist an R-module G and an integer
n such that Q gp(mod R) C |G|,. [ | O

6 Ascent and descent

The crucial input in Theorems 5.1 and 5.2 is the existence of non-zero cohomology annihilators. Motivated by
this, in this section we track the ascent and descent of this property between a commutative noetherian ring A
and a noether A-algebra A, which need not be commutative. The central result is Corollary 6.7 that is deduced
from the more technical, but also more precise, Theorems 6.1 and 6.4.

Theorem 6.1. Let A be a noether A-algebra and set I :=ann 4 Ext!(A,Q 4A). For each integer n > 1 and
element a € ca™(A), one has
a?I™ ExtZ"(mod A, mod A) = 0. (6)

When the A-module A has positive rank, there exists a non-zerodivisor b € A such that

bann 4 Exti"(mod A,mod A) C ca™(4). (7)

Proof. We repeatedly use the fact that I annihilates Extil(A7 mod A); see Lemma 2.14.
Fix an X € mod A and for Y := Qx_lX consider an exact sequence of A-modules

0= Q2(Y/aY) P —=Y/aY -0
with P projective. For each M € mod A and integer ¢ > 1, it induces an exact sequence
Ext’y (P, M) — Ext’y(QA(Y/aY), M) — Ext’*(Y/aY, M)

of A-modules, so al annihilates the module in the middle. Since a - Ext’ (Y, mod A) = 0, the exact sequence in
Remark 2.12 yields an exact sequence

Ext’y (Qa(Y/aY), M) — ExtYy (Y, M) @ Ext, (Q oY, M) — Ext’% ((0 :y a), M)
Therefore, a?I annihilates Extf4(Y, M), for each ¢ > 1. Considering the exact sequence
0=Y—->P, o= =P —-F—=+X—=0

of A-modules with each P; projective, a standard iteration yields (6).
Assume now that A has positive rank, say equal to r, as an A-module. Thus, there is an exact sequence of
A-modules
0-A">A—-T—0

such that T = 0 for some non-zerodivisor b € A. Let M be a finitely generated A-modules. The exact sequence
above yields an exact sequence of A-modules

Tor (M, T) = M" - M ®aA— M@, T — 0.

Since b annihilates Torf(M, T) and M ®4 T, Remark 6.2 below, applied with N = M ®4 A and J = (b), gives
(7). This is where the hypothesis that » > 1 is used. [ |
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Remark 6.2. Let K — M — N — C be an exact sequence of A-modules and J an ideal in A° with J(K @ C) = 0.
For any A-module X and integer n there is an inclusion

J? - ann x Ext} (N, X) C ann » Ext} (M, X).

Indeed, replacing K and C' by the appropriate quotient module and submodule, we may assume that there are
exact sequences 0 - K - M - Z —-0and 0 - Z — N — C — 0. These induce exact sequences

Ext}(N, X) — Ext}(Z, X) — Ext}y™(C, X),
Ext%(Z, X) — Ext®(M, X) — Exth (K, X).

Since .J annihilates K and C, it also annihilates Ext’;™ ! (C, X) and Ext’;(K, X). The desired inclusion follows. [

Lemma 6.3. Let M be a finitely generated A-module and set A = End4(M). Up to projective A-summands,
any second syzygy of a finitely generated A-module is isomorphic to a A-module of the form Hom4 (M, N), for
some finitely generated A-module N. O

Proof. Consider the functor Hom (M, —): mod A — mod A. It restricts to an equivalence addg M —— proj A,
so that each finitely generated projective A-module is isomorphic to Hompg(M, M’) for some M’ € addg M.
Moreover, for any finitely generated A-module X, one can construct an exact sequence of A-modules

Homa (M, f)
—

Hom 4 (M, M) Hom (M, My) — X — 0

where f: My — Mj is an A-linear map in add4 M. Observe that the inclusion Ker(f) C M; induces an exact
sequence of A-modules

Homa (M, f)
A

0 — Homa (M, Ker(f)) — Homa (M, M) Homy (M, My) — X — 0.

This shows that Hom4 (M, Ker(f)) is a second syzygy of X as a A-module. ]

Theorem 6.4. Let M be a finitely generated A-module and set I := ann 4 Ext! (M, Q 4M). When M has
positive rank, there exists a non-zerodivisor b € A such that for each integer n > 1 and element a € ca™(A), one

has
ba®I" ! C ca™?(Endy (M) .

O

Proof. Set A := End 4 (M) and let r be the rank of the A-module M. There is then an exact sequence of finitely
generated A-modules
0—A" —M—T—0

and a non-zerodivisor b in A with T = 0. Applying Hom 4 (M, —) to it yields a A-module D with bD = 0 and
Hom a4 (M, A)" = QaD. Since r > 1, it follows that

bExtz " (Homa(M, A),mod A) = 0. (8)

Fix an N € mod A and set L = Q;Lle. For any a € ca™(A), from Remark 2.12 one gets an exact sequence of
A-modules.
0—(0:pa) - L®QyL— A> — L/aL — 0

Applying Hom 4 (M, —) then induces exact sequences of A-modules

0 — Homa(M,Q a(L/aLl)) — Homus (M, A)®> — E3 — 0,
E; — Homa(M,L) @ Homa(M,Q aL) — Homa(M,Q 4(L/aL)) — Es,

where a annihilates the E;. It follows from the first exact sequence and (8) that
abExtfl(HomA(M,QA(L/aL)),modA) =0.
Then the second exact sequence and Remark 6.2 yield

a*bExts " (Homa(M, L), mod A) = 0.
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For each j > 0 there is an exact sequence 0 — Qi‘HN — At — QJAN — 0 of A-modules, which induces an
exact sequence of A-modules

0 — Homa (M, Q%' N) — Homa (M, A)Y — Homa (M, Q7 N) — Ext!y (M, Q7' N).
Using these exact sequences, (8) and Remark 6.2 a descending induction on j yields
(a®b)(bI)" 71 Extf("_j)(HomA(M,QQN),modA) =0 for0<j<n-1

Therefore a3b™I"~1 annihilates Extf"(HomA(M, N),modA), and so also Extf(n“)(mod A,modA), by
Lemma 6.3. This completes the proof of the theorem. [ ]

Non-zerodivisors

For applications, the “useful” cohomology annihilators are ones that are also non-zerodivisors. The development
below is driven by this consideration.

Lemma 6.5. Let A be a commutative noetherian ring. If M is a finitely generated A-module with rank, then
ann 4 Ext’ (M, Q 4 M) contains a non-zerodivisor. O

Proof. For any associated prime p € Spec A, the Ap-module M, is free, so
Exty (M, Q 4 M), = Exty (M, (2 4M),) =0
This means that the annihilator ideal in question is not contained in such p, as desired. u

Lemma 6.6. Let A be a commutative noetherian ring and A be noether A-algebra of positive rank. The
following statements hold.

(1) The natural map A — A is injective.
(2) If A is reduced and an ideal J C A° contains a non-zerodivisor, then so does J N A C A.
(3) If ca(A) contains a non-zerodivisor, then A is reduced.

O

Proof. (1) Since A has rank as an A-module, there is an injective homomorphism A" — A of A-modules, for
r:=ranky A. If a is in the kernel of the ring homomorphism A — A, then aA = 0, and hence aA” = 0. Since
r > 0, it follows that a = 0.

(2) Set R := A°. Suppose that the ideal I := J N A of A only contains zerodivisors. It is then contained in
an associated prime p of A. The extension A/I — R/.J is module-finite, so there exists a prime ideal q of R
containing J such that ¢ A = p. Since A is reduced, p is a minimal prime so it follows that q is a minimal
prime of R; see [20, Theorem 5 ii)]. Hence q consists of zerodivisors of R, contradicting the fact that J contains
a non-zerodivisor.

(3) It suffices to prove that for any p € Spec A, if depth A, is zero, then A, is a field. Since ca(A)p is
contained in ca(Ay), by Lemma 2.10(1), we may replace A and A by their localizations at p, and assume that
A is a local ring, say with maximal ideal m, with depth A = 0, and verify that A is a field. Now A is a finitely
generated free A-module.

By assumption, there exist a non-zerodivisor z € A° and an integer n > 1 such that x Ext}y (mod A,mod A) =
0. Since A is a local ring of depth 0, it suffices to verify that A is regular, and this follows from the

Claim. Ext"y(k,k) = 0 for k = A/m, the residue field of A. O
Set ¢ := ranky, Ext"; (k, k) and assume ¢t > 1. As A is a free A-module one has

Exti (k@4 A k@4 A) 2 Ext’y(k, k) @4 A= (k@A) =2 (A/mA)’

as A-modules. Thus z(A/mA)? = 0, that is to say, x belongs to mA. Since A has depth zero, it possesses a nonzero
socle element, say a. Hence az € a(mA) = (am)A = 0. This contradicts the fact that « is a non-zerodivisor of A
(recall from (1) that the map A — A® is injective) and justifies the claim. [ |

Corollary 6.7. Let A be a commutative noetherian ring.

(1) If A is a noether A-algebra of positive rank and ca™(A) contains a non-zerodivisor, then A is reduced, and
ca”(A) contains a non-zerodivisor.
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(2) If ca™(A) contains a non-zerodivisor, then for any torsion-free A-module M of positive rank, ca™(End 4 (M))
contains a non-zerodivisor.

O

Proof. (1) Given such a A, Lemma 6.5 implies that the ideal I := ann 4 Ext} (A, Q 4A) of A contains a non-
zerodivisor, and it follows from Lemma 6.6(3) that A is reduced. Then Lemma 6.6(2) yields that the ideal
AnNca™(A) of A contains a non-zerodivisor as well. Products of non-zerodivisors remain non-zerodivisors so it
remains to apply Theorem 6.1.

(2) Set A :=Ends(M) and I := ann 4 Ext} (M, Q 4M). By Lemma 6.5, the ideal T of A contains a non-
zerodivisor, so it follows from Theorem 6.4 that the annihilator ideal of Ext (mod A,mod A), viewed as an
A-module, contains a non-zerodivisor as well. It remains to note that, since the A-module M is torsion-free, the
map A — A takes non-zerodivisors of A to non-zerodivisors of A°. u

Corollary 6.8. Let A be a reduced ring. If there exists a noether A-algebra A of positive rank and a finitely
generated A-module G such that mod A C thick’y (G) for some n > 1 (for example, if gldim A < n), then ca”*1(A)
contains a non-zerodivisor. O

Proof. There is a non-zerodivisor x € A with xExtil(G, mod A) = 0 by Lemma 2.14(1). It then follows that
2™ ExtZ"(mod A, mod A) = 0. The assertion follows from (7). n

The preceding result applies when A is a subring of a (commutative) regular ring S of finite Krull dimension
such that S is a finitely generated A-module. Quotient singularities provide one such family of examples, and
this seems worth recording.

Corollary 6.9. Let k be a field and S either k[z], the polynomial ring, or k[z], the formal power series ring,
in commuting indeterminates x = x1,...,xq over k. If G is a finite subgroup of the k-algebra automorphisms of
S, then ca?*t!(S%) is non-zero. O

Proof. The only thing to note is that S is a finitely generated module over S¢ (see, for example, [29, Propositions
(19.3) and (19.4)] and that the global dimension of S equals d. Thus, Corollary 6.8 applies. u

Remark 6.10. Following [7], we say that A admits a noncommautative resolution if there exists a finitely generated
faithful A-module M such that End 4 (M) has finite global dimension. Corollary 6.8 thus implies that when A is
a domain admitting a noncommutative resolution, ca(A) contains a non-zerodivisor. Since a finitely generated
faithful module M over a domain A has positive rank, so does End 4 (M) as an A-module. O

Remark 6.11. The hypothesis in Corollary 6.7 that A is module-finite over A is necessary: If A is a non-reduced
ring possessing a prime ideal p such that A, is a field (for example,. k[[x,y]]/(z?y)), then ca(A,) contains a
non-zerodivisor. The condition that A has positive rank over A is also needed: For any A and maximal ideal m
of A, the ideal ca(A/m) contains a non-zerodivisor. O

Commutative rings

Here is one application of Theorems 6.4 and 6.1. Note that any Nagata ring (hence any excellent ring) satisfies its
hypothesis, by definition; see [20, §31]. Thus the result below, whose statement was suggested to us by Ken-ichi
Yoshida, subsumes [31, Proposition 2.1] that deals with one-dimensional reduced complete local rings.

Corollary 6.12. Let R be a commutative noetherian ring such that its integral closure R is finitely generated
as an R-module. Then the ideal ca”(R) C R contains a non-zerodivisor if and only if so does ca”(R) C R. O

Proof. We have R C R C Q(R), where Q(R) denotes the total ring of fractions of R. As R is module-finite
over R, there is a non-zerodivisor a of R with aR C R. Hence rankg(R/R) = 0, and rankz(R) = 1. The ‘if’ part
now follows from Corollary 6.7(1).

Now consider maps ¢: R — Endg(R) and ¥: Endg(R) — R by ¢(x)(y) = xy for z,y € R and ¥ (f) = f(1).
It is easy to verify that these are mutually inverse bijections. Therefore R =2 Endg(R). Since R is torsionfree as
an R-module, Corollary 6.7(2) completes the proof of the converse. u

The preceding result can be used to give another proof of Corollary 5.7, though the crux of argument is
essentially the same.
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7 Strong generators for derived categories

Let A be a noetherian ring and DP(mod A) the bounded derived category of mod A. In analogy with the
construction of thick’y (C') in Section 4, for any complex C' in DP(mod A) one can define a tower of subcategories
of DP(mod A):

{0} C thickp(C) C -- - C thickp(C) C thicki™(C) C

The only difference is that one is allowed the use of {%°C'};cz, the suspensions of C, in building thicky(C),
and that exact sequences are replaced by exact triangles. For details, see, for example, [4]. As in [4], see
also [27], we say that DP(mod A) is strongly finitely generated if there exists a C' and an integer n such that
thickfy(C') = DP(mod A). Such a C is then a strong generator for DP(mod A).

In the same vein, one can construct a tower of subcategories in {thickp (C)}n>0 in Dsg(modA), the
singularity category of R, introduced by Buchweitz [5] under the name ‘stable derived category’. This then leads
to a notion of a strong generator for this category.

The gist of the result below, which is well-known, is that any strong generator for mod A, in the sense of
Corollary 4.6, is also a strong generator for DP(mod A) and for Dy (mod A).

Lemma 7.1. Let A be a noetherian ring and G a finitely generated A-module.

(1) If |2*(mod A)| C [Q 1 G|, for integers s,n > 1, then Dgg(mod A) = thickg:gl(G).
(2) If mod A = thick} (G) for an integer n > 1, then D®(mod A) = thickp} ! (G).

Proof. We view mod A as a subcategory of D?(mod A), and also of Dgg(A), as usual.

(1) Since any projective module is zero in Dgs(A), for any finitely generated A-module M and integer i,
there is an isomorphism Q*M 2= %~"M in Dgg(A). Given this, it is easy to verify that |2 3 G|, C thickp  (G) for
each integer n, and then (1) follows.

(2) Tt is clear from the constructions that thick)y (G) C thickp(G) for each integer n. Fix a C' in D®(mod A),
and let Z and B denote the cycles and the boundaries of C, respectively. As Z and B are graded A-modules,
they are in thicktD(G). Viewing them as complexes, with zero differential, there is an exact sequence of complexes
of A-modules

0—2—C—%X¥B—0.

It thus follows that C is in thicktDJz}x)(G), as desired. |

In view of Corollary 4.6(1) and Lemma 7.1(2), the following result is a direct consequence of Theorems 5.3
and 5.4.

Corollary 7.2. Let R be a commutative ring. If R is an equicharacteristic excellent local ring or essentially of
finite type over a field, then D°(R) is strongly finitely generated. u O

The part of this result dealing with rings essentially of finite type over a field was proved by Rouquier [27,
Theorem 7.38] when the field is perfect, and extended to the general case by Keller and Van den Bergh [18,
Proposition 5.1.2]. For complete local rings containing a perfect field, the result was proved by Aihara and
Takahashi [1, Main Theorem].

Remark 7.3. Example 2.11 furnishes rings (even commutative noetherian) whose module categories do not have
strong generators, since the singular loci of the rings there are not closed; see Theorem 4.3. For other examples,
see [8, Theorem 4.4]. O

Osamu Iyama asked us if it would be possible to bound the dimension of D(R) in terms of the least integer
n such that ca”(R) contains a non-zerodivisor. We do not know the answer, but offer the following examples.
We thank Kei-ichiro Iima for suggesting the second one.

Example 7.4. Let k be a perfect field of characteristic > 3, and set
R:=k[[z,y, z,w]]/(x* —y? y* — 2%, 22 —w?) and J:= (2yz, zyw,z2w, yzw) C R.

Then R is a one-dimensional reduced complete intersection and J is its Jacobian ideal. The element zyz, which
is a non-zerodivisor on R, is contained in ca?(R), by [31, Theorem 5.3]. However there are inequalities

dim D°(R) > dim Dyg(R) > codim R — 1 = 2,

where the first one is clear and the second one follows from [3, Corollary 5.10].
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Here is a example that is also a domain: Let k be a field and let R the numerical semigroup ring
E[[t16, 17,418 #20 +24]] viewed as a subring of k[[t]]. Then R is isomorphic to k[[z,y,z,w,v]]/(y* — xz, 2% —

rw,w? — xv,v% — ), so a complete intersection domain. By [31, Proposition 3.1] we have t%4R C ca?(A), while

dim DP(R) > dim Dgg(R) > codim R — 1 = 3.

A decomposition of the derived category

As is apparent from what has been discussed so far, the existence of cohomology annihilators of a ring has an
impact on structure of its module category, and hence on its derived category. There is even a clear and direct
connection between the two: When A is noether algebra, ca™(R) contains a non-zerodivisor a if and only if D(A)
is a product of the subcategory consisting of complexes annihilated by a and thickj(A). A proof of this result
is presented in [14].
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