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The cohomology annihilator of a noetherian ring that is finitely generated as a module over its center is introduced.

Results are established linking the existence of non-trivial cohomology annihilators and the existence of strong

generators for the category of finitely generated modules. Exploiting this link, results of Popescu and Roczen, and

Wang concerning cohomology annihilators of commutative rings, and also results of Aihara and Takahashi, Keller and

Van den Bergh, and Rouquier on strong finite generation of the corresponding bounded derived category, are

generalized to cover excellent local rings and also rings essentially of finite type over a field.

1 Introduction

The central theme of this article is that the two topics that make up its title are intimately related. Inklings of
this can be found in the literature, both on annihilators of cohomology, notably work of Popescu and Roczen [26]
from 1990, and on generators for module categories that is of more recent vintage; principally the articles of
Dao and Takahashi [8], and Aihara and Takahashi [1]. We make precise the close link between the two topics,
by introducing and developing appropriate notions and constructions, and use it to obtain more comprehensive
results than are currently available in either one.

To set the stage for describing this relationship we consider a noetherian ring Λ that is finitely generated
as a module over its center, Λc. We call such a Λ a noether algebra. For any non-negative integer n, the elements
of Λc that annihilate ExtnΛ(M,N), for all M and N in modΛ, form an ideal that we denote can(Λ). It is not
difficult to see that one gets a tower of ideals · · · ⊆ can(Λ) ⊆ can+1(Λ) ⊆ · · · , so their union is also an ideal of
Λc that we denote ca(Λ), and call the cohomology annihilator of Λ. As Λ is noetherian there exists an integer s
such that ca(Λ) = cas(Λ).

The questions that drive the development in this paper are the following: How big (in any measure of
size, for example, the dimension of the closed subset of SpecΛc it determines) is ca(Λ)? Does it contain non-
zerodivisors? What is the least integer s as above? Not every ring has a non-zero cohomology annihilator ideal.
Indeed, consider the singular locus of Λ, that is to say, the subset

Sing Λ := {p ∈ SpecΛc | gldimΛp is infinite} .

Here gldim denotes global dimension. It is easy to check (see Lemma 2.10) that this is contained in the closed
subset of SpecΛc defined by V(ca(Λ)), the set of prime ideals of Λc containing ca(Λ). This means that when the
ideal ca(Λ) contains non-nilpotent elements, Sing Λ is contained in a proper closed subset of SpecΛc. However,
there are even commutative noetherian rings for which this is not the case; the first examples were constructed
by Nagata [23]; see Example 2.11.

On the other hand, for any M in modΛ and integer n ≥ 1 there is an equality

ann Λc ExtnΛ(M,ΩnM) = ann Λc Ext>nΛ (M,modΛ)

where ΩnM denotes an nth syzygy module of M as a Λ-module; see Lemma 2.14. Observe that can(Λ) is
the intersection of the ideals on the right, as M varies over modΛ. This suggests the following definition: A
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finitely generated Λ-module G is a strong generator for modΛ if there exist integers s and n such that for each
M ∈ modΛ, there is Λ-module W and a filtration

{0} = Z0 ⊆ Z1 ⊆ · · · ⊆ Zn = Z where Z =W
⊕

ΩsM ,

with Zi+1/Zi is in addG, for each i. We require also that G contains Λ as a direct summand, so that G is a
generator in the usual sense of the word.

This definition should be compared with that of a generator of a triangulated category introduced by Bondal
and Van den Bergh [4]. Unlike for triangulated categories, there are various possible notions of “generation”
for module categories, stemming from the fact that, in a module category, kernels and co-kernels are not
interchangeable; some of this is clarified in Section 4. The following result, extracted from Theorem 4.3, links
strong generation and existence of cohomology annihilators.

Theorem. Suppose d = sup{gldimΛp | p 6∈ Sing Λ} is finite. If modΛ has a strong generator with parameter s
as above, then

V(ca(Λ)) = V(cas+d+1(Λ)) = Sing Λ .

In particular, Sing Λ is a closed subset of SpecΛc.

One can also describe the cohomology annihilator ideal, at least up to radical, in terms of the generator of
modΛ; see Theorem 4.3. Going in the other direction, we prove:

Theorem. When R is a commutative noetherian ring of finite Krull dimension and there exists an integer s
such that cas(R/p) 6= 0 for each prime ideal p in R, then modR has a strong generator.

This is contained in Theorems 5.1 and 5.2. These results shift the focus to finding non-zero cohomology
annihilators, and one of the main tools for this is the noether different introduced by Auslander and Goldman [2],
under the name “homological different”. This is explained in Section 3. Building on these results we prove

Theorem. If R is a finitely generated algebra over a field or an equicharacteristic excellent local ring, then
modR has a strong generator and V(ca(R)) = V(ca2d+1(R)) = SingR, where d = dimR.

This statement is contained in Theorems 5.3 and 5.4. We tackle the case when R is an excellent local ring by
passage to its completion, and the argument illustrates well the flexibility afforded by considering cohomology
annihilator ideals, rather than focusing on ideals defining the singular locus.

The identification of the singular locus with the closed subset defined by the cohomology annihilator is
related to results of Wang [31, 32], that in turn extend work of Dieterich [9], Popescu and Roczen [26], and
Yoshino [34, 35] stemming from Brauer-Thrall conjectures for maximal Cohen-Macaulay modules over Cohen-
Macaulay rings; see the comments preceding Theorems 5.3 and 5.4.

On the other hand, the part of the statement above dealing with generators extends results of Dao and
Takahashi [8], who proved it for complete local rings, assuming that the coefficient field is perfect. As is explained
in Section 7, any strong generator for modR gives one for its bounded derived category so one obtains:

Theorem. When R is commutative ring that is either essentially of finite type over a field or an equicharac-
teristic excellent local ring, Db(R) is strongly finitely generated.

This is contained in Corollary 7.2. It generalizes work of Aihara and Takahashi [1] and Rouquier [27, 28]—see
also Keller and Van den Bergh [18]—on the existence of generators for bounded derived categories.

As mentioned before, the noether different is one of our main tools for finding cohomology annihilators.
In Section 6, we develop a different approach, based on tracking the ascent and descent of property that the
cohomology annihilator ideal contains a non-zerodivisor, between a commutative ring A and any A-algebra Λ
that is finitely generated as an A-module. The following result, contained in Corollary 6.7, is paradigmatic.

Theorem. When M is a torsion-free finitely generated A-module with rank, for any integer n the ideal can(A)
has a non-zero divisor if and only if so does can(EndA(M)).

A direct corollary is that if a domain admits a noncommutative resolution, in the sense of [7], then
its cohomology annihilator ideal is non-zero; see Remark 6.10. Results such as these highlight the benefit of
considering cohomology annihilators for (not necessarily commutative) noether algebras even if one is interested
only in commutative rings.
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2 Cohomology annihilators

In this section, Λ will be a noether algebra, that is to say, Λ is a noetherian ring that is finitely generated when
viewed as a module over its center, that we denote Λc. Then the ring Λc is also noetherian. We write ModΛ
for the category of Λ-modules; its subcategory consisting of finitely generated modules is denoted modΛ. Our
convention is that Λ acts on a module from the right; thus left modules will be viewed as modules over the
opposite ring to Λ, denoted Λo. Subcategories are assumed full and closed under isomorphisms.

A Λ-module is finitely generated if and only if it has that property when viewed as a module over Λc.
It follows then that ExtnΛ(M,N) is a finitely generated Λc-module for any M,N ∈ modΛ and integer n. This
remark will be used without further comment.

Definition 2.1. For each non-negative integer n, we consider the following ideal of Λc:

can(Λ) := ann Λc Ext>nΛ (modΛ,modΛ) ,

In words, this ideal consists of elements a ∈ Λc such that aExtiΛ(M,N) = 0 for all M,N in modΛ and integers
i ≥ n. Note that can(Λ) ⊆ can+1(Λ). The cohomology annihilator of Λ is the union of these ideals:

ca(Λ) :=
⋃

n>0

can(Λ) .

We also call an element of ca(Λ) a cohomology annihilator; this should cause no confusion, for the context should
make it clear whether the ideal or an element is intended. Observe that, as the ring Λc is noetherian, there is
some integer s such that ca(Λ) = cas(Λ). In fact, more is true and is recorded in Remark 2.3.

Syzygy modules

Let M be a Λ-module. We write Ω ΛM for the kernel of any surjective Λ-linear map P �M , where P is a
projective Λ-module. When M is finitely generated, P can be chosen to be finitely generated; we will tacitly
assume that this is the case. By Schanuel’s lemma, Ω ΛM depends only on M , up to projective summands. For
any integer n ≥ 1, we set Ω n

ΛM := Ω Λ(Ω
n−1M), and call it an nth syzygy module of M ; when M is finitely

generated, so are its syzygies. We omit Λ from the notation, when the ring in question is clear from the context.
The following well-known observations will be used repeatedly in the sequel.

Remark 2.2. Let 0 → L→M → N → 0 be an exact sequence of Λ-modules. For each non-negative integer n ≥ 1,
there is an induced exact sequence

0 −→ Ω nL −→ Ω nM −→ Ω nN −→ 0

for some choice of syzygy modules for L, M , and N : It suffices to verify this for n = 1, and then it is immediate
from the Horseshoe Lemma.

Remark 2.3. Fix M,N in ModΛ and a sequence 0 → ΩM → P →M → 0 defining ΩM . The induced map

HomΛ(Ω ΛM,N) → Ext1Λ(M,N)

is surjective and Λc-linear, as are the isomorphisms

Extn+1
Λ (M,N) ∼= ExtnΛ(Ω ΛM,N) for n ≥ 1.

It follows that can(Λ) = ann Λc ExtnΛ(modΛ,modΛ) for each n. Summing up, there exists an integer s such that

ca(Λ) = ann Λc Exts(modΛ,modΛ)

The least such integer s is evidently an invariant of Λ. Here is a lower bound on it.

Proposition 2.4. Let Λ be a noether algebra. If the Jacboson radical of Λc contains a Λ-regular sequence of
length d, then cad(Λ) = 0.

Proof . Let x = x1, . . . , xd be a Λ-regular sequence in the Jacobson radical of Λc. The for each integer n ≥ 1,
the sequence xn := xn1 , . . . , x

n
d is also Λ-regular; see [20, Theorem 26]. Given this, it is not hard to verify that

ExtdΛ(Λ/(x
n),Λ) is isomorphic to Λ/(xn) as Λc-modules. Thus (xn)Λc annihilates this Ext-module and hence

cad(Λ) ⊆
⋂

n>1

(xn)Λc = (0) .

The inclusion is by Krull’s intersection theorem [23, Theorem 4.2]; this is where one needs the hypothesis that
x is in the Jacobson radical of Λc.
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As we shall soon see there may be no non-zero cohomology annihilators, even for “reasonably nice” rings.
But first we describe some examples where we can readily identify some interesting annihilators.

Example 2.5. Recall that the ring Λ has global dimension ≤ d, for some integer d, if

Extd+1
Λ (modΛ,modΛ) = 0 .

This is the case if and only if cad+1(Λ) = Λc.

In what follows, when discussing the commutative ring case, we use R instead of Λ. In this context, local,
means also noetherian.

Example 2.6. Let R be a local ring and let m denote its maximal ideal. The socle of R annihilates
Ext>1

R (modR,modR). In particular, if R is artinian and l is its Loewy length:

l = inf{n ≥ 0 | mn = 0}

there is an inclusion ml−1 ⊆ ca1(R).
Indeed, let M be a finitely generated R-module and F �M its projective cover; its kernel, ΩM , is thus

contained in mF . In particular, the socle of R annihilates ΩM and hence also HomR(ΩM,N). Since there is a
surjection HomR(ΩM,N) � Ext1R(M,N), the assertion follows; see Remark 2.3.

Example 2.7. Let k be a field and kJxK the formal power series ring in commuting indeterminates x = x0, . . . , xd
over k. Let f be an element in kJxK and set R = kJxK/(f). Then

cad+1(R) ⊇
( ∂f
∂x0

, . . . ,
∂f

∂xd

)
.

This computation is due to Dieterich [9, Proposition 18].

Example 2.8. Let k be a field and R = kJx, yK/(x2). Then ca(R) = ca2(R) = (x).
Indeed, the R-module R/(x) has a free resolution

· · ·
x

−−→ R
x

−−→ R
x

−−→ R −→ 0 ,

so ExtiR(R/(x), R/(x))
∼= R/(x) for all i ≥ 0, so ca(R) ⊆ (x). It remains to check verify that there is an inclusion

(x) ⊆ ca2(R). When the characteristic of k is not two, this follows from Example 2.7. In the remaining case, one
can verify it by a direct calculation, using the classification of maximal Cohen-Macaulay R-modules.

We record a basic obstruction to the existence of cohomology annihilators.

Regular and singular loci

Let A be a commutative noetherian ring. We say that Λ is a noether A-algebra if it is an A-algebra that is
finitely generated as an A-module; in particular, Λ is noetherian. In this situation, Λ is also finitely generated
over its center, since that the action of A on Λ factors through Λc, that is to say, Λ is a noether algebra.

Lemma 2.9. If Λ is a noether A-algebra and free as an A-module, then gldimA ≤ gldimΛ.

Proof . This is a consequence of the fact that, since Λ is free A-module of finite rank, for any finitely generated
A-modules M,N and integer n, there are isomorphisms

ExtnA(M,N)⊗A Λ ∼= ExtnΛ(M ⊗A Λ, N ⊗A Λ) .

Note that M ⊗A Λ and N ⊗A Λ are finitely generated Λ-modules.

As usual, we write SpecR for the collection of prime ideals in a commutative ring R, with the Zariski
topology. Thus, the closed sets in the topology are the subsets

V(I) := {p ∈ SpecR | p ⊇ I} ,

for ideals I ⊆ R. Extending a notion from commutative algebra, we introduce the regular locus and the singular
locus of a noether algebra as the following subsets of SpecΛc:

Reg Λ = {p ∈ SpecΛc | gldimΛp <∞} and Sing Λ = SpecΛc \ RegΛ .

When Λ is free as a Λc-module, it follows from Lemma 2.9 that Reg Λ ⊆ RegΛc.
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Lemma 2.10. Let Λ be a noether algebra.

(1) For any multiplicatively closed subset U ⊂ Λc there are inclusions

U−1can(Λ) ⊆ can(U−1Λ) and U−1ca(Λ) ⊆ ca(U−1Λ) .

(2) There is an inclusion Sing Λ ⊆ V(ca(Λ)).
(3) If ca(Λ) is not nilpotent, Reg Λ contains a non-empty open subset of SpecΛc.

Proof . The crux of the proof of (1) is that each finitely generated module over U−1Λ has the form U−1M , for
some M ∈ modΛ. It remains to note that there are isomorphisms

U−1 ExtnΛ(M,N) ∼= ExtnU−1Λ(U
−1M,U−1N) ,

for any M,N ∈ modΛ and integer n, and that (U−1Λ)
c
= U−1Λc.

(2) For p ∈ SpecΛc with p 6⊇ ca(Λ), it follows from (1) that ca(Λp) = (1), and hence that gldimΛp is finite.

(3) This follows from (2) because V(ca(Λ)) 6= SpecΛc when ca(Λ) contains non-nilpotent elements.

Part (2) of the preceding result raises the question: For which rings is there an equality Sing Λ = V(ca(Λ))?
See Theorem 4.3 for a partial answer. Such an equality implies, in particular, that the singular locus of Λ is a
closed subset of SpecΛc, and this is not always the case, even for commutative rings.

Example 2.11. The first systematic investigation of rings with non-closed singular loci is due to Nagata [22,
§§ 4,5]. A particularly simple procedure for constructing such examples was discovered by Hochster [12, Example
1], who used it to describe one-dimensional domain R with countably infinitely many prime ideals of height one
such that RegR = {(0)}, and the intersection of any infinite set of maximal ideals of R is (0). Thus SingR is not
contained in any closed set. Ferrand and Raynaud [10, Proposition 3.5] have constructed a three-dimensional
local domain containing C whose singular locus is not closed.

Annihilators of Ext1

Let Λ be an associative ring and letM,N be Λ-modules. We record a few simple observations on the annihilators
of Ext1Λ(M,N), for later use. The one below has been made before; see [11, Lemma 2.2] and [30, Lemma 2.1].

Remark 2.12. Let M be a Λ-module. If a ∈ Λc annihilates Ext1Λ(M,Ω ΛM), then there is an exact sequence of
Λ-modules

0 −→ (0 : M a) −→M
⊕

Ω ΛM −→ Ω Λ(M/aM) −→ 0 .

Indeed, consider the commutative diagram with exact rows:

0 // ΩM // N //

��

M //

a
��

0

0 // ΩM // P // M // 0

where the lower one, with P is projective, defines ΩM and the upper one is obtained from it by a pull-back
along the mapM

a
−→M . Since a annihilates Ext1Λ(M,Ω ΛM), the upper sequence splits so that N ∼=M ⊕ Ω ΛM .

It remains to invoke the Snake Lemma.

Remark 2.13. Fix ξ ∈ Ext1Λ(M,N) represented by the extension 0 → N → E
ε
−→M → 0. It is easy to verify that

for a ∈ Λc, one has aξ = 0 if and only if the homothety defined by a on M factors through ε; that is to say, there
is a commutative diagram of Λ-modules:

M
a // M

E
  ε

>>

Here is a consequence of this observation; it can also be deduced from Remark 2.12. This result will be used
repeatedly in what follows. Observe that, in view of the stated equality, the ideal on the right is independent of
the choice of the syzygy module, Ω n

ΛM .
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Lemma 2.14. For any Λ-module M and choice of nth syzygy module Ω n
ΛM , for an integer n ≥ 1, there is an

equality

ann Λc Ext>nΛ (M,ModΛ) = ann Λc ExtnΛ(M,Ω n
ΛM) .

Proof . Evidently, the ideal on the left is contained in the one on the right, so it suffices to verify the reverse
containment. ReplacingM by Ω n−1M we can assume n = 1. Let 0 → ΩM → P →M → 0 be the exact sequence
of Λ-modules, with P projective, defining ΩM , and let a be an element in Λc that annihilates this, when viewed
as a class in Ext1Λ(M,ΩM). From Remark 2.13 one then gets the commutative diagram on the left:

M
a // M

P
  

>>
ExtiΛ(M,N) oo

a
ExtiΛ(M,N)

ExtiΛ(P,N)

hh

vv

The one on the right is obtained from the one on the left by applying Exti(−, N), where N is any Λ-module
and i any integer. It remains to note that ExtiΛ(P,N) = 0 when i ≥ 1.

3 The noether different

In this section we explain how certain ideas introduced by Noether [24], and developed by Auslander and
Goldman [2], and also Scheja and Storch [29], can be used to find cohomology annihilators, especially those that
are non-zerodivisors. The results presented are inspired by, and extend to not necessarily commutative rings,
those of Wang [31, 32]; see also [26, 35]. The novelty, if any, is that some arguments are simpler, and we contend
more transparent; confer the proofs of Lemma 3.2 below with that of [31, Proposition 5.9].

Let A be a commutative ring and Λ an A-algebra. The opposite ring of Λ, denoted Λo, is also an A-
algebra, and so is its enveloping algebra Λe := Λo ⊗A Λ. Then Λ is a right module over Λe, with action given by
λ · (x⊗ y) = xλy. The map

µ : Λe −→ Λ defined by µ(x⊗ y) = xy (1)

is a surjective homomorphism of right Λe-modules. Recall that HomΛe(Λ,Λ) is the center, Λc, of Λ. The image
of the induced map

HomΛe(Λ, µ) : HomΛe(Λ,Λe) −→ HomΛe(Λ,Λ) = Λc

is the noether different of Λ over A; we denote it N(Λ/A). It is an ideal in Λc, and can be identified with
µ(ann Λe Kerµ).

Remark 3.1. Fix an element x ∈ Λc. The homothety map Λ
x

−−→ Λ is then Λe-linear and it is immediate from
the definition that this map admits a Λe-linear factorization

Λ
ηx

−−−→ Λe
µ
−→ Λ .

if and only if x is in N(Λ/A). In this case, for each Λ-module M one gets, on applying M ⊗Λ −, a factorization
as Λ-modules:

M

x

''

M⊗ηx

// M ⊗A Λ
M⊗µ

// M (2)

When Λ is commutative, the following result is [31, Proposition 5.9]; the proof we offer is also different from
the one in op. cit.

Lemma 3.2. For any Λ-modules M and N , there is an inclusion

N(Λ/A) · annA Ext1A(M,N) ⊆ ann Λc Ext1Λ(M,N) .
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Proof . Fix an extension 0 → N → L
g

−−→M → 0 of Λ-modules and an element a in A that annihilates it, when
viewed as an extension of A-modules. Thus, there exists an A-linear map h : M → L such that gh = a; see
Remark 2.13. The desired statement is that, given an element x in N(Λ/A), there is a Λ-linear map M → L

whose composition with g is the map M
xa

−−−→M . Such a map is furnished by composing maps along the unique
path from M to L in the commutative diagram of Λ-modules:

MOO

M⊗µ
a

++M

x

99

M⊗ηx

// M ⊗A Λ
h⊗Λ

// L⊗A Λ
L⊗µ

// L
g

// M

The triangle on the left is from (2), and is commutative by construction; that of the one on the right is a direct
verification.

In order to proceed we need the following result that elaborates the connection between degree-shifting
of Ext and syzygies; confer Remark 2.3. Henceforth let Λ be a noether A-algebra so that finitely generated
Λ-modules are also finitely generated as A-modules.

Lemma 3.3. Let Λ be a noether A-algebra and set I = annA Ext1A(Λ,ΩAΛ). For each integer n ≥ 1, and for
0 ≤ i ≤ n− 1, there is an inclusion

IiannA ExtnA(modΛ,modΛ) ⊆ annA Extn−iA (Ω i
Λ(modΛ),modΛ) .

Proof . The proof is an induction on i; the base case i = 0 is a tautology. Assume that the desired inclusion
holds for some integer i with 0 ≤ i < n− 1. Fix M and N in modΛ. The exact sequence of Λ-modules

0 → Ω i+1
Λ M → P → Ω i

ΛM → 0

with P a finitely generated projective, induces an exact sequence of A-modules

Extn−i−1
A (P,N) → Extn−i−1

A (Ω i+1
Λ M,N) → Extn−iA (Ω i

ΛM,N)

Write J for the annihilator of ExtnA(modΛ,modΛ) as an A-module. In the sequence above, the module on the
right is annihilated by IiJ by the induction hypothesis, while the one on the left is annihilated by I; this follows
from Lemma 2.14, as n− i− 1 ≥ 1 and P is a direct summand of a free Λ-module. Thus, Ii+1J annihilates the
module in the middle. This completes the induction step.

The result below is our main tool for finding cohomology annihilators. Its proof in fact shows that
Id ·N(Λ/A) annihilates ExtnΛ(M,N) for n > d, where d = gldimA, for all Λ-modules M and N , and not only
for the finitely generated ones.

Proposition 3.4. Let A be commutative noetherian ring, Λ a noether A-algebra, and set I =
annA Ext1A(Λ,ΩAΛ). If d := gldimA is finite, then

Id ·N(Λ/A) ⊆ can(Λ) for n ≥ d+ 1.

Proof . The hypothesis on A is that Extd+1
A (modA,modA) = 0. Thus, for any Λ-modulesM and N , Lemma 3.3

(applied with n = d+ 1 and i = d) yields an inclusion

Id ⊆ annA Ext1A(Ω
d
ΛM,N) .

Lemma 3.2 then implies IdN(Λ/A) annihilates Ext1Λ(Ω
d
ΛM,N) ∼= Extd+1

Λ (M,N). This justifies the desired
inclusion for n = d+ 1; it remains to recall Remark 2.3.

The preceding result is effective only when the noether different is non-zero, whence the import of the next
one. An A-algebra Λ is separable is N(Λ/A) = Λc; see [2].

Lemma 3.5. Let A be a commutative ring and Q its ring of fractions. If Λ is a noether A-algebra such that
the Q-algebra Q⊗A Λ is separable, then N(Λ/A) contains a non-zerodivisor of Λc.

Proof . The separability hypothesis and [2, Proposition 1.1] imply

N((Q⊗A Λ)/Q) = (Q⊗A Λ)
c
.

As N((Q⊗A Λ)/Q) = Q⊗A N(Λ/A) by [2, Proposition 4.4], the desired result follows.
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Separable noether normalization

We say that a ring Λ has a separable noether normalization if there exists a subring A of Λc such that the
following conditions holds:

(i) A is noetherian and of finite global dimension;
(ii) Λ is finitely generated as an A-module, thus a noether A-algebra;
(iii) Q⊗A Λ is separable over Q; here Q is the ring of fractions of A.

The next result plays a crucial role in Section 5 where it is used to prove that the module categories of
certain rings have generators, in the sense explained in next section. That in turn allows one to identify the full
cohomology annihilator ideal, at least up to radical.

Theorem 3.6. If Λ admits a separable noether normalization, then for d = dimΛc the ideal cad+1(Λ) of Λc is
non-zero.

Proof . Let A be a separable noether normalization of Λ and set I = annA Ext1A(Λ,ΩAΛ). Since A is regular,
for any associated prime ideal p of A the ring Ap is a field, so that

Ext1A(Λ,ΩAΛ)p ∼= Ext1Ap
(Λp, (ΩAΛ)p) = 0 .

Thus I contains a non-zero element, even a non-zerodivisor, of A; this element will also be non-zero in Λc, as
A is its subring. Since N(Λ/A) contains a non-zerodivisor of Λc, by Lemma 3.5, the desired result follows from
Proposition 3.4.

As noted before, the results in this section extend work in [26, 31, 32, 34]; please see [15] for details, and
further developments in this direction.

4 Generators for modΛ

In the preceding section the noether different was used as a tool to find cohomology annihilators. In this section,
we take a different tack; one that is inspired by Lemma 2.14 that gives a method for finding annihilators of
cohomology with respect to a single module. The idea then is to find a generator, say G, in a sense made precise
below, for modΛ and use the annihilator of Ext1Λ(G,ΩG) to find cohomology annihilators for all of modΛ.

The arguments involve a construction of an ascending chain of subcategories built out of a single module,
introduced by Dao and Takahashi [8]. It is an analogue of a construction from Bondal and Van den Bergh [4]
for triangulated categories.

Throughout Λ will be a noetherian ring.

Generation in modΛ

Let X be a subcategory of modΛ. As usual, addX will denote the subcategory of modΛ consisting of direct
summands of finite direct sums of copies of the modules in X .

Definition 4.1. We consider an ascending chain of subcategories of modΛ built out of X as follows: Set
|X |0 := {0} and |X |1 = addX . For n ≥ 2, let |X |n be the subcategory of modΛ consisting of modules M that
fit into an exact sequence

0 −→ Y −→M ⊕W −→ X −→ 0 (3)

with Y in |X |n−1 and X in addX ; said otherwise, M is a direct summand of a Λ-module Z that admits a finite
filtration {0} = Z0 ⊆ Z1 ⊆ · · · ⊆ Zn = Z with sub-quotients Zi+1/Zi in addX for each 0 ≤ i < n. Clearly, one
gets a tower of subcategories of modΛ:

{0} = |X |0 ⊆ · · · ⊆ |X |n ⊆ |X |n+1 ⊆ · · · .

In what follows, the focus is building modules out of syzygies of a given module. With that in mind, given
a subcategory X ⊆ modΛ and integer s ≥ 0, we set

Ω s
ΛX := {Ω s

ΛM |M ∈ X} and Ω ∗

ΛX :=
⋃

s>0

Ω s
ΛX ,

viewed as subcategories of modΛ. Since syzygies are only well-defined up to projective summands, it will be
tacitly assumed that Ω ∗X contains all finitely generated projective Λ-modules. When X consists of a single
module, say G, we write Ω s

ΛG and Ω ∗
ΛG.
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Lemma 4.2. Let G be a Λ-module and set I = ann Λc Ext1Λ(G,ΩG). For each integer n ≥ 0 and Λ-module M
in |Ω ∗

ΛG|n, one then has

In · Ext>1
Λ (M,ModΛ) = 0 .

In particular, if Ω s
Λ(modΛ) ⊆ |Ω ∗

ΛG|n for some integer s, then cas+1(Λ) ⊇ In.

Proof . We induce on n. The basis step n = 1 follows from Remark 2.3 and Lemma 2.14, for they yield that I
annihilates Ext>1

Λ (Ω i
ΛG,ModΛ) for any i, and so also Ext>1

Λ (M,ModΛ), for any M in |Ω ∗
ΛG|1.

Assume n ≥ 2 and that the desired conclusion holds for all integers less than n. Then, for any i ≥ 1, applying
ExtiΛ(−, N) to the sequence (3) defining M yields an exact sequence

ExtiΛ(X,N) −→ ExtiΛ(M,N)⊕ ExtiΛ(W,N) −→ ExtiΛ(Y,N)

of Λc-modules. By the induction hypotheses, In−1 annihilates the module on the right, while I annihilates the
one on the left. The exactness of the sequence above implies In annihilates ExtiΛ(M,N) as desired.

Suppose that Ω s
Λ(modΛ) ⊆ |Ω ∗

ΛG|n and fix M and N in modΛ. Then Ω sM is in |Ω ∗
ΛG|n, so it follows

from the already established part of the result that, for each integer i ≥ 1, one has the second equality below

In Exts+i(M,N) = In Exti(Ω sM,N) = 0 .

The first one is standard; see Remark 2.3.

Concerning the hypothesis in the preceding result, we note that there is an equality |Ω ∗
ΛX|n = [X ]n, where

the subcategory [X ]n has been introduced in [8].

Finitistic global dimension

We introduce the finitistic global dimension of a noether algebra Λ as the number

sup{gldimΛp | p ∈ RegΛ} .

This can be infinite, as is the case for any (commutative noetherian) regular ring of infinite Krull dimension;
Nagata [23, Appendix, Example 1] has constructed such examples.

The result below sums up the discussion in this section up to this point.

Theorem 4.3. Let Λ be a noether algebra whose finitistic global dimension is at most d. If there exists
a G in modΛ and a non-negative integer s such that Ω s

Λ(modΛ) ⊆ |Ω ∗
ΛG|n for some n ≥ 0, then for

I = ann Λc Extd+1
Λ (G,Ω d+1

Λ G), there are equalities

Sing Λ = V(ca(Λ)) = V(cas+d+1(Λ)) = V(I) ,

In particular, Sing Λ is a closed subset of SpecΛc.

Proof . Using Remark 2.2, it is easy to verify that the hypothesis on G yields

Ω s+l(modΛ) ⊆ |Ω ∗(Ω lG)|n for any l ≥ 0.

Noting that Ext1Λ(Ω
dG,Ω (Ω dG)) ∼= Extd+1

Λ (G,Ω d+1G) as Λc-modules, Lemma 4.2, applied to Ω dG, thus yields
the last inclusion below

Sing Λ ⊆ V(ca(Λ)) ⊆ V(cas+d+1(Λ)) ⊆ V(I) .

The first one is from Lemma 2.10(2) while the second one is by definition of the ideals in question. It thus
remains to verify that V(I) ⊆ Sing Λ, that is to say that I 6⊆ p for any p in Reg Λ. Recall that for any finitely
generated module E over a commutative ring R and p in SpecR, one has Ep = 0 if and only if annRE 6⊆ p.
Thus, the desired conclusion follows because for any p in Reg Λ there are isomorphisms

Extd+1
Λ (G,Ω d+1G)p ∼= Extd+1

Λp
(Gp, (Ω

d+1G)p) ∼= 0 ,

where the last one holds because gldimΛp ≤ d, by hypotheses.

Remark 4.4. The proof of Theorem 4.3 gives a more precise result: If G can be chosen to be an ith syzygy
module, for some i ≥ 0, then V(ca(Λ)) = V(cas+d−i+1(Λ)).
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Strong generators for modΛ

Let Λ be a noetherian ring. We say that a finitely generated Λ-module G is a strong generator for modΛ if the
following conditions holds:

(1) Λ is a direct summand of G, and
(2) there exist non-negative integers s and n such that Ω s

Λ(modΛ) ⊆ |G|n.

The first condition says that G is a generator for modΛ in the usual sense of the word. This definition is
motivated by later considerations, especially the results on Section 5. Observe that the criterion for G to be a
strong generator is stronger than the conclusion of Theorem 4.3, for it does not allow for the syzygies of G.

We now reconcile this notion with one based on thick subcategories of modΛ.
Let X be a subcategory of modΛ. Set thick0(X ) := {0} and thick1(X ) := addX . For n ≥ 2 let thickn(X )

be the subcategory of modΛ consisting of direct summands of any module that appears in an exact sequence

0 → X → Y → Z → 0

such that, among the other two modules, one is in thickn−1
Λ (X ) and the other is in addX .

Proposition 4.5. Let X ,Y be subcategories of modΛ. The following statements hold for each integer n ≥ 1.

(1) |X |n ⊆ thickn(X ).

(2) Ω n−1
Λ (thickn(X )) ⊆ |

⋃2(n−1)
i=0 Ω i

ΛX|n.
(3) If Ω s

Λ(Y) ⊆ thickn(X ) for some integer s ≥ 1, then Y ⊆ thickn+s(X ∪ {Λ}).

Proof . The inclusion in (1) is immediate from definitions, as is (3) for when Ω s(M) is in thickn(X ), it follows
from the exact sequence defining the syzygy module:

0 −→ Ω sM −→ Ps−1 −→ · · · −→ P0 −→M −→ 0 ,

with each Pi a finitely generated projective, that M is in thickn+s(X ∪ {Λ}).
(2) For each n ≥ 0, set Cn =

⋃n
i=0 Ω

iX . The desired statement is that

Ω n−1(thickn(X )) ⊆ |C2(n−1)|n for each n ≥ 1.

We verify this by an induction on n. The base case n = 1 is clear, for both thick1(X ) and |C0|1 are add(X ).
Assume that the inclusion holds for some n ≥ 1, and for every subcategory X of modΛ.

Since both thickn+1(X ) and Cn+1 are closed under direct summands, it suffices to verify that given X and
Y in modΛ with one in thick1(X ) and the other in thickn(X ), and an exact sequence of Λ-modules of one of
the following types:

0 −→W −→ X −→ Y −→ 0 (i)

0 −→ X −→W −→ Y −→ 0 (ii)

0 −→ X −→ Y −→W −→ 0 (iii)

the Λ-module Ω nW is in |C2n|n+1. This can be verified by a direct case-by-case analysis; there are six cases to
consider, depending on whether X is in thick1(X ) or in thickn(X ).

We do this when X is in thick1(X ) and Y is in thickn(X ); the argument in the other case is analogous. By
the induction hypothesis X is in |C0|1 and Ω n−1Y is in |C2(n−1)|n, and then it is easy to verify that

Ω n−1X,Ω nX ∈ |C2n|1 and Ω nY,Ω n+1Y ∈ |C2n|n .

These remarks will be used without further comments in what follows.

Case (i): The exact sequence (i) gives rise to an exact sequence

0 −→ ΩY −→W ⊕ P −→ X −→ 0

for some finitely generative projective module P . Since Ω nX is in |C2n|1 and Ω n+1Y is in |C2n|n the exact
sequence above yields that Ω nW is in |C2n|n+1, as desired.
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Case (ii): Since Ω nX is in |C2n|1 and Ω nY is in |C2n|n, it follows from the exact sequence (ii) that Ω nW
is in |C2n|n+1.

Case (iii): The exact sequence (iii) gives rise to an exact sequence

0 −→ ΩY −→ ΩW −→ X ⊕ P −→ 0

where P is a finitely generated projective module. Since Ω n−1X is in |C2n|1 and Ω nY is in |C2n|n, the desired
result holds.

The following result is an immediate consequence of Proposition 4.5.

Corollary 4.6. Let G be a finitely generated Λ-module.

(1) If Ω s(modΛ) ⊆ |G|n for some positive integers s, n, then modΛ = thicks+n(G⊕ Λ).

(2) If modΛ = thickn(G) for an integer n ≥ 1, then Ω n−1(modΛ) ⊆ |
⋃2(n−1)
i=0 Ω iG|.

Remark 4.7. The import of the preceding result is that modΛ has a strong generator if and only if there exists
a finitely generated module such that the thick subcategory it generates is all of modΛ. The latter condition is
akin to the one for a strong generator of the bounded derived category, Db(modΛ), as a triangulated category.
However, for our applications the notion of a strong generator adopted here is the better one, for it distinguishes
between a module and its syzygy. This also suggest that for applications to module theory it would be useful to
investigate the set of pairs (s, n) of integers for which there exists a G in modΛ with Ω s(modΛ) ⊆ |G|n. This
is a two parameter version of the Orlov spectrum of a triangulated category; see [25, Definition 3].

A compactness argument

Let X be a subcategory of modΛ. Let AddX denote the subcategory of ModΛ consisting of direct summands
of arbitrary direct sums of copies of the modules in X . Following the construction in Definition 4.1, one gets a
tower

{0} = |AddX|0 ⊆ · · · ⊆ |AddX|n ⊆ |AddX|n+1 ⊆ · · ·

of subcategories of ModΛ. The result below is a module theoretic version of [4, Proposition 2.2.4]. It will be
used in the sequel to prove that rings essentially of finite type over a field have strong generators.

Lemma 4.8. Let Λ be a noetherian ring and X ⊆ modΛ a subcategory. For each integer n ≥ 1 there is an
equality |AddX|n ∩ modΛ = |X |n.

Proof . First we verify the following claim; confer [27, Proposition 3.13].

Claim. Let M be a finitely generated Λ-module and ϕ : M → Z a homomorphism in ModΛ, where Z admits a
filtration {0} = Z0 ⊆ Z1 ⊆ · · · ⊆ Zn = Z with sub-quotients in AddX . Then ϕ factors as M →W → Z where
W is a finitely generated Λ-module with a filtration

Z0
�

�

// Z1
�

�

// · · · · · · �
�

// Zn Z

W0

OO

�

�

// W1

OO

�

�

// · · · · · ·
�

�

// Wn

OO

W

where Wi+1/Wi is a direct summand of Zi/Zi−1 and in addX , for each 0 ≤ i < n.

Indeed, set Zi = Zi/Zi−1 for each i ≥ 1; this is in AddX , by hypotheses. Set Mn =M and ϕn = ϕ. We
construct, for 1 ≤ i ≤ n, commutative diagrams with exact rows

0 // Zi−1
OO

ϕi−1

// ZiOO

(ϕi,κi)

// ZiOO
// 0

0 // Mi−1
// Mi ⊕ F i

(ψi,εi)
// W i // 0

where W i is a direct summand of Zi and in addX , and F i is a free Λ-module of finite rank. These are obtained

as follows: Since Mn is finitely generated, the composed map Mn → Zn → Zn factors as Mn
ψn
−−→Wn → Zn,

where Wn is a direct summand of Zn and in addX . Choose a surjective map εn : F
n →Wn, with Fn a
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finitely generated free Λ-module, and a lifting κn : F
n → Zn of the composition Fn →Wn → Zn, through the

surjection Zn → Zn. SettingMn−1 to be the kernel of (ψn, εn) and ϕn−1 the induced map gives the data required
to construct the diagram above for i = n; it is readily seen to be commutative. Observe that Mn−1 is finitely
generated; now repeat the construction above for ϕn−1.

Finally, set Wi :=Mi ⊕ F i ⊕ F i−1 ⊕ · · · ⊕ F 1 for each 1 ≤ i ≤ n and W0 :=M0. There is then a canonical
inclusion Wi−1 ⊆Wi, with quotient W i, and the desired commutative diagram is as follows:

Z0OO

ϕ0

�

�

// Z1OO

(ϕ1,κ1)

�

�

// · · · · · ·
�

�

// ZnOO

(ϕn,κn,...,κ1)

W0
�

�

// W1
�

�

// · · · · · · �
�

// Wn

It remains to note that the composition Mn →Wn → Zn is precisely ϕ.
This justifies the claim. Now suppose that M is a finitely generated module in |AddX|n, so that there

exists a split monomorphism ϕ : M → Z, where Z has a n-step filtration with sub-quotients in Add(X ). Thus
the claim applies, and we set C to be the cokernel of the inclusion W0 ⊆W ; it is in |X |n, by construction. As
Z0 = {0}, the map W → Z factors through C. Since M is a direct summand of W , it is also a direct summand
of C. Therefore M is in |X |n, as desired.

5 Commutative rings

The focus of this section is on converses to Theorem 4.3 that justify the claim made in the introduction; namely,
the existence of cohomology annihilators is intertwined with the existence of strong generators for module
categories. Though the fundamental result in this section, Theorem 5.1, can be formulated for noether algebras,
we have chosen to present it for commutative rings, for the statement appears most natural in that context. The
proof is an adaptation of [8, Theorem 5.7].

Theorem 5.1. Let R be a commutative noetherian ring of Krull dimension d. If there exists a positive integer
s such that cas(R/p) 6= 0 for each p ∈ SpecR, then there is a finitely generated R-module G and an integer n
such that Ω s+d−1

R (modR) ⊆ |G|n. In particular, modR has a strong generator.

Proof . We induce on dimR, the base case dimR = 0 being clear for then modR = |R/J(R)|l where J is the
Jacobson radical of R and l is its Loewy length. Assume dimR ≥ 1.

Consider first the case when R is a domain. Then, by hypothesis, cas(R) contains a non-zero element a; we
can assume that it is not invertible, for dimR ≥ 1. By the induction hypothesis, there exists an R/aR-module
G such that

Ω s+d−2
R/aR (modR/aR) ⊆ |G|n for some n ∈ Z. (4)

Fix an R-module M and set N = Ω s+d−1
R M . Since R is a domain, there is an isomorphism

N/aN ∼= Ω s+d−2
R/aR (ΩRM/aΩRM) ;

see, for example, [8, Lemma 5.6]. Viewing G as an R-module, it follows from (4) that N/aN is in |G|n, and hence
that ΩR(N/aN) is in |ΩRG|n. Since Ext1R(N,−) is isomorphic to Exts(Ω d

RM,−), the element a annihilates
it. Since N is at least a first syzygy, because s+ d− 1 ≥ 1, and R is a domain, a is a non-zerodivisor on N .
Therefore Remark 2.12 yields that N is a direct summand of ΩR(N/aN). In conclusion N , that is to say,
Ω s+d−1
R (M) is in |ΩR(G)|n. Since M was arbitrary, this gives the desired result for R.

This completes the proof when R is a domain. When it is not, one can choose ideals (0) = I0 ⊂ I1 ⊂ · · · ⊂
Im = R such that Ii+1/Ii ∼= R/pi for some pi in SpecR, for each i. By the already established part of the result,
there exists an integer n and R-modules Gi such that Ω s+d−1

R/pi
(modR/pi) ⊆ |Gi|n. For any M in modR, there

are exact sequences
0 −→ IiM −→ Ii+1M −→ Ii+1M/IiM −→ 0

for 0 ≤ i ≤ m− 1. It then follows from [8, Corollary 5.5] that there exists a G in modR such that Ω s+d−1
R M is

in |G|m(s+d)(n+1) for each M ∈ modR.

Under stronger hypotheses, the argument in the proof of the theorem above gives the following, more precise,
statement.

Theorem 5.2. Let R be a commutative noetherian ring of Krull dimension d. If for each prime ideal p in R,
there exists an integer s ≤ dimR/p+ 1 such that cas(R/p) 6= 0 , then there exists a G in modR and an integer
n such that Ω d

R(modR) ⊆ |G|n.
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Excellent local rings

For complete local rings, the part of the result below concerning the existence of the generator G was proved
in [8, Theorem 5.7] under the additional hypothesis that the residue field of R is perfect. The description of
the singular locus should be compared with [31, Corollary 5.15]. The latter result implies that when R is an
equidimensional complete local ring containing a perfect field, one can replace 2d+ 1 by d+ 1 in the statement
below. We refer the reader to [20, (34.A)] for the notion of excellence.

Theorem 5.3. Let R be an equicharacteristic excellent local ring of Krull dimension d. There are equalities

V(ca(R)) = V(ca2d+1(R)) = SingR .

Furthermore, there exists a finitely generated R-module G and an integer n such that Ω s(modR) ⊆ |G|n for
s = 3d; if R is complete there is a G for which s = d suffices. In particular, modR has a strong generator.

Proof . First we verify the result when R is complete. Fix a prime ideal p in R. The ring R/p is then a complete
equicharacteristic local domain, and hence has a separable noether normalization: When the residue field of the
ring is perfect (for example, when its characteristic is 0), this is due to Cohen [6, Theorem 16)]; the general
positive characteristic case is a result of Gabber’s; see [13, IV, Théorème 2.1.1]. Thus Theorem 3.6 applies
and yields that cadimR/p+1(R/p) is non-zero. Since p was arbitrary, Theorem 5.2 guarantees the existence of a
module G with stated property. Given this Theorem 4.3 justifies the equalities involving the singular locus of R.

Next we verify this equality for a general excellent local ring. Given Lemma 2.10(2), the moot point is
that V(ca2d+1(R)) ⊆ SingR holds. As R is excellent, SingR is a closed subset of SpecR, by definition; see [20,

Definition (34.A) and (32.B)]. Let I be an ideal in R with V(I) = SingR. Let ϕ : R→ R̂ denote completion with

respect to the maximal ideal of R, and aϕ : Spec R̂→ SpecR the induced map. There are then equalities

V(IR̂) = aϕ−1(V(I)) = Sing R̂ = V(ca2d+1(R̂))

where the first one is standard, the second one holds because the fibers of ϕ are regular, by [20, Theorem 79],

and the last is from the already established part of the result, applied to the complete local ring R̂. It follows
that, for some non-negative integer n, there is an inclusion InR̂ ⊆ ca2d+1(R̂). Fix finitely generated R-modules

M,N . Since R̂ is flat as an R-module, the natural map

Ext2d+1
R (M,N)⊗R R̂→ Ext2d+1

R̂
(M ⊗R R̂,N ⊗R R̂)

is an isomorphism, so we deduce that In annihilates the module on the left, and hence also Ext2d+1
R (M,N),

because R̂ is also faithful as an R-module. In summary, In ⊆ ca2d+1(R). This gives the desired inclusion.
It remains to justify the existence of a G with the stated properties. As in the first part of the proof, given

Theorems 5.1 it suffices to note that for p in SpecR, the ideal ca2d+1(R/p) is non-zero: we already know that the
closed subset of Spec (R/p) that it defines coincides with Sing (R/p), and that is a proper closed subset because
R/p is a domain.

Rings essentially of finite type over fields

Compare the next result with Theorem 5.3. When k is perfect and R is itself a finitely generated k-algebra and
a domain, the equalities below can be improved: 2d+ 1 can be replaced by d+ 1; this is by [32, Theorem 3.7].

Theorem 5.4. Let k be a field and R a localization of a finitely generated k-algebra of Krull dimension d.
There are equalities

V(ca(R)) = V(ca2d+1(R)) = SingR .

Furthermore, there is a finitely generated R-module G such that Ω d(modR) ⊆ |G|n for some integer n. In
particular, modR has a strong generator.

Proof . It suffices to prove that a G as desired exists, for then one can invoke Theorem 4.3 to justify the stated
equalities. Suppose R = U−1A for some finitely generated k-algebra A of Krull dimension d, and multiplicatively
closed subset U of A. Since every finitely generated R-module is a localization of a finitely generated A-module,
and localization preserves exact sequences, it suffices to prove the result for A. Thus, we may assume R is itself
a finitely generated k-algebra, of dimension d.

First, we consider the case where k is perfect. The argument that such a G exists is then the same as
for Theorem 5.3: For each prime ideal p in R, the ring R/p is also a finitely generated k-algebra, and hence
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has a separable noether normalization (see, for example, [23, Theorem 39.11)] so Theorem 3.6 yields that
cadimR/p+1(R/p) is non-zero. The desired result then follows from Theorem 5.2.

Next we tackle the case of an arbitrary field k by adapting an argument from [18, Proposition 5.1.2]. Let K
be an algebraic closure of k. Then R⊗k K is a finitely generated K-algebra of dimension d. Since K is perfect,
the already establish part of the statement yields a finitely generated R⊗k K-module C and an integer n > 0
such that

Ω d(mod (R⊗k K)) ⊆ |C|n .

Since C is finitely generated, there exists a finite field extension l of k and a finitely generated (R⊗k l)-module
G such that C ∼= G⊗l K. Note that R⊗k l, hence also G, is finitely generated as an R-module. We claim that,
viewing G as an R-module, there is an inclusion

Ω d(modR) ⊆ |G|n .

Indeed, let M be a finitely generated R-module. Then the (R⊗k K)-module M ⊗k K is finitely generated and
hence Ω d

R⊗kK
(M ⊗k K) belongs to |G⊗l K|n. Since the R-module G⊗l K is a (possibly infinite) direct sum of

copies of G, there is an inclusion

|G⊗l K|n ⊆ |Add{G}|n in ModR.

The R-module Ω d
RM is a direct summand of (Ω d

RM)⊗k K ∼= Ω d
R⊗kK

(M ⊗k K), so it follows that Ω d
RM is in

|Add{G}|n ∩modR. It remains to apply Lemma 4.8, recalling that G is finitely generated over R as well. This
completes the proof of the theorem.

The rings in Example 2.11 and the results in this section suggest the following.

Question 5.5. Does modR have a strong generator when R is an excellent ring?

Any counter-example must have Krull dimension at least two; this follows from Corollary 5.7 below, which
is deduced from the next statement. In it, the Jacobson radical and the nil radical of a ring R are denoted radR
and nilR, respectively. See [20, §31]for the definition of a Nagata ring.

Proposition 5.6. Let R be a Nagata ring of Krull dimension one.

(1) Assume R is reduced, let S be the integral closure of R, and T the quotient of R by its conductor ideal.
With ` the Loewy length of T and n = 2 + 2`, there is an inclusion

ΩR(modR) ⊆ |S ⊕ ΩR(S)⊕ (T/ radT )⊕ ΩR(T/ radT )|n .

(2) Let R denote the ring R/ nilR and G a finitely generated R-module with ΩR(modR) contained in |G|n
for some integer n. For j = min{i | (nilR)i = 0} one has

ΩR(modR) ⊆ |G⊕ nil(R)|2nj .

Proof . For (1), let C be the conductor of R. Since R is a reduced Nagata ring, S is a finitely generated R-
module, and hence C contains a non-zerodivisor of R. Any finitely generated S-module is also finitely generated
as an R-module, and that the ring T is artinian; see, for example. These remarks will be used without comment.

Consider the exact sequence of R-modules

0 −→ C −→ R −→ T −→ 0 .

Fix an R-module M . Applying M ⊗R − to this exact sequence yields exact sequences

0 −→ N −→M −→M ⊗R T −→ 0 ,

0 −→ TorR1 (M,T ) −→M ⊗R C −→ N −→ 0 .
(5)

Note that C is also an ideal of S, so M ⊗R C acquires a structure of an S-module. Since S has global dimension
one, one can construct an exact sequence 0 → P → Q→M ⊗R C → 0 of S-modules with P and Q finitely
generated projective S-modules. This exact sequence yields an exact sequence of the form

0 −→ ΩR(Q) −→ ΩR(M ⊗R C) −→ P −→ 0 .
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It follows that ΩR(M ⊗R C) is contained in the subcategory |S ⊕ ΩR(S)|2 of modR. On the other hand,M ⊗R T
and TorR1 (M,T ) are in |T/ radT |`, because the ring T is artinian. Given these, the desired result follows from
the exact sequences in (5).

(2) For any R-module M has a filtration {0} ⊆ IjM ⊆ ... ⊆ IM ⊆M that induces, up to projective
summands, a filtration

{0} ⊆ ΩR(I
jM) ⊆ ... ⊆ ΩR(IM) ⊆ ΩR(M) .

The desired assertion follows from [8, Proposition 5.3(2)].

The next result is a direct consequence of the Proposition 5.6. Since excellent rings have the Nagata property,
see [20, (34.A)], it settles, in the affirmative, Question 5.5 for rings of Krull dimension one.

Corollary 5.7. Let R be a Nagata ring of Krull dimension one. Then there exist an R-module G and an integer
n such that ΩR(modR) ⊆ |G|n.

6 Ascent and descent

The crucial input in Theorems 5.1 and 5.2 is the existence of non-zero cohomology annihilators. Motivated by
this, in this section we track the ascent and descent of this property between a commutative noetherian ring A
and a noether A-algebra Λ, which need not be commutative. The central result is Corollary 6.7 that is deduced
from the more technical, but also more precise, Theorems 6.1 and 6.4.

Theorem 6.1. Let Λ be a noether A-algebra and set I := annA Ext1A(Λ,ΩAΛ). For each integer n ≥ 1 and
element a ∈ can(Λ), one has

a2In Ext>nA (modΛ,modA) = 0 . (6)

When the A-module Λ has positive rank, there exists a non-zerodivisor b ∈ A such that

b annA Ext>nA (modΛ,modA) ⊆ can(A) . (7)

Proof . We repeatedly use the fact that I annihilates Ext>1
A (Λ,modA); see Lemma 2.14.

Fix an X ∈ modΛ and for Y := Ω n−1
Λ X consider an exact sequence of Λ-modules

0 → Ω Λ(Y/aY ) → P → Y/aY → 0

with P projective. For each M ∈ modA and integer i ≥ 1, it induces an exact sequence

ExtiA(P,M) → ExtiA(Ω Λ(Y/aY ),M) → Exti+1
A (Y/aY,M)

of A-modules, so aI annihilates the module in the middle. Since a · ExtiΛ(Y,modΛ) = 0, the exact sequence in
Remark 2.12 yields an exact sequence

ExtiA(Ω Λ(Y/aY ),M) → ExtiA(Y,M)⊕ ExtiA(Ω ΛY,M) → ExtiA((0 :Y a),M)

Therefore, a2I annihilates ExtiA(Y,M), for each i ≥ 1. Considering the exact sequence

0 → Y → Pn−2 → · · · → P1 → P0 → X → 0

of Λ-modules with each Pi projective, a standard iteration yields (6).
Assume now that Λ has positive rank, say equal to r, as an A-module. Thus, there is an exact sequence of

A-modules
0 → Ar → Λ → T → 0

such that bT = 0 for some non-zerodivisor b ∈ A. Let M be a finitely generated A-modules. The exact sequence
above yields an exact sequence of A-modules

TorA1 (M,T ) →Mr →M ⊗A Λ →M ⊗A T → 0.

Since b annihilates TorA1 (M,T ) and M ⊗A T , Remark 6.2 below, applied with N =M ⊗A Λ and J = (b), gives
(7). This is where the hypothesis that r ≥ 1 is used.
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Remark 6.2. LetK →M → N → C be an exact sequence of Λ-modules and J an ideal in Λc with J(K ⊕ C) = 0.
For any Λ-module X and integer n there is an inclusion

J2 · ann Λc ExtnΛ(N,X) ⊆ ann Λc ExtnΛ(M,X) .

Indeed, replacing K and C by the appropriate quotient module and submodule, we may assume that there are
exact sequences 0 → K →M → Z → 0 and 0 → Z → N → C → 0. These induce exact sequences

ExtnR(N,X) → ExtnR(Z,X) → Extn+1
R (C,X),

ExtnR(Z,X) → ExtnR(M,X) → ExtnR(K,X).

Since J annihilatesK and C, it also annihilates Extn+1
R (C,X) and ExtnR(K,X). The desired inclusion follows.

Lemma 6.3. Let M be a finitely generated A-module and set Λ = EndA(M). Up to projective Λ-summands,
any second syzygy of a finitely generated Λ-module is isomorphic to a Λ-module of the form HomA(M,N), for
some finitely generated A-module N .

Proof . Consider the functor HomA(M,−) : modA→ modΛ. It restricts to an equivalence addRM
∼

−−→ projΛ,
so that each finitely generated projective Λ-module is isomorphic to HomR(M,M ′) for some M ′ ∈ addRM .
Moreover, for any finitely generated Λ-module X, one can construct an exact sequence of Λ-modules

HomA(M,M1)
HomA(M,f)

−−−−−−−−−→ HomA(M,M0) −→ X −→ 0

where f : M1 →M0 is an A-linear map in addAM . Observe that the inclusion Ker(f) ⊆M1 induces an exact
sequence of Λ-modules

0 −→ HomA(M,Ker(f)) −→ HomA(M,M1)
HomA(M,f)

−−−−−−−−−→ HomA(M,M0) −→ X −→ 0 .

This shows that HomA(M,Ker(f)) is a second syzygy of X as a Λ-module.

Theorem 6.4. Let M be a finitely generated A-module and set I := annA Ext1A(M,ΩAM). When M has
positive rank, there exists a non-zerodivisor b ∈ A such that for each integer n ≥ 1 and element a ∈ can(A), one
has

ba3In−1 ⊆ can+2(EndA(M)) .

Proof . Set Λ := EndA(M) and let r be the rank of the A-moduleM . There is then an exact sequence of finitely
generated A-modules

0 −→ Ar −→M −→ T −→ 0

and a non-zerodivisor b in A with bT = 0. Applying HomA(M,−) to it yields a Λ-module D with bD = 0 and
HomA(M,A)r = Ω ΛD. Since r ≥ 1, it follows that

bExt>1
Λ (HomA(M,A),modΛ) = 0 . (8)

Fix an N ∈ modA and set L = Ω n−1
A N . For any a ∈ can(A), from Remark 2.12 one gets an exact sequence of

A-modules.
0 −→ (0 : L a) −→ L⊕ ΩAL −→ As −→ L/aL −→ 0

Applying HomA(M,−) then induces exact sequences of Λ-modules

0 −→ HomA(M,ΩA(L/aL)) −→ HomA(M,A)s −→ E3 −→ 0 ,

E1 −→ HomA(M,L)⊕HomA(M,ΩAL) −→ HomA(M,ΩA(L/aL)) −→ E2 ,

where a annihilates the Ei. It follows from the first exact sequence and (8) that

abExt>1
Λ (HomA(M,ΩA(L/aL)),modΛ) = 0 .

Then the second exact sequence and Remark 6.2 yield

a3bExt>1
Λ (HomA(M,L),modΛ) = 0 .
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For each j ≥ 0 there is an exact sequence 0 → Ω j+1
A N → Atj → Ω j

AN → 0 of A-modules, which induces an
exact sequence of Λ-modules

0 −→ HomA(M,Ω j+1
A N) −→ HomA(M,A)tj −→ HomA(M,Ω j

AN) −→ Ext1A(M,Ω j+1
A N) .

Using these exact sequences, (8) and Remark 6.2 a descending induction on j yields

(a3b)(bI)n−j−1 Ext
>(n−j)
Λ (HomA(M,Ω j

AN),modΛ) = 0 for 0 ≤ j ≤ n− 1.

Therefore a3bnIn−1 annihilates Ext>nΛ (HomA(M,N),modΛ), and so also Ext
>(n+2)
Λ (modΛ,modΛ), by

Lemma 6.3. This completes the proof of the theorem.

Non-zerodivisors

For applications, the “useful” cohomology annihilators are ones that are also non-zerodivisors. The development
below is driven by this consideration.

Lemma 6.5. Let A be a commutative noetherian ring. If M is a finitely generated A-module with rank, then
annA Ext1A(M,ΩAM) contains a non-zerodivisor.

Proof . For any associated prime p ∈ SpecA, the Ap-module Mp is free, so

Ext1A(M,ΩAM)p ∼= Ext1Ap
(Mp, (ΩAM)p) = 0

This means that the annihilator ideal in question is not contained in such p, as desired.

Lemma 6.6. Let A be a commutative noetherian ring and Λ be noether A-algebra of positive rank. The
following statements hold.

(1) The natural map A→ Λ is injective.
(2) If A is reduced and an ideal J ⊆ Λc contains a non-zerodivisor, then so does J ∩A ⊆ A.
(3) If ca(Λ) contains a non-zerodivisor, then A is reduced.

Proof . (1) Since Λ has rank as an A-module, there is an injective homomorphism Ar → Λ of A-modules, for
r := rankA Λ. If a is in the kernel of the ring homomorphism A→ Λ, then aΛ = 0, and hence aAr = 0. Since
r > 0, it follows that a = 0.

(2) Set R := Λc. Suppose that the ideal I := J ∩A of A only contains zerodivisors. It is then contained in
an associated prime p of A. The extension A/I ↪→ R/J is module-finite, so there exists a prime ideal q of R
containing J such that q ∩A = p. Since A is reduced, p is a minimal prime so it follows that q is a minimal
prime of R; see [20, Theorem 5 ii)]. Hence q consists of zerodivisors of R, contradicting the fact that J contains
a non-zerodivisor.

(3) It suffices to prove that for any p ∈ SpecA, if depth Ap is zero, then Ap is a field. Since ca(Λ)
p
is

contained in ca(Λp), by Lemma 2.10(1), we may replace A and Λ by their localizations at p, and assume that
A is a local ring, say with maximal ideal m, with depth A = 0, and verify that A is a field. Now Λ is a finitely
generated free A-module.

By assumption, there exist a non-zerodivisor x ∈ Λc and an integer n ≥ 1 such that xExtnΛ(modΛ,modΛ) =
0. Since A is a local ring of depth 0, it suffices to verify that A is regular, and this follows from the

Claim. ExtnA(k, k) = 0 for k = A/m, the residue field of A.

Set t := rankk Ext
n
A(k, k) and assume t ≥ 1. As Λ is a free A-module one has

ExtnΛ(k ⊗A Λ, k ⊗A Λ) ∼= ExtnA(k, k)⊗A Λ ∼= (k ⊗A Λ)t ∼= (Λ/mΛ)t

as Λc-modules. Thus x(Λ/mΛ)t = 0, that is to say, x belongs to mΛ. Since A has depth zero, it possesses a nonzero
socle element, say a. Hence ax ∈ a(mΛ) = (am)Λ = 0. This contradicts the fact that x is a non-zerodivisor of Λc

(recall from (1) that the map A→ Λc is injective) and justifies the claim.

Corollary 6.7. Let A be a commutative noetherian ring.

(1) If Λ is a noether A-algebra of positive rank and can(Λ) contains a non-zerodivisor, then A is reduced, and
can(A) contains a non-zerodivisor.
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(2) If can(A) contains a non-zerodivisor, then for any torsion-free A-moduleM of positive rank, can(EndA(M))
contains a non-zerodivisor.

Proof . (1) Given such a Λ, Lemma 6.5 implies that the ideal I := annA Ext1A(Λ,ΩAΛ) of A contains a non-
zerodivisor, and it follows from Lemma 6.6(3) that A is reduced. Then Lemma 6.6(2) yields that the ideal
A ∩ can(Λ) of A contains a non-zerodivisor as well. Products of non-zerodivisors remain non-zerodivisors so it
remains to apply Theorem 6.1.

(2) Set Λ := EndA(M) and I := annA Ext1A(M,ΩAM). By Lemma 6.5, the ideal I of A contains a non-
zerodivisor, so it follows from Theorem 6.4 that the annihilator ideal of ExtnΛ(modΛ,modΛ), viewed as an
A-module, contains a non-zerodivisor as well. It remains to note that, since the A-module M is torsion-free, the
map A→ Λ takes non-zerodivisors of A to non-zerodivisors of Λc.

Corollary 6.8. Let A be a reduced ring. If there exists a noether A-algebra Λ of positive rank and a finitely
generated A-moduleG such that modΛ ⊆ thicknA(G) for some n ≥ 1 (for example, if gldimΛ ≤ n), then can+1(A)
contains a non-zerodivisor.

Proof . There is a non-zerodivisor x ∈ A with xExt>1
A (G,modA) = 0 by Lemma 2.14(1). It then follows that

xn Ext>nA (modΛ,modA) = 0. The assertion follows from (7).

The preceding result applies when A is a subring of a (commutative) regular ring S of finite Krull dimension
such that S is a finitely generated A-module. Quotient singularities provide one such family of examples, and
this seems worth recording.

Corollary 6.9. Let k be a field and S either k[x], the polynomial ring, or kJxK, the formal power series ring,
in commuting indeterminates x = x1, . . . , xd over k. If G is a finite subgroup of the k-algebra automorphisms of
S, then cad+1(SG) is non-zero.

Proof . The only thing to note is that S is a finitely generated module over SG (see, for example, [29, Propositions
(19.3) and (19.4)] and that the global dimension of S equals d. Thus, Corollary 6.8 applies.

Remark 6.10. Following [7], we say that A admits a noncommutative resolution if there exists a finitely generated
faithful A-module M such that EndA(M) has finite global dimension. Corollary 6.8 thus implies that when A is
a domain admitting a noncommutative resolution, ca(A) contains a non-zerodivisor. Since a finitely generated
faithful module M over a domain A has positive rank, so does EndA(M) as an A-module.

Remark 6.11. The hypothesis in Corollary 6.7 that Λ is module-finite over A is necessary: If A is a non-reduced
ring possessing a prime ideal p such that Ap is a field (for example,. k[[x, y]]/(x2y)), then ca(Ap) contains a
non-zerodivisor. The condition that Λ has positive rank over A is also needed: For any A and maximal ideal m
of A, the ideal ca(A/m) contains a non-zerodivisor.

Commutative rings

Here is one application of Theorems 6.4 and 6.1. Note that any Nagata ring (hence any excellent ring) satisfies its
hypothesis, by definition; see [20, §31]. Thus the result below, whose statement was suggested to us by Ken-ichi
Yoshida, subsumes [31, Proposition 2.1] that deals with one-dimensional reduced complete local rings.

Corollary 6.12. Let R be a commutative noetherian ring such that its integral closure R is finitely generated
as an R-module. Then the ideal can(R) ⊆ R contains a non-zerodivisor if and only if so does can(R) ⊆ R.

Proof . We have R ⊆ R ⊆ Q(R), where Q(R) denotes the total ring of fractions of R. As R is module-finite
over R, there is a non-zerodivisor a of R with aR ⊆ R. Hence rankR(R/R) = 0, and rankR(R) = 1. The ‘if’ part
now follows from Corollary 6.7(1).

Now consider maps φ : R→ EndR(R) and ψ : EndR(R) → R by φ(x)(y) = xy for x, y ∈ R and ψ(f) = f(1).
It is easy to verify that these are mutually inverse bijections. Therefore R ∼= EndR(R). Since R is torsionfree as
an R-module, Corollary 6.7(2) completes the proof of the converse.

The preceding result can be used to give another proof of Corollary 5.7, though the crux of argument is
essentially the same.
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7 Strong generators for derived categories

Let Λ be a noetherian ring and Db(modΛ) the bounded derived category of modΛ. In analogy with the
construction of thicknΛ(C) in Section 4, for any complex C in Db(modΛ) one can define a tower of subcategories
of Db(modΛ):

{0} ⊆ thick1
D
(C) ⊆ · · · ⊆ thickn

D
(C) ⊆ thickn+1

D
(C) ⊆

The only difference is that one is allowed the use of {ΣiC}i∈Z, the suspensions of C, in building thick1
D
(C),

and that exact sequences are replaced by exact triangles. For details, see, for example, [4]. As in [4], see
also [27], we say that Db(modΛ) is strongly finitely generated if there exists a C and an integer n such that
thickn

D
(C) = Db(modΛ). Such a C is then a strong generator for Db(modΛ).

In the same vein, one can construct a tower of subcategories in {thickn
Dsg

(C)}n>0 in Dsg(modΛ), the
singularity category of R, introduced by Buchweitz [5] under the name ‘stable derived category’. This then leads
to a notion of a strong generator for this category.

The gist of the result below, which is well-known, is that any strong generator for modΛ, in the sense of
Corollary 4.6, is also a strong generator for Db(modΛ) and for Dsg(modΛ).

Lemma 7.1. Let Λ be a noetherian ring and G a finitely generated Λ-module.

(1) If |Ω s(modΛ)| ⊆ |Ω ∗
ΛG|n for integers s, n ≥ 1, then Dsg(modΛ) = thickn+1

Dsg
(G).

(2) If modΛ = thicknΛ(G) for an integer n ≥ 1, then Db(modΛ) = thickn+1
D(Λ)(G).

Proof . We view modΛ as a subcategory of Db(modΛ), and also of Dsg(Λ), as usual.
(1) Since any projective module is zero in Dsg(Λ), for any finitely generated Λ-module M and integer i,

there is an isomorphism Ω iM ∼= Σ−iM in Dsg(Λ). Given this, it is easy to verify that |Ω ∗
ΛG|n ⊆ thickn

Dsg
(G) for

each integer n, and then (1) follows.
(2) It is clear from the constructions that thicknΛ(G) ⊆ thickn

D
(G) for each integer n. Fix a C in Db(modΛ),

and let Z and B denote the cycles and the boundaries of C, respectively. As Z and B are graded Λ-modules,
they are in thickt

D
(G). Viewing them as complexes, with zero differential, there is an exact sequence of complexes

of Λ-modules
0 −→ Z −→ C −→ ΣB −→ 0 .

It thus follows that C is in thickt+1
D(Λ)(G), as desired.

In view of Corollary 4.6(1) and Lemma 7.1(2), the following result is a direct consequence of Theorems 5.3
and 5.4.

Corollary 7.2. Let R be a commutative ring. If R is an equicharacteristic excellent local ring or essentially of
finite type over a field, then Db(R) is strongly finitely generated.

The part of this result dealing with rings essentially of finite type over a field was proved by Rouquier [27,
Theorem 7.38] when the field is perfect, and extended to the general case by Keller and Van den Bergh [18,
Proposition 5.1.2]. For complete local rings containing a perfect field, the result was proved by Aihara and
Takahashi [1, Main Theorem].

Remark 7.3. Example 2.11 furnishes rings (even commutative noetherian) whose module categories do not have
strong generators, since the singular loci of the rings there are not closed; see Theorem 4.3. For other examples,
see [8, Theorem 4.4].

Osamu Iyama asked us if it would be possible to bound the dimension of Db(R) in terms of the least integer
n such that can(R) contains a non-zerodivisor. We do not know the answer, but offer the following examples.
We thank Kei-ichiro Iima for suggesting the second one.

Example 7.4. Let k be a perfect field of characteristic ≥ 3, and set

R := k[[x, y, z, w]]/(x2 − y2, y2 − z2, z2 − w2) and J := (xyz, xyw, xzw, yzw) ⊂ R .

Then R is a one-dimensional reduced complete intersection and J is its Jacobian ideal. The element xyz, which
is a non-zerodivisor on R, is contained in ca2(R), by [31, Theorem 5.3]. However there are inequalities

dimDb(R) ≥ dimDsg(R) ≥ codimR− 1 = 2 ,

where the first one is clear and the second one follows from [3, Corollary 5.10].
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Here is a example that is also a domain: Let k be a field and let R the numerical semigroup ring
k[[t16, t17, t18, t20, t24]], viewed as a subring of k[[t]]. Then R is isomorphic to k[[x, y, z, w, v]]/(y2 − xz, z2 −
xw,w2 − xv, v2 − x3), so a complete intersection domain. By [31, Proposition 3.1] we have t64R ⊆ ca2(A), while

dimDb(R) ≥ dimDsg(R) ≥ codimR− 1 = 3 .

A decomposition of the derived category

As is apparent from what has been discussed so far, the existence of cohomology annihilators of a ring has an
impact on structure of its module category, and hence on its derived category. There is even a clear and direct
connection between the two: When Λ is noether algebra, can(R) contains a non-zerodivisor a if and only if Db(Λ)
is a product of the subcategory consisting of complexes annihilated by a and thickn

D
(Λ). A proof of this result

is presented in [14].
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