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ABSTRACT:Catalytic enantioselective addition of N-het-
eroarenes to terminal and internal 1,3-dienes is reported.
Reactions are promoted by 5 mol % of Rh catalyst sup-
ported by a new chiral pincer carbodicarbene ligand that
delivers allylic substituted arenes in up to 95% yield and up
to 98:2 er. Mechanistic and X-ray evidence is presented
that supports that the reaction proceeds via a Rh(III)-η3-
allyl.

Metal-catalyzed olefin hydroarylation is an important,
atom economical C−C bond forming strategy for the

synthesis of functionalized arenes. Of particular significance is
the development of chiral catalysts that render this process
enantioselective. Enantioselective olefin hydroarylation meth-
ods are scarce (>95:5 er), and are generally limited to intra-
molecular variants or electron deficient alkenes.1,2

We recently reported the site-selective addition of N-het-
eroarene nucleophiles to dienes catalyzed by pincer carbodi-
carbene (CDC) Rh complex1that operates with a Lewis acid
cocatalyst.3,4Carbodicarbenes belong to an emerging class of
N-heterocyclic carbon(0) donor ligands for transition metal
catalysis that also include cyclic bent-allenes (e.g.,2),5and
carbodiphosphoranes (Scheme 1a).6In light of these studies,
related efforts in our laboratories have been in connection to
the design, synthesis, and development of new chiral carbon(0)
ligands and their ability to affect enantioselective olefin hydro-
functionalizations.3,6bHerein, we describe the synthesis, struc-
ture, and activity of thefirst chiral, optically pure CDC ligands
that can be used to efficiently promote enantio- and site-
selective hydroarylation of terminal and internal 1,3-dienes in
up to 98:2 er (Scheme 1b).7Transformations are facilitated by
an in situ generated (CDC)-Rh complex at 35−60°C, and
structural data indicates the importance of a tridentate CDC
scaffold.
Selection of a chiral pyrazolium-based CDC pincer (3) over a
chiral diazapenium-based CDC (e.g.,1) was based on the idea
that a pyrazolium ligand scaffold would offer increased confor-
mationalflexibility, while maintaining a well-defined chiral binding

site, as well as render catalyst synthesis modular. Further-
more, as a design from our previous studies with CDC pincer
ligands,6bwe hypothesized that in situ metalation of Rh(I) onto
the pyrazolium6would furnish a (CDC)-Rh(III)−H(A) that
could undergo migratory insertion to generate an electrophilic
Rh(III)-(η3-allyl) intermediate (B)(Scheme 1c).8Nucleophilic
addition of indole to the Rh(III)-(η3-allyl) followed by oxida-
tive protonation at Rh (C→D) regenerates the Rh(III)−H.
Subsequent ligand substitution by diene4affords product7
and regenerates (CDC)-Rh(III) complexA. Reports by a num-
ber of groups have demonstrated enantioselective Pd- and
Rh-catalyzed hydroalkylations,9hydroaminations,10and hydroaryla-
tions1f,11of 1,3-dienes through the intermediacy of an electrophilic
metal-allyl species formed by metal−hydride migratory insertion.
We began our catalytic studies by examining the ability
of chiral pyrazolium saltsL1−4to promote enantioselective
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Scheme 1. Chiral Pincer Carbodicarbene Ligands and
Rh(III)−Hydride Catalyzed Diene Hydrofunctionalization

Communication

pubs.acs.org/JACS

© 2017 American Chemical Society 15580 DOI:10.1021/jacs.7b08575
J. Am. Chem. Soc.2017, 139, 15580−15583

Cite This: Cite This: J. Am. Chem. Soc. 2017, 139, 15580-15583

pubs.acs.org/JACS
http://dx.doi.org/10.1021/jacs.7b08575
http://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.7b08575
http://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.7b08575
http://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.7b08575


hydroarylations. Addition ofN-Bn-indole to8(Table 1)to
afford10served as the representative reaction. As shown in

entries 1−2ofTable 1, hydroarylation in the presence of
2.5 mol % [Rh(C2H4)2Cl]2andL1in CH2Cl2at 35°Caffords
<2% conversion to10. When 10 mol % NaBArF4is used, reac-
tion proceeds to 83% conversion and 90:10 er (entry 3).

The result in entry 4 shows that if the PPh2is replaced by
P(p-tol)2, conversion and er increases; treatment of8and9
with 5 mol % Rh, 6 mol %L2affords10in >98% conversion
and 94:6 er.12Changing the phosphine to P(p-MeOC6H4)2
results in a decrease to 90:10 er (entry 5). The importance of a
tridentate scaffold is highlighted by the inefficient hydroaryla-
tion promoted by bidentate CDCL4;10is generated in 17%
conversion, 3:1 rr, and 55:45 er (entry 6). As the data in entries
7 and 8 indicate, 5 mol % LiBArF4and KBAr

F
4as an additive,

deliver10in 58% and 25% conversion but in diminished 78:22
er and 87:13 er, respectively. Use of NaBF4, which contains a
less dissociating counteranion, delivers <2% conv (entry 9).
Control reactions employing representative bidentate phos-
phines also afforded <2% conversion to10(entries 10−12).
In seeking to understand what effect the isomericE/Zpurity of
the 1,3-diene has on the enantioselectivity, we prepared and
examined the hydroarylation reaction with diene8formed as an
E/Zmixture favoring theZ-isomer (75:25,Z/E)(eq 1). With

5.0 mol % (L2)-Rh under standard conditions (see entry 4,
Table 1), indole10is formed with similar efficiency (64% yield)
and in the same enantioselectivity, 94:6 er (vs 94:6 erTable 1).
Thus, theE/Zstereoisomeric purity of the diene does not
noticeably affect er.
Data shown inTable 2illustrates a brief scope of the (CDC)-
Rh-catalyzed reaction with various terminal dienes and indoles.
As shown in entries 1−8, treatment of8with a variety of

Table 1. Initial Screening of Chiral (CDC)-Rh Complexes

aReactions performed under N2atmosphere.
bConversion to10

determined by analysis of 400 or 600 MHz1H NMR spectra of crude
reactions with DMF as internal standard.cDetermined by HPLC
analysis; see theSupporting Informationfor details.

Table 2. Heteroarene Scope in Enantioselective Hydroarylationa

entry arene R2 product; yield (%)b erc rrd

1 indole Ph 11a; 59 92:8 >20:1

2 N-Me-indole Ph 11b; 81 95:5 16:1

3 N-Et-indole Ph 11c; 94 94.5:5.5 17:1

4 5-OMe-N-Bn-indole Ph 11d; 63 94:6 14:1

5 5-OMe-N-Me-indole Ph 11e; 99 93:7 >20:1

6 5-B(pin)-N-Me-indole Ph 11f; 98 94.5:5.5 16:1

7 5-Br-N-Me-indole Ph 11g; 91 91:9 15:1

8e 5-CO2Me-N-Me-indole Ph 11h; 66 88:12 10:1

9 2-Me-N-Me-indole Ph 11i; 98 90:10 14:1

10 N-Bn-indole Ph 10; 87 94:6 12:1

11 N-Bn-indole 4-FC6H4 11j; 78 93:7 5:1

12 N-Bn-indole 4-ClC6H4 11k; 83 96:4 9:1

13 N-Bn-indole 4-CF3−C6H4 11l; 56 93:7 10:1

14 N-Bn-indole 3-ClC6H4 11m; 65 94:6 10:1

15 N-Bn-indole 3-OMeC6H4 11n; 54 96:4 10:1

16 N-Bn-indole 3-MeC6H4 11o; 84 90:10 7:1

17 N-Bn-indole 3-thiophene 11p; 85 85:15 8:1

18 N-Et-indole Cy 11q; 85 72:28 7:1
aReactions performed under N2atmosphere.

bYield represents isolated yield of purified material and is an average of two experiments.cDetermined
by HPLC of SFC analysis; see theSupporting Informationfor details.dDetermined by analysis of 400 or 600 MHz1H NMR spectra of crude
reactions.e3.75 mol % [Rh(C2H4)2Cl]2at 60°C.
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substituted indoles and 5.0 mol % Rh, 6 mol % L2, and 10 mol %
NaBArF4 for 24 h at 35 °C in CH2Cl2 furnished hydroarylation
products 11a−h efficiently and in high enantioselectivity
(88:12 to 95:5 er). In addition, we found transformation with
the more sterically hindered 2-methyl-N-Me-indole also pro-
ceeded effectively generating 11i in 98% yield and in slightly
diminished 90:10 er. Accordingly, we also varied the aryl diene
component. Hydroarylation of 1,3-dienes containing dif-
ferent aryl groups (halogens, CF3, OMe, Me) was also efficient
and enantioselective (entries 11−16). The catalytic method is
also compatible with thiophene groups; for example, the for-
mation of 11p (entry 16) in 85% yield and 85:15 er, is repre-
sentative. Catalytic hydroarylation also proceeds with alkyl-
substituted dienes efficiently but with lower enantioselectivity;
11q was furnished in 85% yield and 72:28 er. The reaction is also
tolerant of pyrrole nucleophiles but results in lower er with L2
compared indoles.13

Next, we set out to examine the ability of (CDC)-Rh com-
plexes to promote catalytic C−H arylation with internal
1,4-disubstituted 1,3-dienes; in general, internal olefins represent
significantly more challenging classes of substrates in catalytic
hydrofunctionalizations methods. With the (CDC)-Rh catalyst
derived from L2, reactions proceed efficiently with isomerically
impure dienes, with some substrates requiring slightly elevated
temperatures (60 °C), affording products in high er (>96:4 er).
For example, treatment of 1-phenyl-4-methyl-butadiene and 9
with 5.0 mol % (L2)-Rh at 50 °C for 24 h furnished 12 in 66%
isolated yield and 98:2 er (Scheme 2). Additionally, internal

dienes bearing alkyl, alkyl halide, ester, ketone, and silyl ether
functional groups are tolerated furnishing products 13−17 in
50−90% yield, 97:3−98:2 er, and good site-selectivity. Notably,
reaction of an internal diene bearing unprotected alcohol
results in similar efficiency but lower er; the formation of 18 in
65% yield and 87:13 er, is representative.
Deuterium labeling experiments to probe the fidelity of

proton transfer from the C-3 position on indole to the product
were undertaken (Scheme 3a). Reaction of d1-21 with 8 in the
presence of (L2)-Rh affords d1-11b with 67% deuterium in the
methyl group. Furthermore, analysis of the reaction mixture
revealed the presence of d1/d2-8; 36% deuterium incorporation
into the terminal diene. This data indicates Rh(III)−hydride
insertion is rapid and reversible.
To gain insight into the structure of the metalated ligand and

verify that a (CDC)-Rh(III)−H is generated, which leads to

a (CDC)-Rh(III)-allyl, we studied the catalyst formation.
Following the catalytic method, treatment of [Rh(C2H4)2Cl]2
and L1 with NaBArF4 in CD2Cl2 at 22 °C for 1 h results in the
formation of three new Rh species by 31P NMR; however, no
Rh-hydride is observed. Performing the same reaction but with
the addition of diene 8 (10 equiv), affords a dark red/purple
solution that contains a single species by 31P NMR. Again, no
Rh-hydride is observed.
After careful experimentation, the X-ray crystal structure of

dicationic [(L1)-Rh(III)-η3-allyl]2BAr
F
4 complex 19 was obtained,

and is depicted in Figure 1.14 As indicated by the ORTEP diagram,

the pincer (L1)-Rh(III) complex has a pseudotrigonal bipyramidal
geometry. Of note, the C7 methine proton resides ∼2.5 Å from
the Rh center, potentially providing additional stabilization
for the observed dicationic (CDC)-Rh(III) complex. Analysis
of the π-allyl fragment shows the Rh−C distance to the
Ph-substituted allylic terminus (2.281(5)) is 0.10 Å longer than
the corresponding distance to the Me-substituted terminus

Scheme 2. Enantioselective Hydroarylation of Internal
1,3-Dienesa−d

a−dSee Table 2.

Scheme 3. Catalyst Structure and Mechanism Experiments

Figure 1. X-ray Structure of 19. Two BArF4
− ions omitted for clarity.

Selected bond lengths for 19 (Å): Rh1−C1, 2.081(5); Rh1−P1,
2.3948(14); Rh1−P2, 2.3454(16); Rh1−C27, 2.181(5); Rh1−C28,
2.166(5); Rh1−C29, 2.281(5); C27−C28, 1.404(8); C28−C29,
1.390(8); Rh1−C7, 3.108(6).
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(2.181(5)). These values are inconsistent with similar allyl
C27−C28/C28−C29 bond lengths, suggesting the distortion is
caused by sterics of the phenyl group. Also, the resulting
observed major (S)-enantiomer formed in the catalytic reac-
tions must occur via addition of indole to the least hindered
allyl terminus.
Control reactions confirmed catalytic diene hydroarylation in

the presence of 5 mol % 19 and 5 mol % NaBArF4 results in
>98% conv to 10 in 8:1 rr and 89:11 er. Notably, without
NaBArF4 10 is formed in 6:1 rr, and 85:15 er, demonstrating
the additive effect of Na salts in obtaining high rr and er.
Furthermore, the stoichiometric reaction between 19 and 9 at
35 °C in CH2Cl2 results in <2% conv to 10.15

In summary, we have developed the first chiral CDC ligand
that promotes enantioselective Rh-catalyzed hydroarylation
of terminal and internal 1,3-dienes. Further studies of other
(CDC)-Rh-catalyzed enantioselective hydrofunctionalizations
are in progress.
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