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A B S T R A C T

The generation of plate tectonics on Earth relies on complex mechanisms for shear localization, as well as for the
retention and reactivation of weak zones in the cold ductile lithosphere. Pervasive mylonitization, wherein zones
of high deformation coincide with extensive mineral grain size reduction, is an important clue to this process. In
that regard, the grain-damage model of lithospheric weakening provides a physical framework for both mylo-
nitization and plate generation, and accounts for the competition between grain size reduction by deformation
and damage, and healing by grain growth. Zener pinning at the evolving interface between mineral components,
such as olivine and pyroxene, plays a key role in helping drive grains to small mylonitic sizes during de-
formation, and then retards their growth once deformation ceases. The combined effects of damage and pinning,
however, rely on the efficiency of inter-grain mixing between phases (e.g., olivine and pyroxene) and grain
dispersal, which likely depends on grain size itself. Here we present a new model for inter-grain mixing and
damage and the onset of rapid mixing. The model considers the competition between the formation of new
grains behind a receding interphase triple junction (e.g., olivine growing into a boundary between two pyroxene
grains) and their severance or spalling during progressive deformation and damage. The newly formed grains of
one phase are then transported along the opposing phase's grain-boundaries and the two phases become dis-
persed at the grain-scale in a growing mixed layer. The small intermixed grains also affect the grain evolution of
the surrounding host grains by Zener pinning, and hence influence the rheology and growth of the mixed layer.
As the grains in the mixed layer shrink, subsequently spalled new grains are also smaller, causing a feedback that
leads to more rapid mixing and shear localization in the mixed layer. The early stages of mixing can be compared
to laboratory experiments, but the transition to a steady-state localized mixed layer, as a proxy for a mylonitic
zone, can take a few million years at mid lithospheric conditions. Moreover, a transition in mixing efficiency
occurs as grain size reduces, which can induce hysteretic behavior, wherein strong, slowly deforming regions can
co-exist with weak rapidly deforming zones, analogous to plate tectonic states with large strong plates and
narrow weak boundaries.

1. Introduction

The emergence of plate tectonics on Earth, but not other terrestrial
planets, remains one of the leading order questions in geoscience today
(see Bercovici, 2003; Korenaga, 2013; Bercovici et al., 2015). A distinct
feature of plate tectonics is weak localized plate boundaries on which
most deformation occurs, separated by large strong and slowly de-
forming plates. Localized deformation relies on complex rheological
mechanisms in addition to the retention and reactivation of weak zones
in the cold ductile lithosphere (Gurnis et al., 2000; Bercovici et al.,
2015; Bercovici and Ricard, 2014). A significant clue to such behavior
exists in the form of mylonites, both in the mantle-lithosphere as well as
mid to lower crust (e.g., Etheridge and Wilkie, 1979; White et al., 1980;
Jaroslow et al., 1996; Jin et al., 1998; Furusho and Kanagawa, 1999;

Montési and Hirth, 2003; Dijkstra et al., 2004; Warren and Hirth, 2006;
Skemer et al., 2010; Tasaka et al., 2014; Gueydan et al., 2014; Linckens
et al., 2011, 2015; Rahl and Skemer, 2016).

Mylonites are pervasive at many plate boundaries, specifically oc-
curring in zones of high deformation that are characterized by extensive
mineral grain reduction (see Bürgmann and Dresen, 2008). The cause
for mylonitization, however, is enigmatic. Theories for mylonitization
typically treat the coupling of deformation with various possible models
of grain size evolution (e.g., see Montési and Hirth, 2003). Grain size
evolution is in principle governed by the competition between grain
growth or coarsening driven by surface energy minimization (e.g.,
Hillert, 1965; Karato, 1989; Evans et al., 2001) and grain size reduction
driven by deformation, for example, through dynamic recrystallization
(Karato et al., 1980; Platt and Behr, 2011). Models of mylonite
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formation in monomineralic or single-phase media (e.g., pure olivine)
have been developed using a few approaches. The field-boundary
model of De Bresser et al. (2001) proposes that grain size evolves to-
ward the boundary between dislocation and diffusion creep in a de-
formation-map space (i.e. a stress-grain size space); this occurs because
grain size reduction by dynamic recrystallization takes place for rela-
tively large grains in dislocation creep, while only grain-growth is fa-
vored for relatively small grains in diffusion creep. Hence, grain sizes
are predicted to converge on the boundary between creep regimes, the
field boundary, which thus represents a stable dynamic equilibrium.

However, grain sizes typically evolve to the empirically determined
stress–grain-size relation called the piezometric line (or paleopiez-
ometer, since it is often used to translate field measurements of grain
size into stress), which does not quite coincide with the field boundary
(e.g., Van der Wal et al., 1993; Stipp et al., 2010). This piezometric line
represents the steady-state balance between grain growth by coar-
sening, and comminution by dynamic recrystallization; thus this line
still resides primarily in the dislocation creep regime. Thus, some
models of mylonitization and localization, (e.g., Kameyama et al., 1997;
Braun et al., 1999) adopt these empirical relations and stipulate that
grain size evolves to a given piezometric line. Other models propose
instead a thermodynamic approach in that grain size reduction is driven
by damage, wherein deformational work is used to create new surface
energy at the grain boundaries, but still by means of dislocations and
dynamic recrystallization (Bercovici and Ricard, 2005; Austin and
Evans, 2007; Ricard and Bercovici, 2009; Rozel et al., 2011).

However, these monominerallic, single-phase, models, whether
empirical or based on damage and thermodynamics, only allow grain
size reduction while in dislocation creep, and hence do not permit grain
size to shrink into a grain-size-sensitive creep regime, like diffusion
creep. Without simultaneous grain-size reduction and grain-size-sensi-
tive creep, there is no positive localization feedback whereby commi-
nution causes weakening, which focuses deformation, which accel-
erates comminution, and so on. Moreover, mylonites, and especially
ultramylonites, typically have grain sizes and other microstructures that
are consistent with deformation in the diffusion creep regime, for which
the piezometric relations have questionable applicability. The field
boundary between diffusion and dislocation creep, therefore, remains a
conceptual barrier (as originally stipulated by De Bresser et al., 2001) to
these models for explaining mylonites and achieving sufficient plate-
tectonic-like localization. Other approaches to break through this bar-
rier have invoked dislocation-accommodated grain-boundary sliding
(disGBS) (Hirth and Kohlstedt, 2003; Hansen et al., 2011), which allows
for a combination of non-Newtonian behavior with weak grain-size
sensitive creep. However, the disGBS mechanism only contributes to
deformation over a narrow range of conditions, and cannot account for
microstructural evidence for diffusion creep (such as the absence or
obliteration of lattice preferred orientation) in natural mylonites and
ultramylonites.

Mylonitization, however, is commonly associated with poly-
mineralic rocks, especially in the mantle lithosphere where secondary
phases impede grain growth and help hold grain sizes to small values in
“permanent diffusion creep” (Warren and Hirth, 2006; Herwegh et al.,
2011; Linckens et al., 2011, 2015; Hansen and Warren, 2015). A model
for this polyminerallic behavior has been proposed using two-phase
grain-damage theory (Bercovici and Ricard, 2012), and this provides a
physical framework for both mylonitization and plate generation,
which is generally consistent with lab and field observations of poly-
crystalline rocks. In particular, the two-phase grain-damage theory
accounts for the competition between damage through deformation,
and healing by grain growth, but with the strong influence of Zener
pinning by an increase in density of interphase boundary (i.e., the in-
terface between mineral components, such as olivine and pyroxene).
Zener pinning in particular helps drive grains to small mylonitic sizes
during deformation, where a positive shear-localization feedback exists,
and then retards their growth once deformation ceases. Damage to the

interface creates smaller and more effective pinning bodies, and is
manifest as interface stirring, rending and inter-grain mixing; indeed
the effects of pinning are most pronounced with well dispersed grains.
Mixing efficiency, however, likely depends on grain size itself. Recent
work even posits that interface damage only becomes efficient at a
mixing transition at small grain sizes, which then leads to a hysteresis
loop, in which slowly and rapidly deforming states stably coexist, as is
characteristic of plate tectonics (Bercovici and Ricard, 2016).

However, the grain-mixing transition itself is a complex process
(Linckens et al., 2014; Czertowicz et al., 2016) (see Fig. 1). Although
grain-boundary splitting and cavitation are often invoked to account for
grain switching (Dimanov et al., 2007; Fusseis et al., 2009; Menegon
et al., 2015; Platt, 2015; Viegas et al., 2016; Précigout and Stünitz,
2016), that is likely a low-pressure phenomenon; at mid-lithospheric
confining pressures above 1 GPa, which exceed typical rock strength, it
is difficult to justify such cavitation. However small amounts of de-
viatoric tension on grain boundaries can lead to dilation, as material
flows into the low pressure zone by viscous creep; this is distinguished
from cavitation, in which voids are formed and then filled slowly by
diffusion or precipitation from a fluid phase. Here we present a new
model for inter-grain mixing and damage, given imposed stress, de-
formation and grain-boundary dilation, and subsequent feedbacks
leading to the onset of rapid mixing.

Our model considers the competition between growth of subgrains
into a triple junction (e.g., olivine growing into a pyroxene grain-
boundary) and their severance or spalling under deformation and da-
mage. Once the subgrains of one phase are detached into newly formed
grains, they are transported along the opposing phases grain-bound-
aries by pressure gradients induced by both imposed stresses as well as
capillary forces, and the phases become dispersed at the grain-scale in a

Fig. 1. (a) Petrographic thin section in cross-polarized light of a sheared lherzolite xe-
nolith (from Skemer and Karato, 2008). Olivine and orthopyroxene are dynamically re-
crystallized, although the recrystallization in orthopyroxene is incomplete. The olivine
recrystallized grain size is approximately 5 times larger than the orthopyroxene re-
crystallized grain size. (b) Line drawing of inset region derived from electron backscatter
diffraction (EBSD) mapping (Bruijn and Skemer, 2014). Roughness along the olivine-or-
thopyroxene interface is correlated with the location of interphase triple junctions. Small
olivine grains can be seen along orthopyroxene grain boundaries and within orthopyr-
oxene triple junctions.
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growing mixed layer. The small intermixed new grains also affect the
grain evolution of the surrounding “host” grains by Zener pinning
(which generally acts to reduce the host grain size) and hence influence
the rheology and growth of the mixed layer. As the grains in the mixed
layer become smaller, the spalling new grains also shrink, leading to
more rapid mixing and shear localization in the mixed layer. The early
stages of mixing can be compared to laboratory experiments (Linckens
et al., 2014), although the transition to an eventually steady-state lo-
calized mixed layer, as a proxy for a mylonitic zone, may take longer
than experiments can be sustained. The formation of mixed mylonitic
zones, and ostensibly plate boundaries, likely requires a mixing tran-
sition over a finite time, and possibly also leads to hysteretic behavior
(Bercovici and Ricard, 2016) with coexisting localized and unlocalized
deformation states akin to Earth's plate tectonic environment.

2. Theory

2.1. Olivine teeth

Our model focuses primarily on the interface between two large
domains of single phases or components in an overall two-phase mix-
ture; e.g., the inter-phase boundary between large domains of olivine
(ol) and pyroxene (px) in a peridotite. (Although the system is not
necessarily specific to peridotite, that lithology is appropriate for li-
thospheric processes; thus we will, for the sake of exposition, hence-
forth refer to the constitutive phases as olivine and pyroxene.) Both
domains are composed of mineral grains and thus the interface between
domains has various triple junctions, i.e., where a grain-boundary in-
tersects the interface (see Fig. 2).

Pyroxene, or more specifically orthopyroxene (opx), is observed in
both nature and experiments to develop recrystallized grains approxi-
mately 5 times smaller than those in olivine under the same deforma-
tion conditions (Skemer and Karato, 2008; Linckens et al., 2014). Thus,
since pyroxenes typically have smaller grains, we only consider the
triple junction of pyroxene grain-boundaries with the interface, and
neglect the less frequent triple junctions of olivine grain boundaries
with the same interface.

When a new pyroxene grain boundary is formed by subgrain-rota-
tion during dynamic recrystallization, and this grain boundary inter-
sects a phase boundary interface, the triple junction formed at the in-
terface is initially shaped like a “T” (Fig. 2). In olivine and pyroxene,
which have similar grain and phase boundary energies, this geometry is
unstable. In particular, surface tension or capillary effects causes olivine

to protrude into the triple junctions, and, given time, it would approach
the dihedral or wetting angle at which surface tension forces on the
junction are in balance (Figs. 2 and 3). However, if the medium is under
stress and experiencing deformation, two additional processes can
happen. First, normal stresses that are compressional normal to the
broad olivine–pyroxene (ol–px) interface, and tensile parallel to the
interface, can facilitate the growth of the olivine protrusion or “tooth”
(as we’ll refer to it, for better or worse, in this paper); in contrast,
compression parallel to the ol–px interface will generally impede tooth
growth. As these applied stresses tend to be much larger than the
wetting forces of surface tension they are more effective in driving
mixing.

Second, if there is some component of shear-stress parallel to the
interface, then the olivine protrusion or “tooth” develops geometrically
necessary dislocations, which form a subgrain boundary at the base of
the tooth that evolves into a contiguous grain-boundary. In effect, the
olivine “tooth” is damaged or broken off into a new grain, which is
subsequently removed and embedded in the pyroxene medium. Wetting
forces and normal stresses can further induce a suction force on the
dislodged new grain, and transport it along the grain-boundary to the
next junction of pyroxene grain-boundaries (Fig. 2). The final size of the
tooth (assuming it stops growing – or at best grows very slowly – after it
is severed) depends on the competition between how fast it can grow
versus how quickly its base accumulates damage during deformation,
and is finally severed.

2.1.1. Tooth growth
We first consider the growth of the olivine tooth given a simplified

triple junction geometry (Fig. 3). At any given time, the tooth has
height (perpendicular to the interface between olivine and pyroxene) y
and a base of length 2b. The base 2b has to be less than or equal to the
distance between triple junctions, which we equate to the pyroxene
grain size R, and thus we assume (and later demonstrate) that b ∝ R.

The forces driving growth of the tooth include both the effects of
wetting by surface tension and suction by applied normal stresses (we
neglect the cases where normal stresses impede tooth growth). We seek
to translate these forces into pressure gradients that then drive tooth
growth via viscous flow (more specifically diffusion creep) into the
pyroxene grain-boundary.

We represent the two-dimensional stress tensor in terms of normal
and shear components as

= ⎡
⎣ − ⎤

⎦
≡ − + +τ

τ τ
τ τ τ τxx zz xz zx(ˆ ˆ ˆ ˆ) (ˆ ˆ ˆ ˆ )N S

S N N S (1)

where x̂ and ẑ are unit vectors, respectively parallel and perpendicular
to the originally flat interface between phases. Continuity of normal
stress on the sloping sides of the tooth implies that the pressure adjacent
to these surfaces inside the tooth is = −± ± ±τp P n nˆ · · ˆ0 , where P0 is the
background pressure,

= ± +± θ θn x zˆ ˆ cos ˆ sin (2)

is the unit normal to the sloped surface, 2θ is the triple-junction angle,
and the± represents the right and left surfaces, respectively (Fig. 3).
We assume the tooth pressure caused by the imposed stress is the
average of these two pressures at these boundaries, and is thus simply
pt = P0 − τN(cos 2θ− sin 2θ). The applied stress on the grain-boundary
above the tooth acts to pull it open, and likewise induces a pressure

= − = −τp P P τx xˆ · · ˆgb 0 0 N. A vertical pressure gradient thus exists in
the tooth and is given by

≈
−

= −
p
z

p p

y
τ θ

y
d 2 sint tgb 2

d
N

(3)

where we assume the tooth height y is also the basic scale over which
pressure changes vertically.

The net surface tension force pulling up on the triple-junction corner
of the tooth is F= (γ1 − 2γI cos θ)L, where γI is the tension at the

Fig. 2. Schematic cartoon illustrating the sequence of steps described in the present
theory. (a) Grain boundaries within adjacent minerals, e.g. olivine (green) and pyroxene
(grey), initially intersect the interface or boundary between minerals or phases. (b)
Migration of the triple junction introduces roughness along the interphase boundary as a
protrusion, which, even without stress and deformation, grows toward the dihedral angle
wherein surface energies are balanced. (c) Imposed stress and deformation enhances
growth of the protrusion (if there are compressive stresses parallel to the direction along
which the protrusion grows); but they also induce damage that promotes dislocations and
eventually a subgrain wall behind the migrating protrusion. (d) Deformation increases the
misorientation across the subgrain wall leading ultimately to the formation of new grain.
(e) With ongoing imposed compressive stresses, the newly formed grain moves along the
boundary between two adjacent grains. (f) The grain migrates to a new position that is
entirely separate from its parent grain. At this point the process may return to step (b).
(For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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interface between olivine and pyroxene, γ1 is the surface tension be-
tween pyroxene grains (Fig. 3) and L is the length along the top triple
junction into the plane. (Note that we identify phase 1 with pyroxene,
and phase 2 with olivine.) This force F goes to zero when the dihedral
angle θD = cos −1(γ1/(2γI)) is reached, i.e., if the olivine and pyroxene
grains effectively achieve textural equilibrium with each other. To
translate this capillary line-force into a pressure we assume it is dis-
tributed over some horizontal plane within the tooth, whose area A is a
fraction of the tooth's basal area, i.e. A = 2fbL, where fy is also the
distance from the plane to the apex of the tooth. The pressure on this
plane due to the triple-junction capillary force is pc = P0 − F/
A = P0 − (γ1 − 2γI cos θ)/(2fb), where the minus sign denotes that,
since the capillary force is upward (in tension) for positive F, the
pressure anomaly will have the opposite sign to F. The pressure gradient
is due to the drop in pressure from approximately P0 at the base of the
tooth (where the tooth is in contact with an effective half-space of
olivine that is closer to mechanical equilibrium than material within the
tooth) to pc over a height (1 − f)y above the base. The pressure gradient
is thus (pc − P0)/[(1 − f)y] ∝ [(1 − f)f]−1. While the choice of f is
somewhat arbitrary, to be conservative we choose f that leads to the
minimum pressure gradient, i.e., f= 1/2; in this case

≈ −
−p

z
γ γ θ

2
2 cos
by

c I1d

d (4)

In determining (4) we neglect the capillary forces at the base of the
tooth, on the two lower corners; in reality these capillary forces act to
smooth those corners and minimize their curvature (i.e., the tooth
would not be triangular with basal corners but would adopt an elongate
and rounded morphology, as illustrated in Fig. 2). But, for simplicity we
assume these lower corner forces simply help anchor the corners
against the upward suction on the tooth (since the net surface tension
force on these corners is outward from the tooth) and keep the base
length b more or less fixed, i.e., a fixed fraction of the pyroxene grain
size R (which will itself evolve, as considered below). Thus a fixed b

during tooth growth implicitly allows for capillary forces at the base of
the tooth. However, when the base of the tooth is severed, this assumed
anchoring fails, and the net surface tension effect pulls these basal
corners inward and adds to the basal pressure, thus helping squeeze the
tooth upward; we will deal with this squeezing effect separately (see
below under Section 2.2.3).

The net force due to pressure gradients driving vertical growth of
the tooth is the sum of (3) and (4):

− ≈
+ −

=
p
z

bτ θ γ γ θ P
y

d
d

2
sin 2 cos

by
ΔIN

2
1

(5)

This pressure gradient drives flow of olivine into the gap between
pyroxene grains, which allows growth of the tooth. We assume the
major resistance to this pressure force is viscous channel flow of the
olivine tooth itself. Treating the pyroxene channel walls as approxi-
mately no-slip, and the channel of mean width b, the movement of
olivine material into the gap is approximated by simple Poiseuille flow,
and the volume flux (per unit length into the plane) filling the tooth is

= =V
t

b
μ

P
y

˙ d(yb)
d 12

Δ

t

3

(6)

where μt is the viscosity of the tooth.
We assume that the rheology of the tooth is dominated by

Newtonian diffusion creep, which we further assume is dependent on a
tooth grain size proportional to the tooth width b, because the diffusive
flux that permits tooth growth is through a cross-section proportional to
b. In this case ≈μ b B/(2 )͠

t
m

2 where ∝b b͠ , B2 is the olivine diffusion
creep compliance and m= 2 or 3, depending on whether the rheology
obeys Nabarro–Herring or Coble creep, respectively (see Table 1); here
we generally adopt a value of m = 3. (We note that an alternate
rheology-controlling grain size could be yb , however this implies the
viscosity goes to 0 for y→ 0, which is unphysical.)

We also note that the assumption that the tooth squeezes through
the grain-boundary gap via diffusion creep is limited to b smaller than

Fig. 3. Left frame: Sketch of olivine “tooth” geometry and surface forces; see text Section 2.1.1 for further discussion. Right frame: Sketch of mixed layer as olivine layer recedes at rate
dH/dt while teeth grow and are shorn off during deformation and damage under an imposed shear stress τS or velocity filed u (but with the normal stress load τN applied in either case).

Table 1
Table of material properties.

Definition Formula Amplitude (s−1) Act. energy (kJ/mol) Act. volume (cm3/mol) Exponent

Dislocation creep compliance (ol)
= −

+
A A e(MPa) n

Ea a
2 0

PV
RT

A0 = 1.1 × 105 Ea = 530 Va = 14 n = 3

Dislocation creep compliance (opx)
= −

+
A A e(MPa) n

Ea a
1 0

PV
RT

A0 = 6.92 × 108 Ha = 600 (enthalpy only) n/a n = 3

Diffusion creep compliance (ol, px)
=

+
B B e(μm)m

Eb b
0

PV
RT

B0 = 1.5 × 103 Eb = 375 Vb = 6 m = 3

Grain mass transfer rate
=

+
G G e(μm)p

Eg g
0

PV
RT

G0 = 2 ×104 Eg = 300 Vg = Vb p = 2

Damage fraction
=

⎜ ⎟
⎛
⎝

− ⎞
⎠

( )f f e
T

0
2 1 1000 K

2.9 f0 = 3 ×10−3

Olivine creep laws from Hirth and Kohlstedt (2003), using n = 3 instead of n= 3.5. Opx dislocation creep law from Bruijn and Skemer (2014) (see Lawlis, 1998; Bystricky et al., 2016)
using n = 3 instead of n = 2.9. Grain-growth law from Karato (1989) for olivine, using Eg = 300 instead of 200. Damage fraction law from Rozel et al. (2011) but using f0 from Section
4.1.
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the olivine field boundary grain size. As discussed above, experiments
suggest that by the time the grain mixing process begins, the pyroxene
grains have already undergone some reduction by dynamic re-
crystallization (Skemer and Karato, 2008; Linckens et al., 2014), and
thus the pyroxene grain size R is already close to the field boundary
between dislocation and diffusion creep regimes for pyroxene (Bruijn
and Skemer, 2014). Moreover, the olivine field-boundary grain size is
larger than that for pyroxene (at a given stress and temperature), and
since b < R, the olivine teeth sizes are well below the olivine field
boundary and in the diffusion creep regime. Therefore, tooth growth
and flow likely proceeds by diffusion creep.

Although b varies with time, it does so in parallel with the evolution
of pyroxene grain size R (as discussed below in Section 2.2.1), which we
assume is much slower than tooth growth; thus we assume the volume
flux V̇ is accommodated by growth in tooth height y. Lastly we further
assume that all the surface tensions, γI, γ1, as well as γ2 (the olivine
grain-boundary surface energy) are roughly equivalent and denoted by
γ. Taking all these assumptions together, (6) leads to

= + −−
y
t

B
b y

bτ θ γ θ
d 3

( sin (1 2 cos ))m
2

1 N
2d

(7)

2.1.2. Tooth damage and severance
We next assess the damage done to the base of the tooth by the

imposed deformational work. In principle, this process involves the
accumulation of geometrically necessary dislocations at the base of a
subgrain, although here we treat it as a simple thermodynamic, or
energy exchange, problem. The system is under stress τ given by (1)
which drives motion at velocity = +u vv x zˆ ˆ . The rate of work done per
unity area on either of the sloping surfaces of the tooth is

= ± + + ± −± τ τ θ τ θ u τ θ τ θ vn vˆ · · ( cos sin ) ( cos sin )N S S N (8)

The velocity field in the vicinity of the tooth can be written as

= + = −u e z e x v e z2 ˙ ˙ and ˙S N N (9)

where ėS is the shear-strain rate parallel to the mean ol–px surface (i.e.,
along the x-direction), ėN is the normal strain-rate, and we define the
coordinate origin (x= 0, z = 0) to be the base of the tooth beneath its
apex. The rate of work per area acts on an element of area (per length
into the plane) on the sloping tooth surfaces given by dz/cos θ, and
summing up the work done on that element on both sides of the tooth
(allowing that +n̂ occurs for x > 0 and −n̂ is for x < 0) gives

= + +( )W τ e z θ τ e x θ z θ z
θ

d ˙ 4 ˙ sin 2 ˙ (| |cos sin ) d
cosS S N N (10)

We then integrate this work rate from z = 0 to z = y and note that
along the sloped surfaces |x| = (y− z) tan θ; in this case we arrive at

= + = + ≡ =τW θ τ e τ e y τ e τ e by by τ by
μ

ė˙ 2 tan ( ˙ ˙ ) 2( ˙ ˙ ) :S S N N
2

S S N N
2

(11)

where μ is the viscosity of the medium above the mean interface (which
is originally pure pyroxene) wherein =τ μė2 ; we have also used
tan θ= b/y, and the definitions of the strain-rate tensor

= − + +e eė xx zz xz zx˙ ( ˆ ˆ ˆ ˆ) ˙ (ˆ ˆ ˆ ˆ )N S (12)

and the second stress invariant

= = +τ ττ τ τ1
2

:2
N
2

S
2

(13)

Some fraction f of the deformational work goes into creating a new
grain-boundary at the base of the olivine tooth until it is eventually
severed, and this growing olivine grain boundary has surface energy γ2.
As the base of the tooth is being damaged, the newly forming grain-
boundary has length b2 ·U where U is a dimensionless fraction. The
growth of surface energy on this boundary is supplied by the fraction f
of deformational work according to

=
t

γ b f τ
μd

(2 ) by2

2
U

d

(14)

Allowing the surface tensions on grain-boundaries and interfaces to be
the same (and that changes in grain size R and thus b are slow relative
to the rate that the tooth's base is damaged) as already assumed above,
(14) leads to

= = +
t

fτ
μγ

y
f
μγ

τ τ y
d 2 2

( )
2

2
S
2Ud

N (15)

Eqs. (7) and (15) describe the competition between growth of the
olivine tooth and the rate that it is severed. (Note that we assume the
growth of the tooth is unaffected by the growing new boundary at the
base, since as long as olivine is still in contact with olivine there should
still be sufficient diffusion of mass to fill in the the growing tooth.) The
tooth is entirely severed when = 1U , at which point the height of the
tooth is at its maximum value Y. We can, even now, integrate (7) and
(15) to find Y; however a few more governing equations are necessary
to describe the physics of the system, thus we will return to this pro-
blem in Section 2.4.

2.2. Evolution of the mixed layer

2.2.1. Grain evolution
Once the olivine teeth are shorn off and dislodged into the pyroxene

layer, they influence the evolution of the pyroxene grain sizes, espe-
cially by Zener pinning from the smaller olivine teeth. The grain size of
pyroxene in the layer that entrains the dislodged teeth obeys

⎜ ⎟= ⎛
⎝

− ⎞
⎠−

R
t

G ϕ R
r

d
d pR

1p 1

2

2c
(16)

The quantity G controls the rate of surface-tension driven diffusive mass
transfer between pyroxene grains (Hillert, 1965; Evans et al., 2001;
Ricard and Bercovici, 2009); generally this process leads to coarsening
or grain-growth, although with large Zener pining pressures, the coar-
sening can be stopped and in principle reversed. Because of lack of
information for pyroxene values of G, we assume it is similar to that for
olivine (see Table 1). Amongst the other quantities in (16), p is an ex-
ponent (usually p = 2), ϕ is the volume fraction of olivine teeth mixed
into the pyroxene, = 0.87c which arises from an assumed log-normal
grain size distribution (see Bercovici and Ricard, 2012, 2013, 2014), the
factor in parentheses is the Zener pinning factor and r represents the
size of the pinning body or equivalently the radius of curvature of the
blocking interface (Bercovici and Ricard, 2012).

For simplicity, we have neglected grain-boundary damage (due to
dynamic recrystallization) on pyroxene grains in the mixed layer. First,
recrystallization in the unmixed pyroxene is likely largely already
complete after a few tens of percent strain, before the mixing of olivine
teeth proceeds (e.g., Linckens et al., 2014). Thus further evolution of
the pyroxene grains is assumed to be dominated by Zener pinning
pressure of olivine teeth altering the surface energy and chemical po-
tential difference between pyroxene grains. Indeed, in the limit of re-
latively small pinning body sizes r – which is expected for our model
provided sufficiently large driving stresses and tooth damage – the full
grain-evolution equation (see Bercovici and Ricard, 2012) is dominated
by the form given by (16). In particular, for large grains in dislocation
creep but for which R≫ r, grain-boundary damage is suppressed by the
Zener pinning factor, while if the grains are small enough to be in
diffusion creep, grain boundary damage (which is prevalent during
dislocation creep) also becomes vanishingly small (Rozel et al., 2011;
Bercovici and Ricard, 2012). However, when grain size R is large, but r
is not ≪R, this assumption is weak and the limitations of the model in
that case must be considered.

In this model, the olivine teeth are the small dispersed pinning
bodies, and we can equate r to the mean size of these teeth; thus for
simplicity, given our 2-D model, we write r2 = bY (i.e., r2 is the 2-D
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volume of the olivine teeth in the same way that R2 is the 2-D volume of
the pyroxene grains). Moreover, the volume fraction ϕ of olivine teeth
mixed into the layer can be estimated by considering the volume of N
such teeth at the moment they separate; this volume (per length into the
page) is simply NbY. The total volume of the layer into which these
teeth have protruded is NRY (see Fig. 3), and thus ϕ = b/R. We assume
this volume fraction is essentially fixed and in principle has a maximum
size of 1/2 (i.e., in our simple model the base of the tooth 2b cannot be
bigger than R); although the typical olivine mixture ratio in peridotite is
closer to 60%, this is a bulk value, and is perhaps not relevant for
specific small-scale mixed layers. In the mixed layer, ϕ could in prin-
ciple be significantly less than 50%, although for simplicity we will
assume ϕ= 1/2. Therefore, given the relations for r and ϕ, (16) be-
comes

= ⎛
⎝

− ⎞
⎠−

R
t

G R
Y

d
d pR

1p 1 c
(17)

The Zener pinning factor can cause grain-growth to slow down and
even reverse. Reversal of grain growth and thus grain size reduction
happens, in principle, because the Zener pinning pressure reverses the
chemical potential between big and small grains, that would normally
drive mass diffusion from small to big grains during coarsening. With
the reversed chemical potential, the tendency toward chemical equili-
brium is achieved either by mass diffusion from big to small grains, or
nucleating smaller grains from the large distorted grains; either way the
grain size is reduced.

2.2.2. Mixed layer rheology
Since the pyroxene grain size evolves according to (17), then the

rheology of that layer evolves as well. Because the pyroxene layer be-
comes a mixture of pyroxene with small olivine teeth, the rheology
should reflect this mixture. While we can certainly account for the
complexity of the mixture's rheology, we make the simplifying as-
sumption that the rheology only depends on the pyroxene response. In
particular, since the olivine teeth are dispersed, then the interconnected
pyroxene matrix will dominate the rheological response of that layer.
Thus, for a given stress τ, we employ a composite rheology of disloca-
tion and diffusion creep for pyroxene given by

= +− τA τ B Rė ( / )n m
1

1
1 (18)

where A1 and B1 are the pyroxene dislocation and diffusion creep
compliances, and n and m are constant exponents. (Again, we assume
n = m= 3 for typical dislocation and Coble creep laws; see Table 1 for
a list of rheological properties.) Using (18) in the definition of de-
formational work (11), then (15) becomes
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where τ is defined in (13).

2.2.3. Growth of the mixed layer
As olivine teeth grow and are severed they migrate into the over-

lying pyroxene, and form a mixed layer. The growth of this mixed layer
is governed by the rate that the pure olivine layer is eroded away by the
loss of olivine teeth. As the original olivine–pyroxene (ol–px) boundary
recedes away under this erosion, it leaves behind the olivine teeth and
the mixed layer thickens (see Fig. 3).

However, the teeth must also propagate away from the ol–px
boundary, as is evident in laboratory experiments (Fig. 1; see also
Linckens et al., 2014), and leave behind a new ol–px triple junction on
which a new tooth nucleates. Our assumed driving mechanism for
transporting a tooth along the pyroxene grain-boundary is nearly
identical to that which makes the tooth grow in the first place: both
capillary forces as well as suction imposed by normal stresses, as re-
presented by the pressure gradient (5). Yet, once the tooth is severed,

additional capillary forces act on the base of the tooth. In particular,
when = 1U and y= Y, the bottom corners each experience a net (in
the x direction) capillary force of± (γI(1 − sin Θ) − γ2)L=
∓ γL sin Θ, where± indicates the right and left corners respectively, L
is the length of the corner edge into the plane, Θ = tan −1(b/Y), and
again we assume the surface tensions are equal to the same quantity γ.
These line forces are both inward into the tooth and impart a normal
traction that is roughly distributed over a vertical surface in the bottom
half of the tooth of area YL/2, and thus cause a basal high pressure
anomaly of approximately 2γ sin Θ/Y= 2γ sin Θ tan Θ/b; this adds to
the pressure gradient (5) to give the separation pressure gradient

− ≈
+ − +

=
p
z

bτ γ
bY

P
Y

d
d

2
sin Θ (1 2 cos Θ sin Θ tan Θ) Δ sN

2

(20)

When the tooth is severed, this pressure gradient provides the initial
impulse to drive the tooth along the grain boundary at a mean se-
paration velocity sW , similar to that for the tooth growth given by (7);
to wit

= + − +−
B

b Y
bτ γ

3
( sin Θ (1 2 cos Θ sin Θ tan Θ))s m

2
1 N

2W
(21)

Once the tooth is squeezed through the grain-boundary the driving
pressure gradient might be mitigated somewhat, but once the tooth
reaches the next junction of pyroxene grain-boundaries it is drawn in by
strong capillary forces that make it complete the transit away from the
receding interface, leaving behind fresh grain-boundary on which a
new tooth can form.

If the original olivine layer is of thickness Do and becomes eroded
away by a thickness H, then at any given time the olivine layer is of
thickness Do − H. Over a length along the interface Δx, the mass loss
(per unit into the plain) is d(ρΔx(Do − H)/dt= − ρΔxdH/dt. The rate
that mass is eroded away depends on the number of teeth lost per unit
time. Within the segment Δx there are N= Δx/R triple junctions at
which teeth are growing. At the time of their separation, each of these
teeth have a mass (per unit into the plain) of ρbY, and they are dis-
lodged at a velocity sW . Thus the mass flux from dislodging N teeth is
given by ρ x R b(Δ / ) sW . Since mass must be conserved, the erosion of the
interface must balance the mass loss from the flux of teeth and thus

= − +ρ x H t ρ x R b0 Δ d /d (Δ / ) sW , or

= = + − +−
H
t

b
R

ϕB
b Y

bτ γd
d 3

( sin Θ (1 2 cos Θ sin Θ tan Θ))s m
2
1 N
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(22)

which describes the evolution of the mixed layer, left behind in the
wake of the receding olivine–pyroxene interface, and we have used the
identity that b/R= ϕ. Note that in principle the full time derivative
dH/dt includes the advection and pinching of the mixed layer bound-
aries by compressional motion = −v e z˙N , but we leave this effect ab-
sorbed into the time derivative for now (or equivalently assume it is a
small effect).

2.3. Dimensionless governing equations

The governing equations of the system are (7), (15) (or equivalently
(19)), (17) and (22), which describe the growth of the tooth, the da-
mage or severance of the tooth, the evolution of the pyroxene grains
(which influence the rheology of material impinging on the teeth) and
lastly the growth of the mixed layer, respectively.

For all cases we allow a normal stress τN > 0 such that the grain-
boundary into which the tooth is growing (and eventually propagating)
is in tension. We eventually consider two driving conditions of constant
imposed shear stress τS and imposed mean shear strain rate (or imposed
velocity at a distal boundary). In either case we assume the system is in
uniform deformation in the x direction and thus is independent of x (we
do not account for any small scale 2-D motion caused by rheological
heterogeneity from the small olivine teeth). In this model geometry, the
stress is uniform across the layer no matter how many layers there are.
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If the stress is imposed and fixed it is both fixed and uniform for all time
and thus a constant of the system. If the mean strain-rate is imposed (by
velocity boundary conditions) then the stress is still uniform spatially
but varies in time.

We nondimensionalize stress by a given stress scale τ such that
= ′τ ττN N, = ′τ ττS S and = ′ = ′ + ′τ τ τ τ τ τ( )2 2 2 2

N
2

S
2 . For the imposed-

stress case, τ is related to the stress invariant such that = +τ τ τ2
N
2

S
2,

which leads and τ′2 = τN′2 + τS′2 = 1 for all time. The relative values of
′τN and ′τS can vary, but in this scheme, once ′τN is chosen as an input
parameter then it determines ′ = − ′τ τ1S N

2 . In the imposed mean
strain-rate case, τ 2 is the initial stress invariant (as we will show later)
and τ′ = 1 only at time t= 0 and evolves thereafter.

We next nondimensionalize all distances R, y, b= ϕR, as well as H
by the length scale R , and time by the time scale t , given by
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where R is the pyroxene field-boundary grain size for stress τ , i.e., the
grain size at the transition between diffusion and dislocation creep
(when the creep strain-rates are equal), and t is the deformation time
scale (basically the inverse of strain-rate, within a factor of 3) at the
field boundary. With these nondimensionalizing scales, the di-
mensionless governing equations become, after dropping all primes on
variables,
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Again Y is the maximum value of y when = 1U , b = ϕR, θ= tan −1(b/
y) and Θ = tan −1(b/Y). (See Table 2 for a summary of dimensionless
variables and parameters.) Note that formally the ratio of diffusion
creep compliances B2/B1 should appear in (24) and (27); however,
since there are no laboratory data for opx diffusion creep, we adopt the
olivine diffusion creep law for opx, in which case B2/B1 = 1. Moreover,
the diffusive mass transfer rate G is also nominally for opx, but given
the paucity of data for opx we again adopt the olivine values (see
Table 1).

2.4. Analytical model of tooth-severance

The grain size evolution, rheological response and growth of the
mixed layer of olivine embedded in pyroxene depends on the maximum
height of the olivine teeth Y at the moment they’re severed. This can be
obtained just from (24) and (25) if we assume the process of growth,
damage and severance of olivine teeth, represented by dy/dt and td /dU

is much faster than the grain size adjustment in the pyroxene, re-
presented by dR/dt and migration rate of the olivine–pyroxene
boundary (dH/dt). This assumption holds provided ≪C D , which is
generally valid (Bercovici and Ricard, 2012, 2016). In this case, we
rewrite (25) as

=
t

Q
b

yd
d q
U

(29)

where = ++Q b τ τ R/ ( / )q n m1 2D is approximately constant, i.e., it is
slowly-varying relative to the time-scale for growth and damage of

olivine teeth. In this case td /dU andU are assumed only functions of y
(over the more rapid time scale of tooth growth) so that

=t y y td /d (d /d )(d /d )U U which leads to
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This equation can be integrated from = 0U to 1 and from y= 0 to Y;
however substituting y= bχ, Y= bX, and defining q = m+ 2, the
integral becomes
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(31)

where β = bτN/Γ. The above equations yields a transcendental equation
for the normalized maximum tooth size X as a function of Q/Γ and β.
However the full solution for X is impractical for use in the remaining
evolution equations for R and H. A reasonable approximate solution to
X can be obtained by considering some asymptotic limits. First we note
that the dimensionless value of τN is typically of order unity since ap-
plied tension is needed to drive sufficiently fast tooth growth and se-
paration, and b is typically of order unity, though it can drop to O
(10−2). The nondimensional number Γ however is very small; i.e. since

∼τ 100MPa, ∼ −R 10 1000 μm (depending on temperature), and
γ≈ 1 Pa m, then typically Γ≪ 1, and thus β≫ 1 (see Table 2).

In the limit of small Q, i.e., very little applied work to damage the
tooth's base, the tooth will grow more freely before being shorn off, and
X can be assumed larger than unity provided β ≫ 1 (otherwise if β ≈ 0
then the tooth will just grow to the dihedral angle solution of

=X 1/ 3 ); in this case (31) is approximately

Table 2
Table of dimensionless quantities.

Definition Reference Equation(s)

Variables
y Tooth height at time t (24)
Y Maximum tooth height at severance Y = y when = 1U

U Damaged fraction of tooth base (25)
R Phase 1 (pyroxene) grain-size (26)
Rp Grain-size R at pinned state (38) and (39)
H Height of mixed layer (27)
b Width of tooth base b = ϕR
θ Triple junction half-angle at time t θ = tan −1(b/y)
Θ Triple junction half-angle at severence Θ = tan −1(b/Y)
τS Shear stress (variable for imposed mean strain-rate) (46) and (47)
τ Square-root of stress invariant (variable for

imposed mean strain-rate)
= +τ τ τN S

2 2 2

Parameters
D Tooth damage number (25) and (28)
C Phase 1 (px) grain mass-transfer number (26) and (28)
Γ Grain-boundary capillary number (24) and (28)
τN Imposed normal stress (24) and (27)
τS0 Initial shear stress = −τ τ1S N0

2

τS Shear stress (constant for imposed stress) =τ τS S0 for all time t
ϕ Volume fraction of phase 2 (olivine) ϕ = 0.5
c Grain-size distribution parameter = 0.87c

p Grain coarsening exponent (16), p = 2
n Dislocation creep stress exponent (18), n = 3
m Diffusion creep grain-size exponent (18), m = 3

Substitutions
Q = ++ +Q b τ τ R( / )m n m2 1 2D (29)–(31)
ξ ξ= y/b (31)
X X= Y/b (31)
β β= bτN/Γ (31)
Ω Ω= Q/(4bτN) (35)
K = τ ϕ3 /( )N 5K Dc (38)
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where the last expression arises from a 7th order Taylor expansion of
the tanh−1 term. Inspection of full solutions to (31) show that the value
of X2/β is small, e.g., since X= Y/b is unlikely to reach values of O
(100). Thus a reasonable constraint for X for small Q is that X≤ (5bτN/
Q)1/5; by empirical reasoning (i.e., comparing to the full solutions) a
reasonable approximate solution is X≈ (4bτN/Q)1/5.

Alternatively, if Q is very large, then X will be very small since the
teeth will be shorn off before they grow very far into the pyroxene
grain-boundary. In this case (31) becomes

∫= Q
bτ

χ χ1 d
X

N 0
2

(33)

which immediately leads to the approximate solution X≈ (3bτN/Q)1/3.
Both asymptotic solutions depend primarily on the quantity Q/

(bτN), and only very weakly on Γ (which, for example, slightly reduces
the magnitude of the small-Q solution). We can effectively stitch these
limits together into one expression

⎜ ⎟≈ ⎛
⎝

+ ⎛
⎝

⎞
⎠

⎞
⎠

−

X Ω 4
3

Ω
5/3 1/5

(34)

where we introduce for convenience Ω = Q/(4Γβ) = Q/(4bτN). A
comparison of (34) to the full solution for (31) (Fig. 4) shows a re-
markably good fit provided β ≫ 1.

We also briefly note for completeness that, in the unlikely case of
β ≪ 1, a similar approximate solution can be obtained. In the limit of
Q → 0, the tooth grows toward a steady-state dihedral angle condition
wherein →χ 1/ 3 . For Q→∞, we can assume χ≪ 1 and X → (3Γ/
Q)1/3. Stitching together these limits leads to the approximate relation

≈ + −X (3 ( ) )Q
3Γ

2/3 1/2. However, we won’t be using these solutions since
β is typically very large.

In the end, we recover the direct expression for the maximum tooth
height Y by making the appropriate substitutions for Y= bX, b = ϕR
and = ++ +Q b τ τ R( / )m n m2 1 2D (using q = m + 2) to arrive at
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We can then employ this analytic approximate expression for Y in (26)
and (27) (although one must account for the analytic expression being
most accurate for β = bτN/Γ≫ 1) to obtain the governing evolution
equations for the pyroxene grain size R and mixed-layer width H. In
fact, the substitution of (35) into the grain-evolution law (26) leads to
intriguing predictions suggestive of hysteretic behavior proposed by
Bercovici and Ricard (2016); this feature is discussed later in Section
4.3).

3. Some simple applications

3.1. Constant imposed stress

In our assumed geometry, stress τ is uniform across the width of the
layer, as already discussed earlier. If stress is imposed and fixed then τ is
both uniform and constant in time. This condition would be appropriate
if deformation is being driven by an imposed load; e.g., if deformation
is driven by a subducting slab and likewise the slab's buoyancy is
supported by the viscous resistance of the deformation zone itself. In
the next section (Section 3.2) we will consider the case of an imposed
mean strain-rate, which has a different interpretation.

Since stress is imposed and fixed then it dictates the stress scale τ , in
which case the dimensionless stress (square-root of the 2nd invariant)
τ = 1, and (35) leads to

= +
+

+ϕ
τ

R RΩ
4

( )
m

m
1

N

1D

(36)

where τN is still an imposed dimensionless normal stress, albeit τN ≤ 1.
Grain size evolution (26) is independent of H and can be integrated
directly to obtain R(t), from which we can then also integrate (27) to
get H(t), as well as the strain-rate = + −e R˙ 1 m in the mixed layer
(Fig. 5). These calculations typically show an initially gradual reduction
in grain size R, because of increasing Zener pinning pressure as more
and ever smaller olivine teeth are mixed into the pyroxene, which is
then followed by an abrupt drop to a small steady-state grain size. This
steady state delineates a pinned-state in which the mixed layer is akin
to a mylonite layer with small grains locked in permanent diffusion
creep. The mixed layer width likewise grows very slowly during the
initial phase of slow grain-reduction, but once the steady pinned state is
reached it grows rapidly. Finally, the strain-rate also remains small
initially until the transition to mixing occurs, and then it jumps abruptly
to large values, indicated large shear localization on the mixed “my-
lonite” layer.

3.1.1. Steady state grain size and the pinned state
The grain size in this simple model is predicted to go from its initial

state R= R0 to a steady state smaller value of R= Rp in a finite time;
this final value is the pinned state grain size (hence the subscript p). We
can estimate this final grain size Rp and the time it takes to reach it.
First, according to (26), dR/dt = 0 when =R Y /c, which, using (35),
leads to + = ϕΩ ( Ω) ( / )4

3
5/3 5c ; this can be recast as a simple polynomial

+ − =Z Z ϕ3
4

( / ) 05 3 5c (37)

where = ZΩ 3
4

3, and which has just one real solution for ϕ= 0.5 and
= 0.87c of Z = 0.41. An approximate analytic solution is =Z ϕ( / )5/3c

(since the polynomial requires <Z ϕ( ( / ) )4
3

5 1/3c ), which for the same ϕ

and c gives Z= 0.40. The steady pinned-state value of Ω is thus ϕ( / )3
4

5c

which, using (36) leads to a polynomial equation (using m= 3)

Fig. 4. Maximum “tooth” length Y (normalized by tooth base b) reached before being
fully damaged and severed, as a function of Q/Γ, which represents deformational work
(see text for discussion). Different curves are for different values of β= 10 (black),
β = 100 (blue) and β= 500 (green), using the full numerical solution to (31). Cross
symbols represent the analytic approximation (34), which fits well provided β≫ 1. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

D. Bercovici, P. Skemer Journal of Geodynamics 108 (2017) 40–55

47



+ − = =R R
τ ϕ

0 where
34 N

5K K
Dc (38)

for which there is one real solution, yielding the value of Rp. A good
approximate solution that stitches the asymptotic solutions for large
and small R – associated with large and small values ofK , respectively
– is given by

≈
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R
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2

3/2
K

K (39)

which compares favorably to the actual solution for Rp (Fig. 5).
Finally, the time tp to reach the steady pinned state is given by in-

tegrating (26) with (35) and (36), from R= R0 to Rp; this leads to
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i.e., tp, scaled by C is only a function of τ/ ND and R0, assuming other
parameters like ϕ, p, and c are well constrained (Fig. 5). (Note that (40)
is singular for the exact limit of R= Rp, and thus we instead integrate to
R = 1.001Rp, although the precise choice matters little provided we
integrate to just slightly larger than Rp. Moreover, the imprecision of
the approximate solution (39) can lead to a singular integral – if the
approximation is slightly smaller than the actual Rp– in which case it's
necessary to find a precise value of Rp from the complete solution to
(37) for Ω, which is then used to find an exact solution to (36).)

3.1.2. Growth of the mixed layer before and during the pinned state
Before the pinned state is reached, the mixed layer thickness H

grows slowly; but once the minimum grain size is reached at t= tp,
mixing becomes much more efficient and the mixed layer grows

rapidly. The initial slow growth of H can be estimated by using (27) and
(35), while assuming R≈ R0 > 1, Γ ≪ 1 and ≫τ/ 1ND , which leads to
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In contrast, the final rapid growth of H once t = tp and R = Rp can
be estimated as well from (27) and (35), under the same parameter
ranges, but using the pinned-state condition that =Y Rpc along with
(39); this leads to

≈
+

+
∼

H
t

ϕ τ
ϕ

τ
d
d

(1 )
( )

/p 2
N

3/2

2 2 2
2

N
K

K
D

c c (42)

These approximate growth rates can be compared to the full nu-
merical integration of (27) (Fig. 5). But these simple relationships de-
monstrate that growth before t= tp is a weak function of the damage
parameter D and after t = tp is a much stronger function of D .

3.2. Constant imposed mean strain-rate

We next consider the case of a constant imposed mean strain-rate in
simple shear, which occurs with no-slip constant velocity boundary
conditions. This case is relevant for shear deformation being driven by
plate motion whose velocity is dictated elsewhere (e.g., by the balance
of slab buoyancy with mantle drag).

The specific model geometry (Fig. 6) is such that the mixed layer (of
varying grain size R(t), and viscosity μ(t) and thickness H(t)) is sand-
wiched between an upper layer of pure pyroxene (with grain size R1,
viscosity μ1 and thickness D − Do) and a receding layer of pure olivine,
with grain size R2, viscosity μ2 and thickness Do − H. For the moment

Fig. 5. Left column: A sample evolution for grain-size R, thickness H and strain-rate ė of the mixed layer for constant imposed stress, with = 1C , = 100D , ϕ = 0.5, p= 2, m= 3,
=τ 1/ 2N (so that τS = τN) and an initial dimensionless grain-size R0 = 10 (10 times larger than the field-boundary grain-size); symbols on the plot of H are from the approximate initial

and final growth rates from (41) and (42). Right column: The steady-state pinned-state grain-size R= Rp (from the solution of (38) with the approximate solution from (39) shown in
symbols), and the time to reach this pinned state tp (from the solution to (40)) versus τ/ ND . The pinning time is scaled by C , and the colored lines represent different values of initial
grainsize, namely R0 = 10 (black), R0 = 100 (red) and R0 = 1000 (blue). Note that (40) cannot be integrated to exactly R= Rp, which marks a singularity; thus we integrate to a value of
R slightly larger than Rp, for example to R= 1.001Rp. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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all properties are dimensional again, until we determine an appropriate
stress scale τ . Note that while we still have an imposed uniaxial normal
stress τN, it remains fixed and uniform; we also assume squeezing of the
domain vertically is negligible.

Applying the boundary conditions that u = U on the upper
boundary adjacent to the peridotite layer, u= 0 at the lower boundary
adjacent to the olivine layer, that velocities must match with the mixed
layer, and that the shear stress τS is uniform across the layer, we

eventually obtain

⎜ ⎟= ⎛
⎝

− + − + ⎞
⎠

U τ D H
μ

D D
μ

H
μ

o o
S

2 1 (43)

We assume for simplicity that μ2 ≈ μ1, and that μ1 is given by the
rheological law (18) for the strain-rate ė with the initial pyroxene grain
size R0 (i.e., =μ τ e/(2 ˙)1 ). Likewise the mixed layer viscosity μ is also
given by (18) with the varying grain size R(t). In this case (43) becomes
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where A and B are the creep compliances that we have for this case
assumed to be the same for the phases. At time t= 0 the shear stress is
τS0, and H= 0 (no mixed layer, yet), which leads to
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that is itself a polynomial equation with which to determine the initial
shear stress τS0 given a prescribed boundary velocity U, normal stress τN
and other system properties; for n = 3 this becomes a cubic polynomial
equation for τS0. However, we could more easily prescribe τS0 to obtain a
boundary velocity U, and this is what we will assume, i.e., that τS0 is
known and prescribed. This will allow the results to be more easily
compared to the constant stress case in the previous section.

We thus nondimensionalize stress by the stress scale = +τ τ τN
2

S0
2 ,

and grain sizes and distances by = −R B Aτ[ /( )]n m1 1/ as before. Setting
the dimensionless versions of (44) and (45) equal, and assigning n= 3,
we arrive at a cubic polynomial equation for the dimensionless stress τS

+ = + + + −τ R τ τ τ R ηH R R(1 1/ ) ( 1/ (1/ 1/ ))m m m m
S0 0 S N

2
S
2

0 0 (46)

Fig. 6. Geometry for the constant mean strain-rate case, where a constant horizontal
velocity u= U is imposed at the upper boundary z= D, and u= 0 at z= 0. The stress is
uniform across the layer but changes with time. The local strain rate is variable with
depth, but the mean strain rate is always fixed at DU/(2 ). The variation of stress and local
strain-rate with time occurs as the mixed layer, between z= Do and z= Do − H, thick-
ness and changes mean grain-size R and viscosity μ. The properties of the unmixed layers
of pyroxene and olivine (subscripts 1 and 2, respectively) do not change with time, al-
though their thicknesses change.

Fig. 7. Sample cases for evolution of grain-size R, thickness H and shear-stress τS of the mixed layer for constant imposed mean strain-rate (i.e., imposed velocity boundary conditions),
with small normal stress (τN = 0.02; left column) and moderately large normal stress ( =τ 1/ 2N ; right column). In addition = = −η D/ 10 4R , but all remaining parameters are the same
as in Fig. 5. The black-symbols show the approximate quasi-steady state solutions for both limits of τN from (50).
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where = ≪η R D/ 1.
In the initial state when H= 0, then =τ τS0S , which is by design.

But as R→ 0 and H grows (and assuming ≫R 1m
0 and τN and τS

are< 1), then →τ τ R ηH/( )m
S S0 and thus the shear stress drops to much

smaller values than how it started. For intermediate times, stress can be
determined as the general solution to (46),
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Thus the shear stress τS changes with time through the function b(R,
H). In the end, the system with imposed mean strain-rate (i.e., velocity
boundary conditions) is governed by (26), (27), (35) with (47), again
allowing for Γ≪ bτN. These equations can be integrated, as in the case
with constant stress, to understand how the grain size and thickness of
the mixed-layer evolves, as well as the stress across the entire medium
(Fig. 7). As with the case of fixed stress, grain size R goes to a quasi-
steady state value (see next section) in a finite time, and stress drops
orders of magnitude in that time also.

3.2.1. Quasi-steady pinned state
The system in constant mean shear-strain-rate is never in a true

steady state because the shear-stress τS, and hence the grain size R,
depend on the mix-layer thickness H, which always grows in time.
However, the grain size can enter a quasi-steady state in the pinned
limit after which it slowly or barely evolves as the mixed layer grows. In
this case we assume dR/dt≈ 0, which, as shown in the previous ana-
lysis for constant stress, occurs when =R Y /c, and this leads to

≈ ϕΩ ( / )3
4

5c . Using (35) and n= m= 3, this results in the simple re-
lation, similar to (38),

+ − =R τ Rτ 04 4 2 K (48)

where K is defined previously in (38). However, we note that τ < 1
(since it starts with τ = 1 at t = 0 and gets smaller as τS drops) and that
the steady pinned-state grain size Rp is typically very small (i.e, Rp ≪ 1);
in this case we can write ≈R τ/p

2K . Substituting this relation for Rp for
R in (46) and (while still using m= 3) noting that ≪R1/ 10

3 , ≫R1/ 1p
3 ,

and that typically ≫ηHτ / 1m4 K (since typically ≪ 1K and the other
factors are not necessarily small) leads to
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which is in principle a 7th order polynomial for τS (using = +τ τ τ2
S
2

N
2).

However rather than solve this equation, we can infer some useful
approximate asymptotic relations. In the limit that the normal stress τN
is not small, say τN > 1/2, then τ→ τN as τS drops to very small values
in the steady state limit. In contrast, in the limit that τN ≪ 1, then
τ ≈ τS. In these two limits of τN we find the quasi-steady solutions are
well approximated by
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which compare favorably (in the right limits of τN) to the numerical
solutions (Fig. 7). Note that in the limit of non-vanishing τN, the pinned-
state grain size Rp goes to an actual steady state, while the shear-stress
continues to decline as H grows. In the case of very small τN, the pinned
grain size goes to a quasi-steady state, and τS is a weakly decreasing
function of H.

3.2.2. Growth of the mixed layer
For constant mean strain-rate, the mixed layer thickness grows

considerably more slowly than in the constant stress case. The

asymptotic approximations for dH/dt are similar to those shown for the
constant stress case, however they are multiplied by powers of τ. In
particular, the expression for the initial slow growth of H, is (41)
multiplied by τ4/3; and the relation for the final pinned-state rapid
growth of H, is effectively (42) multiplied by τ4. Since τ is a weakly
decreasing function of time, this extra factor has little effect on the
initial growth of the mixed layer, but τ4 is a more significantly de-
creasing function of time and thus more strongly mitigates the final
rapid growth of the mixed layer.

Physically, we can interpret this effect in that the appearance of the
mixed layer, with its weakening effect that reduces stress, reduces the
deformational work going into creating the mixed layer; and thus it
limits or slows its own growth. In the constant stress case, the strain-
rate increases across the mixed layer, causing it to generate more de-
formational work and enhance its own growth.

4. Discussion

4.1. Comparison to laboratory experiments

Linckens et al. (2014) performed deformation experiments on
peridotitic mixtures of olivine (ol) and orthopyroxene (opx), in which
samples containing millimeter-scale grains of olivine and pyroxene
were subjected to uniaxial deformation. By design, the interfaces be-
tween the olivine and orthopyroxene single crystals were initially
smooth. At the end of the experiments, the interface was investigated by
secondary electron microscopy (SEM) and electron backscatter dif-
fraction (EBSD). Interface roughness was observed, particularly where
recrystallized grain boundaries of opx intersected an olivine grain. The
amplitude of this roughness was typically less than one grain diameter.
However, in some cases the triple junction was displaced further from
the interface and a subgrain boundary was detected behind the mi-
grated triple junction. Linckens et al. (2014) inferred that triple junc-
tions formed in an initially unfavorable “T” shaped configuration,
which was relaxed by migration of the triple junction. This migration
caused an increase in the roughness of the mineral interface, and per-
haps promoted the initial stage of phase mixing. Mixing of olivine
grains into the pyroxene was not immediate, but eventually measurable
after about 24 h, and with strains of about unity. In that time, olivine
grains mixed into the pyroxene layer, but only over distances about 1 or
2 pyroxene grains away from the original ol-opx interface. (Opx grains
mixed into the ol layer as well, but the effect was less pronounced.)
Although not much mixing occurred in the short available time of the
experiments, the results provide some basis for rough comparison and
calibration of our model.

The experiments were typically run at high temperatures
(T≤ 1525 K), modestly high pressures (P= 1 GPa) and high stresses
(τ ≈ 500 MPa) in order to see deformation and some mixing by the end
of the experiment. The initial grain size, before deformation proceeded,
was approximately 1000 μm. Dynamic recrystallization occurred at
relatively small strains (less than the final strain in the experiment), and
the recrystallized grain size of the opx was several times smaller than
that of the recrystallized ol grains, at the experimental conditions
(Linckens et al., 2014, Fig. 4). The typical recrystallized opx grain sizes
at the start of mixing were 3–10 μm (see Linckens et al., 2014, Fig. 3
and Table 2).

In order to compare the experiments to our theory we need to scale
or nondimensionalize the experimental results. Using the above ex-
perimental temperature (the maximum temperature of 1525 K), pres-
sure and stress conditions, and rheological parameters for dislocation
creep in opx and diffusion creep in olivine (since diffusion creep data
for opx unfortunately does not exist) from various sources (see Table 1),
we obtain a nondimensionalizing length scales, from (23),

= =−R B A τ[ /( )] 6.6n m
1 1

1 1/ μm,where =τ 500 MPa.
The value of R is, in principle, the opx field-boundary grain size,

and is in fact very close to the mean of the range of the recrystallized
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opx grain sizes (3–10 μm). However, the recrystallized grain sizes
should reside on the piezometric line, which represents the balance
between normal grain-growth and grain comminution by dynamic re-
crystallization (Austin and Evans, 2007; Rozel et al., 2011). For our
given stress and temperature conditions (τ = 500 MPa, T= 1525 K),
the piezometric opx grain size is approximately 4/3 the grain size on
the field boundary (extracted from Bruijn and Skemer, 2014, Fig. 3a),
which we would predict to be ·6.64

3 μm = 8.8 μm; this value is well
within the observed range of 3–10 μm. Thus we assume the initial
nondimensional grain size is R0 ≈ 4/3.

The nondimensionalizing time scale, using the opx dislocation creep
compliance (again see Table 1) is = ×Aτ3/( ) 1.3 10n 4 s. Thus the di-
mensionless time-span for the experiment (i.e., 24 h) is approximately
te ≈ 6.

We can then use the initial growth rate of the mixed layer, ap-
proximated by (41), to estimate the conditions for the mixed layer to
reach a dimensionless width of He ≈ R0 = 4/3 in this time span. As-
suming equipartitioned normal and shear stresses ( = =τ τ 1/ 2N S ,
which makes little difference anyway provided τN is of order unity), and
ϕ = 0.5, we can infer that the damage number required to achieve the
observed mixing is, from (41),
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From (28) this would require a value of the damage partitioning frac-
tion of = ≈ × −f γD τR/(3 ) 2.3 10 5 (where we use γ= 1). This value of f
is in fact rather plausible, given the somewhat sparse constraints on f
extracted indirectly from experiment (Austin and Evans, 2007; Rozel
et al., 2011). Indeed Rozel et al. (2011) estimated f as a function of T
from piezometric data for olivine from various experiments, although to
do so they adopted the unusually low grain-growth activation energy of
200 kJ/mol to find, for example, that at T= 1000 K, f≈ 0.1; this is to
be expected since a large damage fraction would be needed to balance
rapid grain-growth in order to reach the steady-state piezometric line.
Using higher activation energies typical of diffusion of around 300 kJ/
mol leads to much slower grain-growth and hence lower damage frac-
tions, e.g., f ≈ O(10−3) at T= 1000 K (see Mulyukova and Bercovici,
2017). To obtain f= 2.3 × 10−5 at T = 1525 K would require
f = 3 ×10−3 at T= 1000 K using the Rozel et al. (2011) relation (see
Table 1), which is consistent with estimates for f using the plausible
activation energies for diffusion, as well as what we have typically
adopted in previous studies (Bercovici and Ricard, 2013, 2014, 2016).

In summary, the observed experimental grain mixing is consistent
with the model predictions using plausible available laboratory laws for
rheology, grain-growth and damage fraction, although clearly with
many unknowns permeating these estimates.

4.2. Scaling and applications to tectonic settings

The theoretical model predicts that the grain size in the mixed layer
approaches a steady-state (or quasi-steady-state) size in the pinned
limit, wherein the small olivine teeth mixed into the pyroxene dictate
grain-evolution primarily via the induced Zener pinning pressure (i.e.,
to drive the system well into the permanent diffusion creep regime).
The mixed layer with this final small-grain size is ostensibly comparable
to a mylonite zone, and we can estimate the predicted typical mylonite
grain size, the time it takes to reach this steady-state, and the typical
width of the mixed layer over geological time scales.

Here we consider the cases for a fixed applied stress, which is a
simpler system and whose theoretical results are generally easier to
interpret. One can qualitatively expand our inferences to include the
fixed mean-strain-rate case. In either case the steady-state pinned grain
size Rp is given in dimensionless form by (39), although for the geolo-
gical cases considered here, the quantityK , given in (38), is small and
thus ≈Rp K . When redimensionalized by R , the pinned grain size is

= = =R R
τ ϕ

R
γτ ϕ
fτ

3
pp 5 5D

R N N

c c (52)

where we have used the definitions of R andD given by (23) and (28).
Recall that τ is the applied stress scale and has dimensions of Pa, while
τN remains a dimensionless normal stress; thus the units of the ex-
pression for the pinned grain size are contained in the ratio γ τ/ . The
pinned grain size is, accordingly, independent of rheological and grain-
growth parameters and their implicit temperature dependence; how-
ever, temperature-dependence occurs through the partitioning fraction
f, the reference value of which is inferred from the experiments as
discussed in the previous section (see Table 1). Physically, (52) shows
that the final smallest pyroxene grain sizes depend on the size of the
olivine teeth dispersed into the mixed layer; the teeth size depends on
the competition between the net applied stress and work acting to es-
sentially break off the teeth (by creating new surface energy along the
tooth base), as represented by the factor γ fτ/( ), and the normal stresses
τN that promote tooth growth.

The time to reach a pinned state can be interpreted as the time to
start developing mylonite layers. The dimensionless time to reach the
steady pinned state is given by (40), which when redimensionalized by
the time-scale t , given in (23), leads to

= = =t t τ R t R
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p

p
p

N 0D
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which is a function of temperature T and applied stress τ through both
rheological and grain mass-transfer parameters A1, B1 and G, as well as
the exponents m, n and p (see Table 1). The pinning time tp also depends
on the initial dimensionless grain size R0; assuming that the initial di-
mensional grain size R0 is the same for all conditions, then the di-
mensionless =R RR /0 0 varies with stress and temperature. In total, the
pinned state is reached more quickly (i.e., with smaller tp) with in-
creasing stress and temperature, both of which decrease the field
boundary grain size R , while increasing temperature also causes faster
mass transfer between grains given by G (see Fig. 8).

Once the mylonite layer begins to form after a time tp, it thickens at
a rate given approximately by the growth of the mixed layer after the
pinned state is reached, i.e., (42). In dimensional form this layer grows
according to
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Thus once the mixed layer begins growing substantively, it grows faster
with increasing stress as well as temperature because both effects in-
crease the strain-rate scale (given by the factor t1/ ; see (23)), which
dominates over the associated reduction in the field-boundary grain
size R .

The dimensional pinned grain size Rp and time to reach the pinned
state tp, are both decreasing functions of applied stress τ , but have
opposite trends with changing temperature (Fig. 8). The growth rate of
the mixed layer Ḣp increases with both increasing stress and tempera-
ture. (For this application we continue to use ϕ= 0.5 and assign

=τ 1/ 2N ; neither of these parameters have a strong effect provided
they do not become extremely small.)

The pinned grain size Rp reaches the size of typical ultramylonites,
approximately 1–10 μm, for tectonic stresses >τ 100 MPa given mod-
erately cool lithospheric temperatures (T= 1000–1150 K); however it
can take a very long time (typically tp > 100 Myr or much longer) to
reach this state. The thickness of the mixed layer for cooler tempera-
tures also grows slowly, reaching< 1 mm to at most 1 m in a million
years. For higher temperature (e.g., T = 1300 K), Rp reaches the size of
normal mylonites, Rp ≈ O(10) μm for >τ 100 MPa, but can do so re-
latively quickly, in a time tp < 1 Myr; in this case the mixed layer can
grow rapidly, up to tens of meters in a millions years. In either case, the
predicted grain-sizes and width of mylonitic bands are consistent with
field observations of peridotitic mylonites (e.g., Warren and Hirth,
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2006; Skemer et al., 2010; Linckens et al., 2011, 2015).
In summary, the formation of ultra-mylonite bands at cooler tem-

peratures of 1000 K is sluggish in this model. Although mixing and
mixed layer formation are predicted to be much more rapid for warmer
temperatures, such temperatures also lead to coarser mylonites. The
geological interpretation of this result depends on how quickly mylo-
nite bands develop. If such bands are necessarily generated in a few
million years, then this model would predict they can only do so at the
warmer temperatures of the lower lithosphere (e.g., T > 1100 K).
Once the phases and grains are mixed, then dominance of damage over
healing (especially given Zener pinning in the mixed layer) becomes
more pronounced and leads to more localization and ultramylonite
formation, especially if the layer migrates to, or becomes emersed in,
cooler temperatures, as, for example, by exhumation or as the litho-
sphere thickens and cools (see also Braun et al., 1999). At these colder
temperatures the rate of healing by grain-growth and interface coar-
sening is drastically reduced, thus enhancing the longevity of dormant
weak zones, which can be inherited to accumulate plate boundaries
(e.g., Bercovici and Ricard, 2014).

On Venus, the higher lithospheric temperatures would be more
amenable to rapid grain mixing and mixed-layer formation, however,
stresses are expected to be as much as an order of magnitude lower than

on Earth (Lenardic et al., 2008; Landuyt and Bercovici, 2009; Foley
et al., 2012), leading to a commensurate reduction in rate of mixed
layer formation. Moreover, if such mixed layers form on Venus, then
they would be stuck at high lithospheric temperatures, which then
promote faster healing and weaker damage, probably leading to rapid
erasure of dormant weak zones.

We should note however that these tectonic interpretations rely on
incomplete experimental values for various material properties. For
example, diffusion creep laws for pyroxene are unavailable or in-
complete at best, and the relation for damage partitioning f(T) is in-
ferred indirectly from the combination of measurements from different
experiments, labs and samples (Rozel et al., 2011; Mulyukova and
Bercovici, 2017). Thus the precise interpretation of our model results
should only be considered with regard to general trends, and taken with
a grain of salt (or two).

4.3. Hints of hysteresis

The evolution of pyroxene grain size concurrent with spalling and
mixing of olivine teeth, as given by (26) with (35), suggests possible
multiple deformation states with hysteretic behavior, wherein strong
plates and weak plate boundaries can co-exist, as proposed by Bercovici
and Ricard (2016).

The grain-damage theory of Bercovici and Ricard (2012) stipulates
that, in a two-phase polymineralic mixture, the damage to the interface
between phases reduces the size of Zener-pinning bodies, which help
drive grain-reduction into a small-grain “permanent” (i.e., stable) dif-
fusion creep mode characteristic of mylonites, by both retarding grain
coarsening (as in standard Zener pinning) and enhancing grain-
boundary damage. Bercovici and Ricard (2016) proposed a modifica-
tion to this theory wherein the efficiency of interface damage increases
when grain and pinning body sizes are reduced below a critical value, at
which point grain mixing is accelerated (since grain or inter-phase
mixing is in itself a manifestation of interface damage). This mixing
transition leads to two stable steady states marking the balance of da-
mage and coarsening. One such state involves large grains above the
critical grain size, undergoing weak deformation in dislocation creep,
which is characteristic of conditions for a paleowattmeter or piezometer
relation (i.e., the balance between grain-boundary damage via dynamic
recrystallization and normal grain-growth; see Austin and Evans, 2007;
Stipp et al., 2010; Rozel et al., 2011). The second stable steady state
involves very small grains below the critical size, undergoing strong
deformation in diffusion creep, characteristic of mylonites and ultra-
mylonites. A third steady state is unstable and represents an inter-
mediate grain size or a protomylonite state. These three steady-states
constitute a hysteresis loop (see Bercovici and Ricard, 2016, Fig. 2)
wherein both slowly and rapidly deforming states can stably co-exist for
given stress and temperature (or damage and healing) conditions; this is
suggestive of the Earth's tectonic environment with both barely-de-
forming plates and strongly deforming plate boundaries. Here we show
that the grain-mixing dynamics of our current model hints at this
mixing transition and the multiple deformation states characteristic of
hysteresis.

The combination of (26) with (35) by itself predicts only one stable
steady state at R = Rp, which is the small, pinned-state grain size
characteristic of mylonitic conditions (see Section 3.1.1). However, our
simple model does not explicitly account for a few effects that could
promote background coarsening. First, our model assumes that mixed
olivine teeth are always on pyroxene grain-boundaries where they
impose a strong Zener pinning pressure that acts to reduce grain size.
However, if the pyroxene grains are large enough (relative to the oli-
vine teeth) they can potentially engulf the small olivine teeth, which
then become inclusions and cease to exert any pinning pressure; this
effect would mitigate Zener pinning and act to restore grain-growth.
Second, abnormal grain growth is known to be triggered when sec-
ondary phases induce strong pinning, in which case, a small outlier

Fig. 8. Pinned-state grain-size Rp, time to reach pinned state tp, and growth-rate of the
mixed layer during the pinned state Ḣp, versus applied stress scale τ , for the fixed stress

cases, but with all quantities dimensionalized using the length and time scales given in
(23), as shown in (52–54). The different colored curves are for different lithospheric
temperatures, specifically T = 1000 K (blue), T = 1150 K (black), and T = 1300 K (red).
The dashed curves on the Rp plot are for the field boundary grain-size R (at the indicated
temperatures), which is also the dimensionalizing scale, as given by (23). Other para-
meters used are =τ 1/ 2N (nondimensional), p= 2, n = m = 3, γ = 1 Pa m, ϕ = 0.5,
and lithostatic pressure is assumed to be 2 GPa. The initial grain-size R0 = 2000 μm,
which only affects tp; smaller values of initial grain-size make tp proportionally small, e.g.,
a reduction or R0 by 10 makes tp about 10 times smaller. See Section 4.2 for further
explanation. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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population of large grains can rapidly grow because of Zener pinning
pressure placed on the main grain population (Hillert, 1965; Rollett
et al., 1989). This effect would also impose a coarsening effect on the
mean grain size, although the grain size distribution itself might be-
come bimodal.

In lieu of developing a new model for complexities like engulfment
and abnormal growth, we simply assume there is a an added back-
ground coarsening effect such that (26) with (35) is recast as
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where B is an assumed background grain-growth rate, and we have
adopted the case for imposed driving stress for which the dimensionless
stress invariant τ2 = 1. For simplicity (and lack of knowledge other-
wise) we assume B is a uniform in R. Eq. (55) is non-monotonic in R
and displays extrema, in particular a minimum for R < 1, in the dif-
fusion creep regime, and a maximum at R= 1 at the field boundary
(Fig. 9).

The maximum in (55) at R= 1 represents a semi-barrier or region
of impedance to grain-reduction, wherein spalling and mixing of small
olivine grains is inhibited. This maximum occurs because of enhanced
grain reduction on either side of R= 1. For R < 1, decreasing opx
grain size promotes lower viscosity and higher strain-rates (for a given
stress) that enhance the damage to the base of the growing olivine
teeth, leading to smaller teeth and hence greater Zener pinning pres-
sure, which drives yet faster grain reduction. For R > 1, the pyroxene
grains are primarily in dislocation creep and tooth damage is in-
dependent of grain size (see (25)); however, the olivine teeth grow and
flow in diffusion creep and thus become stiffer for larger values of R and
tooth base b, thus inhibiting tooth growth, yielding smaller severed
teeth, which then also impose greater Zener pinning pressure and faster
reduction of the pyroxene grains.

In the case for negligible or no background coarsening (e.g., ≈ 0B ),
we obtain the original cases already discussed earlier, in which tooth
damage and mixing drive the system to small grains at the pinned state
R = Rp ≪ 1, which is the only equilibrium point at which dR/dt= 0
(Fig. 9a, blue curve). For a modest background coarsening (moderately
largeB ) there are three equilibria or steady-state solutions wherein dR/

dt= 0, at R > 1, R < 1 and R ≪ 1 (Fig. 9a, black curve). For sig-
nificant background coarsening (relatively large B ), grain-growth
dominates the system except for large grains, and there is only one
equilibrium at R > 1 (Fig. 9a, green curve). (In principle the equili-
brium at R > 1 is related to the piezometric or paleowattmeter rela-
tions (e.g., Stipp et al., 2010; Austin and Evans, 2007; Rozel et al.,
2011); however in this model, the system is only qualitatively re-
presentative of this behavior.)

The slope of ≡R t Rd /d ˙ at these equilibria indicates whether they are
stable or unstable; i.e., if <R Rd ˙ /d 0 at an equilibrium point then it is
stable, and if >R Rd ˙ /d 0 then it is unstable. For all cases, the far equi-
libria at either R ≪ 1 and R > 1 are stable. For modest background
coarsening the intermediate equilibrium point at R < 1 is unstable.

Thus, in general, for either increasing or decreasing background
coarsening B , the steady-state solutions transition from one stable
equilibria, to three equilibria (two stable and one unstable), and back to
one stable one, characteristic of a hysteresis curve (Fig. 9b), as con-
jectured by Bercovici and Ricard (2016). These results also support the
notion proposed by Bercovici and Ricard (2016) of a mixing transition.
For example, for the case of moderate B and three equilibria, a system
with large grains will tend to evolve to the equilibrium at R > 1.
However if a perturbation allows grain sizes to fall below the unstable
intermediate equilibrium at R < 1, then the system will evolve to the
mylonite-like state at R≪ 1. In general, the maximum in dR/dt, at the
field boundary R= 1, is a barrier to grain mixing and reduction, but for
grain sizes below the barrier, mixing is more effective. This effect also
implies that growth of the mixed mylonitic layer would be very slow
unless the system could jump this barrier and reach the stable equili-
brium at R ≈ Rp ≪ 1, at which point the layer would grow rapidly.

However, some care must be given in interpreting our model in the
limit of large pyroxene grains in which R≫ 1. First, since the olivine
tooth size is dictated by the pyroxene grain size, then at large enough R
the teeth could eventually deform by dislocation creep, rather than in
grain size-sensitive diffusion creep as we have assumed (see Section
2.1.1). This rheological transition will occur when the tooth base
b= ϕR reaches the olivine field boundary grain size, or when
R≈ ϕ−1(A1/A2)1/m ≈ O(10), depending on temperature (see Table 1).
Thus for R > O(10) our assumption that teeth deform via diffusion
creep becomes weak. Moreover, if the olivine teeth can attain suffi-
ciently large sizes when R > O(10) (because they deform in disloca-
tion creep), then our assumption that Zener pinning pressure dominates

Fig. 9. Left frame: Grain growth rate vs grain size for the model including the possibility of a background coarsening rate, given by (55). Shown are cases for no background growth = 0B

(blue), = 2.5B (black) and = 5B (green); all cases have tooth-damage number = 100D . For = 0B there is one steady solution where dR/dt = 0 at a small grain size R= Rp. For = 5B

there is one steady solution at large grain sizes. At = 2.5B there are three steady state solutions, two stable and one unstable. Right frame: Steady-state solutions R to (55) versus −1B ,
which are, for example, the intersection of the curves in the left panel with dR/dt = 0 . The three curves shown are for = 200D (dashed), = 100D (solid), and = 50D (dash-dot).
Different colors associate with the different steady-states, i.e. large-grain root with R > 1 that is stable (blue); the intermediate root with R < 1 that is unstable (green) and the small-
grain root with R ≪ 1 (red). All cases shown in both frames are for ϕ = 1/2, =τ 1/ 2N and = 1C . (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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pyroxene grain evolution (see Section 2.2.1) becomes weak also, in
which case grain-boundary damage (via dynamic recrystallization)
would need to be re-introduced. However, our model for pyroxene
grain growth, e.g., (55), is only relevant for the mixed layer; in prin-
ciple, the pyroxene in the adjacent unmixed layer has already under-
gone grain-reduction by dynamic recrystallization before mixing pro-
ceeds, and thus it is unlikely that R would ever be greater than or even
close to O(10) in the mixed layer to begin with. Of course, a more
comprehensive model would couple grain evolution in the mixed and
unmixed pyroxene layers (as well as the olivine layer, which we have
neglected entirely, other than its erosion), but we will defer that to
future efforts.

5. Summary and conclusion

We have presented a model and analysis of grain evolution and the
generation of mylonites, shear localization and tectonic plate bound-
aries, through mixing and damage in polyphase lithospheric materials.
The model considers the mixing of grains of two adjacent layers of
homogeneous phases (namely olivine and pyroxene in a lithospheric
peridotite) across their common interface while they undergo de-
formation. There are four coupled processes that lead to simultaneous
mixing, grain reduction and shear localization. First, the olivine phase
grows protrusions or “teeth” into the adjacent intersecting pyroxene
grain-boundaries because of imposed normal stresses as well as capil-
lary forces. Second, the base of the olivine teeth are damaged because of
the shear component of stress and deformation, and become severed.
Third, the dislodged olivine teeth are squeezed (by the same stress and
capillary forces) though the pyroxene grain boundaries to the next
grain-boundary triple junctions, and the resulting erosion of teeth
causes the original olivine–pyroxene interface to recede, leaving behind
a mixed layer of olivine teeth in a host of pyroxene grains. (See Figs. 2
and 3.) Finally, the olivine teeth impose a Zener pinning pressure that
drives grain-reduction of the pyroxene grains. These processes couple
into a positive feedback: since the pyroxene grain size dictates the
olivine tooth size, then as the former reduces so does the latter, causing
stronger pinning in the mixed layer, which drives yet smaller grains and
teeth, and so on. Moreover, the rate of mixing, growth of the mixed
layer and shear localization all accelerate rapidly as the grains and
teeth reach their minimum size characteristic of mylonites and ultra-
mylonites.

The results of our model are compared to laboratory experiments,
which provide a constraint on the damage process, i.e., the fraction of
deformational work that, in this model, goes into creating a new grain-
boundary at the base of the olivine teeth. In a geological setting, the
model predicts that mixing is very sluggish at mid-lithosphere tem-
peratures around 1000 K. Sufficient mixing occurs at higher, lower-li-
thospheric temperatures (1100–1300 K) leading to plausible formation
of mylonite layers after about 1 Myrs. Lithospheric mixed layers might
first be generated at warmer lithospheric depths of the lithosphere; as
these regions cool during, for example, sea-floor spreading or ex-
humation, the pre-mixed zones undergo further damage, while healing
and coarsening become more suppressed (and both processes are fa-
cilitated by efficient Zener pinning in the mixture; see Bercovici and
Ricard, 2012). In the same regard, mixing might also be efficient near
deeper lithospheric drips, which would then leave behind a mixed zone
to evolve and/or be inherited for later use, such as subduction initiation
(e.g., Bercovici and Ricard, 2014). Moreover, this model suggests that
mixing was perhaps more efficient in a hotter early Earth, leaving well
mixed zones to be inherited for further damage and localization after
sufficient planetary cooling.

Finally we note that the coupled physics of grain damage and
mixing suggests a hysteretic effect in the grain evolution law that yields
co-existing states of deformation, as suggested by Bercovici and Ricard
(2016). In particular, because of a grain-mixing transition or barrier,
the deforming system can either be in a large-grained, slowly deforming

state or a small-grained rapidly deforming state, at the same tectonic
conditions (i.e., stress and temperature). This simple model thus pre-
dicts that both barely deforming plate interiors and rapidly deforming
plate boundaries can coexist for the same tectonic regime, as is evident
on Earth.

Acknowledgments

The authors thank Laurent Montési for his thoughtful and thorough
review. This work was supported by National Science Foundation
Grants EAR-1344538 (for DB) and NSF EAR-1352306 (for PS).

References

Austin, N., Evans, B., 2007. Paleowattmeters: a scaling relation for dynamically re-
crystallized grain size. Geology 35, 343–346.

Bercovici, D., 2003. The generation of plate tectonics from mantle convection. Earth
Planet. Sci. Lett. 205, 107–121.

Bercovici, D., Ricard, Y., 2005. Tectonic plate generation and two-phase damage: void
growth versus grainsize reduction. J. Geophys. Res. 110, B03401. http://dx.doi.org/
10.1029/2004JB003181.

Bercovici, D., Ricard, Y., 2012. Mechanisms for the generation of plate tectonics by two-
phase grain-damage and pinning. Phys. Earth Planet. Int. 202–203, 27–55.

Bercovici, D., Ricard, Y., 2013. Generation of plate tectonics with two-phase grain-da-
mage and pinning: source-sink model and toroidal flow. Earth Planet. Sci. Lett. 365
(0), 275–288.

Bercovici, D., Ricard, Y., 2014. Plate tectonics, damage and inheritance. Nature 508,
513–516.

Bercovici, D., Ricard, Y., 2016. Grain-damage hysteresis and plate-tectonic states. Phys.
Earth Planet. Int. 253, 31–47.

Bercovici, D., Tackley, P.J., Ricard, Y., 2015. The generation of plate tectonics from
mantle dynamics. In: In: Bercovici (Gerald Schubert editor-in-chief), D. (Ed.), Treatise
on Geophysics, 2nd ed., Mantle Dynamics, vol. 7. Elsevier, pp. 271–318 (Chapter 7).

Braun, J., Chéry, J., Poliakov, A., Mainprice, D., Vauchez, A., Tomassi, A., Daignières, M.,
1999. A simple parameterization of strain localization in the ductile regime due to
grain size reduction: a case study for olivine. J. Geophys. Res.: Solid Earth 104 (B11),
25167–25181. http://dx.doi.org/10.1029/1999JB900214.

Bruijn, R.H., Skemer, P., 2014. Grain-size sensitive rheology of orthopyroxene. Geophys.
Res. Lett. 41 (14), 4894–4903. http://dx.doi.org/10.1002/2014GL060607.

Bürgmann, R., Dresen, G., 2008. Rheology of the lower crust and upper mantle: evidence
from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci.
36, 531–567.

Bystricky, M., Lawlis, J., Mackwell, S., Heidelbach, F., Raterron, P., 2016. High-tem-
perature deformation of enstatite aggregates. J. Geophys. Res.: Solid Earth 121 (9),
6384–6400. http://dx.doi.org/10.1002/2016JB013011.

Czertowicz, T., Toy, V., Scott, J., 2016. Recrystallisation, phase mixing and strain loca-
lisation in peridotite during rapid extrusion of sub-arc mantle lithosphere. J. Struct.
Geol. 88, 1–19. http://www.sciencedirect.com/science/article/pii/
S0191814116300517.

De Bresser, J., ter Heege, J., Spiers, C., 2001. Grain size reduction by dynamic re-
crystallization: can it result in major rheological weakening? Int. J. Earth Sci. 90,
28–45.

Dijkstra, A.H., Drury, M.R., Vissers, R.L.M., Newman, J., Van Roermund, H.L.M., 2004.
Shear zones in the upper mantle: evidence from alpine- and ophiolite-type peridotite
massifs. Geol. Soc., Lond. 224 (1), 11–24. Special Publications, http://sp.
lyellcollection.org/content/224/1/11.abstract.

Dimanov, A., Rybacki, E., Wirth, R., Dresen, G., 2007. Creep and strain-dependent mi-
crostructures of synthetic anorthite-diopside aggregates. J. Struct. Geol. 29 (6),
1049–1069. http://www.sciencedirect.com/science/article/pii/
S0191814107000338.

Etheridge, M., Wilkie, J., 1979. Grainsize reduction, grain boundary sliding and the flow
strength of mylonites. Tectonophysics 58 (1-2), 159–178.

Evans, B., Renner, J., Hirth, G., 2001. A few remarks on the kinetics of static grain growth
in rocks. Int. J. Earth Sci. (Geol. Rundsch.) 90, 88–103.

Foley, B.J., Bercovici, D., Landuyt, W., 2012. The conditions for plate tectonics on super-
earths: Inferences from convection models with damage. Earth Planet. Sci. Lett. 331-
332, 281–290.

Furusho, M., Kanagawa, K., 1999. Reaction induced strain localization in a lherzolite
mylonite from the Hidaka metamorphic belt of central Hokkaido, Japan.
Tectonophysics 313, 411–432.

Fusseis, F., Regenauer-Lieb, K., Liu, J., Hough, R.M., De Carlo, F., 2009. Creep cavitation
can establish a dynamic granular fluid pump in ductile shear zones. Nature 459
(7249), 974–977. http://dx.doi.org/10.1038/nature08051.

Gueydan, F., Précigout, J., Montési, L.G., 2014. Strain weakening enables continental
plate tectonics. Tectonophysics 631 (0), 189–196. Observational and modelling
perspectives on the mechanical properties of the lithosphere http://www.
sciencedirect.com/science/article/pii/S0040195114000924.

Gurnis, M., Zhong, S., Toth, J., 2000. On the competing roles of fault reactivation and
brittle failure in generating plate tectonics from mantle convection. In: In: Richards,
M.A., Gordon, R., van der Hilst, R. (Eds.), History and Dynamics of Global Plate
Motions, Geophys Monogr. Ser., vol. 121. Am. Geophys. Union, Washington, DC, pp.

D. Bercovici, P. Skemer Journal of Geodynamics 108 (2017) 40–55

54

http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0005
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0005
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0010
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0010
http://dx.doi.org/10.1029/2004JB003181
http://dx.doi.org/10.1029/2004JB003181
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0020
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0020
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0025
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0025
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0025
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0030
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0030
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0035
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0035
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0040
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0040
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0040
http://dx.doi.org/10.1029/1999JB900214
http://dx.doi.org/10.1002/2014GL060607
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0055
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0055
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0055
http://dx.doi.org/10.1002/2016JB013011
http://www.sciencedirect.com/science/article/pii/S0191814116300517
http://www.sciencedirect.com/science/article/pii/S0191814116300517
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0070
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0070
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0070
http://sp.lyellcollection.org/content/224/1/11.abstract
http://sp.lyellcollection.org/content/224/1/11.abstract
http://www.sciencedirect.com/science/article/pii/S0191814107000338
http://www.sciencedirect.com/science/article/pii/S0191814107000338
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0085
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0085
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0090
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0090
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0095
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0095
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0095
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0100
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0100
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0100
http://dx.doi.org/10.1038/nature08051
http://www.sciencedirect.com/science/article/pii/S0040195114000924
http://www.sciencedirect.com/science/article/pii/S0040195114000924
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0115
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0115
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0115
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0115


73–94.
Hansen, L.N., Warren, J.M., 2015. Quantifying the effect of pyroxene on deformation of

peridotite in a natural shear zone. J. Geophys. Res.: Solid Earth 120 (4), 2717–2738.
http://dx.doi.org/10.1002/2014JB011584.

Hansen, L.N., Zimmerman, M.E., Kohlstedt, D.L., 2011. Grain boundary sliding in San
Carlos olivine: flow law parameters and crystallographic-preferred orientation. J.
Geophys. Res.: Solid Earth 116 (B8). http://dx.doi.org/10.1029/2011JB008220.

Herwegh, M., Linckens, J., Ebert, A., Berger, A., Brodhag, S., 2011. The role of second
phases for controlling microstructural evolution in polymineralic rocks: a review. J.
Struct. Geol. 33 (12), 1728–1750.

Hillert, M., 1965. On the theory of normal and abnormal grain growth. Acta Metall. 13,
227–238.

Hirth, G., Kohlstedt, D., 2003. Rheology of the upper mantle and the mantle wedge: a
view from the experimentalists. In: In: Eiler, J. (Ed.), Subduction Factor Monograph,
vol. 138. Am. Geophys. Union, Washington, DC, pp. 83–105.

Jaroslow, G., Hirth, G., Dick, H., 1996. Abyssal peridotite mylonites: implications for
grain-size sensitive flow and strain localization in the oceanic lithosphere.
Tectonophysics 256 (1), 17–37. http://www.sciencedirect.com/science/article/pii/
0040195195001638.

Jin, D., Karato, S., Obata, M., 1998. Mechanisms of shear localization in the continental
lithosphere: Inference from the deformation microstructures of peridotites from the
Ivrea zone, Northwestern Italy. J. Struct. Geol. 20, 195–209.

Kameyama, M., Yuen, D., Fujimoto, H., 1997. The interaction of viscous heating with
grain-size dependent rheology in the formation of localized slip zones. Geophys. Res.
Lett. 24, 2523–2526.

Karato, S., 1989. Grain growth kinetics in olivine aggregates. Tectonophysics 168,
255–273.

Karato, S., Toriumi, M., Fujii, T., 1980. Dynamic recrystallization of olivine single crystals
during high temperature creep. Geophys. Res. Lett. 7, 649–652.

Korenaga, J., 2013. Initiation and evolution of plate tectonics on earth: theories and
observations. Ann. Rev. Earth Planet. Sci. 41, 117–151.

Landuyt, W., Bercovici, D., 2009. Variations in planetary convection via the effect of
climate on damage. Earth Planet. Sci. Lett. 277, 29–37.

Lawlis, J., 1998. High temperature creep of synthetic olivine-enstatite aggregates (Ph.D.
thesis). Penn. State U., Dept. Geosciences, State College, PA.

Lenardic, A., Jellinek, M., Moresi, L.-N., 2008. A climate change induced transition in the
tectonic style of a terrestrial planet. Earth Planet. Sci. Lett. 271, 34–42.

Linckens, J., Bruijn, R.H., Skemer, P., 2014. Dynamic recrystallization and phase mixing
in experimentally deformed peridotite. Earth Planet. Sci. Lett. 388, 134–142.

Linckens, J., Herwegh, M., Müntener, O., 2015. Small quantity but large effect – how
minor phases control strain localization in upper mantle shear zones. Tectonophysics
643 (0), 26–43.

Linckens, J., Herwegh, M., Müntener, O., Mercolli, I., 2011. Evolution of a polymineralic
mantle shear zone and the role of second phases in the localization of deformation. J.
Geophys. Res. 116 (B06210), 21pp.

Menegon, L., Fusseis, F., Stünitz, H., Xiao, X., 2015. Creep cavitation bands control
porosity and fluid flow in lower crustal shear zones. Geology 43 (3), 227–230.

Montési, L., Hirth, G., 2003. Grain size evolution and the rheology of ductile shear zones.

From laboratory experiments to postseismic creep. Earth Planet. Sci. Lett. 211,
97–110.

Mulyukova, E., Bercovici, D., 2017. Formation of lithospheric shear zones: Effect of
temperature on two-phase grain damage. Phys. Earth Planet. Int.Submitted.

Platt, J., Behr, W., 2011. Grainsize evolution in ductile shear zones: implications for strain
localization and the strength of the lithosphere. J. Struct. Geol. 33 (4), 537–550.
http://www.sciencedirect.com/science/article/pii/S0191814111000265.

Platt, J.P., 2015. Rheology of two-phase systems: A microphysical and observational
approach. J. Struct. Geol. 77, 213–227. http://www.sciencedirect.com/science/
article/pii/S0191814115001029.

Précigout, J., Stünitz, H., 2016. Evidence of phase nucleation during olivine diffusion
creep: A new perspective for mantle strain localisation. Earth Planet. Sci. Lett. http://
www.sciencedirect.com/science/article/pii/S0012821X1630509X.

Rahl, J.M., Skemer, P., 2016. Microstructural evolution and rheology of quartz in a mid-
crustal shear zone. Tectonophysics 680, 129–139. http://www.sciencedirect.com/
science/article/pii/S0040195116301482.

Ricard, Y., Bercovici, D., 2009. A continuum theory of grain size evolution and damage. J.
Geophys. Res. 114, B01204. http://dx.doi.org/10.1029/2007JB005491.

Rollett, A., Srolovitz, D., Anderson, M., 1989. Simulation and theory of abnormal grain
growth–anisotropic grain boundary energies and mobilities. Acta Metall. 37 (4),
1227–1240. http://www.sciencedirect.com/science/article/pii/
000161608990117X.

Rozel, A., Ricard, Y., Bercovici, D., 2011. A thermodynamically self-consistent damage
equation for grain size evolution during dynamic recrystallization. Geophys. J. Int.
184 (2), 719–728.

Skemer, P., Karato, S.-i., 2008. Sheared lherzolite xenoliths revisited. J. Geophys. Res.:
Solid Earth 113 (B7). http://dx.doi.org/10.1029/2007JB005286. n/a-n/a, b07205.

Skemer, P., Warren, J.M., Kelemen, P.B., Hirth, G., 2010. Microstructural and rheological
evolution of a mantle shear zone. J. Petrol. 51, 43–53.

Stipp, M., Tullis, J., Scherwath, M., Berhman, J., 2010. A new perspective on paleopie-
zometry: Dynamically recrystallized grain size distributions indicate mechanism
changes. Geology 38 (8), 759–762.

Tasaka, M., Hiraga, T., Michibayashi, K., 2014. Influence of mineral fraction on the
rheological properties of forsterite+enstatite during grain size sensitive creep: 3.
Application of grain growth and flow laws on peridotite ultramylonite. J. Geophys.
Res.: Solid Earth 119 (2), 840–857. http://dx.doi.org/10.1002/2013JB010619.

Van der Wal, D., Chopra, P., Drury, M., FitzGerald, J., 1993. Relationships between dy-
namically recrystallized grain size and deformation conditions in experimentally
deformed olivine rocks. Geophys. Res. Lett. 20 (14), 1479–1482. http://dx.doi.org/
10.1029/93GL01382.

Viegas, G., Menegon, L., Archanjo, C., 2016. Brittle grain-size reduction of feldspar, phase
mixing and strain localization in granitoids at mid-crustal conditions (Pernambuco
shear zone, NE Brazil). Solid Earth 7 (2), 375–396.

Warren, J.M., Hirth, G., 2006. Grain size sensitive deformation mechanisms in naturally
deformed peridotites. Earth Planet. Sci. Lett. 248 (1-2), 438–450.

White, S., Burrows, S., Carreras, J., Shaw, N., Humphreys, F., 1980. On mylonites in
ductile shear zones. J. Struct. Geol. 2, 175–187.

D. Bercovici, P. Skemer Journal of Geodynamics 108 (2017) 40–55

55

http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0115
http://dx.doi.org/10.1002/2014JB011584
http://dx.doi.org/10.1029/2011JB008220
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0130
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0130
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0130
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0135
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0135
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0140
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0140
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0140
http://www.sciencedirect.com/science/article/pii/0040195195001638
http://www.sciencedirect.com/science/article/pii/0040195195001638
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0150
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0150
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0150
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0155
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0155
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0155
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0160
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0160
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0165
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0165
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0170
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0170
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0175
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0175
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0180
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0180
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0185
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0185
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0190
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0190
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0195
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0195
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0195
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0200
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0200
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0200
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0205
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0205
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0210
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0210
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0210
http://www.sciencedirect.com/science/article/pii/S0191814111000265
http://www.sciencedirect.com/science/article/pii/S0191814115001029
http://www.sciencedirect.com/science/article/pii/S0191814115001029
http://www.sciencedirect.com/science/article/pii/S0012821X1630509X
http://www.sciencedirect.com/science/article/pii/S0012821X1630509X
http://www.sciencedirect.com/science/article/pii/S0040195116301482
http://www.sciencedirect.com/science/article/pii/S0040195116301482
http://dx.doi.org/10.1029/2007JB005491
http://www.sciencedirect.com/science/article/pii/000161608990117X
http://www.sciencedirect.com/science/article/pii/000161608990117X
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0250
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0250
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0250
http://dx.doi.org/10.1029/2007JB005286
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0260
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0260
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0265
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0265
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0265
http://dx.doi.org/10.1002/2013JB010619
http://dx.doi.org/10.1029/93GL01382
http://dx.doi.org/10.1029/93GL01382
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0280
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0280
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0280
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0285
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0285
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0290
http://refhub.elsevier.com/S0264-3707(16)30241-1/sbref0290

	Grain damage, phase mixing and plate-boundary formation
	Introduction
	Theory
	Olivine teeth
	Tooth growth
	Tooth damage and severance

	Evolution of the mixed layer
	Grain evolution
	Mixed layer rheology
	Growth of the mixed layer

	Dimensionless governing equations
	Analytical model of tooth-severance

	Some simple applications
	Constant imposed stress
	Steady state grain size and the pinned state
	Growth of the mixed layer before and during the pinned state

	Constant imposed mean strain-rate
	Quasi-steady pinned state
	Growth of the mixed layer


	Discussion
	Comparison to laboratory experiments
	Scaling and applications to tectonic settings
	Hints of hysteresis

	Summary and conclusion
	Acknowledgments
	References




