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Abstract. In this paper we exploit properties of Dao’s η-pairing [12] as well
as techniques of Huneke, Jorgensen, and Wiegand [24] to study the vanishing of

Tori(M,N) for finitely generated modules M , N over complete intersections.
We prove vanishing of Tori(M,N) for all i ≥ 1 under depth conditions on M ,
N , and M ⊗ N . Our arguments improve a result of Dao [13] and establish a
new connection between the vanishing of Tor and the depth of tensor products.

1. Introduction

In his seminal 1961 paper [1], Auslander proved that if R is a local ring and
M and N are nonzero finitely generated R-modules such that pd(M) < ∞ and

TorRi (M,N) = 0 for all i ≥ 1, then

(1.0.1) depth(M) + depth(N) = depth(R) + depth(M ⊗R N) ,

that is, the depth formula holds. Huneke andWiegand [25, Theorem 2.5] established
the depth formula for Tor-independent modules (not necessarily of finite projective
dimension) over complete intersection rings. Christensen and Jorgensen [11] ex-
tended that result to AB rings [23], a class of Gorenstein rings strictly containing
the class of complete intersections. The depth formula is important for the study
of depths of tensor products of modules [1, 25], as well as of complexes [20, 28]. We
seek conditions on the modules M , N and M ⊗R N forcing such a formula to hold,
in particular, conditions implying TorRi (M,N) = 0 for all i ≥ 1. The following
conjecture, implicit in [24], guides our search:

Conjecture 1.1 (see [24]). Let M , N be finitely generated modules over a complete
intersection R of codimension c. If M ⊗R N is a (c+ 1)st syzygy and M has rank,

must TorRi (M,N) = 0 for all i ≥ 1?

The conjecture is true if c = 0 or 1, by [32, Corollary 1] and [25, Theorem 2.7]
respectively. Without the assumption of rank, there are easy counterexamples, e.g.,
R = k[[x, y]]/(xy) and M = N = R/(x); M is an nth syzygy for all n, but the odd
index Tors are non-zero.

A finitely generated module over a complete intersection is an nth syzygy of some
finitely generated module if and only if it satisfies Serre’s condition (Sn); see (2.6).
Our methods yield a sharpening of the following theorem due to Dao:
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Theorem 1.2 (Dao [13]). Let R be a complete intersection in an unramified regular
local ring, of relative codimension c, and let M , N be finitely generated R-modules.
Assume

(i) M and N satisfy (Sc),
(ii) M ⊗R N satisfies (Sc+1), and
(iii) Mp is a free Rp-module for all prime ideals p of height at most c.

Then TorRi (M,N) = 0 for all i ≥ 1 (and hence the depth formula holds).

By analyzing Serre’s conditions, we remove Dao’s assumption that the ambient
regular local ring be unramified; see Corollary 3.14. Even though complete intersec-
tions in unramified regular local rings suffice for many applications, our conclusion
is of interest: Dao’s proof uses the nonnegativity of partial Euler characteristics,
but nonnegativity remains unknown for the ramified case; see [13, Theorem 6.3 and
the proof of Lemma 7.7].

If the ambient regular local ring is unramified, we can replace c with c − 1
in both hypotheses (i) and (ii), remove hypothesis (iii), and still conclude that

TorRi (M,N) = 0 for all i ≥ 1 provided that ηRc (M,N) = 0; see (3.1) for the
definition of ηRc (−,−) and Theorem 3.10 for our result.

Moore, Piepmeyer, Spiroff, and Walker [36],[41] have proved vanishing of the
η-pairing in several important cases. These, in turn, yield results on vanishing of
Tor. See Proposition 4.1, Theorem 4.2, and Corollary 4.3.

Our proofs rely on a reduction technique using quasi-liftings; see (2.8). Quasi-
liftings were initially defined and studied by Huneke, Jorgensen and Wiegand in
[24]. Lemma 3.9 is the key ingredient for our argument. It shows that if R = S/(f)
and S is a complete intersection of codimension c − 1, and if ηRc (M,N) = 0, then
ηSc−1(E,F ) = 0, where E and F are quasi-liftings of M and N to S, respectively.

By induction, we obtain that TorSi (E,F ) = 0 for all i ≥ 1: this allows us to prove

the vanishing of TorRi (M,N) from the depth and syzygy relations between the pairs
E,F and M,N .

In the Appendix we revisit the paper of Huneke and Wiegand [25] and use our
work to obtain one of the main results there. Moreover, we point out an oversight
in Miller’s paper [34] and state her result in its corrected form as Corollary B.3.

2. Preliminaries

We review a few concepts and results, especially universal pushforwards and
quasi-liftings [24, 25]. Throughout R will be a commutative noetherian ring.

Let νR(M) denote the minimal number of generators of the R-module M . If
(R,m) is local, the codimension of R is codim(R) := νR(m)− dim(R); it is a non-

negative integer. We have codim(R̂) = codim(R), where R̂ is the m-adic completion
of R.

2.1. Complete intersections. R is a complete intersection in a local ring (Q, n)
if there a surjection π : Q � R with ker(π) generated by a Q-regular sequence in
n; the length of this regular sequence is the relative codimension of R in Q. A
hypersurface in Q is a complete intersection of relative codimension one in Q.

Assume R̂ is a complete intersection in a regular local ring (Q, n), of relative
codimension c. Then R̂ = Q/(f) for a regular sequence f = f1, . . . , fc, where

codim(R) ≤ c. Moreover, the codimension of R is c if and only if (f) ⊆ n2.
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A ring is a complete intersection (resp., hypersurface) if it is local and its com-
pletion is a complete intersection (resp., hypersurface) in a regular local ring.

2.2. Ramified regular local rings. A regular local ring (Q, n, k) is said to be
unramified if either (i)Q is equicharacteristic, i.e., contains a field, or else (ii)Q ⊃ Z,
char(k) = p, and p /∈ n2. In contrast, the regular local ring R = V [x]/(x2 − p),
where V is the ring of p-adic integers, is ramified. Every localization, at a prime
ideal, of an unramified regular local ring is again unramified; see [1, Lemma 3.4].

Let (Q, n, k) be a d-dimensional complete regular local ring. If Q is ramified,
then k has characteristic p. Further, there is a complete unramified discrete val-
uation ring (V, pV ) such that Q ∼= T/(p − f), where T = V [[x1, . . . , xd]] and f is
contained in the square of the maximal ideal of T ; see for example [5, Chaper IX,
§3]. Hence every complete regular local ring is a hypersurface in an unramified one.

Consequently, when R is a complete intersection, R̂ is a complete intersection in
an unramified regular local ring Q such that codimR ≤ c ≤ codimR + 1, where c

is the relative codimension of R̂ in Q.

2.3. The depth formula ([25, Theorem 2.5]). Let R be a complete intersection

and let M , N be finitely generated R-modules. If TorRi (M,N) = 0 for all i ≥ 1,
then the depth formula (1.0.1) holds, that is,

depth(M) + depth(N) = depth(R) + depth(M ⊗R N) .

Recall that depth(0) = ∞, so the formula holds trivially if a zero module appears.

2.4. Torsion submodule. The torsion submodule >RM of M is the kernel of the
natural homomorphism M → Q(R)⊗RM , where Q(R) = {non-zerodivisors}−1R is
the total quotient ring of R. The module M is torsion if >RM = M , and torsion-
free if >RM = 0. To restate, M is torsion-free if and only if every non-zerodivisor of
R is a non-zerodivisor on M , that is, if and only if

⋃
AssM ⊆

⋃
AssR. Similarly,

M is torsion if and only if Mp = 0 for all p ∈ Ass(R). For notation, the inclusion
>RM ⊆ M has cokernel ⊥RM :

(2.4.1) 0 −→ >RM −→ M −→ ⊥RM −→ 0 .

2.5. Torsionless and reflexive modules. Let M be a finitely generated R-
module; M∗ denotes its dual HomR(M,R). The module M is torsionless if it
embeds in a free module, equivalently, the canonical map M → M∗∗ is injective.
Torsionless modules are torsion-free, and the converse holds if Rp is Gorenstein for
every associated prime p of R; see [40, Theorem A.1]. The module M is reflexive
provided the map M → M∗∗ is an isomorphism.

2.6. Serre’s conditions (see [31, Appendix A, §1] and [18, Theorem 3.8]). Let
M be a finitely generated R-module and let n be a nonnegative integer. Then M
is said to satisfy Serre’s condition (Sn) provided that

depthRp
(Mp) ≥ min{n, height(p)} for all p ∈ Supp(M).

A finitely generated module M over a local ring R is maximal Cohen-Macaulay
if depth(M) = dim(R); necessary for this equality is that M 6= 0.

If M satisfies (S1), then M is torsion-free, and the converse holds if R has no
embedded primes, e.g., is reduced or Cohen-Macaulay; see (2.4). If R is Gorenstein,
M satisfies (S2) if and only if M is reflexive; see (2.5) and [18, Theorem 3.6].
Moreover, if R is Gorenstein, M satisfies (Sn) if and only if M is an nth syzygy
module; see [31, Corollary A.12].
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A localization of a torsion-free module need not be torsion-free; see, for example,
[38, Example 3.9]. However, over Cohen-Macaulay rings, we have:

Remark 2.7. Assume R is Cohen-Macaulay and M is a finitely generated R-
module. Let p be a prime ideal of R. Note that, since >RM is killed by a non-
zerodivisor of R, (>RM)p is a torsion Rp-module. Next, ⊥RM satisfies (S1) as R is
Cohen-Macaulay, and so (⊥RM)p is a torsion-free Rp-module; see (2.6). Localizing
the exact sequence (2.4.1) at p, we see that (>RM)p ∼= >Rp

(Mp). In particular, if
M is a torsion-free R-module, then Mp is a torsion-free Rp-module.

We recall a technique from [24, §1] for lowering the codimension.

2.8. Pushforward and quasi-lifting (see [24, §1]). Let R be a Gorenstein local
ring and let M be a finitely generated torsion-free R-module. Choose a surjection
ε : R(ν)

� M∗ with ν = νR(M
∗). Applying Hom(−, R) to this surjection, we

obtain an injection ε∗ : M∗∗ ↪→ R(ν). Let M1 be the cokernel of the composition
M ↪→ M∗∗ ↪→ R(ν). The exact sequence

(2.8.1) 0 → M → R(ν) → M1 → 0

is called a pushforward of M . The extension (2.8.1) and the module M1 are unique
up to non-canonical isomorphism; see [7, pp. 174–175]. We refer to such a module
M1 as the pushforward of M . Note M1 = 0 if and only if M is free.

Assume R = S/(f) where (S, n) is a local ring and f is a non-zerodivisor in n.
Let S(ν)

� M1 be the composition of the canonical map S(ν)
� R(ν) and the map

R(ν)
� M1 in (2.8.1). The quasi-lifting of M to S is the module E in the exact

sequence of S-modules:

(2.8.2) 0 → E → S(ν) → M1 → 0 .

The quasi-lifting of M is unique up to isomorphism of S-modules.

Proposition 2.9 is from [24, Propositions 1.6 & 1.7]; Proposition 2.10 is embed-
ded in the proofs of [24, Propositions 1.8 & 2.4] and is recorded explicitly in [7,
Proposition 3.2(3)(b)]. We will use Proposition 2.10 in the proofs of Theorem 3.10
and Theorem B.2 below.

Proposition 2.9 ([24]). Let R be a Gorenstein local ring and let M be a finitely
generated torsion-free R-module. Let M1 denote the pushforward of M .

(i) Let n ≥ 0. Then M satisfies (Sn+1) if and only if M1 satisfies (Sn).
(ii) Let p be a prime ideal. If Mp is a maximal Cohen-Macaulay Rp-module, then

(M1)p is either zero or a maximal Cohen-Macaulay Rp-module.

Proposition 2.10 ([24]). Let R = S/(f) where S is a complete intersection and
f is a non-zerodivisor in S. Let N be a finitely generated torsion-free R-module
such that M ⊗R N is reflexive. Assume TorRi (M,N)p = 0 for all i ≥ 1, and for all
primes p of R with height(p) ≤ 1.

(i) Then M1 ⊗R N is torsion-free.
(ii) Let E and F denote the quasi-liftings of M and N to S, respectively; see (2.8).

Assume TorSi (E,F ) = 0 for all i ≥ 1. Then TorRi (M,N) = 0 for all i ≥ 1.

Serre’s conditions (Sn) need not ascend along flat local homomorphisms. This
can be problematic:
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Example 2.11. The ring C[[x, y, u, v]]/(x2, xy) has depth two and therefore, by

Heitmann’s theorem [21, Theorem 8], it is the completion R̂ of a unique factorization

domain (R,m). Then R, being normal, satisfies (S2), but R̂ does not even satisfy
(S1), since the localization at the height-one prime ideal (x, y) has depth zero.

For flat local homomorphisms between Cohen-Macaulay rings, and more gener-
ally when the fibers are Cohen-Macaulay, however, (Sn) does ascend and descend:

Lemma 2.12. Let R be a local ring, p a prime ideal of R, and M a finitely generated
R-module.

(1) If M is reflexive, then so is the Rp-module Mp.
(2) Suppose R is Cohen-Macaulay. Then (>RM)p = >Rp

Mp; in particular, if
M is torsion-free, then so is Mp.

(3) Suppose R → S is a flat local homomorphism. If S⊗RM satisfies (Sn) as an
S-module, then M satisfies (Sn) as an R-module; the converse holds when
the fibers of the map R → S are Cohen-Macaulay.

Proof. For part (1), localize the isomorphism M → M∗∗. Part (2) is Remark 2.7.
Part (3) can be proved along the same lines as [33, Theorem 23.9]: For any q in
SpecS with p = q ∩R, it follows from [33, Theorem 15.1 and Theorem 23.3] that

height(q) = height(p) + dim(Sq/pSq) and

depthSq
(S ⊗R M)q = depthRp

(Mp) + depth(Sq/pSq) .

When S ⊗R M satisfies (Sn), for q minimal in S/pS these equalities give

depthRp
(Mp) = depthSq

(S ⊗R M)q ≥ min{n, height(q)} = min{n, height(p)}.

Thus M satisfies (Sn). Conversely, if Sq/pSq is Cohen-Macaulay and the R-module
M satisfies (Sn), one gets

depthSq
(S ⊗R M)q ≥ min{n, height(p)}+ dim(Sq/pSq) ≥ min{n, height(q)}.

This completes the proof of part (3). �

3. Main theorem

Our main result, Theorem 3.10, is here. We use the θ and η-pairings introduced
by Hochster [22] and Dao [13]. After preliminaries on these, we focus on complete
intersections; see (2.1), the setting of our applications.

3.1. The θ and η pairings (Hochster [22] and Dao [12, 13]). Let R be a local
ring and let M and N be finitely generated R-modules. Assume that there exists
an integer f (depending on M and N), such that TorRi (M,N) has finite length for
all i ≥ f .

If R is a hypersurface, then TorRi (M,N) ∼= TorRi+2(M,N) for all i � 0; see [17].
Hochster [22] introduced the θ pairing as follows:

θR(M,N) = length(TorR2n(M,N))− length(TorR2n−1(M,N)) for n � 0 .

When R is any complete intersection, Dao [13, Definition 4.2.] defined:

ηRe (M,N) = lim
n→∞

1

ne

n∑

i=f

(−1)i length(TorRi (M,N)) .

The η-pairing is a natural extension to complete intersections of the θ-pairing.
Moreover the following statements hold; see [13, 4.3].
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(i) ηRe (M,−) and ηRe (−, N) are additive on short exact sequences, provided ηRe
is defined on the pairs of modules involved.

(ii) If R is a hypersurface, then ηR1 (M,N) = 1
2θ

R(M,N). Hence ηR1 (M,N) = 0 if

and only if θR(M,N) = 0.

Assume R is a complete intersection.

(iii) ηRe (M,N) = 0 if e ≥ codimR and either M or N has finite length.
(iv) ηRe is finite when e = codim(R), and ηRe is zero when e > codimR.

The next result (Dao [13, Theorem 6.3]), on Tor-rigidity, shows the utility of the
η-pairing.

Theorem 3.2 (Dao [13]). Let R be a local ring whose completion is a complete
intersection, of relative codimension c ≥ 1, in an unramified regular local ring. Let
M,N be finitely generated R-modules. Assume TorRi (M,N) has finite length for
all i � 0, and that ηRc (M,N) = 0. Then the pair M,N is c-Tor-rigid, that is, if

s ≥ 0 and TorRi (M,N) = 0 for all i = s, . . . , s + c − 1, then TorRi (M,N) = 0 for
all i ≥ s.

The following conjectures have received quite a bit of attention:

Conjectures 3.3. Assume R is a local ring which is an isolated singularity, i.e.,
Rp is a regular local ring for all non-maximal prime ideals p of R.

(i) (Dao [12, Conjecture 3.15]) If R is an equicharacteristic hypersurface of even
dimension, then ηR1 (M,N) = 0 for all finitely generated R-modules M,N .

(ii) (Moore, Piepmeyer, Spiroff and Walker [36, Conjecture 2.4]) If R is a complete
intersection of codimension c ≥ 2, then ηRc (M,N) = 0 for all finitely generated
R-modules M,N .

Moore, Piepmeyer, Spiroff and Walker [35] have settled Conjecture 3.3(i) in the
affirmative for certain types of affine algebras. Polishchuk and Vaintrob [39, Remark
4.1.5], as well as Buchweitz and Van Straten [6, Main Theorem], have since given
other proofs, in somewhat different contexts, of this result; see Theorem 4.2 for a
recent result of Walker [41] concerning Conjecture 3.3(ii), and Corollary 4.3 for an
application of his result.

Our proofs of Lemma 3.6 and Theorem B.2 use the following (see [1, Lemma 3.1]
or [25, Lemma 1.1]).

Remark 3.4. Let R be a local ring, and let M and N be nonzero finitely generated
R-modules. AssumeM⊗RN is torsion-free. ThenM⊗RN ∼= M⊗⊥RN . Moreover,
if TorR1 (M,⊥RN) = 0, then >RN = 0, and hence N is torsion-free.

We encounter the same hypotheses often enough to warrant a piece of notation.

Notation 3.5. Let c be a positive integer. A pair M,N of finitely generated
modules over a ring R satisfies (SPc) provided the following conditions hold:

(i) M and N satisfy Serre’s condition (Sc−1).
(ii) M ⊗R N satisfies (Sc).

(iii) TorRi (M,N) has finite length for all i � 0.

Hypersurfaces. We begin with a lemma analogous to [14, Proposition 3.1]; how-
ever, we do not assume any depth properties on M or N ; see (2.1) and (3.5).



VANISHING OF TOR 7

Lemma 3.6. Let R be a local ring whose completion is a hypersurface in an un-
ramified regular local ring, and let M,N be finitely generated R-modules. Assume
the following hold:

(i) dim(R) ≥ 1.
(ii) The pair M,N satisfies (SP1).
(iii) SuppR(>RN) ⊆ SuppR(M).
(iv) θR(M,N) = 0.

Then TorRi (M,N) = 0 for all i ≥ 1, and N is torsion-free.

Proof. Consider the following conditions for a prime ideal p of R:

(3.6.1) (>RN)p has finite length over Rp, and dim(Rp) ≥ 1.

Claim: If p is as in (3.6.1), then Tor
Rp

i (Mp, (⊥RN)p) = 0 for all i ≥ 1.

We may assume that Mp 6= 0. We know from (ii) that Tor
Rp

i (Mp, Np) has finite
length over Rp for all i � 0. Since (>RN)p has finite length, the exact sequence

(2.4.1) for N , localized at p, shows that Tor
Rp

i (Mp, (⊥RN)p) has finite length over
Rp for all i � 0.

Using the additivity of θRp along the same exact sequence, we see that

(3.6.1) θRp(Mp, (⊥RN)p) = −θRp(Mp, (>RN)p) = 0 ,

the last by (3.1).
Since ⊥RN is a torsionless R-module (see (2.5)), there exists an exact sequence

(3.6.2) 0 → ⊥RN → R(n) → Z → 0 .

Localizing this sequence at p, we see that, for i � 0, Tor
Rp

i (Mp, Zp) has finite length

and hence (since dim(Rp) ≥ 1) is torsion. Now Corollary A.2 forces Tor
Rp

i (Mp, Zp)
to be torsion for all i ≥ 1.

From (3.6.2), we see that Tor
Rp

1 (Mp, Zp) embeds into Mp ⊗Rp
(⊥RN)p. But

Tor
Rp

1 (Mp, Zp) is torsion, and (by Remarks 2.7 and 3.4) Mp⊗Rp
(⊥RN)p is torsion-

free; therefore Tor
Rp

1 (Mp, Zp) = 0.
Next we note that θRp(Mp, Zp) = −θRp(Mp, (⊥RN)p) = 0; see (3.6.2) and

(3.6.1). This implies, by Theorem 3.2, that Tor
Rp

i (Mp, Zp) = 0 for all i ≥ 1; see
(3.1). The claim now follows from (3.6.2).

If >RN 6= 0, then there is a prime p minimal in SuppR(>RN), and so (>RN)p
is a nonzero module of finite length. Moreover dim(Rp) ≥ 1: otherwise p ∈ Ass(R)
and hence (>RN)p = 0; see (2.4). Thus p satisfies (3.6.1) and, by our claim,

Tor
Rp

i (Mp, (⊥RN)p) = 0 for i ≥ 1. The hypothesis (iii) on supports implies that
Mp 6= 0, and now Remark 3.4 yields a contradiction. We conclude that >RN = 0.

Applying the claim to the maximal ideal p of R yields the required vanishing. �

Remark 3.7.

(i) The hypothesis (iii) of Lemma 3.6 holds when, for example, the support ofN is
contained in that of M . Moreover, if R is a domain and M and N are nonzero,
then, since M ⊗R N is torsion-free, we see that Supp(M ⊗R N) = Spec(R),
whence Supp(M) = Spec(R).

(ii) Most of the hypotheses in Lemma 3.6 are essential; see the discussion after [27,
Remark 1.5]. Notice, without the assumption that dim(R) ≥ 1, the lemma
would fail. Take, for example, R = C[x]/(x2) and M = R/(x) = N . The
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vanishing of θ is also essential: let R = C[[x, y]]/(xy), M = R/(x) and N =
R/(x2). Then the pair M,N satisfies the conditions (ii) and (iii) of Lemma

3.6. On the other hand TorR2i+1(M,N) ∼= k for all i ≥ 0, and TorR2i(M,N) = 0

for all i ≥ 1. (Thus θR(M,N) = −1.)

The completion of any regular ring is a hypersurface in an unramified regular
local ring; see (2.2). Hence the following consequence of Lemma 3.6 extends Licht-
enbaum’s [32, Corollary 3], which in turn builds on Auslander’s [1, Theorem 3.2];
cf. C. Miller’s result recorded as Corollary B.3 here.

Proposition 3.8. Let (R,m) be a d-dimensional local ring whose completion is
a hypersurface in an unramified regular local ring, with d ≥ 1, and let M be a
finitely generated R-module. Assume pdRp

(Mp) < ∞ for all prime ideals p 6= m

and that θR(M,−) = 0. If ⊗n
RM is torsion-free for some integer n ≥ 2, then

pd(M) ≤ (d − 1)/n. Consequently, if M is not free, then ⊗n
RM has torsion for

each n ≥ max{2, d}.

Proof. We may assume M 6= 0. Iterating Lemma 3.6 shows that ⊗p
RM is torsion-

free for p = 1, . . . , n, and that TorRi (M,⊗p−1
R M) = 0 for all i ≥ 1. Taking p = 2, we

see from [27, Theorem 1.9] that pd(M) < ∞. Since depth(⊗n
RM) ≥ 1, one obtains,

using [1, Corollary 1.3] and the Auslander-Buchsbaum formula [3, Theorem 3.7],
n · pd(M) = pd(⊗n

RM) = d− depth(⊗n
RM) ≤ d− 1. �

Complete intersections. Hypersurfaces in complete intersections give the induc-
tive step for our proof of Theorem 3.10; see (2.8) on pushforwards.

Lemma 3.9. Let (S, n) be a complete intersection, and let R be a hypersurface in
S. Let M and N be finitely generated torsion-free R-modules, and let E and F be
the quasi-liftings of M and N , respectively, to S. Assume TorRi (M,N) has finite
length for all i � 0. Let e be an integer with e ≥ max{2, codim(S) + 1}. Then

(i) TorSi (E,F ) has finite length for all i � 0, and
(ii) ηSe−1(E,F ) = 2 · e · ηRe (M,N).

Proof. By hypothesis, R ∼= S/(f), where f is a non-zerodivisor in S. The spec-
tral sequence associated to the change of rings S → R yields the following exact
sequence, see [32, pp. 223–224] or [37, p. 561], for all n ≥ 1:

· · · → TorRn−1(M,N) → TorSn(M,N) → TorRn (M,N) → · · ·

Consequently TorSi (M,N) has finite length for i � 0. Let M1 and N1 be the

pushforwards of M and N , respectively. Since TorSi (R,−) = 0 for all i ≥ 2, the
sequences (2.8.2) and (2.8.1) yield isomorphisms

TorSi (E,N) ∼= TorSi+1(M1, N) ∼= TorSi (M,N) for all i ≥ 2 .

Arguing in the same vein, one gets isomorphisms

TorSi (E,F ) ∼= TorSi (E,N) for all i ≥ 2.

Hence the length of TorSi (E,F ) is finite for all i � 0, and so (i) holds.
Similar arguments show the η-pairing, over both R and S, as appropriate, is

defined for all pairs (X,Y ) with X ∈ {M,M1, E} and Y ∈ {N,N1, F}.
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By hypothesis, codim(S) ≤ e−1, and hence codim(R) ≤ e; see (2.1). Additivity
of η along the exact sequences (2.8.1) and (2.8.2) thus gives

ηRe (M,N) = −ηRe (M1, N) = ηRe (M1, N1) and

ηSe−1(E,F ) = −ηSe−1(M1, F ) = ηSe−1(M1, N1) .

Our assumption that e ≥ max{2, codimS+1}, together with [13, Theorem 4.1(3)],
allow us to invoke [13, Theorem 4.3(3)], which says that

2e · ηRe (M1, N1) = ηSe−1(M1, N1) .

This gives (ii), completing the proof. �

The next theorem is our main result. As its hypotheses are technical, several of
its consequences are discussed in section 4; see section 2 for background.

Theorem 3.10. Let R be a local ring whose completion is a complete intersection
in an unramified regular local ring, of relative codimension c ≥ 1. Let M,N be
finitely generated R-modules. Assume the following hold:

(i) dim(R) ≥ c.
(ii) The pair (M,N) satisfies (SPc).
(iii) SuppR(>RN) ⊆ SuppR(M).
(iv) ηRc (M,N) = 0

Then TorRi (M,N) = 0 for all i ≥ 1.

Proof. The case c = 1 is Lemma 3.6. For c ≥ 2, proceed by induction on c. We
can assume R is complete, so that R = Q/(f), where Q is an unramified regular
local ring and f = f1, . . . , fc is a Q-regular sequence; see (2.2) and (2.12). Let
R = S/(f), where S = Q/(f1, . . . , fc−1) and f = fc.

Hypothesis (ii) implies TorRi (M,N) has finite length for all i � 0; see (3.5).
Hence Corollary A.3 implies that, for all primes p with height(p) ≤ c− 1,

(3.10.1) TorRi (M,N)p = 0 for all i ≥ 1.

Condition (ii) also implies M and N are torsion-free since c ≥ 2; see (3.5). Hence
quasi-liftings E and F of M and N to S exist; see (2.8). Using the vanishing of
Tors in (3.10.1) and [24, Theorem 4.8] (cf. [7, Proposition 3.1(7)]), one gets that

(3.10.2) E ⊗S F satisfies (Sc−1) as an S-module.

It follows from [24, Propositions 1.6 and 1.7] (see also [7, Proposition 3.1(2) and
3.1(6)]) that the assumptions in (i) of (SPc) pass to E and F ; see (3.5).

(3.10.3) E and F satisfy (Sc−1) as S-modules .

Lemma 3.9 guarantees that TorSi (E,F ) has finite length for all i � 0 and that
ηc−1(E,F ) = 0. In particular the pair E,F satisfies (SPc−1) over the ring S. More-
over, E and F , being syzygies, are torsion-free, so we indeed have that SuppS(>SF ) ⊆
SuppS(E). Now the inductive hypothesis implies that

(3.10.4) TorSi (E,F ) = 0 for all i ≥ 1.

Condition (ii) also implies that M ⊗R N is reflexive since c ≥ 2; see (2.6). Further

TorRi (M,N)p = 0 for all i ≥ 1 and for all p ∈ Spec(R) with height(p) ≤ 1; see

(3.10.1). Thus Proposition 2.10 and (3.10.4) yield TorRi (M,N) = 0 for all i ≥ 1. �
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Remark 3.11. In Theorem 3.10, if c ≥ 2, hypothesis (ii) implies that N is torsion-
free, i.e., >RN = 0; see (2.6) and (3.5). Thus, when c ≥ 2, hypothesis (iii) of
Theorem 3.10 is redundant.

When dim(R) > c, the equivalence of (i) and (ii) in the following corollary seems
interesting; see also (2.3). Actually, in that case the equivalence of (ii) and (iii)
holds without the assumption that ηRc (M,N) = 0. See [7, Corollary 2.4].

Corollary 3.12. Let R be an isolated singularity whose completion is a complete
intersection in an unramified regular local ring, of relative codimension c. Let M
and N be maximal Cohen-Macaulay R-modules. Assume dim(R) ≥ c. Assume
further that ηRc (M,N) = 0. The following conditions are equivalent:

(i) M ⊗R N satisfies (Sc).
(ii) M ⊗R N is maximal Cohen-Macaulay.

(iii) TorRi (M,N) = 0 for all i ≥ 1, and hence the depth formula holds.

Over a complete intersection, vanishing of Ext is closely related to vanishing of
Tor: ExtiR(M,N) = 0 for all i � 0 if and only if TorRi (M,N) = 0 for all i � 0; see
[2, Remark 6.3]. Our next example shows the hypotheses of Theorem 3.10 do not
force the vanishing of ExtiR(M,N) for all i ≥ 1.

Example 3.13. Let (R,m, k) be a complete intersection with codim(R) = 2 and
dim(R) ≥ 3. Let N be the dth syzygy of k, where d = dim(R), and let M be the
second syzygy of R/(x), where x is a maximal R-regular sequence.

Note that N is maximal Cohen-Macaulay, depth(M) = 2 and Np is free over
Rp for all primes p 6= m. It follows, since pd(M) < ∞, that ηR2 (M,N) = 0 and

TorRi (M,N) = 0 for all i ≥ 1; see (3.1) and Theorem A.1. Therefore the depth
formula (2.3) shows that depth(M ⊗R N) = 2. Since M is a second syzygy, it
satisfies (S2) and hence M ⊗R N satisfies (S2); see (2.6). In particular, the pair

M,N satisfies (SP2); see (3.5). However Extd−2
R (M,N) = Extd(R/(x), N) 6= 0; see,

for example, [33, Chapter 19, Lemma 1(iii)].

Here is the extension of Dao’s theorem [13, Theorem 7.7] promised in the intro-
duction (cf. Theorem 1.2):

Corollary 3.14. Let R be a local ring that is a complete intersection, and let M
and N be finitely generated R-modules. Assume that the following conditions hold
for some integer e ≥ codim(R):

(i) M and N satisfy (Se).
(ii) M ⊗R N satisfies (Se+1).
(iii) Mp is a free for all prime ideals p of R of height at most e.

Then TorRi (M,N) = 0 for all i ≥ 1 and hence the depth formula holds.

Proof. If e = 0 this is the theorem of Auslander [1] and Lichtenbaum [32, Corollary
2]. Assume now that e ≥ 1. We use induction on dimR. If dimR ≤ e, condition
(iii) implies that M is free, and there is nothing to prove. Assuming dimR ≥ e+1,

we note that the hypotheses localize, so TorRi (M,N)p = 0 for each i ≥ 1 and

each prime ideal p in the punctured spectrum of R; that is to say, TorRi (M,N)
has finite length for all i ≥ 1. Thus the pair M,N satisfies (SPe+1). Moreover,
since codimR < e + 1, we have ηRe+1 = 0 by item (iv) of (3.1). The completion
of R can be realized as a complete intersection, of relative codimension e + 1, in
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an unramified regular local ring (see 2.2). Hence the desired result follows from
Theorem 3.10. �

4. Vanishing of η

In this section we apply our results to situations where the η-pairing is known
to vanish. We know, from Theorem 3.10, that, as long as the critical hypothesis
ηRc (M,N) = 0 holds, we can replace c with c− 1 in the hypotheses of Theorem 1.2
and still conclude the vanishing of Tor. Although it is not easy to verify vanishing
of η (see Conjectures 3.3), there are several classes of rings R for which it is known
that ηR(M,N) = 0 for all finitely generated R-modules M and N . For example,
if R is an even-dimensional simple (“ADE”) singularity in characteristic zero, then
Dao [12, Corollary 3.16] observed that θR(M,N) = 0; see [12, Corollary 3.6] and
also [12, §3] for more examples.

Now we give a localized version of a vanishing theorem for graded rings, due to
Moore, Piepmeyer, Spiroff, and Walker [36].

Proposition 4.1. Let k be a perfect field and Q = k[x1, . . . , xn] the polynomial
ring with the standard grading. Let f = f1, . . . , fc be a Q-regular sequence of
homogeneous polynomials, with c ≥ 2. Put A = Q/(f) and R = Am, where m =
(x1, . . . , xn). Assume that Ap is a regular local ring for each p in Spec(A)\{m}.
Then ηRc (M,N) = 0 for all finitely generated R-modules M and N . In particular,
if n ≥ 2c and the pair M,N satisfies (SPc), then M and N are Tor-independent.

Proof. Choose finitely generated A-modules U and V such that Um
∼= M and

Vm
∼= N . For any maximal ideal n 6= m, the local ring An is regular and hence

TorAi (U, V )n = 0 for i � 0. It follows that the map TorAi (U, V ) → TorRi (M,N)
induced by the localization maps U → M and V → N is an isomorphism for i � 0.
Also, for any A-module supported at m, its length as an A-module is equal to its
length as an R-module. In conclusion, ηRc (M,N) = ηAc (U, V ).

As k is perfect, the hypothesis on A implies that the k-algebra Ap is smooth
for each non-maximal prime p in A; see [19, Corollary 16.20]. Thus, the morphism
of schemes Spec(R)\{m} → Spec(k) is smooth. Now [36, Corollary 4.7] yields
ηAc (U, V ) = 0, and hence ηRc (M,N) = 0. It remains to note that if n ≥ 2c, then
dimR ≥ c, so Theorem 3.10 applies. �

Next, we quote a recent theorem due to Walker; it provides strong support for
Conjectures 3.3, at least in equicharacteristic zero.

Theorem 4.2. (Walker [41, Theorem 1.2]) Let k be a field of characteristic zero,
and let Q a smooth k-algebra. Let f = f1, . . . , fc be a Q-regular sequence, with
c ≥ 2, and put A = Q/(f1, . . . , fc). Assume the singular locus {p ∈ Spec(A) :
Ap is not regular} is a finite set of maximal ideals of A. Then ηAc (U, V ) = 0 for all
finitely generated A-modules U , V .

Corollary 4.3. With A as in 4.2, put R = Am where m is any maximal ideal of A.
Then ηRc (M,N) = 0 for all finitely generated R-modules M and N . In particular, if
dimR ≥ c and the pair M,N satisfies (SPc), then M and N are Tor-independent.

Proof. By inverting a suitable element of Q, we may assume that Ap is a regular
local ring for every prime ideal p 6= m. Now proceed as in the first paragraph of
the proof of Proposition 4.1. �
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Theorem 4.4. Let (R,m, k) be a two-dimensional, equicharacteristic, normal, ex-
cellent complete intersection of codimension c, with c ∈ {1, 2}, and let M and N be
finitely generated R-modules. Assume k is contained in the algebraic closure of a
finite field. Assume further that M,N satisfy the conditions (i) and (ii) of (SPc).

Then TorRi (M,N) = 0 for all i ≥ 1.

Proof. The completion R̂ is an isolated singularity because R is excellent; see [31,

Proposition 10.9], and so R̂ is a normal domain. Replacing R by R̂, we may assume
that R = S/(f), where (S, n, k) is a regular local ring and f is a regular sequence

in n2 of length c. Let k be an algebraic closure of k, and choose a gonflement S ↪→
(S, n, k) lifting the field extension k ↪→ k; see [31, Chapter 10, §3]. This is a flat local
homomorphism and is an inductive limit of étale extensions. Moreover, nS = n, so
S is a regular local ring. By [31, Proposition 10.15], both S and R := S/(f) are

excellent, and R is an isolated singularity. Therefore (R,m, k) is a normal domain.

Finally, we pass to the completion Ŝ of S and put Λ = Ŝ/(f). This is still an
isolated singularity, a normal domain, and a complete intersection of codimension
c. Moreover, our hypotheses onM andN ascend along the flat local homomorphism
R → Λ; see (2.12). Since Λ is an isolated singularity, TorΛi (Λ ⊗R M,Λ ⊗R N) has
finite length for i � 0; thus the pair Λ⊗R M , Λ⊗R N satisfies (SPc).

It follows from [8, Proposition 2.5 and Remark 2.6] that G(Λ)/L is torsion, where
G(Λ) is the Grothendieck group of Λ and L is the subgroup generated by classes of
modules of finite projective dimension. This implies that ηΛc (Λ⊗RM,Λ⊗RN) = 0;
see [12, Corollary 3.1] and the paragraph preceding it. Now Theorem 3.10 implies

that TorΛi (Λ ⊗R M,Λ ⊗R N) = 0 for all i ≥ 1: the requirement on supports is
automatically satisfied, since Λ is a domain; see Remark 3.7(i). Faithfully flat
descent completes the proof. �

Appendix A. An application of pushforwards

In Theorem A.4 we use pushforwards to generalize a theorem due to Celikbas
[7, Theorem 3.16]. We have two preparatory results. The first one is a special case
of a theorem of Jorgensen:

Theorem A.1. ([29, Theorem 2.1]) Let R be a complete intersection and let M
and N be finitely generated R-modules. Assume M is maximal Cohen-Macaulay.
If TorRi (M,N) = 0 for all i � 0, then TorRi (M,N) = 0 for all i ≥ 1.

Corollary A.2. Let R be a complete intersection and let M,N be finitely generated
R-modules. If TorRi (M,N) is torsion for all i � 0, then TorRi (M,N) is torsion for
all i ≥ 1.

Proof. Let p be a minimal prime ideal of R. By (2.4), it suffices to prove that

Tor
Rp

i (Mp, Np) = 0 for all i ≥ 1. For that we may assume Mp 6= 0. Then, since Rp

is artinian, it follows that Mp is a maximal Cohen-Macaulay Rp-module. Therefore
Theorem A.1 gives the desired vanishing. �

Corollary A.3. Let R be a complete intersection, and let M,N be finitely gener-
ated R-modules. Assume M satisfies (Sw), where w is a positive integer, and that

TorRi (M,N) has finite length for all i � 0. Let p be a non-maximal prime ideal of

R such that height(p) ≤ w. Then TorRi (M,N)p = 0 for all i ≥ 1.
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Proof. Serre’s condition (Sw) localizes, so Mp is either zero or a maximal Cohen-

Macaulay Rp-module; see (2.6). As Tor
Rp

i (Mp, Np) = 0 for i � 0, Theorem A.1

implies that Tor
Rp

i (Mp, Np) = 0 for all i ≥ 1. �

The next theorem generalizes a result due to Celikbas [7, 3.16]; we emphasize
that the ambient regular local ring in Theorem A.4 is allowed to be ramified.

Theorem A.4. Let R be a complete intersection with dimR ≥ codimR, and let
M and N be finitely generated R-modules. Assume the pair M,N satisfies (SPc)
for some c ≥ codimR. If c = 1, assume further that M or N is torsion-free. If
TorR1 (M,N) = 0, then TorRi (M,N) = 0 for all i ≥ 1.

Proof. Without loss of generality, one may assume that c = codimR. When c = 0,
the desired result is the rigidity theorem of Auslander [1] and Lichtenbaum [32], so
in the remainder of the proof we assume that c ≥ 1.

Assume first that c = 1. By hypotheses TorRi (M,N) has finite length for i � 0
and M⊗RN is torsion-free; see (3.5). Moreover, we may assume N (say) is torsion-
free. Tensoring M with the pushforward (2.8) for N gives the following:

TorR1 (M,N1) ↪→ M ⊗R N(A.4.1)

TorRi (M,N1) ∼= TorRi−1(M,N) for all i ≥ 2.(A.4.2)

Equation (A.4.2) implies that TorRi (M,N1) has finite length for all i � 0. There-

fore, since dim(R) ≥ 1, TorRi (M,N1) is torsion for all i � 0; see (2.4). Now

Corollary A.2 implies that TorRi (M,N1) is torsion for all i ≥ 1. As M ⊗R N is

torsion-free, we deduce from (A.4.1) that TorR1 (M,N1) = 0. By (A.4.2) we have

TorR2 (M,N1) ∼= TorR1 (M,N) = 0. Therefore TorR2 (M,N1) = 0 = TorR1 (M,N1), and

hence Murthy’s rigidity theorem [37, Theorem 1.6] implies that TorRi (M,N1) = 0
for all i ≥ 1. Now (A.4.2) completes the proof for the case c = 1.

Assume now that c ≥ 2. We define a sequence M0,M1, . . . ,Mc−1 of finitely
generated modules by setting M0 = M , and Mn to be the pushforward of Mn−1,
for all n = 1, . . . , c−1. These pushforwards exist: M0 satisfies (Sc−1) by hypothesis
(3.5)(i), and so, by Proposition 2.9(i),

(1) each Mn satisfies (Sc−n−1).

For the desired result, it suffices to prove that TorRi (Mc−1, N) = 0 for all i ≥ c. We
will, in fact, prove this for all i ≥ 1. To this end, we establish by induction that
the following hold for n = 0, . . . , c− 1:

(2) Mn ⊗R N satisfies (Sc−n);

(3) TorRi (Mn, N) has finite length for all i � 0;

(4) TorRi (Mn, N) = 0 for i = 1, . . . , n+ 1 .

For n = 0, conditions (2) and (3) are part of (3.5), while (4) is from our hypothesis

that TorR1 (M,N) = 0; recall that M0 = M . Assume that (2), (3) and (4) hold for
some integer n with 0 ≤ n ≤ c− 2.

Tensor the pushforward of Mn with N , see (2.8), to obtain

(A.4.3) TorRi (Mn+1, N) ∼= TorRi−1(Mn, N) for all i ≥ 2,

and the following exact sequence in which F is finitely generated and free:

(A.4.4) 0 → TorR1 (Mn+1, N) → Mn ⊗R N → F ⊗R N → Mn+1 ⊗R N → 0 .
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Induction and (A.4.3) imply that TorRi (Mn+1, N) has finite length for all i � 0,

so (3) holds; furthermore, by Corollary A.2, TorRi (Mn+1, N) is torsion for all i ≥ 1.
(Recall that dim(R) ≥ codim(R) = c ≥ 1 so that finite length modules are torsion.)
Since n ≤ c − 1, condition (2) implies that Mn ⊗R N satisfies (S1) and hence

Mn⊗RN is torsion-free; therefore the exact sequence (A.4.4) forces TorR1 (Mn+1, N)
to vanish. Now (A.4.3) gives (4). It remains to verify (2), namely, that Mn+1⊗RN
satisfies (Sc−n−1). To that end, let p ∈ Supp(Mn+1 ⊗R N). We will verify that
depthRp

(Mn+1 ⊗R N)p ≥ min{c− n− 1, height(p)}; see (2.6).

Suppose height(p) ≥ c − n. Recall, by hypothesis (3.5)(i), N satisfies (Sc−1).
Hence F⊗RN , a direct sum of copies ofN , satisfies (Sc−n−1). In particular it follows
that depthRp

(F ⊗R N)p ≥ c−n− 1. Furthermore, by (2) of the induction hypoth-

esis, we have that depthRp
(Mn ⊗R N)p ≥ c − n. Recall that TorR1 (Mn+1, N) = 0.

Therefore, localizing the short exact sequence in (A.4.4) at p, we conclude by the
depth lemma that depthRp

(Mn+1 ⊗R N)p ≥ c− n− 1.

Next assume height(p) ≤ c − n − 1. We want to show that (Mn+1 ⊗R N)p is

maximal Cohen-Macaulay. By the induction hypotheses, TorRi (Mn, N) has finite
length for all i � 0. As n ≥ 0, we see that dim(R) ≥ codim(R) = c ≥ c − n,

whence p is not the maximal ideal. Thus TorRi (Mn, N)p = 0 for all i � 0. Now,
setting w = c − n − 1 and using Corollary A.3 for the pair Mn, N , we conclude
that TorRi (Mn, N)p = 0 for all i ≥ 1. Then (A.4.3) and the already established fact

that TorR1 (Mn+1, N) = 0 give TorRi (Mn+1, N)p = 0 for all i ≥ 1. Thus the depth
formula holds; see (2.3):

depthRp
(Mn+1)p + depthRp

(Np) = depth(Rp) + depthRp
(Mn+1 ⊗R N)p .

Since Serre’s conditions localize, Np is maximal Cohen-Macaulay over Rp; see hy-
pothesis (3.5)(i). Also, (Mn+1)p is maximal Cohen-Macaulay whether or not (Mn)p
is zero; see the pushforward sequence or Proposition 2.9(ii). By the depth formula,
(Mn+1 ⊗R N)p is maximal Cohen-Macaulay. Thus Mn+1 ⊗R N satisfies (2), and
the induction is complete.

Now we parallel the argument for the case c = 1. At the end, TorRi (Mc−1, N)
has finite length for all i � 0, and is equal to 0 for i = 1, . . . , c. Tensoring Mc−1

with the pushforward of N , we get

TorRi (Mc−1, N1) ∼= TorRi−1(Mc−1, N) for all i ≥ 2,(A.4.5)

and TorR1 (Mc−1, N1) ↪→ Mc−1 ⊗R N.(A.4.6)

In view of (A.4.5), it suffices to show that TorR1 (Mc−1, N1) = 0: this will imply

TorRi (Mc−1, N1) = 0 for all i = 1, . . . , c + 1, and hence Murthy’s rigidity theorem

[37, Theorem 1.6] will yield that TorRi (Mc−1, N1) = 0 for all i ≥ 1, and consequently

TorRi (Mc−1, N) = 0 for all i ≥ 1 by (A.4.5). We know that Mc−1 ⊗R N is torsion-

free. Therefore we use (A.4.6) and Corollary A.2, and obtain TorR1 (Mc−1, N1) = 0,
as we did in the case c = 1. �

Appendix B. Amending the literature

We use Theorem A.4 to give a different proof of an important result of Huneke
and Wiegand; see Theorem B.2 and the ensuing paragraph. We also point out a
missing hypothesis in a result of C. Miller [34, Theorem 3.1], and state the corrected
form of her theorem in Corollary B.3. At the end of the paper we indicate an alterate
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route to the proof of the following result [25, Theorem 3.1], the main theorem of
the 1994 paper of Huneke and Wiegand:

Theorem B.1 (Huneke and Wiegand [25]). Let R be a hypersurface, and let M
and N be finitely generated R-modules. If M or N has rank, and M ⊗R N is
maximal Cohen-Macaulay, then both M and N are maximal Cohen-Macaulay, and
either M or N is free.

Theorem B.1 and its variations have been analyzed, used, and studied in the
literature; see [10] and [16] for some history and many consequences of the theorem.
The following result [25, Theorem 2.7] played an important role in its proof.

Theorem B.2 (Huneke and Wiegand [25]). Let R be a hypersurface and let M,N
be nonzero finitely generated R-modules. Assume M ⊗R N is reflexive and that N
has rank. Then the following conditions hold:

(i) TorRi (M,N) = 0 for all i ≥ 1.
(ii) M is reflexive, and N is torsion-free.

Theorem B.2 was established by Huneke and Wiegand in [25, Theorem 2.7]:
however their conclusion was that both M and N are reflexive, and the proof of
this stronger claim is flawed. Dao realized the oversight of [25, Theorem 2.7], and
Huneke and Wiegand addressed it in the erratum [26]. A similar flaw can be found
in Miller’s paper; see [34, Theorems 1.3 and 1.4] and compare it with our correction
in Corollary B.3. The version stated above reflects our current understanding and
is from the paper [9]. We do not yet know whether N is forced to be reflexive, that
is, the question below remains open; cf. [25, Theorem 2.7] and [34, Theorem 1.3].

Question. LetR be a hypersurface andM,N nonzero finitely generatedR-modules.
If N has rank and M ⊗R N is reflexive, must both M and N be reflexive?

This question has been recently studied in [9], which gives partial answers using
the New Intersection Theorem.

We now show how Theorem B.2 follows from Theorem A.4. In fact, one needs
only the case c = 1 of Theorem A.4.

Proof of Theorem B.2 using Theorem A.4. Set d = dimR. If d = 0, then N is free
(since it has rank), so all is well. From now on assume d ≥ 1. We remark at the
outset that neither M nor N can be torsion, i.e., ⊥RM 6= 0 and ⊥RN 6= 0. Also,
by the assumption of rank, Supp(N) = Spec(R). Suppose first that both M and
N are torsion-free; we will prove (i) by induction on d = dimR. Let M1 denote the

pushforward of M ; see (2.8). Then TorR1 (M1, N) is torsion as N has rank. Since
M ⊗R N is torsion-free, applying −⊗R N to (2.8.1) shows that

(B.2.1) TorR1 (M1, N) = 0 .

Suppose for the moment that d = 1. Since N has rank, there is an exact sequence

0 → N → F → C → 0 ,

in which F is free and C is torsion. (See [25, Lemma 1.3].) Note that C is of finite

length since d = 1. Note also that TorR2 (M1, C) ∼= TorR1 (M1, N) = 0; see (B.2.1).

Therefore [25, Corollary 2.3] implies that TorRi (M1, C) = 0 for all i ≥ 2, and hence

TorRi (M1, N) = 0 for all i ≥ 1. Now (2.8.1) establishes (i).
Still assuming that both M and N are torsion-free, let d ≥ 2. The inductive

hypothesis implies that TorRi (M,N) has finite length for all i ≥ 1. In particular
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TorRi (M,N)q = 0 for all prime ideals q of R of height at most one. Therefore
Proposition 2.10 shows that M1⊗RN is torsion-free, that is, M1⊗RN satisfies (S1);
see (2.5) and (2.6). Furthermore, from the pushforward exact sequence (2.8.1), we

see that TorRi (M1, N) has finite length for all i ≥ 2. Consequently the pair M1, N

satisfies (SP1). Now Theorem A.4, applied to M1, N , shows that TorRi (M1, N) = 0

for all i ≥ 1. By (2.8.1), we see that TorRi (M,N) = 0 for all i ≥ 1. This proves (i)
under the additional assumption that M and N are torsion-free.

Since M ⊗R N is torsion-free, it follows from (3.4) that there are isomorphisms

M ⊗R N ∼= M ⊗R ⊥RN ∼= ⊥RM ⊗R N ∼= ⊥RM ⊗R ⊥RN .

In particular, ⊥RM ⊗R ⊥RN is also reflexive. As noted before, neither M nor N
is torsion so ⊥RM and ⊥RN are nonzero. As N has rank so does ⊥RN , so the
already established part of the result (applied to ⊥RM and ⊥RN) yields

TorRi (⊥RM,⊥RN) = 0 for i ≥ 1.

Given this, since ⊥RM ⊗R N is torsion-free by the isomorphisms above, applying
(3.4) to the R-modules ⊥RM and N gives N = ⊥RN ; then applying (3.4) to M
and N yields M = ⊥RM . In conclusion, M and N are torsion-free, and hence
TorRi (M,N) = 0 for all i ≥ 1. From the last, the depth formula holds.

The remaining step is to prove that M is reflexive. Since Supp(N) = Spec(R),
we have depth(Np) ≤ height(p) for all primes p of R. Localizing the depth formula
(2.3) shows Serre’s condition (S2) on M ; see (2.6). �

The next result is due to C. Miller. In her paper [34], the essential requirement
— that M have rank — is missing: for example, the module M = R/(x) over the
node k[[x, y]]/(xy) is not free, yet M ⊗R M , which is just M , is maximal Cohen-
Macaulay and hence reflexive. We state her result here in its corrected form and
include a proof for completeness.

Corollary B.3. (C. Miller [34, Theorem 3.1]) Let R be a d-dimensional hypersur-
face and let M a finitely generated R-module with rank. If ⊗n

RM is reflexive for
some n ≥ max{2, d− 1}, then M is free.

Proof. If d ≤ 2, then ⊗n
RM is maximal Cohen-Macaulay, and Theorem B.1 gives

the result. Assume now that d ≥ 3. Applying Theorem B.2 and [27, Theorem 1.9]
repeatedly, we conclude the following:

(i) ⊗r
RM is reflexive for all r = 1, . . . , n.

(ii) TorRi (M,⊗r−1
R M) = 0 for all i ≥ 1 and all r = 2, . . . , n.

(iii) pd(M) < ∞.

It follows from (i) that depth(⊗r
RM) ≥ 2 for all r = 1, . . . , n; see (2.6). Also, (ii)

implies the depth formula:

depth(M) + depth(⊗r−1
R M) = d+ depth(⊗r

RM) ,

for all r = 2, . . . , n. One checks by induction on r that

r · depth(M) = (r − 1) · d+ depth(⊗r
RM) ,

for r = 2, . . . , n. Setting r = n, and using the inequalities n ≥ d − 1 and
depth(⊗n

RM) ≥ 2, we obtain:

n · depth(M) ≥ (n− 1) · d+ 2 = n · (d− 1) + n− d+ 2 ≥ n · (d− 1) + 1.
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Therefore depth(M) ≥ d, that is, M is maximal Cohen-Macaulay. Now (iii) and
the Auslander-Buchsbaum formula [3, Theorem 3.7] imply that M is free. �

A consequence of Theorems B.1 and B.2 is the following result [27, Theorem
1.9], observed by Huneke and Wiegand in their 1997 paper:

Proposition B.4 ([27]). Let M and N be finitely generated modules over a hyper-

surface R, and assume that TorRi (M,N) = 0 for i � 0. Then at least one of the
modules has finite projective dimension.

At about the same time Miller [34] obtained the same result independently,
by an elegant, direct argument. As Miller observed in [34], one can turn things
around and easily deduce Theorem B.1 from Proposition B.4 and the vanishing
result Theorem B.2.
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