# CRITERIA FOR VANISHING OF TOR OVER COMPLETE INTERSECTIONS

OLGUR CELIKBAS, SRIKANTH B. IYENGAR, GREG PIEPMEYER, AND ROGER WIEGAND

ABSTRACT. In this paper we exploit properties of Dao's  $\eta$ -pairing [12] as well as techniques of Huneke, Jorgensen, and Wiegand [24] to study the vanishing of  $\operatorname{Tor}_i(M,N)$  for finitely generated modules M,N over complete intersections. We prove vanishing of  $\operatorname{Tor}_i(M,N)$  for all  $i\geq 1$  under depth conditions on M,N, and  $M\otimes N$ . Our arguments improve a result of Dao [13] and establish a new connection between the vanishing of Tor and the depth of tensor products.

#### 1. Introduction

In his seminal 1961 paper [1], Auslander proved that if R is a local ring and M and N are nonzero finitely generated R-modules such that  $\operatorname{pd}(M) < \infty$  and  $\operatorname{Tor}_i^R(M,N) = 0$  for all  $i \geq 1$ , then

$$(1.0.1) depth(M) + depth(N) = depth(R) + depth(M \otimes_R N),$$

that is, the depth formula holds. Huneke and Wiegand [25, Theorem 2.5] established the depth formula for Tor-independent modules (not necessarily of finite projective dimension) over complete intersection rings. Christensen and Jorgensen [11] extended that result to AB rings [23], a class of Gorenstein rings strictly containing the class of complete intersections. The depth formula is important for the study of depths of tensor products of modules [1, 25], as well as of complexes [20, 28]. We seek conditions on the modules M, N and  $M \otimes_R N$  forcing such a formula to hold, in particular, conditions implying  $\operatorname{Tor}_i^R(M,N) = 0$  for all  $i \geq 1$ . The following conjecture, implicit in [24], guides our search:

**Conjecture 1.1** (see [24]). Let M, N be finitely generated modules over a complete intersection R of codimension c. If  $M \otimes_R N$  is a  $(c+1)^{st}$  syzygy and M has rank, must  $\operatorname{Tor}_i^R(M,N) = 0$  for all  $i \geq 1$ ?

The conjecture is true if c=0 or 1, by [32, Corollary 1] and [25, Theorem 2.7] respectively. Without the assumption of rank, there are easy counterexamples, e.g., R=k[x,y]/(xy) and M=N=R/(x); M is an  $n^{\rm th}$  syzygy for all n, but the odd index Tors are non-zero.

A finitely generated module over a complete intersection is an  $n^{\text{th}}$  syzygy of some finitely generated module if and only if it satisfies *Serre's condition*  $(S_n)$ ; see (2.6). Our methods yield a sharpening of the following theorem due to Dao:

Date: 16th December 2014.

 $<sup>2010\</sup> Mathematics\ Subject\ Classification.\ 13D07,\ 13C40.$ 

Key words and phrases. complete intersection, tensor product, torsion, vanishing of Tor. SBI partly supported by NSF grant DMS-1201889 and a Simons Fellowship; RW partly sup-

SBI partly supported by NSF grant DMS-1201889 and a Simons Fellowship; RW partly supported by a Simons Collaboration Grant.

**Theorem 1.2** (Dao [13]). Let R be a complete intersection in an unramified regular local ring, of relative codimension c, and let M, N be finitely generated R-modules. Assume

- (i) M and N satisfy  $(S_c)$ ,
- (ii)  $M \otimes_R N$  satisfies  $(S_{c+1})$ , and
- (iii)  $M_{\mathfrak{p}}$  is a free  $R_{\mathfrak{p}}$ -module for all prime ideals  $\mathfrak{p}$  of height at most c.

Then  $\operatorname{Tor}_{i}^{R}(M,N)=0$  for all  $i\geq 1$  (and hence the depth formula holds).

By analyzing Serre's conditions, we remove Dao's assumption that the ambient regular local ring be unramified; see Corollary 3.14. Even though complete intersections in unramified regular local rings suffice for many applications, our conclusion is of interest: Dao's proof uses the nonnegativity of partial Euler characteristics, but nonnegativity remains unknown for the ramified case; see [13, Theorem 6.3 and the proof of Lemma 7.7].

If the ambient regular local ring is unramified, we can replace c with c-1 in both hypotheses (i) and (ii), remove hypothesis (iii), and still conclude that  $\operatorname{Tor}_i^R(M,N)=0$  for all  $i\geq 1$  provided that  $\eta_c^R(M,N)=0$ ; see (3.1) for the definition of  $\eta_c^R(-,-)$  and Theorem 3.10 for our result.

Moore, Piepmeyer, Spiroff, and Walker [36],[41] have proved vanishing of the  $\eta$ -pairing in several important cases. These, in turn, yield results on vanishing of Tor. See Proposition 4.1, Theorem 4.2, and Corollary 4.3.

Our proofs rely on a reduction technique using quasi-liftings; see (2.8). Quasi-liftings were initially defined and studied by Huneke, Jorgensen and Wiegand in [24]. Lemma 3.9 is the key ingredient for our argument. It shows that if R = S/(f) and S is a complete intersection of codimension c-1, and if  $\eta_c^R(M,N) = 0$ , then  $\eta_{c-1}^S(E,F) = 0$ , where E and F are quasi-liftings of M and N to S, respectively. By induction, we obtain that  $\operatorname{Tor}_i^S(E,F) = 0$  for all  $i \geq 1$ : this allows us to prove the vanishing of  $\operatorname{Tor}_i^R(M,N)$  from the depth and syzygy relations between the pairs E,F and M,N.

In the Appendix we revisit the paper of Huneke and Wiegand [25] and use our work to obtain one of the main results there. Moreover, we point out an oversight in Miller's paper [34] and state her result in its corrected form as Corollary B.3.

#### 2. Preliminaries

We review a few concepts and results, especially universal pushforwards and quasi-liftings [24, 25]. Throughout R will be a commutative noetherian ring.

Let  $\nu_R(M)$  denote the minimal number of generators of the R-module M. If  $(R, \mathfrak{m})$  is local, the codimension of R is  $\operatorname{codim}(R) := \nu_R(\mathfrak{m}) - \dim(R)$ ; it is a non-negative integer. We have  $\operatorname{codim}(\widehat{R}) = \operatorname{codim}(R)$ , where  $\widehat{R}$  is the  $\mathfrak{m}$ -adic completion of R.

**2.1.** Complete intersections. R is a complete intersection in a local ring  $(Q, \mathfrak{n})$  if there a surjection  $\pi \colon Q \twoheadrightarrow R$  with  $\ker(\pi)$  generated by a Q-regular sequence in  $\mathfrak{n}$ ; the length of this regular sequence is the relative codimension of R in Q. A hypersurface in Q is a complete intersection of relative codimension one in Q.

Assume  $\widehat{R}$  is a complete intersection in a regular local ring  $(Q, \mathfrak{n})$ , of relative codimension c. Then  $\widehat{R} = Q/(\underline{f})$  for a regular sequence  $\underline{f} = f_1, \ldots, f_c$ , where  $\operatorname{codim}(R) \leq c$ . Moreover, the codimension of R is c if and only if  $(f) \subseteq \mathfrak{n}^2$ .

A ring is a *complete intersection* (resp., *hypersurface*) if it is local and its completion is a complete intersection (resp., hypersurface) in a regular local ring.

**2.2.** Ramified regular local rings. A regular local ring  $(Q, \mathfrak{n}, k)$  is said to be unramified if either (i) Q is equicharacteristic, i.e., contains a field, or else (ii)  $Q \supset \mathbb{Z}$ ,  $\operatorname{char}(k) = p$ , and  $p \notin \mathfrak{n}^2$ . In contrast, the regular local ring  $R = V[x]/(x^2 - p)$ , where V is the ring of p-adic integers, is ramified. Every localization, at a prime ideal, of an unramified regular local ring is again unramified; see [1, Lemma 3.4].

Let  $(Q, \mathfrak{n}, k)$  be a d-dimensional complete regular local ring. If Q is ramified, then k has characteristic p. Further, there is a complete unramified discrete valuation ring (V, pV) such that  $Q \cong T/(p-f)$ , where  $T = V[[x_1, \ldots, x_d]]$  and f is contained in the square of the maximal ideal of T; see for example [5, Chaper IX, §3]. Hence every complete regular local ring is a hypersurface in an unramified one. Consequently, when R is a complete intersection,  $\widehat{R}$  is a complete intersection in an unramified regular local ring Q such that  $\operatorname{codim} R \leq c \leq \operatorname{codim} R + 1$ , where c is the relative codimension of  $\widehat{R}$  in Q.

**2.3.** The depth formula ([25, Theorem 2.5]). Let R be a complete intersection and let M, N be finitely generated R-modules. If  $\operatorname{Tor}_i^R(M,N)=0$  for all  $i\geq 1$ , then the depth formula (1.0.1) holds, that is,

$$\operatorname{depth}(M) + \operatorname{depth}(N) = \operatorname{depth}(R) + \operatorname{depth}(M \otimes_R N)$$
.

Recall that  $depth(0) = \infty$ , so the formula holds trivially if a zero module appears.

**2.4. Torsion submodule.** The torsion submodule  $\top_R M$  of M is the kernel of the natural homomorphism  $M \to \mathrm{Q}(R) \otimes_R M$ , where  $\mathrm{Q}(R) = \{\text{non-zerodivisors}\}^{-1} R$  is the total quotient ring of R. The module M is torsion if  $\top_R M = M$ , and torsion-free if  $\top_R M = 0$ . To restate, M is torsion-free if and only if every non-zerodivisor of R is a non-zerodivisor on M, that is, if and only if  $\bigcup \mathrm{Ass}\, M \subseteq \bigcup \mathrm{Ass}\, R$ . Similarly, M is torsion if and only if  $M_{\mathfrak{p}} = 0$  for all  $\mathfrak{p} \in \mathrm{Ass}(R)$ . For notation, the inclusion  $\top_R M \subseteq M$  has cokernel  $\bot_R M$ :

$$(2.4.1) 0 \longrightarrow \mathsf{T}_R M \longrightarrow M \longrightarrow \bot_R M \longrightarrow 0.$$

- **2.5.** Torsionless and reflexive modules. Let M be a finitely generated R-module;  $M^*$  denotes its dual  $\operatorname{Hom}_R(M,R)$ . The module M is torsionless if it embeds in a free module, equivalently, the canonical map  $M \to M^{**}$  is injective. Torsionless modules are torsion-free, and the converse holds if  $R_{\mathfrak{p}}$  is Gorenstein for every associated prime  $\mathfrak{p}$  of R; see [40, Theorem A.1]. The module M is reflexive provided the map  $M \to M^{**}$  is an isomorphism.
- **2.6. Serre's conditions** (see [31, Appendix A, §1] and [18, Theorem 3.8]). Let M be a finitely generated R-module and let n be a nonnegative integer. Then M is said to satisfy Serre's condition  $(S_n)$  provided that

$$\operatorname{depth}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \geq \min\{n, \operatorname{height}(\mathfrak{p})\} \text{ for all } \mathfrak{p} \in \operatorname{Supp}(M).$$

A finitely generated module M over a local ring R is maximal Cohen-Macaulay if depth $(M) = \dim(R)$ ; necessary for this equality is that  $M \neq 0$ .

If M satisfies  $(S_1)$ , then M is torsion-free, and the converse holds if R has no embedded primes, e.g., is reduced or Cohen-Macaulay; see (2.4). If R is Gorenstein, M satisfies  $(S_2)$  if and only if M is reflexive; see (2.5) and [18, Theorem 3.6]. Moreover, if R is Gorenstein, M satisfies  $(S_n)$  if and only if M is an n<sup>th</sup> syzygy module; see [31, Corollary A.12].

A localization of a torsion-free module need not be torsion-free; see, for example, [38, Example 3.9]. However, over Cohen-Macaulay rings, we have:

Remark 2.7. Assume R is Cohen-Macaulay and M is a finitely generated R-module. Let  $\mathfrak{p}$  be a prime ideal of R. Note that, since  $\mathsf{T}_R M$  is killed by a non-zerodivisor of R,  $(\mathsf{T}_R M)_{\mathfrak{p}}$  is a torsion  $R_{\mathfrak{p}}$ -module. Next,  $\bot_R M$  satisfies  $(S_1)$  as R is Cohen-Macaulay, and so  $(\bot_R M)_{\mathfrak{p}}$  is a torsion-free  $R_{\mathfrak{p}}$ -module; see (2.6). Localizing the exact sequence (2.4.1) at  $\mathfrak{p}$ , we see that  $(\mathsf{T}_R M)_{\mathfrak{p}} \cong \mathsf{T}_{R_{\mathfrak{p}}} (M_{\mathfrak{p}})$ . In particular, if M is a torsion-free R-module, then  $M_{\mathfrak{p}}$  is a torsion-free  $R_{\mathfrak{p}}$ -module.

We recall a technique from  $[24, \S 1]$  for lowering the codimension.

**2.8.** Pushforward and quasi-lifting (see [24, §1]). Let R be a Gorenstein local ring and let M be a finitely generated torsion-free R-module. Choose a surjection  $\varepsilon \colon R^{(\nu)} \to M^*$  with  $\nu = \nu_R(M^*)$ . Applying  $\operatorname{Hom}(-,R)$  to this surjection, we obtain an injection  $\varepsilon^* \colon M^{**} \hookrightarrow R^{(\nu)}$ . Let  $M_1$  be the cokernel of the composition  $M \hookrightarrow M^{**} \hookrightarrow R^{(\nu)}$ . The exact sequence

(2.8.1) 
$$0 \to M \to R^{(\nu)} \to M_1 \to 0$$

is called a *pushforward* of M. The extension (2.8.1) and the module  $M_1$  are unique up to non-canonical isomorphism; see [7, pp. 174–175]. We refer to such a module  $M_1$  as the pushforward of M. Note  $M_1 = 0$  if and only if M is free.

Assume R = S/(f) where  $(S, \mathfrak{n})$  is a local ring and f is a non-zerodivisor in  $\mathfrak{n}$ . Let  $S^{(\nu)} \twoheadrightarrow M_1$  be the composition of the canonical map  $S^{(\nu)} \twoheadrightarrow R^{(\nu)}$  and the map  $R^{(\nu)} \twoheadrightarrow M_1$  in (2.8.1). The *quasi-lifting* of M to S is the module E in the exact sequence of S-modules:

(2.8.2) 
$$0 \to E \to S^{(\nu)} \to M_1 \to 0$$
.

The quasi-lifting of M is unique up to isomorphism of S-modules.

Proposition 2.9 is from [24, Propositions 1.6 & 1.7]; Proposition 2.10 is embedded in the proofs of [24, Propositions 1.8 & 2.4] and is recorded explicitly in [7, Proposition 3.2(3)(b)]. We will use Proposition 2.10 in the proofs of Theorem 3.10 and Theorem B.2 below.

**Proposition 2.9** ([24]). Let R be a Gorenstein local ring and let M be a finitely generated torsion-free R-module. Let  $M_1$  denote the pushforward of M.

- (i) Let  $n \geq 0$ . Then M satisfies  $(S_{n+1})$  if and only if  $M_1$  satisfies  $(S_n)$ .
- (ii) Let  $\mathfrak{p}$  be a prime ideal. If  $M_{\mathfrak{p}}$  is a maximal Cohen-Macaulay  $R_{\mathfrak{p}}$ -module, then  $(M_1)_{\mathfrak{p}}$  is either zero or a maximal Cohen-Macaulay  $R_{\mathfrak{p}}$ -module.

**Proposition 2.10** ([24]). Let R = S/(f) where S is a complete intersection and f is a non-zerodivisor in S. Let N be a finitely generated torsion-free R-module such that  $M \otimes_R N$  is reflexive. Assume  $\operatorname{Tor}_i^R(M,N)_{\mathfrak{p}} = 0$  for all  $i \geq 1$ , and for all primes  $\mathfrak{p}$  of R with height  $(\mathfrak{p}) \leq 1$ .

- (i) Then  $M_1 \otimes_R N$  is torsion-free.
- (ii) Let E and F denote the quasi-liftings of M and N to S, respectively; see (2.8). Assume  $\operatorname{Tor}_{i}^{S}(E,F)=0$  for all  $i\geq 1$ . Then  $\operatorname{Tor}_{i}^{R}(M,N)=0$  for all  $i\geq 1$ .

Serre's conditions  $(S_n)$  need not ascend along flat local homomorphisms. This can be problematic:

**Example 2.11.** The ring  $\mathbb{C}[[x,y,u,v]]/(x^2,xy)$  has depth two and therefore, by Heitmann's theorem [21, Theorem 8], it is the completion  $\widehat{R}$  of a unique factorization domain  $(R,\mathfrak{m})$ . Then R, being normal, satisfies  $(S_2)$ , but  $\widehat{R}$  does not even satisfy  $(S_1)$ , since the localization at the height-one prime ideal (x,y) has depth zero.

For flat local homomorphisms between Cohen-Macaulay rings, and more generally when the fibers are Cohen-Macaulay, however,  $(S_n)$  does ascend and descend:

**Lemma 2.12.** Let R be a local ring,  $\mathfrak{p}$  a prime ideal of R, and M a finitely generated R-module.

- (1) If M is reflexive, then so is the  $R_{\mathfrak{p}}$ -module  $M_{\mathfrak{p}}$ .
- (2) Suppose R is Cohen-Macaulay. Then  $(\top_R M)_{\mathfrak{p}} = \top_{R_{\mathfrak{p}}} M_{\mathfrak{p}}$ ; in particular, if M is torsion-free, then so is  $M_{\mathfrak{p}}$ .
- (3) Suppose  $R \to S$  is a flat local homomorphism. If  $S \otimes_R M$  satisfies  $(S_n)$  as an S-module, then M satisfies  $(S_n)$  as an R-module; the converse holds when the fibers of the map  $R \to S$  are Cohen-Macaulay.

*Proof.* For part (1), localize the isomorphism  $M \to M^{**}$ . Part (2) is Remark 2.7. Part (3) can be proved along the same lines as [33, Theorem 23.9]: For any  $\mathfrak{q}$  in Spec S with  $\mathfrak{p} = \mathfrak{q} \cap R$ , it follows from [33, Theorem 15.1 and Theorem 23.3] that

$$\begin{split} \operatorname{height}(\mathfrak{q}) &= \operatorname{height}(\mathfrak{p}) + \dim(S_{\mathfrak{q}}/\mathfrak{p}S_{\mathfrak{q}}) \quad \text{and} \\ \operatorname{depth}_{S_{\mathfrak{q}}}(S \otimes_R M)_{\mathfrak{q}} &= \operatorname{depth}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) + \operatorname{depth}(S_{\mathfrak{q}}/\mathfrak{p}S_{\mathfrak{q}}) \,. \end{split}$$

When  $S \otimes_R M$  satisfies  $(S_n)$ , for  $\mathfrak{q}$  minimal in  $S/\mathfrak{p}S$  these equalities give

$$\operatorname{depth}_{R_n}(M_{\mathfrak{p}}) = \operatorname{depth}_{S_{\mathfrak{q}}}(S \otimes_R M)_{\mathfrak{q}} \ge \min\{n, \operatorname{height}(\mathfrak{q})\} = \min\{n, \operatorname{height}(\mathfrak{p})\}.$$

Thus M satisfies  $(S_n)$ . Conversely, if  $S_{\mathfrak{q}}/\mathfrak{p}S_{\mathfrak{q}}$  is Cohen-Macaulay and the R-module M satisfies  $(S_n)$ , one gets

$$\operatorname{depth}_{S_{\mathfrak{q}}}(S \otimes_R M)_{\mathfrak{q}} \geq \min\{n, \operatorname{height}(\mathfrak{p})\} + \dim(S_{\mathfrak{q}}/\mathfrak{p}S_{\mathfrak{q}}) \geq \min\{n, \operatorname{height}(\mathfrak{q})\}.$$
 This completes the proof of part (3).

#### 3. Main theorem

Our main result, Theorem 3.10, is here. We use the  $\theta$  and  $\eta$ -pairings introduced by Hochster [22] and Dao [13]. After preliminaries on these, we focus on complete intersections; see (2.1), the setting of our applications.

**3.1.** The  $\theta$  and  $\eta$  pairings (Hochster [22] and Dao [12, 13]). Let R be a local ring and let M and N be finitely generated R-modules. Assume that there exists an integer f (depending on M and N), such that  $\operatorname{Tor}_i^R(M,N)$  has finite length for all i > f.

If R is a hypersurface, then  $\operatorname{Tor}_i^R(M,N) \cong \operatorname{Tor}_{i+2}^R(M,N)$  for all  $i \gg 0$ ; see [17]. Hochster [22] introduced the  $\theta$  pairing as follows:

$$\theta^R(M,N) = \operatorname{length}(\operatorname{Tor}_{2n}^R(M,N)) - \operatorname{length}(\operatorname{Tor}_{2n-1}^R(M,N)) \text{ for } n \gg 0 \,.$$

When R is any complete intersection, Dao [13, Definition 4.2.] defined:

$$\eta_e^R(M,N) = \lim_{n \to \infty} \frac{1}{n^e} \sum_{i=f}^n (-1)^i \operatorname{length}(\operatorname{Tor}_i^R(M,N)).$$

The  $\eta$ -pairing is a natural extension to complete intersections of the  $\theta$ -pairing. Moreover the following statements hold; see [13, 4.3].

- (i)  $\eta_e^R(M,-)$  and  $\eta_e^R(-,N)$  are additive on short exact sequences, provided  $\eta_e^R$  is defined on the pairs of modules involved.
- (ii) If R is a hypersurface, then  $\eta_1^R(M,N) = \frac{1}{2}\theta^R(M,N)$ . Hence  $\eta_1^R(M,N) = 0$  if and only if  $\theta^R(M,N) = 0$ .

Assume R is a complete intersection.

- (iii)  $\eta_e^R(M,N) = 0$  if  $e \ge \operatorname{codim} R$  and either M or N has finite length.
- (iv)  $\eta_e^R$  is finite when  $e = \operatorname{codim}(R)$ , and  $\eta_e^R$  is zero when  $e > \operatorname{codim} R$ .

The next result (Dao [13, Theorem 6.3]), on *Tor-rigidity*, shows the utility of the  $\eta$ -pairing.

**Theorem 3.2** (Dao [13]). Let R be a local ring whose completion is a complete intersection, of relative codimension  $c \ge 1$ , in an unramified regular local ring. Let M, N be finitely generated R-modules. Assume  $\operatorname{Tor}_i^R(M, N)$  has finite length for all  $i \gg 0$ , and that  $\eta_c^R(M, N) = 0$ . Then the pair M, N is c-Tor-rigid, that is, if  $s \ge 0$  and  $\operatorname{Tor}_i^R(M, N) = 0$  for all  $i = s, \ldots, s + c - 1$ , then  $\operatorname{Tor}_i^R(M, N) = 0$  for all i > s.

The following conjectures have received quite a bit of attention:

Conjectures 3.3. Assume R is a local ring which is an isolated singularity, i.e.,  $R_{\mathfrak{p}}$  is a regular local ring for all non-maximal prime ideals  $\mathfrak{p}$  of R.

- (i) (Dao [12, Conjecture 3.15]) If R is an equicharacteristic hypersurface of even dimension, then  $\eta_1^R(M, N) = 0$  for all finitely generated R-modules M, N.
- (ii) (Moore, Piepmeyer, Spiroff and Walker [36, Conjecture 2.4]) If R is a complete intersection of codimension  $c \geq 2$ , then  $\eta_c^R(M, N) = 0$  for all finitely generated R-modules M, N.

Moore, Piepmeyer, Spiroff and Walker [35] have settled Conjecture 3.3(i) in the affirmative for certain types of affine algebras. Polishchuk and Vaintrob [39, Remark 4.1.5], as well as Buchweitz and Van Straten [6, Main Theorem], have since given other proofs, in somewhat different contexts, of this result; see Theorem 4.2 for a recent result of Walker [41] concerning Conjecture 3.3(ii), and Corollary 4.3 for an application of his result.

Our proofs of Lemma 3.6 and Theorem B.2 use the following (see [1, Lemma 3.1] or [25, Lemma 1.1]).

**Remark 3.4.** Let R be a local ring, and let M and N be nonzero finitely generated R-modules. Assume  $M \otimes_R N$  is torsion-free. Then  $M \otimes_R N \cong M \otimes \bot_R N$ . Moreover, if  $\operatorname{Tor}_1^R(M, \bot_R N) = 0$ , then  $\top_R N = 0$ , and hence N is torsion-free.

We encounter the same hypotheses often enough to warrant a piece of notation.

**Notation 3.5.** Let c be a positive integer. A pair M, N of finitely generated modules over a ring R satisfies  $(SP_c)$  provided the following conditions hold:

- (i) M and N satisfy Serre's condition  $(S_{c-1})$ .
- (ii)  $M \otimes_R N$  satisfies  $(S_c)$ .
- (iii)  $\operatorname{Tor}_{i}^{R}(M, N)$  has finite length for all  $i \gg 0$ .

**Hypersurfaces.** We begin with a lemma analogous to [14, Proposition 3.1]; however, we do not assume any depth properties on M or N; see (2.1) and (3.5).

**Lemma 3.6.** Let R be a local ring whose completion is a hypersurface in an unramified regular local ring, and let M, N be finitely generated R-modules. Assume the following hold:

- (i)  $\dim(R) \geq 1$ .
- (ii) The pair M, N satisfies  $(SP_1)$ .
- (iii)  $\operatorname{Supp}_R(\mathsf{T}_R N) \subseteq \operatorname{Supp}_R(M)$ .
- (iv)  $\theta^{R}(M, N) = 0$ .

Then  $\operatorname{Tor}_{i}^{R}(M,N)=0$  for all  $i\geq 1$ , and N is torsion-free.

*Proof.* Consider the following conditions for a prime ideal  $\mathfrak{p}$  of R:

(3.6.1) 
$$(\mathsf{T}_R N)_{\mathfrak{p}}$$
 has finite length over  $R_{\mathfrak{p}}$ , and  $\dim(R_{\mathfrak{p}}) \geq 1$ .

CLAIM: If  $\mathfrak{p}$  is as in (3.6.1), then  $\operatorname{Tor}_{i}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}},(\perp_{R}N)_{\mathfrak{p}})=0$  for all  $i\geq 1$ .

We may assume that  $M_{\mathfrak{p}} \neq 0$ . We know from (ii) that  $\operatorname{Tor}_{i}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}})$  has finite length over  $R_{\mathfrak{p}}$  for all  $i \gg 0$ . Since  $(\mathsf{T}_{R}N)_{\mathfrak{p}}$  has finite length, the exact sequence (2.4.1) for N, localized at  $\mathfrak{p}$ , shows that  $\operatorname{Tor}_{i}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, (\bot_{R}N)_{\mathfrak{p}})$  has finite length over  $R_{\mathfrak{p}}$  for all  $i \gg 0$ .

Using the additivity of  $\theta^{R_p}$  along the same exact sequence, we see that

the last by (3.1).

Since  $\perp_R N$  is a torsionless R-module (see (2.5)), there exists an exact sequence

$$(3.6.2) 0 \to \bot_R N \to R^{(n)} \to Z \to 0.$$

Localizing this sequence at  $\mathfrak{p}$ , we see that, for  $i \gg 0$ ,  $\operatorname{Tor}_i^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, Z_{\mathfrak{p}})$  has finite length and hence (since  $\dim(R_{\mathfrak{p}}) \geq 1$ ) is torsion. Now Corollary A.2 forces  $\operatorname{Tor}_i^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, Z_{\mathfrak{p}})$  to be torsion for all  $i \geq 1$ .

From (3.6.2), we see that  $\operatorname{Tor}_{1}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, Z_{\mathfrak{p}})$  embeds into  $M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} (\bot_{R}N)_{\mathfrak{p}}$ . But  $\operatorname{Tor}_{1}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, Z_{\mathfrak{p}})$  is torsion, and (by Remarks 2.7 and 3.4)  $M_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} (\bot_{R}N)_{\mathfrak{p}}$  is torsion-free; therefore  $\operatorname{Tor}_{1}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, Z_{\mathfrak{p}}) = 0$ .

free; therefore  $\operatorname{Tor}_{1}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, Z_{\mathfrak{p}}) = 0$ . Next we note that  $\theta^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, Z_{\mathfrak{p}}) = -\theta^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, (\bot_{R}N)_{\mathfrak{p}}) = 0$ ; see (3.6.2) and (3.6.1). This implies, by Theorem 3.2, that  $\operatorname{Tor}_{i}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, Z_{\mathfrak{p}}) = 0$  for all  $i \geq 1$ ; see (3.1). The claim now follows from (3.6.2).

If  $T_R N \neq 0$ , then there is a prime  $\mathfrak p$  minimal in  $\operatorname{Supp}_R(\mathsf{T}_R N)$ , and so  $(\mathsf{T}_R N)_{\mathfrak p}$  is a nonzero module of finite length. Moreover  $\dim(R_{\mathfrak p}) \geq 1$ : otherwise  $\mathfrak p \in \operatorname{Ass}(R)$  and hence  $(\mathsf{T}_R N)_{\mathfrak p} = 0$ ; see (2.4). Thus  $\mathfrak p$  satisfies (3.6.1) and, by our claim,  $\operatorname{Tor}_i^{R_{\mathfrak p}}(M_{\mathfrak p},(\bot_R N)_{\mathfrak p}) = 0$  for  $i \geq 1$ . The hypothesis (iii) on supports implies that  $M_{\mathfrak p} \neq 0$ , and now Remark 3.4 yields a contradiction. We conclude that  $\mathsf{T}_R N = 0$ .

Applying the claim to the maximal ideal  $\mathfrak{p}$  of R yields the required vanishing.  $\square$ 

#### Remark 3.7.

- (i) The hypothesis (iii) of Lemma 3.6 holds when, for example, the support of N is contained in that of M. Moreover, if R is a domain and M and N are nonzero, then, since  $M \otimes_R N$  is torsion-free, we see that  $\operatorname{Supp}(M \otimes_R N) = \operatorname{Spec}(R)$ , whence  $\operatorname{Supp}(M) = \operatorname{Spec}(R)$ .
- (ii) Most of the hypotheses in Lemma 3.6 are essential; see the discussion after [27, Remark 1.5]. Notice, without the assumption that  $\dim(R) \geq 1$ , the lemma would fail. Take, for example,  $R = \mathbb{C}[x]/(x^2)$  and M = R/(x) = N. The

vanishing of  $\theta$  is also essential: let  $R = \mathbb{C}[[x,y]]/(xy)$ , M = R/(x) and  $N = \mathbb{C}[[x,y]]/(xy)$  $R/(x^2)$ . Then the pair M, N satisfies the conditions (ii) and (iii) of Lemma 3.6. On the other hand  $\operatorname{Tor}_{2i+1}^R(M,N) \cong k$  for all  $i \geq 0$ , and  $\operatorname{Tor}_{2i}^R(M,N) = 0$ for all  $i \geq 1$ . (Thus  $\theta^R(M, N) = -1$ .)

The completion of any regular ring is a hypersurface in an unramified regular local ring; see (2.2). Hence the following consequence of Lemma 3.6 extends Lichtenbaum's [32, Corollary 3], which in turn builds on Auslander's [1, Theorem 3.2]; cf. C. Miller's result recorded as Corollary B.3 here.

**Proposition 3.8.** Let  $(R,\mathfrak{m})$  be a d-dimensional local ring whose completion is a hypersurface in an unramified regular local ring, with  $d \geq 1$ , and let M be a finitely generated R-module. Assume  $\operatorname{pd}_{R_n}(M_{\mathfrak{p}}) < \infty$  for all prime ideals  $\mathfrak{p} \neq \mathfrak{m}$ and that  $\theta^R(M,-)=0$ . If  $\otimes_R^n M$  is torsion-free for some integer  $n\geq 2$ , then  $pd(M) \leq (d-1)/n$ . Consequently, if M is not free, then  $\otimes_R^n M$  has torsion for each  $n \ge \max\{2, d\}$ .

*Proof.* We may assume  $M \neq 0$ . Iterating Lemma 3.6 shows that  $\bigotimes_{R}^{p} M$  is torsionfree for  $p=1,\ldots,n$ , and that  $\operatorname{Tor}_i^R(M,\otimes_R^{p-1}M)=0$  for all  $i\geq 1$ . Taking p=2, we see from [27, Theorem 1.9] that  $\operatorname{pd}(M)<\infty$ . Since  $\operatorname{depth}(\otimes_R^nM)\geq 1$ , one obtains, using [1, Corollary 1.3] and the Auslander-Buchsbaum formula [3, Theorem 3.7],  $n \cdot \operatorname{pd}(M) = \operatorname{pd}(\otimes_R^n M) = d - \operatorname{depth}(\otimes_R^n M) \le d - 1.$ 

Complete intersections. Hypersurfaces in complete intersections give the inductive step for our proof of Theorem 3.10; see (2.8) on pushforwards.

**Lemma 3.9.** Let  $(S, \mathfrak{n})$  be a complete intersection, and let R be a hypersurface in S. Let M and N be finitely generated torsion-free R-modules, and let E and F be the quasi-liftings of M and N, respectively, to S. Assume  $\operatorname{Tor}_{i}^{R}(M,N)$  has finite length for all  $i \gg 0$ . Let e be an integer with  $e \geq \max\{2, \operatorname{codim}(S) + 1\}$ . Then

- $\begin{array}{ll} \text{(i) } \operatorname{Tor}_i^S(E,F) \text{ has finite length for all } i \gg 0, \text{ and} \\ \text{(ii) } \eta_{e-1}^S(E,F) = 2 \cdot e \cdot \eta_e^R(M,N). \end{array}$

*Proof.* By hypothesis,  $R \cong S/(f)$ , where f is a non-zerodivisor in S. The spectral sequence associated to the change of rings  $S \to R$  yields the following exact sequence, see [32, pp. 223–224] or [37, p. 561], for all  $n \ge 1$ :

$$\cdots \to \operatorname{Tor}_{n-1}^R(M,N) \to \operatorname{Tor}_n^S(M,N) \to \operatorname{Tor}_n^R(M,N) \to \cdots$$

Consequently  $\operatorname{Tor}_{i}^{S}(M,N)$  has finite length for  $i\gg 0$ . Let  $M_{1}$  and  $N_{1}$  be the pushforwards of M and N, respectively. Since  $\operatorname{Tor}_{i}^{S}(R,-)=0$  for all  $i\geq 2$ , the sequences (2.8.2) and (2.8.1) yield isomorphisms

$$\operatorname{Tor}_i^S(E,N) \cong \operatorname{Tor}_{i+1}^S(M_1,N) \cong \operatorname{Tor}_i^S(M,N) \text{ for all } i \geq 2 \,.$$

Arguing in the same vein, one gets isomorphisms

$$\operatorname{Tor}_i^S(E,F) \cong \operatorname{Tor}_i^S(E,N)$$
 for all  $i \geq 2$ .

Hence the length of  $\operatorname{Tor}_{i}^{S}(E, F)$  is finite for all  $i \gg 0$ , and so (i) holds.

Similar arguments show the  $\eta$ -pairing, over both R and S, as appropriate, is defined for all pairs (X, Y) with  $X \in \{M, M_1, E\}$  and  $Y \in \{N, N_1, F\}$ .

By hypothesis,  $\operatorname{codim}(S) \leq e - 1$ , and hence  $\operatorname{codim}(R) \leq e$ ; see (2.1). Additivity of  $\eta$  along the exact sequences (2.8.1) and (2.8.2) thus gives

$$\eta_e^R(M,N) = -\eta_e^R(M_1,N) = \eta_e^R(M_1,N_1) \text{ and }$$

$$\eta_{e-1}^S(E,F) = -\eta_{e-1}^S(M_1,F) = \eta_{e-1}^S(M_1,N_1).$$

Our assumption that  $e \ge \max\{2, \operatorname{codim} S + 1\}$ , together with [13, Theorem 4.1(3)], allow us to invoke [13, Theorem 4.3(3)], which says that

$$2e \cdot \eta_e^R(M_1, N_1) = \eta_{e-1}^S(M_1, N_1).$$

This gives (ii), completing the proof.

The next theorem is our main result. As its hypotheses are technical, several of its consequences are discussed in section 4; see section 2 for background.

**Theorem 3.10.** Let R be a local ring whose completion is a complete intersection in an unramified regular local ring, of relative codimension  $c \geq 1$ . Let M, N be finitely generated R-modules. Assume the following hold:

- (i)  $\dim(R) \ge c$ .
- (ii) The pair (M, N) satisfies  $(SP_c)$ .
- (iii)  $\operatorname{Supp}_{R}(\mathsf{T}_{R}N) \subseteq \operatorname{Supp}_{R}(M)$ .
- (iv)  $\eta_c^R(M, N) = 0$

Then  $\operatorname{Tor}_{i}^{R}(M,N) = 0$  for all  $i \geq 1$ .

*Proof.* The case c=1 is Lemma 3.6. For  $c \geq 2$ , proceed by induction on c. We can assume R is complete, so that  $R=Q/(\underline{f})$ , where Q is an unramified regular local ring and  $\underline{f}=f_1,\ldots,f_c$  is a Q-regular sequence; see (2.2) and (2.12). Let R=S/(f), where  $S=Q/(f_1,\ldots,f_{c-1})$  and  $f=f_c$ .

R = S/(f), where  $S = Q/(f_1, \ldots, f_{c-1})$  and  $f = f_c$ . Hypothesis (ii) implies  $\operatorname{Tor}_i^R(M, N)$  has finite length for all  $i \gg 0$ ; see (3.5). Hence Corollary A.3 implies that, for all primes  $\mathfrak{p}$  with height( $\mathfrak{p}$ )  $\leq c - 1$ ,

(3.10.1) 
$$\operatorname{Tor}_{i}^{R}(M, N)_{\mathfrak{p}} = 0 \text{ for all } i \geq 1.$$

Condition (ii) also implies M and N are torsion-free since  $c \ge 2$ ; see (3.5). Hence quasi-liftings E and F of M and N to S exist; see (2.8). Using the vanishing of Tors in (3.10.1) and [24, Theorem 4.8] (cf. [7, Proposition 3.1(7)]), one gets that

(3.10.2) 
$$E \otimes_S F$$
 satisfies  $(S_{c-1})$  as an S-module.

It follows from [24, Propositions 1.6 and 1.7] (see also [7, Proposition 3.1(2) and 3.1(6)]) that the assumptions in (i) of  $(SP_c)$  pass to E and F; see (3.5).

(3.10.3) 
$$E \text{ and } F \text{ satisfy } (S_{c-1}) \text{ as } S\text{-modules}.$$

Lemma 3.9 guarantees that  $\operatorname{Tor}_i^S(E,F)$  has finite length for all  $i\gg 0$  and that  $\eta_{c-1}(E,F)=0$ . In particular the pair E,F satisfies  $(SP_{c-1})$  over the ring S. Moreover, E and F, being syzygies, are torsion-free, so we indeed have that  $\operatorname{Supp}_S(\mathsf{T}_S F)\subseteq\operatorname{Supp}_S(E)$ . Now the inductive hypothesis implies that

(3.10.4) 
$$\operatorname{Tor}_{i}^{S}(E, F) = 0 \text{ for all } i \geq 1.$$

Condition (ii) also implies that  $M \otimes_R N$  is reflexive since  $c \geq 2$ ; see (2.6). Further  $\operatorname{Tor}_i^R(M,N)_{\mathfrak{p}} = 0$  for all  $i \geq 1$  and for all  $\mathfrak{p} \in \operatorname{Spec}(R)$  with  $\operatorname{height}(\mathfrak{p}) \leq 1$ ; see (3.10.1). Thus Proposition 2.10 and (3.10.4) yield  $\operatorname{Tor}_i^R(M,N) = 0$  for all  $i \geq 1$ .  $\square$ 

**Remark 3.11.** In Theorem 3.10, if  $c \geq 2$ , hypothesis (ii) implies that N is torsionfree, i.e.,  $T_R N = 0$ ; see (2.6) and (3.5). Thus, when  $c \geq 2$ , hypothesis (iii) of Theorem 3.10 is redundant.

When  $\dim(R) > c$ , the equivalence of (i) and (ii) in the following corollary seems interesting; see also (2.3). Actually, in that case the equivalence of (ii) and (iii) holds without the assumption that  $\eta_c^R(M, N) = 0$ . See [7, Corollary 2.4].

Corollary 3.12. Let R be an isolated singularity whose completion is a complete intersection in an unramified regular local ring, of relative codimension c. Let M and N be maximal Cohen-Macaulay R-modules. Assume  $\dim(R) \geq c$ . Assume further that  $\eta_c^R(M,N) = 0$ . The following conditions are equivalent:

- (i)  $M \otimes_R N$  satisfies  $(S_c)$ .
- (ii)  $M \otimes_R N$  is maximal Cohen-Macaulay.
- (iii)  $\operatorname{Tor}_{i}^{R}(M,N)=0$  for all  $i\geq 1$ , and hence the depth formula holds.

Over a complete intersection, vanishing of Ext is closely related to vanishing of Tor:  $\operatorname{Ext}_R^i(M,N) = 0$  for all  $i \gg 0$  if and only if  $\operatorname{Tor}_i^R(M,N) = 0$  for all  $i \gg 0$ ; see [2, Remark 6.3]. Our next example shows the hypotheses of Theorem 3.10 do notforce the vanishing of  $\operatorname{Ext}_R^i(M,N)$  for all  $i \geq 1$ .

**Example 3.13.** Let  $(R, \mathfrak{m}, k)$  be a complete intersection with  $\operatorname{codim}(R) = 2$  and  $\dim(R) > 3$ . Let N be the dth syzygy of k, where  $d = \dim(R)$ , and let M be the second syzygy of  $R/(\underline{x})$ , where  $\underline{x}$  is a maximal R-regular sequence.

Note that N is maximal Cohen-Macaulay, depth(M) = 2 and  $N_p$  is free over  $R_{\mathfrak{p}}$  for all primes  $\mathfrak{p} \neq \mathfrak{m}$ . It follows, since  $\mathrm{pd}(M) < \infty$ , that  $\eta_2^R(M,N) = 0$  and  $\operatorname{Tor}_{i}^{R}(M,N)=0$  for all  $i\geq 1$ ; see (3.1) and Theorem A.1. Therefore the depth formula (2.3) shows that depth $(M \otimes_R N) = 2$ . Since M is a second syzygy, it satisfies  $(S_2)$  and hence  $M \otimes_R N$  satisfies  $(S_2)$ ; see (2.6). In particular, the pair M, N satisfies  $(SP_2)$ ; see (3.5). However  $\operatorname{Ext}_R^{d-2}(M, N) = \operatorname{Ext}^d(R/(\underline{x}), N) \neq 0$ ; see, for example, [33, Chapter 19, Lemma 1(iii)].

Here is the extension of Dao's theorem [13, Theorem 7.7] promised in the introduction (cf. Theorem 1.2):

Corollary 3.14. Let R be a local ring that is a complete intersection, and let M and N be finitely generated R-modules. Assume that the following conditions hold for some integer  $e \ge \operatorname{codim}(R)$ :

- (i) M and N satisfy  $(S_e)$ .
- (ii) M⊗<sub>R</sub> N satisfies (S<sub>e+1</sub>).
  (iii) M<sub>p</sub> is a free for all prime ideals p of R of height at most e.

Then  $\operatorname{Tor}_{i}^{R}(M,N)=0$  for all  $i\geq 1$  and hence the depth formula holds.

*Proof.* If e = 0 this is the theorem of Auslander [1] and Lichtenbaum [32, Corollary 2]. Assume now that  $e \ge 1$ . We use induction on dim R. If dim  $R \le e$ , condition (iii) implies that M is free, and there is nothing to prove. Assuming dim  $R \ge e + 1$ , we note that the hypotheses localize, so  $\operatorname{Tor}_{i}^{R}(M,N)_{\mathfrak{p}}=0$  for each  $i\geq 1$  and each prime ideal  $\mathfrak{p}$  in the punctured spectrum of R; that is to say,  $\operatorname{Tor}_{i}^{R}(M,N)$ has finite length for all  $i \geq 1$ . Thus the pair M, N satisfies  $(SP_{e+1})$ . Moreover, since codim R < e + 1, we have  $\eta_{e+1}^R = 0$  by item (iv) of (3.1). The completion of R can be realized as a complete intersection, of relative codimension e+1, in an unramified regular local ring (see 2.2). Hence the desired result follows from Theorem 3.10.

### 4. Vanishing of $\eta$

In this section we apply our results to situations where the  $\eta$ -pairing is known to vanish. We know, from Theorem 3.10, that, as long as the critical hypothesis  $\eta_c^R(M,N)=0$  holds, we can replace c with c-1 in the hypotheses of Theorem 1.2 and still conclude the vanishing of Tor. Although it is not easy to verify vanishing of  $\eta$  (see Conjectures 3.3), there are several classes of rings R for which it is known that  $\eta^R(M,N)=0$  for all finitely generated R-modules M and N. For example, if R is an even-dimensional simple ("ADE") singularity in characteristic zero, then Dao [12, Corollary 3.16] observed that  $\theta^R(M,N)=0$ ; see [12, Corollary 3.6] and also [12, §3] for more examples.

Now we give a localized version of a vanishing theorem for graded rings, due to Moore, Piepmeyer, Spiroff, and Walker [36].

**Proposition 4.1.** Let k be a perfect field and  $Q = k[x_1, \ldots, x_n]$  the polynomial ring with the standard grading. Let  $\underline{f} = f_1, \ldots, f_c$  be a Q-regular sequence of homogeneous polynomials, with  $c \geq 2$ . Put  $A = Q/(\underline{f})$  and  $R = A_{\mathfrak{m}}$ , where  $\mathfrak{m} = (x_1, \ldots, x_n)$ . Assume that  $A_{\mathfrak{p}}$  is a regular local ring for each  $\mathfrak{p}$  in  $\operatorname{Spec}(A) \setminus \{\mathfrak{m}\}$ . Then  $\eta_c^R(M, N) = 0$  for all finitely generated R-modules M and N. In particular, if  $n \geq 2c$  and the pair M, N satisfies  $(SP_c)$ , then M and N are Tor-independent.

*Proof.* Choose finitely generated A-modules U and V such that  $U_{\mathfrak{m}}\cong M$  and  $V_{\mathfrak{m}}\cong N$ . For any maximal ideal  $\mathfrak{n}\neq \mathfrak{m}$ , the local ring  $A_{\mathfrak{n}}$  is regular and hence  $\operatorname{Tor}_i^A(U,V)_{\mathfrak{n}}=0$  for  $i\gg 0$ . It follows that the map  $\operatorname{Tor}_i^A(U,V)\to\operatorname{Tor}_i^R(M,N)$  induced by the localization maps  $U\to M$  and  $V\to N$  is an isomorphism for  $i\gg 0$ . Also, for any A-module supported at  $\mathfrak{m}$ , its length as an A-module is equal to its length as an R-module. In conclusion,  $\eta_c^R(M,N)=\eta_c^A(U,V)$ .

As k is perfect, the hypothesis on A implies that the k-algebra  $A_{\mathfrak{p}}$  is smooth for each non-maximal prime  $\mathfrak{p}$  in A; see [19, Corollary 16.20]. Thus, the morphism of schemes  $\operatorname{Spec}(R) \setminus \{\mathfrak{m}\} \to \operatorname{Spec}(k)$  is smooth. Now [36, Corollary 4.7] yields  $\eta_c^A(U,V) = 0$ , and hence  $\eta_c^R(M,N) = 0$ . It remains to note that if  $n \geq 2c$ , then  $\dim R \geq c$ , so Theorem 3.10 applies.

Next, we quote a recent theorem due to Walker; it provides strong support for Conjectures 3.3, at least in equicharacteristic zero.

**Theorem 4.2.** (Walker [41, Theorem 1.2]) Let k be a field of characteristic zero, and let Q a smooth k-algebra. Let  $\underline{f} = f_1, \ldots, f_c$  be a Q-regular sequence, with  $c \geq 2$ , and put  $A = Q/(f_1, \ldots, f_c)$ . Assume the singular locus  $\{\mathfrak{p} \in \operatorname{Spec}(A) : A_{\mathfrak{p}} \text{ is not regular}\}$  is a finite set of maximal ideals of A. Then  $\eta_c^A(U, V) = 0$  for all finitely generated A-modules U, V.

**Corollary 4.3.** With A as in 4.2, put  $R = A_{\mathfrak{m}}$  where  $\mathfrak{m}$  is any maximal ideal of A. Then  $\eta_c^R(M,N) = 0$  for all finitely generated R-modules M and N. In particular, if  $\dim R \geq c$  and the pair M, N satisfies  $(SP_c)$ , then M and N are Tor-independent.

*Proof.* By inverting a suitable element of Q, we may assume that  $A_{\mathfrak{p}}$  is a regular local ring for every prime ideal  $\mathfrak{p} \neq \mathfrak{m}$ . Now proceed as in the first paragraph of the proof of Proposition 4.1.

**Theorem 4.4.** Let  $(R, \mathfrak{m}, k)$  be a two-dimensional, equicharacteristic, normal, excellent complete intersection of codimension c, with  $c \in \{1, 2\}$ , and let M and N be finitely generated R-modules. Assume k is contained in the algebraic closure of a finite field. Assume further that M, N satisfy the conditions (i) and (ii) of  $(SP_c)$ . Then  $Tor_i^R(M, N) = 0$  for all  $i \geq 1$ .

Proof. The completion  $\widehat{R}$  is an isolated singularity because R is excellent; see [31, Proposition 10.9], and so  $\widehat{R}$  is a normal domain. Replacing R by  $\widehat{R}$ , we may assume that  $R = S/(\underline{f})$ , where  $(S, \mathfrak{n}, k)$  is a regular local ring and  $\underline{f}$  is a regular sequence in  $\mathfrak{n}^2$  of length c. Let  $\overline{k}$  be an algebraic closure of k, and choose a gonflement  $S \hookrightarrow (\overline{S}, \overline{\mathfrak{n}}, \overline{k})$  lifting the field extension  $k \hookrightarrow \overline{k}$ ; see [31, Chapter 10, §3]. This is a flat local homomorphism and is an inductive limit of étale extensions. Moreover,  $\underline{\mathfrak{n}}\overline{S} = \overline{\mathfrak{n}}$ , so  $\overline{S}$  is a regular local ring. By [31, Proposition 10.15], both  $\overline{S}$  and  $\overline{R} := \overline{S}/(\underline{f})$  are excellent, and  $\overline{R}$  is an isolated singularity. Therefore  $(\overline{R}, \overline{\mathfrak{m}}, \overline{k})$  is a normal domain. Finally, we pass to the completion  $\widehat{S}$  of  $\overline{S}$  and put  $\Lambda = \widehat{S}/(\underline{f})$ . This is still an isolated singularity, a normal domain, and a complete intersection of codimension c. Moreover, our hypotheses on M and N ascend along the flat local homomorphism  $R \to \Lambda$ ; see (2.12). Since  $\Lambda$  is an isolated singularity,  $\operatorname{Tor}_i^{\Lambda}(\Lambda \otimes_R M, \Lambda \otimes_R N)$  has finite length for  $i \gg 0$ ; thus the pair  $\Lambda \otimes_R M, \Lambda \otimes_R N$  satisfies  $(SP_c)$ .

It follows from [8, Proposition 2.5 and Remark 2.6] that  $G(\Lambda)/L$  is torsion, where  $G(\Lambda)$  is the Grothendieck group of  $\Lambda$  and L is the subgroup generated by classes of modules of finite projective dimension. This implies that  $\eta_c^{\Lambda}(\Lambda \otimes_R M, \Lambda \otimes_R N) = 0$ ; see [12, Corollary 3.1] and the paragraph preceding it. Now Theorem 3.10 implies that  $\operatorname{Tor}_i^{\Lambda}(\Lambda \otimes_R M, \Lambda \otimes_R N) = 0$  for all  $i \geq 1$ : the requirement on supports is automatically satisfied, since  $\Lambda$  is a domain; see Remark 3.7(i). Faithfully flat descent completes the proof.

#### APPENDIX A. AN APPLICATION OF PUSHFORWARDS

In Theorem A.4 we use pushforwards to generalize a theorem due to Celikbas [7, Theorem 3.16]. We have two preparatory results. The first one is a special case of a theorem of Jorgensen:

**Theorem A.1.** ([29, Theorem 2.1]) Let R be a complete intersection and let M and N be finitely generated R-modules. Assume M is maximal Cohen-Macaulay. If  $\operatorname{Tor}_{i}^{R}(M,N)=0$  for all  $i \geq 0$ , then  $\operatorname{Tor}_{i}^{R}(M,N)=0$  for all  $i \geq 1$ .

**Corollary A.2.** Let R be a complete intersection and let M, N be finitely generated R-modules. If  $\operatorname{Tor}_i^R(M, N)$  is torsion for all  $i \gg 0$ , then  $\operatorname{Tor}_i^R(M, N)$  is torsion for all i > 1.

*Proof.* Let  $\mathfrak{p}$  be a minimal prime ideal of R. By (2.4), it suffices to prove that  $\operatorname{Tor}_{i}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}})=0$  for all  $i\geq 1$ . For that we may assume  $M_{\mathfrak{p}}\neq 0$ . Then, since  $R_{\mathfrak{p}}$  is artinian, it follows that  $M_{\mathfrak{p}}$  is a maximal Cohen-Macaulay  $R_{\mathfrak{p}}$ -module. Therefore Theorem A.1 gives the desired vanishing.

**Corollary A.3.** Let R be a complete intersection, and let M, N be finitely generated R-modules. Assume M satisfies  $(S_w)$ , where w is a positive integer, and that  $\operatorname{Tor}_i^R(M,N)$  has finite length for all  $i \gg 0$ . Let  $\mathfrak p$  be a non-maximal prime ideal of R such that  $\operatorname{height}(\mathfrak p) \leq w$ . Then  $\operatorname{Tor}_i^R(M,N)_{\mathfrak p} = 0$  for all  $i \geq 1$ .

*Proof.* Serre's condition  $(S_w)$  localizes, so  $M_{\mathfrak{p}}$  is either zero or a maximal Cohen-Macaulay  $R_{\mathfrak{p}}$ -module; see (2.6). As  $\operatorname{Tor}_{i}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}}) = 0$  for  $i \gg 0$ , Theorem A.1 implies that  $\operatorname{Tor}_{i}^{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}}) = 0$  for all  $i \geq 1$ .

The next theorem generalizes a result due to Celikbas [7, 3.16]; we emphasize that the ambient regular local ring in Theorem A.4 is allowed to be ramified.

**Theorem A.4.** Let R be a complete intersection with dim  $R \geq \operatorname{codim} R$ , and let M and N be finitely generated R-modules. Assume the pair M, N satisfies  $(SP_c)$ for some  $c \geq \operatorname{codim} R$ . If c = 1, assume further that M or N is torsion-free. If  $\operatorname{Tor}_{1}^{R}(M,N)=0$ , then  $\operatorname{Tor}_{i}^{R}(M,N)=0$  for all  $i\geq 1$ .

*Proof.* Without loss of generality, one may assume that  $c = \operatorname{codim} R$ . When c = 0, the desired result is the rigidity theorem of Auslander [1] and Lichtenbaum [32], so in the remainder of the proof we assume that  $c \geq 1$ .

Assume first that c=1. By hypotheses  $\operatorname{Tor}_i^R(M,N)$  has finite length for  $i\gg 0$ and  $M \otimes_R N$  is torsion-free; see (3.5). Moreover, we may assume N (say) is torsionfree. Tensoring M with the pushforward (2.8) for N gives the following:

(A.4.1) 
$$\operatorname{Tor}_{1}^{R}(M, N_{1}) \hookrightarrow M \otimes_{R} N$$

(A.4.2) 
$$\operatorname{Tor}_{i}^{R}(M, N_{1}) \cong \operatorname{Tor}_{i-1}^{R}(M, N) \text{ for all } i \geq 2.$$

Equation (A.4.2) implies that  $\operatorname{Tor}_{i}^{R}(M, N_{1})$  has finite length for all  $i \gg 0$ . Therefore, since  $\dim(R) \geq 1$ ,  $\operatorname{Tor}_{i}^{R}(M, N_{1})$  is torsion for all  $i \gg 0$ ; see (2.4). Now Corollary A.2 implies that  $\operatorname{Tor}_{i}^{R}(M, N_{1})$  is torsion for all  $i \geq 1$ . As  $M \otimes_{R} N$  is torsion-free, we deduce from (A.4.1) that  $\operatorname{Tor}_1^R(M, N_1) = 0$ . By (A.4.2) we have  $\operatorname{Tor}_2^R(M, N_1) \cong \operatorname{Tor}_1^R(M, N) = 0$ . Therefore  $\operatorname{Tor}_2^R(M, N_1) = 0 = \operatorname{Tor}_1^R(M, N_1)$ , and hence Murthy's rigidity theorem [37, Theorem 1.6] implies that  $\operatorname{Tor}_{i}^{R}(M, N_{1}) = 0$ for all  $i \geq 1$ . Now (A.4.2) completes the proof for the case c = 1.

Assume now that  $c \geq 2$ . We define a sequence  $M_0, M_1, \ldots, M_{c-1}$  of finitely generated modules by setting  $M_0 = M$ , and  $M_n$  to be the pushforward of  $M_{n-1}$ , for all n = 1, ..., c-1. These pushforwards exist:  $M_0$  satisfies  $(S_{c-1})$  by hypothesis (3.5)(i), and so, by Proposition 2.9(i),

(1) each  $M_n$  satisfies  $(S_{c-n-1})$ .

For the desired result, it suffices to prove that  $\operatorname{Tor}_{i}^{R}(M_{c-1}, N) = 0$  for all  $i \geq c$ . We will, in fact, prove this for all  $i \geq 1$ . To this end, we establish by induction that the following hold for  $n = 0, \ldots, c - 1$ :

- (2)  $M_n \otimes_R N$  satisfies  $(S_{c-n})$ ; (3)  $\operatorname{Tor}_i^R(M_n, N)$  has finite length for all  $i \gg 0$ ; (4)  $\operatorname{Tor}_i^R(M_n, N) = 0$  for  $i = 1, \dots, n+1$ .

For n = 0, conditions (2) and (3) are part of (3.5), while (4) is from our hypothesis that  $\operatorname{Tor}_{1}^{R}(M,N)=0$ ; recall that  $M_{0}=M$ . Assume that (2), (3) and (4) hold for some integer n with  $0 \le n \le c - 2$ .

Tensor the pushforward of  $M_n$  with N, see (2.8), to obtain

(A.4.3) 
$$\operatorname{Tor}_{i}^{R}(M_{n+1}, N) \cong \operatorname{Tor}_{i-1}^{R}(M_{n}, N) \text{ for all } i \geq 2,$$

and the following exact sequence in which F is finitely generated and free:

$$(A.4.4) 0 \to \operatorname{Tor}_1^R(M_{n+1}, N) \to M_n \otimes_R N \to F \otimes_R N \to M_{n+1} \otimes_R N \to 0.$$

Induction and (A.4.3) imply that  $\operatorname{Tor}_i^R(M_{n+1},N)$  has finite length for all  $i \gg 0$ , so (3) holds; furthermore, by Corollary A.2,  $\operatorname{Tor}_i^R(M_{n+1},N)$  is torsion for all  $i \geq 1$ . (Recall that  $\dim(R) \geq \operatorname{codim}(R) = c \geq 1$  so that finite length modules are torsion.) Since  $n \leq c-1$ , condition (2) implies that  $M_n \otimes_R N$  satisfies  $(S_1)$  and hence  $M_n \otimes_R N$  is torsion-free; therefore the exact sequence (A.4.4) forces  $\operatorname{Tor}_1^R(M_{n+1},N)$  to vanish. Now (A.4.3) gives (4). It remains to verify (2), namely, that  $M_{n+1} \otimes_R N$  satisfies  $(S_{c-n-1})$ . To that end, let  $\mathfrak{p} \in \operatorname{Supp}(M_{n+1} \otimes_R N)$ . We will verify that  $\operatorname{depth}_{R_{\mathfrak{p}}}(M_{n+1} \otimes_R N)_{\mathfrak{p}} \geq \min\{c-n-1, \operatorname{height}(\mathfrak{p})\}$ ; see (2.6).

Suppose height( $\mathfrak{p}$ )  $\geq c-n$ . Recall, by hypothesis (3.5)(i), N satisfies  $(S_{c-1})$ . Hence  $F \otimes_R N$ , a direct sum of copies of N, satisfies  $(S_{c-n-1})$ . In particular it follows that  $\operatorname{depth}_{R_{\mathfrak{p}}}(F \otimes_R N)_{\mathfrak{p}} \geq c-n-1$ . Furthermore, by (2) of the induction hypothesis, we have that  $\operatorname{depth}_{R_{\mathfrak{p}}}(M_n \otimes_R N)_{\mathfrak{p}} \geq c-n$ . Recall that  $\operatorname{Tor}_1^R(M_{n+1},N)=0$ . Therefore, localizing the short exact sequence in (A.4.4) at  $\mathfrak{p}$ , we conclude by the depth lemma that  $\operatorname{depth}_{R_{\mathfrak{p}}}(M_{n+1} \otimes_R N)_{\mathfrak{p}} \geq c-n-1$ .

Next assume height( $\mathfrak{p}$ )  $\leq c-n-1$ . We want to show that  $(M_{n+1}\otimes_R N)_{\mathfrak{p}}$  is maximal Cohen-Macaulay. By the induction hypotheses,  $\operatorname{Tor}_i^R(M_n,N)$  has finite length for all  $i\gg 0$ . As  $n\geq 0$ , we see that  $\dim(R)\geq \operatorname{codim}(R)=c\geq c-n$ , whence  $\mathfrak{p}$  is not the maximal ideal. Thus  $\operatorname{Tor}_i^R(M_n,N)_{\mathfrak{p}}=0$  for all  $i\gg 0$ . Now, setting w=c-n-1 and using Corollary A.3 for the pair  $M_n,N$ , we conclude that  $\operatorname{Tor}_i^R(M_n,N)_{\mathfrak{p}}=0$  for all  $i\geq 1$ . Then (A.4.3) and the already established fact that  $\operatorname{Tor}_i^R(M_{n+1},N)=0$  give  $\operatorname{Tor}_i^R(M_{n+1},N)_{\mathfrak{p}}=0$  for all  $i\geq 1$ . Thus the depth formula holds; see (2.3):

$$\operatorname{depth}_{R_{\mathfrak{p}}}(M_{n+1})_{\mathfrak{p}} + \operatorname{depth}_{R_{\mathfrak{p}}}(N_{\mathfrak{p}}) = \operatorname{depth}(R_{\mathfrak{p}}) + \operatorname{depth}_{R_{\mathfrak{p}}}(M_{n+1} \otimes_{R} N)_{\mathfrak{p}}.$$

Since Serre's conditions localize,  $N_{\mathfrak{p}}$  is maximal Cohen-Macaulay over  $R_{\mathfrak{p}}$ ; see hypothesis (3.5)(i). Also,  $(M_{n+1})_{\mathfrak{p}}$  is maximal Cohen-Macaulay whether or not  $(M_n)_{\mathfrak{p}}$  is zero; see the pushforward sequence or Proposition 2.9(ii). By the depth formula,  $(M_{n+1} \otimes_R N)_{\mathfrak{p}}$  is maximal Cohen-Macaulay. Thus  $M_{n+1} \otimes_R N$  satisfies (2), and the induction is complete.

Now we parallel the argument for the case c=1. At the end,  $\operatorname{Tor}_{i}^{R}(M_{c-1}, N)$  has finite length for all  $i \gg 0$ , and is equal to 0 for  $i=1,\ldots,c$ . Tensoring  $M_{c-1}$  with the pushforward of N, we get

(A.4.5) 
$$\operatorname{Tor}_{i}^{R}(M_{c-1}, N_{1}) \cong \operatorname{Tor}_{i-1}^{R}(M_{c-1}, N) \text{ for all } i \geq 2,$$

(A.4.6) and 
$$\operatorname{Tor}_{1}^{R}(M_{c-1}, N_{1}) \hookrightarrow M_{c-1} \otimes_{R} N.$$

In view of (A.4.5), it suffices to show that  $\operatorname{Tor}_1^R(M_{c-1},N_1)=0$ : this will imply  $\operatorname{Tor}_i^R(M_{c-1},N_1)=0$  for all  $i=1,\ldots,c+1$ , and hence Murthy's rigidity theorem [37, Theorem 1.6] will yield that  $\operatorname{Tor}_i^R(M_{c-1},N_1)=0$  for all  $i\geq 1$ , and consequently  $\operatorname{Tor}_i^R(M_{c-1},N)=0$  for all  $i\geq 1$  by (A.4.5). We know that  $M_{c-1}\otimes_R N$  is torsion-free. Therefore we use (A.4.6) and Corollary A.2, and obtain  $\operatorname{Tor}_1^R(M_{c-1},N_1)=0$ , as we did in the case c=1.

## APPENDIX B. AMENDING THE LITERATURE

We use Theorem A.4 to give a different proof of an important result of Huneke and Wiegand; see Theorem B.2 and the ensuing paragraph. We also point out a missing hypothesis in a result of C. Miller [34, Theorem 3.1], and state the corrected form of her theorem in Corollary B.3. At the end of the paper we indicate an alterate

route to the proof of the following result [25, Theorem 3.1], the main theorem of the 1994 paper of Huneke and Wiegand:

**Theorem B.1** (Huneke and Wiegand [25]). Let R be a hypersurface, and let M and N be finitely generated R-modules. If M or N has rank, and  $M \otimes_R N$  is maximal Cohen-Macaulay, then both M and N are maximal Cohen-Macaulay, and either M or N is free.

Theorem B.1 and its variations have been analyzed, used, and studied in the literature; see [10] and [16] for some history and many consequences of the theorem. The following result [25, Theorem 2.7] played an important role in its proof.

**Theorem B.2** (Huneke and Wiegand [25]). Let R be a hypersurface and let M, N be nonzero finitely generated R-modules. Assume  $M \otimes_R N$  is reflexive and that N has rank. Then the following conditions hold:

- (i)  $\operatorname{Tor}_{i}^{R}(M, N) = 0$  for all i > 1.
- (ii) M is reflexive, and N is torsion-free.

Theorem B.2 was established by Huneke and Wiegand in [25, Theorem 2.7]: however their conclusion was that both M and N are reflexive, and the proof of this stronger claim is flawed. Dao realized the oversight of [25, Theorem 2.7], and Huneke and Wiegand addressed it in the erratum [26]. A similar flaw can be found in Miller's paper; see [34, Theorems 1.3 and 1.4] and compare it with our correction in Corollary B.3. The version stated above reflects our current understanding and is from the paper [9]. We do not yet know whether N is forced to be reflexive, that is, the question below remains open; cf. [25, Theorem 2.7] and [34, Theorem 1.3].

**Question.** Let R be a hypersurface and M, N nonzero finitely generated R-modules. If N has rank and  $M \otimes_R N$  is reflexive, must both M and N be reflexive?

This question has been recently studied in [9], which gives partial answers using the New Intersection Theorem.

We now show how Theorem B.2 follows from Theorem A.4. In fact, one needs only the case c=1 of Theorem A.4.

Proof of Theorem B.2 using Theorem A.4. Set  $d = \dim R$ . If d = 0, then N is free (since it has rank), so all is well. From now on assume  $d \geq 1$ . We remark at the outset that neither M nor N can be torsion, i.e.,  $\bot_R M \neq 0$  and  $\bot_R N \neq 0$ . Also, by the assumption of rank,  $\operatorname{Supp}(N) = \operatorname{Spec}(R)$ . Suppose first that both M and N are torsion-free; we will prove (i) by induction on  $d = \dim R$ . Let  $M_1$  denote the pushforward of M; see (2.8). Then  $\operatorname{Tor}_1^R(M_1, N)$  is torsion as N has rank. Since  $M \otimes_R N$  is torsion-free, applying  $- \otimes_R N$  to (2.8.1) shows that

(B.2.1) 
$$\operatorname{Tor}_{1}^{R}(M_{1}, N) = 0.$$

Suppose for the moment that d=1. Since N has rank, there is an exact sequence

$$0 \to N \to F \to C \to 0\,,$$

in which F is free and C is torsion. (See [25, Lemma 1.3].) Note that C is of finite length since d=1. Note also that  $\operatorname{Tor}_2^R(M_1,C)\cong\operatorname{Tor}_1^R(M_1,N)=0$ ; see (B.2.1). Therefore [25, Corollary 2.3] implies that  $\operatorname{Tor}_i^R(M_1,C)=0$  for all  $i\geq 2$ , and hence  $\operatorname{Tor}_i^R(M_1,N)=0$  for all  $i\geq 1$ . Now (2.8.1) establishes (i).

Still assuming that both M and N are torsion-free, let  $d \geq 2$ . The inductive hypothesis implies that  $\operatorname{Tor}_{i}^{R}(M,N)$  has finite length for all  $i \geq 1$ . In particular

 $\operatorname{Tor}_{i}^{R}(M,N)_{\mathfrak{q}}=0$  for all prime ideals  $\mathfrak{q}$  of R of height at most one. Therefore Proposition 2.10 shows that  $M_1 \otimes_R N$  is torsion-free, that is,  $M_1 \otimes_R N$  satisfies  $(S_1)$ ; see (2.5) and (2.6). Furthermore, from the pushforward exact sequence (2.8.1), we see that  $\operatorname{Tor}_{i}^{R}(M_{1}, N)$  has finite length for all  $i \geq 2$ . Consequently the pair  $M_{1}, N$ satisfies  $(SP_1)$ . Now Theorem A.4, applied to  $M_1, N$ , shows that  $\operatorname{Tor}_i^R(M_1, N) = 0$ for all  $i \geq 1$ . By (2.8.1), we see that  $\operatorname{Tor}_{i}^{R}(M, N) = 0$  for all  $i \geq 1$ . This proves (i) under the additional assumption that M and N are torsion-free.

Since  $M \otimes_R N$  is torsion-free, it follows from (3.4) that there are isomorphisms

$$M \otimes_R N \cong M \otimes_R \perp_R N \cong \perp_R M \otimes_R N \cong \perp_R M \otimes_R \perp_R N$$
.

In particular,  $\perp_R M \otimes_R \perp_R N$  is also reflexive. As noted before, neither M nor N is torsion so  $\perp_R M$  and  $\perp_R N$  are nonzero. As N has rank so does  $\perp_R N$ , so the already established part of the result (applied to  $\perp_R M$  and  $\perp_R N$ ) yields

$$\operatorname{Tor}_{i}^{R}(\perp_{R}M, \perp_{R}N) = 0 \text{ for } i \geq 1.$$

Given this, since  $\perp_R M \otimes_R N$  is torsion-free by the isomorphisms above, applying (3.4) to the R-modules  $\perp_R M$  and N gives  $N = \perp_R N$ ; then applying (3.4) to M and N yields  $M = \perp_R M$ . In conclusion, M and N are torsion-free, and hence  $\operatorname{Tor}_{i}^{R}(M,N)=0$  for all  $i\geq 1$ . From the last, the depth formula holds.

The remaining step is to prove that M is reflexive. Since Supp(N) = Spec(R), we have  $\operatorname{depth}(N_{\mathfrak{p}}) \leq \operatorname{height}(\mathfrak{p})$  for all primes  $\mathfrak{p}$  of R. Localizing the depth formula (2.3) shows Serre's condition  $(S_2)$  on M; see (2.6).

The next result is due to C. Miller. In her paper [34], the essential requirement — that M have rank — is missing: for example, the module M = R/(x) over the node k[x,y]/(xy) is not free, yet  $M \otimes_R M$ , which is just M, is maximal Cohen-Macaulay and hence reflexive. We state her result here in its corrected form and include a proof for completeness.

Corollary B.3. (C. Miller [34, Theorem 3.1]) Let R be a d-dimensional hypersurface and let M a finitely generated R-module with rank. If  $\otimes_R^n M$  is reflexive for some  $n \ge \max\{2, d-1\}$ , then M is free.

*Proof.* If  $d \leq 2$ , then  $\otimes_R^n M$  is maximal Cohen-Macaulay, and Theorem B.1 gives the result. Assume now that  $d \geq 3$ . Applying Theorem B.2 and [27, Theorem 1.9] repeatedly, we conclude the following:

- $\begin{array}{ll} \text{(i)} & \otimes_R^r M \text{ is reflexive for all } r=1,\ldots,n. \\ \text{(ii)} & \operatorname{Tor}_i^R(M,\otimes_R^{r-1}M)=0 \text{ for all } i\geq 1 \text{ and all } r=2,\ldots,n. \end{array}$
- (iii)  $pd(M) < \infty$ .

It follows from (i) that  $\operatorname{depth}(\otimes_R^r M) \geq 2$  for all  $r = 1, \ldots, n$ ; see (2.6). Also, (ii) implies the depth formula:

$$\operatorname{depth}(M) + \operatorname{depth}(\otimes_R^{r-1} M) = d + \operatorname{depth}(\otimes_R^r M),$$

for all r = 2, ..., n. One checks by induction on r that

$$r \cdot \operatorname{depth}(M) = (r-1) \cdot d + \operatorname{depth}(\otimes_R^r M)$$
,

for r = 2, ..., n. Setting r = n, and using the inequalities  $n \geq d - 1$  and  $depth(\otimes_R^n M) \geq 2$ , we obtain:

$$n \cdot \text{depth}(M) \ge (n-1) \cdot d + 2 = n \cdot (d-1) + n - d + 2 \ge n \cdot (d-1) + 1.$$

Therefore depth $(M) \ge d$ , that is, M is maximal Cohen-Macaulay. Now (iii) and the Auslander-Buchsbaum formula [3, Theorem 3.7] imply that M is free.

A consequence of Theorems B.1 and B.2 is the following result [27, Theorem 1.9], observed by Huneke and Wiegand in their 1997 paper:

**Proposition B.4** ([27]). Let M and N be finitely generated modules over a hypersurface R, and assume that  $\operatorname{Tor}_{i}^{R}(M,N)=0$  for  $i\gg 0$ . Then at least one of the modules has finite projective dimension.

At about the same time Miller [34] obtained the same result independently, by an elegant, direct argument. As Miller observed in [34], one can turn things around and easily deduce Theorem B.1 from Proposition B.4 and the vanishing result Theorem B.2.

## ACKNOWLEDGMENTS

We would like to thank the referee for a careful reading of the paper.

## REFERENCES

- M. Auslander, Modules over unramified regular local rings, Illinois J. Math. 5 (1961), 631–647.
- [2] L. L. Avramov and R.-O. Buchweitz, Support varieties and cohomology over complete intersections, *Invent. Math.*, 142, (2000), 285–318.
- [3] M. Auslander and C. Buchsbaum, Homological dimension in local rings. Trans. Amer. Math. Soc., 85 (1957), 390–405.
- [4] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1993.
- [5] N. Bourbaki, Commutative algebra, Chapters 8 and 9, Elements of Mathematics, Springer-Verlag, Berlin, 2006.
- [6] R.-O. Buchweitz and D. Van Straten, An index theorem for modules on a hypersurface singularity, Mosc. Math. J. 12 (2012), 237–259.
- [7] O. Celikbas, Vanishing of Tor over complete intersections, J. Comm. Alg. 3 (2011), 169–206.
- [8] O. Celikbas and H. Dao, Asymptotic behavior of Ext functors for modules of finite complete intersection dimension, Math. Z. 269 (2011), 1005–1020.
- [9] O. Celikbas and G. Piepmeyer. Syzygies and tensor product of modules. Math. Z., 276 (2014), 457–468.
- [10] O. Celikbas and R. Wiegand, Vanishing of Tor, and why we care about it, to appear in J. Pure Appl. Algebra, 219 (2015), 429–448.
- [11] L. W. Christensen and D. A. Jorgensen. Vanishing of Tate homology and depth formulas over local rings. J. Pure Appl. Algebra, 219 (2015), 464–481.
- [12] H. Dao, Decent intersection and Tor-rigidity for modules over local hypersurfaces, to appear in Trans. Amer. Math. Soc., 365 (2013), 2803–2821.
- [13] H. Dao, Asymptotic behaviour of Tor over complete intersections and applications, preprint, arxiv:07105818.
- [14] H. Dao, Some observations on local and projective hypersurfaces, Math. Res. Lett. 15 (2008), 207–219
- [15] H. Dao and K. Kurano, Hochster's theta pairing and numerical equivalence, J. K-theory, to appear; arxiv:1208.6083.
- [16] H. Dao, Homological properties of modules over a complete intersection, in Commutative Algebra: Expository Papers Dedicated to David Eisenbud on the Occasion of His 65th Birthday (I. Peeva, Ed.), Springer Science & Business Media, New York (2013).
- [17] D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), 35-64.
- [18] E. G. Evans and P. Griffith. Syzygies, volume 106 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1985.

- [19] D. Eisenbud, Commutative Algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995.
- [20] H. B. Foxby. Homological dimensions of complexes of modules. In Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, 32ème année (Paris, 1979), volume 795 of Lecture Notes in Math., pages 360–368. Springer, Berlin, 1980.
- [21] R. C. Heitmann, Characterization of completions of unique factorization domains, Trans. Amer. Math. Soc. 337 (1993), 379–387.
- [22] M. Hochster, The dimension of an intersection in an ambient hypersurface, In Algebraic geometry (Chicago, Ill., 1980), Lecture Notes in Math. 862, 93–106. Springer, Berlin, 1981.
- [23] C. Huneke and D. A. Jorgensen. Symmetry in the vanishing of Ext over Gorenstein rings. Math. Scand., 93(2):161–184, 2003.
- [24] C. Huneke, D. A. Jorgensen, and R. Wiegand, Vanishing theorems for complete intersections, J. Algebra, 238 (2001), 684–702.
- [25] C. Huneke and R. Wiegand, Tensor products of modules and the rigidity of Tor, Math. Ann. 299 (1994), 449–476; Correction: Math. Ann. 338 (2007), 291–293.
- [26] C. Huneke and R. Wiegand, Correction to: "Tensor products of modules and the rigidity of Tor" [Math. Ann. 299 (1994), 449–476], Math. Ann., (2007), 291–293.
- [27] C. Huneke and R. Wiegand, Tensor products of modules, rigidity and local cohomology, Math. Scand. 81 (1997), 161–183.
- [28] S. Iyengar, Depth for complexes, and intersection theorems, Math. Z. 230 (1999), 545–567.
- [29] D. A. Jorgensen, Complexity and Tor on a complete intersection, J. Algebra 211 (1999), 578–598.
- [30] D. A. Jorgensen, Tor and torsion on a complete intersection, J. Algebra 195 (1997), 526–537.
- [31] G. Leuschke and R. Wiegand, Cohen-Macaulay Representations, Mathematical Surveys and Monographs 181, Amer. Math. Soc., Providence, RI 2012.
- [32] S. Lichtenbaum, On the vanishing of Tor in regular local rings, Illinois J. Math. 10 (1966), 220–226.
- [33] H. Matsumura, Commutative ring theory, second edition, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989, xiv+320 pp.
- [34] C. Miller, Complexity of tensor products of modules and a theorem of Huneke-Wiegand, Proc. Amer. Math. Soc. 126 (1998), 53–60.
- [35] W. F. Moore, G. Piepmeyer, S. Spiroff, and M.E. Walker, Hochster's theta invariant and the Hodge-Riemann bilinear relations, Adv. Math. 226 (2011), 1692–1714.
- [36] W. F. Moore, G. Piepmeyer, S. Spiroff, and M.E. Walker, The vanishing of a higher codimension analog of Hochster's theta invariant, Math. Z., 273 (2013), 907–920.
- [37] M. P. Murthy, Modules over regular local rings, Illinois J. Math., 7 (1963), 558–565.
- [38] N. Epstein and Y. Yongwei Criteria for flatness and injectivity, Math. Z. 271 (2012), 1193– 1210.
- [39] A. Polishchuk and A. Vaintrob, Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations, Duke Math. J. 161 (2012), 1863–1926.
- [40] W. V. Vasconcelos, Reflexive modules over Gorenstein rings, Proc. Amer. Math. Soc., 19 (1968), 1349–1355.
- [41] M. E. Walker, Chern Characters for Twisted Matrix Factorizations and the Vanishing of the Higher Herbrand Difference, preprint, arXiv:1404.0352.
- [42] Serre, Jean-Pierre, Local algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin. 2000

Olgur Celikbas, University of Connecticut, Storrs, CT 06269

 $E\text{-}mail\ address: \verb"olgur.celikbas@uconn.edu"$ 

SRIKANTH B. IYENGAR, UNIVERSITY OF UTAH, SALT LAKE CITY, UT 84112, U.S.A  $E\text{-}mail\ address:}$  iyengar@math.utah.edu

GREG PIEPMEYER, COLUMBIA BASIN COLLEGE, PASCO, WA 99301, U.S.A *E-mail address*: gpiepmeyer@columbiabasin.edu

ROGER WIEGAND, UNIVERSITY OF NEBRASKA-LINCOLN, LINCOLN, NE 68588, U.S.A E-mail address: rwiegand1@math.unl.edu