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Abstract. Tensor products usually have nonzero torsion. This is a central
theme of Auslander’s paper [1]; the theme continues in the work of Huneke and
Wiegand [7]–[9]. The main focus in this note is on tensor powers of a finitely
generated module over a local ring. Also, we study torsion-free modules N

with the property that M ⊗R N has nonzero torsion unless M is very special.

An important example of such a module N is the Frobenius power peR over a
complete intersection domain R of characteristic p > 0.

1. Introduction

In a 1961 paper [1], Auslander studied torsion in tensor products of nonzero
finitely generated modules M and N over unramified regular local rings R. Under
the assumption that M ⊗R N is torsion-free, he proved:

(1) M and N must be torsion-free, and

(2) M and N are Tor-independent, that is, TorRi (M,N) = 0 for all i ≥ 1.

The two conclusions are cleverly intertwined in his proof, which we revisit in Sec-
tion 3 of the present paper. We show, over a reduced complete intersection ring
R of positive characteristic p, that M ⊗R

ϕe

R is torsion-free if and only if M is
torsion-free and of finite projective dimension, in which case TorRi (M, ϕ

e

R) = 0 for
all i ≥ 1. (Here ϕ : R → R is the Frobenius endomorphism and ϕe

R is the module
obtained from R by restriction of scalars along ϕe.) When R is F-finite, we obtain
a criterion for regularity: R is regular if and only if (ϕ

e

M) ⊗R
ϕe

R torsion-free for
some (equivalently, every) nonzero finitely generated R-module M .

Our main results are in Section 2, where we study torsion in tensor powers. We
obtain detailed information on annihilators of elements in ⊗n

RM and draw several
conclusions. Suppose, for example, that r = r1, . . . , rd is a regular sequence in R
and M is the cokernel of the d× 1 matrix [r]t. We show in Theorem 2.8 that ⊗t

RM
is torsion-free if and only t ≤ d. This result should be compared with Auslander’s
observation [1, p. 638] that the same holds when M is the d − 1st syzygy of a
module of projective dimension d over a d-dimensional regular local ring. Cf. also
[9, Proposition 3.1]. If R is local, the “only if” direction holds much more generally:
if we write M as the cokernel of an m × n matrix θ with entries in the maximal
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ideal of R, and if some entry of θ is a non-zerodivisor, we show in Theorem 2.10
that ⊗t

RM has nonzero torsion for every t ≥ m.
Throughout this paper, R is a commutative, Noetherian ring.

2. Torsion in tensor powers

In this section we establish results on annihilators of elements in tensor powers
of modules.

Notation 2.1. Given elements m := m1, . . . ,md in an R-module M , we consider
the element in ⊗d

RM defined by

τ(m) :=
∑

σ∈Sd

sign(σ)mσ(1) ⊗ · · · ⊗mσ(d) .

Proposition 2.2. Let M be an R-module. If elements m1, . . . ,md in M and

r1, . . . , rd in R satisfy

(2.2.1) r1m1 + · · ·+ rdmd = 0,

then (r1, . . . , rd) · τ(m) = 0 in ⊗d
RM .

Proof. The twisted shuffle product gives the graded R-algebra
⊕

n≥0 ⊗
n
RM a strictly

skew-commutative structure; see [13, Chapter X, (12.4)]. Strictly skew-commutative

means that for any a ∈ ⊗i
RM and b ∈ ⊗j

RM , there are equalities

a ? b = (−1)ijb ? a , and a ? a = 0 when i is odd.

By definition of the shuffle product, τ(m) = m1 ? · · · ?md. Thus for each j we have

rj · τ(m) = m1 ? · · · ? mj−1 ? rjmj ? mj+1 ? · · · ? mn

= −
∑

i 6=j

ri(m1 ? · · · ? mj−1 ? mi ? mj+1 ? · · · ? mn) = −
∑

i 6=j

ri0 = 0. �

There is a “universal” source for the element τ(m) in the following sense:

Remark 2.3. Consider the polynomial ring Z[x] on indeterminates x := x1, . . . , xd,
and let U be the Z[x]-module with presentation

0 −→ Z[x]
[x1,...,xd]

t

−−−−−−−−→ Z[x]
d
−→ U −→ 0 .

Let u1, . . . , ud the the generators of U corresponding to the standard basis for Z[x]d,
so that x1u1+· · ·+xdud = 0, i.e., x and u satisfy (2.2.1). Then annZ[x] τ(u) ⊇ (x) by
Proposition 2.2; we shall see, in Theorem 2.8 below, that in fact annZ[x] τ(u) = (x).

Given any R-module M with a syzygy relation (2.2.1), consider the ring ho-
momorphism Z[x] → R taking xi to ri, for each i, and extending the structure
homomorphism Z → R. The hypothesis on M implies that there is a homomor-
phism of Z[x]-modules

f : U −→ M with f(ui) = mi for i = 1, . . . , d.

Under the induced map ⊗df : ⊗d
Z[x] U → ⊗d

RM , the element τ(u) maps to τ(m).

This remark prompts the discussion below, culminating in Theorem 2.8. First
we review some notions regarding depth. For details, see [4, Chapter 1].
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2.4. Depth. Let M be a finitely generated R-module and I an ideal of R satisfying
IM 6= M . The I-depth of M is the number

depthR(I,M) = inf{n ≥ 0 | ExtnR(R/I,M) 6= 0} .

The I-depth of M is always finite and is equal to the length of every maximal
M -regular sequence in I.

If x := x1, . . . , xd is a sequence of elements in R, and K is the Koszul complex
on x, then the (x)-depth of M may be computed from its Koszul homology:

depthR((x),M) = d− sup{i ≥ 0 | Hi(K ⊗R M) 6= 0}

This is the depth sensitivity of the Koszul complex.
Suppose now that x is R-regular. Then K is a free resolution of R/(x), and

hence H∗(K ⊗R M) ∼= TorR∗ (R/(x),M). In this case, we have

(2.4.1) depthR((x),M) = d− sup{i ≥ 0 | TorRi (R/(x),M) 6= 0} .

If R is local with maximal ideal m, we write depthR M for the m-depth of M
and call it the depth of M .

2.5. A Koszul syzygy module. Let R be a Noetherian ring and r := r1, . . . , rd
a regular sequence in R with (r) 6= R. Consider the complex

F := 0 −→ R
[r1,...,rd]

t

−−−−−−−→ Rd −→ 0

concentrated in degrees 0 and 1. Set M = H0(F ); as r1 is a non-zerodivisor, F is
a free resolution of M .

Lemma 2.6. Let M , d, and F be as in 2.5. For each n = 1, . . . , d, the following
statements hold:

(1) M and ⊗n−1
R M are Tor-independent.

(2) ⊗n
RF is a free resolution of ⊗n

RM , and pdR(⊗
n
RM) = n.

Proof. The base case is n = 1, and then (1) and (2) are clear. Fix an integer n with
2 ≤ n ≤ d, and assume these statements hold for all integers ≤ n− 1. Set I = (r).
Since ⊗n−1

R F is a free resolution of ⊗n−1
R M , we have

TorR∗ (R/I,⊗n−1
R M) = H∗((R/I)⊗R (⊗n−1

R F )) ∼= (⊗n−1
R ((R/I)⊗R F ))∗ ,

where the last isomorphism holds because the complex in question has zero differ-
ential. In particular, TorRn−1(R/I,⊗n−1

R M) ∼= R/I 6= 0, so that

(2.6.1) sup{i ≥ 0 | TorRi (R/(r),⊗n−1
R M) 6= 0} = n− 1 .

We can now complete the induction step.
(1) The induction hypothesis implies that ⊗n−1

R F is a free resolution of ⊗n−1
R M ,

so (2.6.1) and (2.4.1) show that

(2.6.2) depthR(I,⊗
n−1
R M) = d− (n− 1) ≥ 1 .

Moreover, TorR∗ (M,⊗n−1
R M) is the homology of the complex

F ⊗R (⊗n−1
R M) : 0 −→ ⊗n−1

R M
[r]t

−−→ (⊗n−1
R M)d −→ 0

(concentrated in degrees 0 and 1). By (2.6.2), some ri is a non-zerodivisor on
⊗n−1

R M , and it follows that M and ⊗n−1
R M are Tor-independent.

(2) By hypothesis, F and ⊗n−1
R F are free resolutions of M and ⊗n−1

R M , respec-
tively. We have already proved, in (1), that these modules are Tor-independent, so
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the complex F ⊗R (⊗n−1
R F ), that is to say, ⊗n

RF , is a free resolution of ⊗n
RM . In

particular, pdR(⊗
n
RM) ≤ n; that equality holds follows from (2.6.1). �

2.7. Torsion submodule. Let Q(R) be the total quotient ring of R. The torsion

submodule >RM ofM is the kernel of the natural homomorphismM → Q(R)⊗RM .
The inclusion >RM ⊆ M gives rise to an exact sequence

(2.7.1) 0 −→ >RM −→ M −→ ⊥RM −→ 0 .

The module M is torsion if >RM = M (that is, Mp = 0 for each p ∈ Ass(R)), and
M is torsion-free if >RM = 0. Thus M is torsion-free if and only if

⋃
AssM ⊆⋃

AssR. The stronger condition, that AssM ⊆ AssR, is therefore a sufficient
condition for M to be torsion-free. We will invoke this criterion twice in the proof
of the next theorem.

Part (1) of the next result is reminiscent of Auslander’s discussion on p. 638 of
[1]. Cf. also [9, Proposition 3.1].

Theorem 2.8. Let M and r be as in 2.5. The following statements hold:

(1) ⊗n
RM is torsion-free if and only if n ≤ d− 1.

(2) The element τ(m) in ⊗d
RM satisfies annR τ(m) = (r).

(3) The map R/(r) → ⊗d
RM of R-modules with 1 7→ τ(m) induces a splitting

⊗d
RM

∼= (R/(r))
⊕

W

where W is torsion-free; in particular, we have

HomR(R/(r),⊗d
RM) = Rτ(m) 6= 0 .

Proof. Set I = (r), let n ≤ d−1, and fix a prime p ∈ Ass(⊗n
RM). If I ⊆ p, it follows

from Lemma 2.6 that (⊗n
RF )p is a minimal free resolution of (⊗n

RM)p; therefore

depthRp
(⊗n

RM)p = depthRp − n ≥ d− n ≥ 1,

contradiction. Thus I 6⊆ p and then the Rp-module Mp is a nonzero free module;
hence so is (⊗n

RM)p. Therefore depthRp = depthRp
(⊗n

RM)p. We have shown that

Ass(⊗n
RM) ⊆ AssR, and hence that ⊗n

RM is torsion-free. The “only if” direction
of (1) will follow from (3).

As for parts (2) and (3), by construction r1m1 + · · · + rdmd = 0, so Proposi-
tion 2.2 gives an inclusion I ⊆ annR τ(m). The reverse inclusion will follow, once
we ascertain that the map in (3) splits. Consider the homomorphisms of R-modules

⊗d
R(F0) � ⊗d

RM � (⊗d
RM)⊗R R/I ∼= H0((⊗

d
RF )⊗R R/I) = ⊗d

R(F0 ⊗R R/I) ,

where the surjections are the natural ones; the isomorphism holds because ⊗d
RF

is a free resolution of ⊗d
RM , and the equality holds because the differential on F

has its image in IF . Let e = e1, . . . , ed be the standard basis for F0 = Rd, in
2.5, and let e′ be the induced basis of the free R/I-module F0 ⊗R R/I. Under the
composite map, the element τ(e) maps to τ(e′), and {τ(e′)} extends to a basis of
the R/I-module ⊗d

R(F0 ⊗R (R/I)). Since τ(e) maps to τ(m) in ⊗d
RM , the map in

(2) splits and gives a decomposition

⊗d
RM

∼= (R/I)
⊕

W .

It remains to verify that W is torsion-free; given the decomposition above, the other
parts of (3) are a consequence of this fact.
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For p ∈ SpecR with I 6⊆ p, the Rp-module Mp free, and hence so is Wp. Assume
now that I ⊆ p. The Koszul complex on r, viewed as elements in Rp, is a minimal
resolution of (R/I)p, and so it is a direct summand of (⊗n

RF )p, the minimal free
resolution of (⊗n

RM)p. The ranks of the free modules in the top degree, d, of these
complexes coincide (and equal 1), whence pdRp

Wp ≤ d− 1 and

depthRp
Wp = depthRp − pdRp

Wp ≥ 1

These observations show that AssW ⊆ AssR, so W is torsion-free as claimed. �

Local rings. Next we focus on local rings, where the preceding results can be
strengthened to some extent.

Lemma 2.9. Let M be a finitely generated module over a local ring (R,m), and
let m1, . . . ,md ∈ M . If the images of {m1, . . . ,md} in M/mM are linearly inde-

pendent, then τ(m) is not in m(⊗d
RM).

Proof. Letm′
i be the image ofmi in the k-vector spaceM/mM . Since {m′

1, . . . ,m
′
d}

is linearly independent, τ(m′) 6= 0. Hence τ(m) /∈ m(⊗d
RM). �

Given an R-module M , we write I(M) for the ideal (rij) defined by the entries
in a matrix in some minimal presentation

Rµ [rij ]
−−−−→ Rν −→ M −→ 0 where ν = νR(M).

This ideal is independent of the presentation. Moreover, I(M) contains a non-
zerodivisor if and only if, over Q(R), the total quotient ring of R, the module
Q(R) ⊗R M can be generated by fewer than ν elements. To see this we note
that, since Q(R) is semilocal, the module Q(R) ⊗R M needs ν generators if and
only if νRp

Mp = ν for some p ∈ AssR; moreover, νRp
Mp = ν if and only if the

presentation remains minimal when localized at p, that is, if and only if I(M) ⊆ p.
Thus Q(R) ⊗R M needs ν generators if and only if I(M) ⊆ p for some p ∈ AssR,
that is, if and only if I(M) consists of zerodivisors.

Recall that M is said to have rank r if Q(R)⊗R M is free over Q(R) of rank r;
see [4, Proposition 1.4.3] for different characterizations of this property.

Theorem 2.10. Let R be a local ring and M a nonzero finitely generated R-module

satisfying one of the following conditions:

(1) I(M) contains a non-zerodivisor; in this case, set b = νR(M); or
(2) M has rank; in this case, set b = rankR(M) + 1.

If M is not free, then for each nonzero finitely generated R-module N one has

>R((⊗
n
RM)⊗R N) 6= 0 for each n ≥ b .

Proof. It suffices to prove the statement for n = b, since

(⊗n
RM)⊗R N ∼= (⊗b

RM)⊗R ((⊗n−b
R M)⊗R N) ,

and N 6= 0 implies (⊗i
RM)⊗R N 6= 0 for each i ≥ 0, by Nakayama’s lemma.

(1) Let m1, . . . ,mb be a minimal generating set for the R-module M . The
element τ(m) in ⊗b

RM is annihilated by I(M), by Proposition 2.2, and is not in
m(⊗b

RM), by Lemma 2.9. It follows that, for each x in N \mN , the element τ(m)⊗x
in (⊗b

RM)⊗R N is nonzero and is annihilated by I(M), and hence is in the torsion
submodule; this where the hypothesis that I(M) contains a non-zerodivisor is used.
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(2) We claim that there exists a syzygy relation (2.2.1) with m a minimal gen-
erating set for M , (r) ⊆ m, and some ri a non-zerodivisor.

Indeed, νR(M) ≥ b since M is not free. Choose elements m1, . . . ,mb that form
part of a minimal generating set for M and such that m1, . . . ,mb−1 form a basis
for Q(R) ⊗R M over Q(R). Then there is a syzygy relation as in (2.2.1) in which
rb is a non-zerodivisor.

The element τ(m) in ⊗b
RM is annihilated by (r), by Proposition 2.2, and is not

in m(⊗b
RM), by Lemma 2.9. Since (r) has a non-zerodivisor, it follows as in (1)

that the torsion submodule of (⊗b
RM)⊗R N is nonzero. �

We learned recently that in 2011, in response to a query on MathOverflow, David
Speyer gave a proof (quite similar to ours) of part (1) when R is a domain. (See
http://mathoverflow.net/questions/73120/torsion-free-tensor-powers.)

One cannot always expect torsion in tensor powers of non-free modules:

Example 2.11. Let R = k[[x, y]]/(xy), where k is a field. The torsion-free R-
module M := R/(x) is not free; however ⊗n

RM is isomorphic to R/(x) for every
n ≥ 1, and hence is torsion-free.

The preceding results bring to the fore the following:

Question 2.12. Let R be a local domain. Is there an integer b, depending only
on R, such that ⊗n

RM has torsion for every finitely generated non-free R-module
M and every integer n ≥ b?

The condition that R be a domain is to avoid the situation of Example 2.11.
When R is regular, one can take b = dimR, by results of Auslander [1, Theorem
3.2] and Lichtenbaum [11, Corollary 3].

3. Torsion “carriers”

Some modules, even though they are torsion-free, usually generate torsion in
tensor products. For example, over a local ring (R,m, k) of positive depth, the
maximal ideal m is such a module: for any finitely generated non-free R-module
M , the tensor product m ⊗R M has torsion. To see this, observe that the short
exact sequence

0 → m → R → k → 0

yields an injection from the torsion module TorR1 (k,M) into m ⊗R M ; moreover,

TorR1 (k,M) 6= 0 because M is not free.
We will give two more examples of torsion carriers: the integral closure R of a

one-dimensional analytically unramified ring R, and the Frobenius powers ϕe

R of a
complete intersection R of characteristic p. Recall that a local ring is analytically

unramified provided its completion is reduced. If R is one-dimensional, an equiva-
lent condition is that R be Cohen-Macaulay with finitely generated integral closure
R, [12, Theorem 4.6].

Theorem 3.1. Let R be a one-dimensional analytically unramified local ring, and

let R be the integral closure of R in its total quotient ring. If M is a finitely

generated R-module for which R⊗R M is torsion-free, then M is free.
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Proof. Let p1, . . . , ps be the minimal prime ideals of R, and for each i let ri be the
dimension of the Rpi

-vector space Mpi
. Put n = νRM , the minimal number of

generators of the R-module M , and choose an exact sequence

0 → K → R(n) → M → 0 .

If we can show that ri = n for each i, we’ll know that K is torsion and hence zero,
and we’ll be done.

Put Di = R/pi, the integral closure of the domain R/pi. Since R is reduced, we
have inclusions

R ↪→

s∏

i=1

R/pi ↪→

s∏

i=1

Di ↪→

s∏

i=1

Q(R/pi) = Q(R) .

We see that R =
∏s

i=1 Di ; moreover, each Di is a semilocal Dedekind domain and

therefore a principal ideal domain. Since R ⊗R M is torsion-free, it is projective,
in fact free of rank ri on the component Di. Therefore, setting ei = νRDi, we have
the equations

r1e1 + · · ·+ rses = νR(R⊗R M) = (νRR) · (νRM) = (e1 + · · ·+ es)n.

Since ri ≤ n for each i, it follows from these equations that ri = n for each i. �

Let R be a Noetherian ring of positive characteristic p and ϕ : R −→ R the
Frobenius endomorphism r 7→ rp. Given an R-module M and a positive integer
e, we write ϕe

M for the R-module obtained from M by restriction of scalars along
ϕe; thus r · m = rp

e

m for r ∈ R and m ∈ M . Observe that M is torsion-free if
and only if ϕe

M is torsion-free for some (equivalently, all) e ≥ 1. Following [14],
we write F e(M) for the tensor product M ⊗R

ϕe

R. One views F e(M) as a right

R-module: the action of R on F e(M) comes from the right (ordinary) action of
R on ϕe

R. Thus F e(R) ∼= R as R-modules, and it follows that F e(M) is finitely
generated if M is finitely generated.

The following result follows immediately from [14, Corollary 1.10]:

Theorem 3.2 (Peskine and Szpiro, 1973). Let R be a local ring of characteristic p,
and let M be a finitely generated R-module. If M has finite projective dimension,

then TorRi (M, ϕ
e

R) = 0 for all e ≥ 1 and all i ≥ 1.

The converse of Theorem 3.2 is true and was proved by Herzog [5, Theorem 3.1].
For complete intersections, the following strong converse was proved by Avramov
and Miller [3, Theorem]:

Theorem 3.3 (Avramov and Miller, 2001). Let (R,m) be a complete intersection of

characteristic p, and let M be a finitely generated R-module. If TorRi (M, ϕ
e

R) = 0
for some e ≥ 1 and some i ≥ 1, then M has finite projective dimension.

The proof that (1) =⇒ (2) in the next theorem follows many of the same steps
Auslander used in his proof of [1, Lemma 3.1]. The main differences are that we have
to allow for the possibility that ϕe

R is not finitely generated, and that we appeal to
Theorems 3.2 and 3.3 for a replacement of rigidity of Tor over regular local rings.
Recall that a module M is generically free provided Mp is a free Rp-module for
each p ∈ AssR.
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Theorem 3.4. Let (R,m) be a complete intersection of characteristic p and M a

finitely generated, generically free R-module. Fix a positive integer e. The following

conditions are equivalent:

(1) F e(M) is torsion-free

(2) M is torsion-free and of finite projective dimension.

Proof. Suppose (1) holds, and apply −⊗R
ϕe

R to the short exact sequence (2.7.1),
getting an exact sequence

F e(>RM)
α

−→ F e(M)
β

−→ F e(⊥RM) −→ 0 .

Since F e(>RM) is torsion and F e(M) is torsion-free, we see that α = 0, whence
β is an isomorphism. In particular F e(⊥RM) is torsion-free. Next, consider the
universal pushforward [6, §1]:

(3.4.1) 0 −→ ⊥RM −→ R(m) −→ N −→ 0 .

Applying −⊗R
ϕe

R to this sequence, we obtain an injection

TorR1 (N, ϕ
e

R) ↪→ F e(⊥RM) .

Now ⊥RM is clearly generically free, and from the construction of the universal
pushforward [6, §1] one checks that N is generically free as well. It follows that

TorR1 (N, ϕ
e

R) is torsion. Since F e(⊥M ) is torsion-free, we have TorR1 (N, ϕ
e

R) = 0 .
Now we invoke Theorems 3.2 and 3.3 to see that

TorRi (N, ϕ
e

R) = 0 for all i ≥ 1 ,

and, moreover, that N has finite projective dimension. From (3.4.1) it follows that

TorRi (⊥RM, ϕ
e

R) = 0 for all i ≥ 1 and that ⊥RM has finite projective dimension.
Therefore we will have (2) once we show that>RM = 0. For this, we apply −⊗R

ϕe

R
once again to (2.7.1), to get an injection

F e(>RM) ↪→ F e(M) .

Since F e(>RM) is torsion and F e(M) is torsion-free, we have F e(>RM) = 0.
If >RM were non-zero, there would be a surjection >RM � R/m. But then
F e(R/m) = 0, that is, mϕe

R = ϕe

R, an obvious contradiction, since mϕe

R ⊆ m.
Thus >RM = 0, and the proof that (1) =⇒ (2) is complete.

Now assume (2) holds. Since M is torsion-free, we can build the universal push-
forward [6, §1]:

0 −→ M −→ R(ν) −→ N −→ 0 ,

where ν = νRM
∗. Then N has finite projective dimension. Now Theorem 3.2

implies that TorRi (N, ϕ
e

R) = 0 for all i ≥ 1. Therefore TorR1 (M, ϕ
e

R) = 0, and we
get an injection F e(M) ↪→ (ϕ

e

R)(ν), whence F e(M) is torsion-free. �

From Theorem 3.2 (alternatively, from the proof of Theorem 3.4), we get Tor-
independence (item (2) in the introduction):

Corollary 3.5. If R and M satisfy the equivalent conditions of Theorem 3.4, then

TorRi (M, ϕ
e′

R) = 0 for every i ≥ 1 and every e′ ≥ 1.
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Of course, if M is torsion-free, the converse of Corollary 3.5 holds, by Theo-

rem 3.3. In fact, it suffices to check that TorRi (M, ϕ
e′

R) = 0 for a single e′ and a
single i.

Recall that R is F-finite provided ϕ is a finite map, that is, R is module-finite
over ϕ(R). In this case, ϕe is a finite map for each e ≥ 1. Note that the action of R
on the module (ϕ

e

M) in items (1) and (2) below is the Frobenius actionm·r = mrp
e

.

Corollary 3.6. Assume that (R,m) is a reduced local ring, is F -finite, and is a

complete intersection. The following conditions are equivalent:

(1) F e(ϕ
e′

M) is torsion-free for every torsion-free R-module M and every pair

e, e′ of positive integers.

(2) F e(ϕ
e′

M) is torsion-free for some nonzero finitely generated R-module M
and some pair e, e′ of positive integers.

(3) R is regular.

Proof. Obviously (1) =⇒ (2), and the implication (3) =⇒ (1) holds by Kunz’s
theorem [10, Theorem 2.1] that the R-module ϕe

R is flat when R is regular.

To prove that (2) =⇒ (3), we note that ϕe′

M is a finitely generated R-module, by

F-finiteness. Also, ϕe′

M is generically free because R is reduced. By Theorem 3.4,
ϕe′

M has finite projective dimension, and now [2, Theorem 1.1] implies that R is
regular. �
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