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Abstract. The Hom closed colocalizing subcategories of the stable module

category of a finite group are classified. Along the way, the colocalizing sub-
categories of the homotopy category of injectives over an exterior algebra, and

the derived category of a formal commutative differential graded algebra, are

classified. To this end, and with an eye towards future applications, a no-
tion of local homology and cosupport for triangulated categories is developed,

building on earlier work of the authors on local cohomology and support.
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1. Introduction

Let G be a finite group and k a field of characteristic p, dividing the order
of G, and StMod(kG) the stable module category of possibly infinite dimensional
kG-modules. We write VG for the set of all homogeneous prime ideals except
the maximal ideal in the cohomology algebra H∗(G, k) of G, and VG(M) for the
support of any M ∈ StMod(kG), defined by Benson, Carlson and Rickard [3] when
k is algebraically closed, and extended in [5] to all fields. One of the main results
in this work is a classification of the colocalizing subcategories of StMod(kG):

Theorem 1.1. The map that assigns to each subset U ⊆ VG the subcategory

{N ∈ StMod(kG) | HomkG(M,N) = 0 for all M with VG(M) ⊆ U}
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gives a bijection between subsets of VG and colocalizing subcategories of StMod(kG)
that are closed under tensor product with simple kG-modules.

A colocalizing subcategory C is by definition a full triangulated subcategory that
is closed under set-indexed products. Such a subcategory is closed under tensor
product with simples if and only if it is Hom closed: If N is in C, so is Homk(M,N)
for any M ∈ StMod(kG). Theorem 1.1 complements the classification of the local-
izing subcategories of StMod(kG) from [5, Theorem 10.3]. Combining them gives a
remarkable bijection:

Corollary 1.2. The map sending a localizing subcategory S of StMod(kG) to S⊥

induces a bijection
{

tensor closed localizing

subcategories of StMod(kG)

}
∼ //

{
Hom closed colocalizing

subcategories of StMod(kG)

}
.

The inverse map sends a colocalizing subcategory S to ⊥S.

Theorem 1.1 and Corollary 1.2, proved in Section 11, are analogues of recent
results of Neeman [21] on the derived category of a noetherian commutative ring.

The definition of the inverse of the map in Theorem 1.1 involves a notion of
cosupport for a module M in StMod(kG), introduced in this work to be the subset

cosuppG M = {p ∈ VG | Homk(κp, M) is not projective},

with κp the Rickard idempotent module associated to p, constructed in [3]. Recall
that the support of M is {p ∈ VG | κp ⊗M is not projective}. The inverse map
in Theorem 1.1 assigns to a subcategory C of StMod(kG) the complement in VG of
the set

⋃
M∈C cosuppG M .

The proof of Theorem 1.1 is modelled on that of [5, Theorem 10.3], where local-
izing subcategories of StMod(kG) are classified. It involves a sequence of changes
of category, for which reason it has been necessary to develop a theory of cosupport
for objects in triangulated categories, along the lines for the one for support in our
earlier work [4, 5, 6].

The context is a compactly generated triangulated category T with set-indexed
coproducts endowed with an action of a graded commutative noetherian ring R;
meaning, a homomorphism R→ Z∗(T) of graded rings from R to the graded center
of T. For each p in SpecR, the set of homogeneous prime ideals in R, we introduce
a local homology functor Λp, constructed as a right adjoint to the local cohomology
functor, Γp, from [4], and define the cosupport of an object X of T by

cosuppR X = {p ∈ SpecR | ΛpX 6= 0} .

In the first part of this paper, Sections 2 to 5, we establish salient properties of local
homology and cosupport; for instance, that the maximal elements with respect to
inclusion in the cosupport and the support of any object X in T coincide:

max(cosuppR X) = max(suppR X) .

This is proved as part of Theorem 4.13. It follows that cosuppR X = ∅ if and only
if suppR X = ∅, which is equivalent to X = 0 by [4, Theorem 5.2]. These results
suggest a close connection between the support and cosupport. However, while
the support of an object is well-understood, the cosupport remains a mysterious
entity. For instance, the only complete results we could obtain for finitely generated
modules over commutative noetherian rings are given in Propositions 4.18 and 4.19.

From Section 8 onwards we turn to colocalizing subcategories of T, focusing
on the case when T is tensor triangulated with a canonical R-action, meaning an
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action induced by a homomorphism R→ End∗
T(1), where 1 is the unit for the tensor

product on T. This is the context of the main results of this work, and the rest
of this introduction. The category T admits an internal function object, denoted
Hom(X, Y ), and it is natural to examine the Hom closed colocalizing subcategories
of T. A useful result concerning these is that for each X ∈ T there is an equality

ColocHom

T (X) = ColocHom

T ({ΛpX | p ∈ Spec R})

which is a form of local-global principle for colocalizing subcategories. This state-
ment is Theorem 8.6 and an analogue of such a local-global principle for localizing
subcategories in [5, Theorem 3.6]. The theorem is a first step in our approach to
the problem of classifying the Hom closed colocalizing subcategories of T, for it
permits one to reduce it to the classification problem for ΛpT, the essential image
of the functor Λp, for each p ∈ Spec R; see Proposition 9.1. We note that ΛpT is
itself colocalizing and Hom closed; see Propositions 4.16 and 8.3.

The following definition thus naturally emerges: the tensor triangulated category
T is costratified by R if for each p ∈ SpecR there are no non-trivial Hom closed colo-
calizing subcategories in ΛpT. Given the discussion above, it is clear that when this
property holds the map assigning to a subcategory C the subset

⋃
X∈C cosuppR X

of SpecR sets up a bijection
{

Hom closed colocalizing

subcategories of T

}
∼
−→ { subsets of suppR T } .

This bijection is Corollary 9.2 and was the main reason for our interest in the
costratification condition. However, there are other remarkable consequences that
follow from it. For instance, we prove in Theorem 9.7: if T is costratified by R,
it is also stratified by R, meaning that there are no proper tensor closed localizing
subcategories of ΓpT; see [5, 6]. One consequence is that if T is costratified by R
then there is a bijection, analogous to the one in Corollary 1.2, between the tensor
closed localizing subcategories and the Hom closed colocalizing subcategories of T,
via left and right perp; see Corollary 9.9.

In Theorem 9.5 we prove that if T is stratified by R there is an equality

cosuppRHom(X, Y ) = suppR X ∩ cosuppR Y for all X,Y ∈ T.

This is an analogue of the tensor product theorem for support [6, Theorem 7.3]. It
follows that one gets

Hom∗
T(X, Y ) = 0 ⇐⇒ suppR X ∩ cosuppR Y = ∅

provided that the tensor identity generates T; see Corollary 9.6. This is a sur-
prisingly complete result, for it is often difficult to obtain precise conditions under
which there are non-zero maps between objects in a triangulated category.

In Section 11 we prove Theorem 1.1, by establishing that the tensor triangulated
category StMod(kG) is costratified by the canonical action of H∗(G, k). Along the
way we prove that the following tensor triangulated categories are costratified:

• The derived category of a formal dg algebra whose cohomology is graded
commutative and noetherian; see Theorem 10.3.

• The homotopy category of graded injectives over an exterior algebra, viewed
as a dg algebra with zero differential; see Theorem 10.4.

• The homotopy category of complexes of injective kG-modules, where G is
a finite group; see Theorem 11.10.

The proofs of these results use much of the material on cosupport and local homol-
ogy in the preceding sections, as well as results on their behavior under changes
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of categories, studied in Section 7. Specialized to the case of a commutative noe-
therian ring, viewed as a dg algebra concentrated in degree 0, the first item in the
preceding list is Neeman’s theorem, mentioned at the beginning, which was the
inspiration for the results described in this article.

Acknowledgments. It is a pleasure to thank Amnon Neeman for carefully reading
a preliminary version of this manuscript, and the referee for suggestions regarding
the presentation of this material.

2. (Co)localization functors on triangulated categories

In this section we collect basic facts about localization and colocalization functors
on triangulated categories required in this work; see [4, §3] for details.

Let T be a triangulated category which admits set-indexed products and coprod-
ucts. We write Σ for the suspension functor on T. The kernel of an exact functor
F : T→ T is the full subcategory

Ker L = {X ∈ T | LX = 0} ,

while the essential image of F is the full subcategory

Im F = {X ∈ T | X ∼= FY for some Y in T}.

A localizing subcategory of T is a full triangulated subcategory that is closed
under taking all coproducts. We write LocT(C) for the smallest localizing subcate-
gory containing a given class of objects C in T, and call it the localizing subcategory
generated by C. Analogously, a colocalizing subcategory of T is a full triangulated
subcategory that is closed under taking all products, and ColocT(C) denotes the
colocalizing subcategory of T that is cogenerated by C.

A localization functor L : T → T is an exact functor that admits for each X in
T a natural morphism ηX : X → LX, called adjunction, such that L(ηX) is an
isomorphism and L(ηX) = η(LX). A functor Γ : T→ T is a colocalization functor
if its opposite functor Γ op : Top → Top is a localization functor; the corresponding
natural morphism θX : ΓX → X is called coadjunction.

A localization functor L : T → T is essentially determined by its kernel, which
is a localizing subcategory of T, for it coincides with the kernel of a functor that
admits a right adjoint; see [4, Lemma 3.1]. The natural transformation η : IdT → L
induces for each object X in T a natural exact localization triangle

ΓX −→ X −→ LX −→

This exact triangle gives rise to an exact functor Γ : T→ T with

Ker L = Im Γ and KerΓ = Im L.

The functor Γ is a colocalization, and each colocalization functor on T arises in
this way. This yields a natural bijection between localization and colocalization
functors on T. Note that KerΓ is a colocalizing subcategory of T.

Given a subcategory C of a triangulated category T we define full subcategories

⊥C = {X ∈ T | HomT(X, ΣnY ) = 0 for all Y ∈ C and n ∈ Z.}

C⊥ = {X ∈ T | Hom∗
T(ΣnY, X) = 0 for all Y ∈ C and n ∈ Z}.

Evidently, ⊥C is a localizing subcategory, and C⊥ is a colocalizing subcategory.
The next lemma summarizes the basic facts about localization and colocalization.

Lemma 2.1. Let T be a triangulated category and S a triangulated subcategory.
Then the following are equivalent:
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(1) There exists a localization functor L : T→ T such that Ker L = S.
(2) There exists a colocalization functor Γ : T→ T such that Im Γ = S.

In that case both functors are related by a functorial exact triangle

ΓX −→ X −→ LX −→ .

Moreover, there are equalities S⊥ = Im L = KerΓ and ⊥(S⊥) = S.

Proof. See [4, Lemma 3.3]. �

Remark 2.2. There is a dual version of Lemma 2.1 whose formulation is left to the
reader. Note that Im F op = Im F and KerF op = KerF for any functor F .

Adjoints. We discuss the formal properties of right adjoints of (co)localization
functors. This material is the foundation for local homology and cosupport.

Proposition 2.3. Let L, Γ : T→ T be exact functors such that L is a localization
functor, Γ is a colocalization functor, and both induce a functorial exact triangle
ΓX → X → LX →. Then L admits a right adjoint if and only if Γ admits a right
adjoint. In that case let Λ and V denote right adjoints of Γ and L, respectively.1

Then the following holds.

(1) The functor Λ is a localization functor and V is a colocalization functor.
They induce a functorial exact triangle

V X −→ X −→ ΛX −→ .

(2) There are identities

(Im Γ )⊥ = KerΓ = Im L = Im V = KerΛ = ⊥(Im Λ) .

(3) There are isomorphisms

ΛΓ
∼
−→ Λ, Γ

∼
−→ ΓΛ, V L

∼
−→ L, and V

∼
−→ LV .

(4) The functors Γ and Λ induce mutually quasi-inverse equivalences

Im Λ
∼
−→ Im Γ and Im Γ

∼
−→ Im Λ .

Remark 2.4. The functors L, Γ, Λ, V occurring in the preceding proposition induce
the following recollement

S inc // T Q //

V
oo

Loo

T/S

Λ̄

oo

Γ̄oo

where S = Im L = Im V and Q : T → T/S denotes the quotient functor so that
Γ = Γ̄Q and Λ = Λ̄Q.

Proof of Proposition 2.3. It follows from Proposition A.4 that L admits a right
adjoint if and only if there exists a colocalization functor V : T → T with Im V =
Im L. Using Lemma 2.1 and the fact that ImL = KerΓ , it follows that the existence
of V is equivalent to the existence of a localization functor Λ : T→ T with KerΛ =
Ker Γ . Proposition A.5 and Remark A.6 imply that the existence of Λ is equivalent
to the existence of a right adjoint of Γ .

(1) The properties of Λ and V are explained above. The existence of the func-
torial exact triangle then follows from Lemma 2.1 as KerΛ = Im V .

1It is customary to write L for a localization functor. A colocalization functor is a localization

functor for the opposite category; we denote it Γ , thought of as L turned upside down. The
interpretation of local cohomology in the sense of Grothendieck as colocalization provides another

reason for the use of Γ . Local homology in the sense of Greenlees and May is denoted Λ; it is a
right adjoint of Γ and hence a localization. The corresponding colocalization is thus denoted V .
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(2) The identities follow from the first part of the proof and Lemma 2.1.
(3) Combine the localization triangles for L and Λ with the identities in (2).
(4) The isomorphisms in (3) induce isomorphisms

ΛΓΛ ∼= Λ2 ∼= Λ and ΓΛΓ ∼= Γ 2 ∼= Γ.

Thus ΛΓ is isomorphic to the identity on ImΛ, while ΓΛ is isomorphic to the
identity on ImΓ . �

3. Local cohomology and support

In this section we recall the construction, and basic properties, of local cohomol-
ogy functors and support for triangulated categories, from [4, 6].

Compact generation. An object C in a triangulated category T admitting set-
indexed coproducts is compact if the functor HomT(C,−) commutes with all co-
products. We write Tc for the full subcategory of compact objects in T. The
category T is compactly generated if it is generated by a set of compact objects.

Recall that we write Σ for the suspension on T. For objects X and Y in T, let

Hom∗
T(X, Y ) =

⊕

i∈Z

HomT(X, ΣiY )

be the graded abelian group of morphisms. Set End∗
T(X) = Hom∗

T(X, X); this is a
graded ring, and Hom∗

T(X, Y ) is a right End∗
T(X) and left End∗

T(Y )-bimodule.

Central ring actions. Let R be a graded-commutative ring; thus R is Z-graded
and satisfies rs = (−1)|r||s|sr for each pair of homogeneous elements r, s in R. We
say that a triangulated category T is R-linear, or that R acts on T, if there is a
homomorphism φ : R → Z∗(T) of graded rings, where Z∗(T) is the graded center
of T. This yields for each object X a homomorphism φX : R→ End∗

T(X) of graded
rings such that for all objects X, Y ∈ T the R-module structures on Hom∗

T(X, Y )
induced by φX and φY agree, up to the usual sign rule.

Henceforth T will be a compactly generated triangulated category with set-indexed
coproducts, and R a graded-commutative noetherian ring acting on T.

Since T is compactly generated with set-indexed coproducts, it follows from the
Brown representability theorem that T also admits set-indexed products; see [20,
Proposition 8.4.6]. This fact is used without further comment.

Local cohomology and support. We write Spec R for the set of homogeneous
prime ideals of R. Fix p ∈ Spec R and let M be a graded R-module. The homo-
geneous localization of M at p is denoted by Mp and M is called p-local when the
natural map M →Mp is bijective.

Given a homogeneous ideal a in R, we set

V(a) = {p ∈ Spec R | p ⊇ a} .

A graded R-module M is a-torsion if each element of M is annihilated by a power
of a; equivalently, if Mp = 0 for all p ∈ Spec R r V(a).

The specialization closure of a subset U of SpecR is the set

clU = {p ∈ Spec R | there exists q ∈ U with q ⊆ p}.
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The subset U is specialization closed if clU = U ; equivalently, if U is a union of
Zariski closed subsets of Spec R. For each specialization closed subset V of SpecR,
we define the full subcategory of T of V-torsion objects as follows:

TV = {X ∈ T | Hom∗
T(C, X)p = 0 for all C ∈ Tc, p ∈ Spec R r V}.

This is a localizing subcategory and there exists a localization functor LV : T→ T

such that KerLV = TV ; see [4, Lemma 4.3, Proposition 4.5].
The localization functor LV induces a colocalization functor on T, which we

denote ΓV , and call the local cohomology functor with respect to V; see Section 2.
For each object X in T there is then an exact localization triangle

ΓVX −→ X −→ LVX −→ .

In [4] we established a number of properties of these functors; for instance, that
they commute with all coproducts in T, see [4, Corollary 6.5].

For each p in SpecR and each object X in T set

Xp = LZ(p)X , where Z(p) = {q ∈ Spec R | q 6⊆ p}.

The notation is justified by the fact that, by [4, Theorem 4.7], the adjunction
morphism X → Xp induces for any compact object C an isomorphism of R-modules

Hom∗
T(C, X)p

∼
−→ Hom∗

T(C, Xp) .

We say X is p-local if the adjunction morphism X → Xp is an isomorphism; this
is equivalent to the condition that there exists some isomorphism X ∼= Xp in T.

Consider the exact functor Γp : T→ T obtained by setting

ΓpX = ΓV(p)(Xp) for each object X in T,

and let ΓpT denote its essential image. One has a natural isomorphism Γ 2
p
∼= Γp,

and an object X from T is in ΓpT if and only if the R-module Hom∗
T(C, X) is p-local

and p-torsion for every compact object C; see [4, Corollary 4.10].
The support of an object X in T is by definition the set

suppR X = {p ∈ Spec R | ΓpX 6= 0}.

One has suppR X = ∅ if and only if X = 0 holds; see [4, Theorem 5.2].

Koszul objects. For each object X in T and each homogeneous ideal a in R, we
denote X//a a Koszul object on a finite sequence of elements generating the ideal a;
see [4, §5]. Its construction depends on a choice of a generating sequence, but the
localizing subcategory generated by it is independent of choice, and depends only
on the radical ideal of a; this follows from [6, Proposition 2.11(2)]. Set

X(p) = (X//p)p for each p ∈ Spec R.

The following computations will be used often:

(3.1) suppR(X//p) = V(p) ∩ suppR X and suppR X(p) = {p} ∩ suppR X

For the first one, see [6, Lemma 2.6]; the second follows, given [4, Theorem 5.6].
The first part of the result below is [4, Theorem 6.4], see also [6, Proposition 2.7];

the second one is part of [6, Proposition 3.9].

Theorem 3.2. Suppose G is a set of compact generators for T. For each special-
ization closed subset V and p ∈ Spec R, there are equalities

TV = LocT

(
C//p | C ∈ G and p ∈ V

)
and ΓpT = LocT(C(p) | C ∈ G),

where both generating sets consist of compact objects. �
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4. Local homology and cosupport

Let T denote a compactly generated R-linear triangulated category, as in Sec-
tion 3. We introduce local homology functors and a notion of cosupport for T.

Local homology. Fix a specialization closed subset V ⊆ SpecR. The functors
LV and ΓV on T preserve coproducts by [4, Corollary 6.5] and hence have right
adjoints, by Brown representability. Following the notation in Proposition 2.3, this
yields adjoint pairs (LV , V V) and (ΓV , ΛV), and, for each X ∈ T, an exact triangle

(4.1) V VX −→ X −→ ΛVX −→

We call ΛV the local homology functor with respect to V; see Remark 4.17.
The commutation rules for the functors LV and ΓV given in [4, Proposition 6.1]

carry over to their right adjoints: For any specialization closed subset W of SpecR
there are isomorphisms:

(4.2)

ΛVΛW ∼= ΛV∩W ∼= ΛWΛV

V VV W ∼= V V∪W ∼= V WV V

V VΛW ∼= ΛWV V

If V ⊇ W holds, then these isomorphisms and Proposition 2.3(2) yield:

(4.3) V VΛW ∼= 0 ∼= ΛWV V .

These facts will be used without comment. For each p ∈ SpecR set

Λp = ΛV(p)V Z(p) .

Note that Λp ∼= V Z(p)ΛV(p); that Λp ∼= (Λp)2; and that (Γp, Λ
p) is an adjoint pair.

Cosupport. The cosupport of an object X in T is the set

cosuppR X = {p ∈ SpecR | ΛpX 6= 0}.

Cosupport can be computed using Koszul objects, recalled in Section 3.

Proposition 4.4. For each object X in T and p ∈ SpecR, one has

p ∈ cosuppR X ⇐⇒ HomT(C(p), X) 6= 0 for some C ∈ T .

Moreover, the object C can be chosen from any set of compact generators for T.

Proof. If ΛpX 6= 0, then HomT(ΛpX, ΛpX) 6= 0, and hence HomT(ΓpΛ
pX, X) 6= 0,

since (Γp, Λ
p) form an adjoint pair. Since ΓpΛ

pX is evidently in ΓpT , the last
condition implies HomT(C(p), X) 6= 0 for some compact object C which is part of
a generating set for T, by Theorem 3.2.

Conversely, if HomT(C(p), X) 6= 0 for some C ∈ T, then since ΓpC(p) ∼= C(p),
by, for instance, Theorem 3.2, one obtains that

HomT(C(p), ΛpX) ∼= HomT(ΓpC(p), X) ∼= HomT(C(p), X) 6= 0 .

Thus, ΛpX 6= 0, that is to say, p is in cosuppR X. �

A important property of cosupport is that it is non-empty for non-zero objects.
We deduce this result from the corresponding statement for supports and the result
above. For another perspective, see Theorem 4.13.

Theorem 4.5. For any X ∈ T, one has cosuppR X = ∅ if and only if X = 0.
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Proof. Clearly, X = 0 implies cosuppR X = ∅.
If X 6= 0, then suppR X 6= ∅, by [4, Theorem 5.2]. Pick a prime p in suppR X,

maximal with respect to inclusion. Then suppR(X//p) = {p}, by (3.1), which im-
plies, in particular, that X//p 6= 0; equivalently, HomT(X//p, X//p) 6= 0. Moreover,
X//p is p-local, hence isomorphic to X(p), which explains the isomorphism below:

HomT(X(p), X//p) ∼= HomT(X//p, X//p) 6= 0 .

Since X//p is in ThickT(X), by construction, it follows that HomT(X(p), X) 6= 0.
Hence p ∈ cosuppR X, by Proposition 4.4. �

Next we describe further basic properties of local homology functors and cosup-
ports. The one below is immediate from the exactness of the functor Λp.

Proposition 4.6. For each exact triangle X → Y → Z → ΣX in T, one has

cosuppR Y ⊆ cosuppR X ∪ cosuppR Z and cosuppR ΣX = cosuppR X. �

There is a more precise result for exact triangles (4.1).

Proposition 4.7. Let V be a specialization closed subset of Spec R. For each X
in T the following equalities hold:

cosuppR ΛVX = V ∩ cosuppR X

cosuppR V VX =
(
SpecR r V

)
∩ cosuppR X.

Proof. Fix p in SpecR. If p ∈ V, then ΛV(p)ΛV = ΛV(p), by (4.2), and V Z(p)ΛV = 0
if p 6∈ V, by (4.3). Hence one gets that:

ΛpΛV =

{
Λp if p ∈ V,

0 otherwise.

The identity for cosuppR ΛVX follows. The proof of the second one is similar. �

The preceding result and Theorem 4.5 yield:

Corollary 4.8. Let V ⊆ SpecR be specialization closed and X an object in T. The
following conditions are equivalent:

(1) cosuppR X ⊆ V.
(2) X ∈ Im ΛV .
(3) the natural map X → ΛVX is an isomorphism. �

This result above is complemented by:

Corollary 4.9. Let V ⊆ SpecR be specialization closed and X an object in T. The
following conditions are equivalent:

(1) cosuppR X ⊆ SpecR r V.
(1′) suppR X ⊆ Spec R r V.
(2) X ∈ Im V V .
(2′) X ∈ Im LV .
(3) The natural map V VX → X is an isomorphism.
(3′) The natural map X → LVX is an isomorphism.

In particular, cosuppR X ⊆ SpecR r Z(p) if and only if X is p-local.

Proof. The equivalence of (1), (2), and (3) follows from Proposition 4.7 and Theo-
rem 4.5, while the equivalence of (1′), (2′), and (3′) is part of [4, Corollary 5.7]. It
remains to note that (2) ⇔ (2′), by Proposition 2.3(2).

The last assertion is (1) ⇔ (3′), applied to V = Z(p). �
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The next result is an analogue of [4, Corollary 5.8].

Corollary 4.10. Let X,Y be objects in T. Then cosuppR X ∩ cl(cosuppR Y ) = ∅

implies Hom∗
T(X,Y ) = 0.

Proof. Set V = cl(cosuppR Y ). Then X is in ImV V , by Corollary4.9, and Y is in
Im ΛV , by Corollary 4.8, so Hom∗

T(X, Y ) = 0, by Proposition 2.3(2). �

The next goal is Theorem 4.13; the following two results prepare for its proof.
The one below is extracted from [4, Lemma 5.11].

Lemma 4.11. Let a be a homogeneous ideal in R. For any objects X and Y in T,
the following statements hold.

(1) The R-modules Hom∗
T(X//a, Y ) and Hom∗

T(X, Y//a) are a-torsion.
(2) Hom∗

T(X, Y ) = 0 implies Hom∗
T(X, Y//a) = 0 and the converse holds when

the R-module Hom∗
T(X, Y ) = 0 is a-torsion.

(3) Hom∗
T(X//a, Y ) = 0 if and only if Hom∗

T(X, Y//a) = 0. �

The equality below is a version of (3.1) for cosupport.

Lemma 4.12. Let a be a homogeneous ideal in R and X an object in T. Then

cosuppR(X//a) = V(a) ∩ cosuppR X .

Proof. From (3.1) one gets an equality

suppR(C(p)//a) = V(a) ∩ {p} ∩ suppR C for any C ∈ T.

If Hom∗(C(p), X//a) 6= 0 for some C ∈ T, then Hom∗(C(p)//a, X) 6= 0; this follows
from Lemma 4.11(3). In particular, C(p)//a 6= 0, so p ∈ V(a), by the equality above.
One thus obtains from Proposition 4.4 that cosuppR(X//a) ⊆ V(a).

When p ∈ V(a) holds, it follows from Lemma 4.11(1), and the observation that
C(p) is isomorphic to Cp//p, that the R-module Hom∗

T(C(p), X) is p-torsion, and
hence also a-torsion. Therefore, Lemma 4.11(2) yields:

Hom∗
T(C(p), X) 6= 0 ⇐⇒ Hom∗

T(C(p), X//a) 6= 0 .

The desired equality involving cosupport now follows from Proposition 4.4. �

Given U ⊆ SpecR, we write maxU for the set of elements p ∈ U such that q ∈ U
and q ⊇ p imply q = p. Recall that ΛpT denotes the essential image of Λp.

Theorem 4.13. For each object X in T there is an equality:

max(suppR X) = max(cosuppR X) .

Moreover, cosuppR X(p) ⊆ {p} and X(p) ∈ ΛpT ∩ ΓpT, for each p ∈ Spec R.

Proof. We prove max(suppR X) ⊆ cosuppR X and max(cosuppR X) ⊆ suppR X;
the first equality would then follow.

Fix p in max(suppR X). Then suppR(X//p) = {p}, by (3.1), so X//p is p-local;
see Corollary 4.9. It is always p-torsion, so X//p = X(p), and then

Hom∗
T(X(p), X//p) ∼= Hom∗

T(X//p, X//p) 6= 0 .

This implies that p is in cosuppR(X//p) by Proposition 4.4, hence also that it is in
cosuppR X, by Lemma 4.12.

If p ∈ max(cosuppR X), then cosuppR(X//p) = {p}, by Lemma 4.12. Therefore
the object X//p is p-local, by Corollary 4.9, and p-torsion, so suppR(X//p) = {p}.
It remains to recall (3.1) to conclude that p ∈ suppR X.
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Finally, cosuppR X(p) ⊆ V(p) by Lemma 4.12, since X(p) ∼= Xp//p. Thus the
inclusion suppR X(p) ⊆ {p} from (3.1) implies the corresponding inclusion for co-
support. It then follows from Corollaries 4.8 and 4.9 that X(p) is in ΛpT. On the
other hand, X(p) is also in ΓpT, by [4, Corollary 5.7]. �

To round off this material, we prove an analogue of Proposition 4.4 for supports.

Proposition 4.14. For each object X in T and p ∈ SpecR, one has

p ∈ suppR X ⇐⇒ HomT(X, Y (p)) 6= 0 for some Y ∈ T .

Proof. When p is in suppR X it follows from (3.1) that X(p) 6= 0, hence

Hom∗
T(X//p, X(p)) ∼= Hom∗

T(X(p), X(p)) 6= 0 ;

where the first isomorphism holds as X(p) is p-local. Since X//p is in ThickT(X),
one obtains that HomT(X, X(p)) 6= 0. This settles one implication.

The other implication follows from the chain of isomorphisms

HomT(X, Y (p)) ∼= HomT(X, ΛpY (p)) ∼= HomT(ΓpX, Y (p)),

where the first one holds because ΛpY (p) ∼= Y (p), by Theorem 4.13. �

Discrete sets. Recall that a subset U ⊆ SpecR is discrete if p ⊆ q implies p = q

for each pair of primes p, q ∈ U .

Proposition 4.15. Let X and Y be objects of T and U a discrete subset of Spec R.
When suppR X ⊆ U and cosuppR Y ⊆ U there are natural isomorphisms

X
∼
←−

∐

p∈U

ΓV(p)X
∼
−→

∐

p∈U

ΓpX and Y
∼
−→

∏

p∈U

ΛV(p)Y
∼
←−

∏

p∈U

ΛpY .

Proof. The statement for X is proved in [6, Proposition 3.3]; see also [4, Theo-
rem 7.1]. Modifying the arguments by taking adjunctions, and taking into account
Proposition 4.16 below, yields the proof of the statement for Y . �

Analogues of the next statement hold for V V and ΛV also.

Proposition 4.16. Given objects {Xi}i∈I in T there is a natural isomorphism

Λp

(
∏

i∈I

Xi

)
∼
−→
∏

i∈I

ΛpXi.

In particular, for any subset U ⊆ Spec R the full subcategory with objects

{X ∈ T | cosuppR X ⊆ U}

is a colocalizing subcategory of T.

Proof. Right adjoints distribute over products. This applies to Λp, which is right
adjoint to Γp, to yield the desired isomorphism. Given this, the second part of the
statement follows, for the subcategory in question equals

⋂
p6∈U Ker Λp. �

Commutative noetherian rings. Let A be a commutative noetherian ring and
D(A) the derived category of the category of all A-modules. The category D(A)
is triangulated and compactly generated; indeed, A is a compact generator. It is
also A-linear, where for each M ∈ D(A), the homomorphism A→ HomD(M, M) is
given by scalar multiplication.
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Remark 4.17. Fix an ideal a in A. In [4, Theorem 9.1] it is proved that ΓV(a) is
the derived functor of the a-torsion functor, which assigns an A-module M to the
module lim

−→
HomA(A/an, M). Greenlees and May [14, §2], see also Lipman [19, §4],

proved that the right adjoint of the latter is local homology and that it coincides
with left derived functor of the a-adic completion functor, which assigns M to
lim
←−

M/anM . In commutative algebra literature (as in [19]), the a-adic completion

functor itself would usually be denoted Λa. Our choice of notation, ΛV(a) for the
right adjoint of ΓV(a) is based on this connection.

The functor V V too has, in this context, a familiar avatar, at least in the special
case V = Z(p) for some p in SpecA: The morphism M → Mp = LZ(p)M is the
usual localization map, see the proof of [4, Theorem 9.1], so it follows from the
classical Hom-tensor adjunction isomorphism that its right adjoint is

V Z(p)M ∼= RHomA(Ap, M) ,

and the morphism RHomA(Ap, M)→M is the one induced by A→ Ap. Hence

cosuppA M = {p ∈ SpecA | RHomA(Ap, Λ
V(p)M) 6= 0} .

In practice however, the cosupport seems hard to compute, even for M = A. What
little we know about this is contained in the following results.

Proposition 4.18. For each M in D(Z) with H∗M finitely generated, one has

supp
Z

M = {p ∈ Spec Z | (H∗M)p 6= 0} = cosupp
Z

M.

Proof. The equality on the left is easily verified. For the one on the right, given
Theorem 4.13, it suffices to prove that the zero ideal is in cosupp

Z
M if and only if

it is also in supp
Z

M . By Proposition 4.4, this amounts to verifying that

RHomZ(Q, M) 6= 0 ⇐⇒ Q⊗L

Z
M 6= 0 .

Since M ∼= H∗M in D(Z) it suffices to verify the equivalence above when M is
an indecomposable finitely generated Z-module, hence of the form Z/nZ, for some
n ≥ 0. When n ≥ 1, one has RHomZ(Q, Z/nZ) = 0 = Q⊗L

Z
Z/nZ. It remains to

verify that RHomZ(Q, Z) 6= 0; see [11, §51, Exercise 7]. �

For complete local rings on the other hand, the difference between cosupport
and support can be as large as Theorem 4.13 permits.

Proposition 4.19. Let A be a commutative noetherian ring and a an ideal in A.
The following conditions are equivalent:

(1) A is a-adically complete.
(2) cosuppA A ⊆ V(a) holds.
(3) cosuppA M ⊆ V(a) holds for any M ∈ D(A) with H∗M finitely generated.

Proof. The equivalence of (1) and (2) is contained in Corollary 4.8. Thus it remains
to prove that (1) implies (3).

When A is a-adically complete so is any finitely generated module. Since the
a-adic completion functor is exact on finitely generated modules, one obtains an
isomorphism M

∼
−→ ΛV(a)M for any such module M , and hence also for any complex

M with H∗M finitely generated. Now apply Corollary 4.8. �

For any object X in T and p ∈ SpecR, the support of Xp is contained in that
of X; see [4, Theorem 5.6]. The corresponding statement for cosupports does not
hold, which speaks to one of the difficulties in computing this invariant.
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Example 4.20. Let (A,m) be a local ring that is m-adically complete. Then for
any p ∈ SpecA r {m} one has

{p} ⊆ cosuppA(Ap) 6⊆ cosuppA A = {m} .

Indeed, the equality is by Proposition 4.19. That p is in cosuppA(Ap) can be
checked directly, or via Theorem 4.13 and the equality suppA(Ap) = Spec Ap.

Remark 4.21. The notion of cosupport for an A-module M is not the same as the
one introduced by Richardson [23], which is denoted coSuppM . For instance, it
follows from [23, Theorem 2.7(vi)] that coSupp Z = Spec Z r {(0)}, while Proposi-
tion 4.18 yields cosupp

Z
Z = Spec Z. When (A,m) is local, each non-zero finitely

generated module M satisfies coSuppM = {m}, by [23, Theorem 2.7(i)], while
Proposition 4.19 implies cosuppA M = {m} if and only if M is m-adically complete.

5. p-local and p-complete objects

As before, let T denote a compactly generated R-linear triangulated category.
In this section we investigate the subcategories ΛpT, for each p ∈ Spec R. They
contain local information about T and are important in classifying its colocalizing
subcategories; see the discussion in the last part of this section.

We begin by noting that an object X is in ΛpT if and only if cosuppR X ⊆ {p},
if and only if X is p-local (that is, X → Xp is an isomorphism) and also p-complete,

meaning that the natural map X → ΛV(p)X is an isomorphism; see Corollaries 4.9
and 4.8. Also ΛpT is a colocalizing subcategory of T, by Proposition 4.16.

Recall that X is in ΓpT if and only if suppR X ⊆ {p}, if and only if X is p-local
and p-torsion; see [4, Corollaries 4.9, 5.10], and that ΓpT is a localizing subcategory.

Dwyer Greenlees correspondence. Fix a prime p in SpecR. The result below,
which establishes an equivalence between the category of p-local and p-complete
objects and the category of p-local and p-torsion objects, may be viewed as extension
of such an equivalence discovered by Dwyer and Greenlees [9, Theorem 2.1], see also
Hovey, Palmieri, and Strickland [15, Theorem 3.3.5], to our setting.

Proposition 5.1. The functors Γp : ΛpT → ΓpT and Λp : ΓpT → ΛpT form an
adjoint pair, that are mutually quasi-inverse to each other.

Proof. Apply the identities in Proposition 2.3. �

As a triangulated category, ΓpT is compactly generated by {C(p) | C ∈ Tc}; see

Theorem 3.2. Given Theorem 4.13 and the equivalence ΓpT
∼
−→ ΛpT in Proposi-

tion 5.1, it follows that the same set generates ΛpT, where the coproduct in ΛpT is
the one induced from ΓpT.

Next we describe a set of cogenerators for ΛpT.

Perfect cogeneration. Let U be a triangulated category with set-indexed prod-
ucts. A set of objects S perfectly cogenerates U if the following conditions hold:

(1) If X is an object in U and HomU(X, S) = 0 for all S ∈ S then X = 0.
(2) If a countable family of maps Xi → Yi in U is such that

HomU(Yi, S)→ HomU(Xi, S)

is surjective for all i and all S ∈ S, then so are the induced maps:

HomU(
∏

i

Yi, S)→ HomU(
∏

i

Xi, S) .

Proposition 5.2. If a set of objects S perfectly cogenerates U then ColocU(S) = U.



14 DAVE BENSON, SRIKANTH B. IYENGAR, AND HENNING KRAUSE

Proof. The proof is akin to that of the corollary in [17, §1]. �

Injective objects. Let now T be an R-linear triangulated category as before. For
each compact object C in T and each injective R-module I, Brown representability
yields an object TC(I) in T and a natural isomorphism:

(5.3) HomT(−, TC(I)) ∼= HomR(Hom∗
T(C,−), I).

For p ∈ Spec R, let I(p) denote the injective envelope of R/p.

Proposition 5.4. Fix p ∈ SpecR. For each compact object C in T, one has

cosuppR TC(I(p)) = suppR C ∩ {q ∈ SpecR | q ⊆ p} .

Moreover, the set {TC//p(I(p)) | C ∈ Tc} perfectly cogenerates ΛpT.

Proof. The shifts of I(p) form a set of injective cogenerators for the category of
p-local R-modules. For any q ∈ SpecR and object D in T, one has equivalences

Hom∗
T(D(q), TC(I(p))) 6= 0 ⇐⇒ Hom∗

R(Hom∗
T(C, D(q)), I(p)) 6= 0

⇐⇒ Hom∗
T(C, D(q)) 6= 0 and q ⊆ p .

The first one is by (5.3); the second holds as the R-module Hom∗
T(C, D(q)) is q-local

and q-torsion, by (3.1). Propositions 4.4 and 4.14 now yield the stated equality.
Let X be a non-zero object in ΛpT, so that cosuppR X = {p}, and pick a compact

object C with Hom∗
T(C(p), X) 6= 0; see Proposition 4.4. It then follows that:

Hom∗
T(C//p, X) ∼= Hom∗

T(C//p, ΛpX)

∼= Hom∗
T(Γp(C//p), X)

∼= Hom∗
T(C(p), X)

6= 0

Replacing C by an appropriate suspension ΣnC, if necessary, from the computation
above and (5.3) one gets

HomT(X, TC//p(I(p))) ∼= HomR(Hom∗
T(C//p, X), I(p)) 6= 0 .

The other condition for perfect cogeneration holds because, for any map X → Y in
ΛpT, the induced map

Hom∗
T(Y, TC//p(I(p)))→ Hom∗

T(X, TC//p(I(p)))

is surjective if and only if Hom∗
T(C//p, X)→ Hom∗

T(C//p, Y ) is injective. �

Classifying colocalizing subcategories. We say that the local-global principle
holds for colocalizing subcategories of T if for each object X in T there is an equality

ColocT(X) = ColocT({ΛpX | p ∈ Spec R}).

The corresponding notion for localizing subcategories is investigated in [6, §3]. The
reformulation below of the local-global principle is easy to prove.

Lemma 5.5. The local-global principle for colocalizing subcategories is equivalent
to the statement: For any X ∈ T and any colocalizing subcategory S of T, one has

X ∈ S ⇐⇒ ΛpX ∈ S for each p ∈ Spec R. �

Colocalizing subcategories of T are related to subsets of Spec R via maps
{

colocalizing

subcategories of T

}
σ //

τ
oo

{
families (S(p))p∈Spec R with S(p)

a colocalizing subcategory of ΛpT

}

which are defined by σ(S) = (S ∩ ΛpT) and τ(S(p)) = ColocT

(
S(p) | p ∈ Spec R

)
.
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Proposition 5.6. If the local-global principle for colocalizing subcategories of T

holds, then the map σ is bijective, with inverse τ .

Proof. We use the fact that Λp is an idempotent exact functor preserving products.
First observe that for each colocalizing subcategory S of T there is an inclusion

(∗) S ∩ ΛpT ⊆ ΛpS for each p ∈ SpecR.

We prove that στ is the identity, that is to say, that for any family (S(p))p∈Spec R

of colocalizing subcategories with S(p) ⊆ ΛpT the colocalizing subcategory cogen-
erated by all the S(p), call it S, satisfies

S ∩ ΛpT = S(p) for each p ∈ SpecR.

Note that ΛpS = S(p) holds, since ΛpΛq = 0 when p 6= q. Therefore (∗) yields an
inclusion S ∩ ΛpT ⊆ S(p). The reverse inclusion is obvious.

For any localizing subcategory S of T, the reformulation of the local-global prin-
ciple in Lemma 5.5 gives S = ColocT(S ∩ ΛpT | p ∈ Spec R). Thus τσ = id. �

Remark 5.7. In analogy with the notion of stratification for localizing subcategories
of T introduced in [6, §4], we say that T is costratified by R if

(C1) The local-global principle holds for colocalizing subcategories of T;
(C2) For each p ∈ Spec R, the colocalizing subcategory ΛpT contains no proper

non-zero colocalizing subcategories.

It is immediate from Proposition 5.6 that when these conditions hold, the maps σ
and τ induce a bijection

{
Colocalizing

subcategories of T

} cosuppR //

cosupp−1

R

oo { subsets of suppR T } .

For the main results of this work, it suffices to consider a version of costratification
for tensor triangulated categories, see Section 9; so we do not study the general
notion in any great detail.

6. Axioms for support and cosupport

In this section we give an axiomatic description of cosupport, analogous to the
one for support in [4, Theorem 5.15]; see also Theorem 6.4 below. This material is
not used elsewhere in this paper.

As before, we fix a compactly generated R-linear triangulated category T. The
starting point is the following cohomological addendum to Corollary 4.9.

Lemma 6.1. Let V ⊆ Spec R be a specialization closed subset. For each object X
in T, the following conditions are equivalent:

(1) V ∩ cosuppR X = ∅.
(1′) V ∩ suppR X = ∅.
(2) Hom∗

T(C//p, X) = 0 for all C ∈ Tc and p ∈ V.
(3) Hom∗

T(C, X) is either zero or not p-torsion for each C ∈ Tc and p ∈ V.

Proof. (1) ⇔ (1′) is part of Corollary 4.9, while (1′) ⇔ (2) is a consequence of
Theorem 3.2. To prove that (2) ⇔ (3), use Lemma 4.11. �

Remark 6.2. As noted above, for each specialization closed subset V of SpecR there
is an equality of subcategories

{X ∈ T | cosuppR X ∩ V = ∅} = {X ∈ T | suppR X ∩ V = ∅} .
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The subcategory on the left is colocalizing, by Proposition 4.16, while the one on the
right is localizing, since Γp preserves set-indexed coproducts; see [4, Corollary 6.6].

Given a specialization closed subset V ⊆ SpecR, Lemma 6.1 yields cohomological
criteria for the (co)support of any object X to be contained in SpecR r V. This
leads to axiomatic descriptions of cosupport and support.

Theorem 6.3. There exists a unique assignment sending each object X in T to a
subset cosuppR X of SpecR such that the following properties hold:

(1) Cohomology: For each object X in T and each p in Spec R, one has

V(p) ∩ cosuppR X 6= ∅

if and only if Hom∗
T(C, X) is non-zero and p-torsion for some C in Tc.

(2) Orthogonality: For objects X and Y in T, one has that

cosuppR X ∩ cl(cosuppR Y ) = ∅ implies HomT(X, Y ) = 0.

(3) Exactness: For every exact triangle X → Y → Z → in T, one has

cosuppR Y ⊆ cosuppR X ∪ cosuppR Z.

(4) Separation: For any specialization closed subset V of Spec R and object X
in T, there exists an exact triangle X ′ → X → X ′′ → in T such that

cosuppR X ′ ⊆ SpecR r V and cosuppR X ′′ ⊆ V.

Proof. Lemma 6.1 implies (1). Corollary 4.10 is (2), and Proposition 4.6 is (3).
Proposition 4.7 implies (4). Here one uses for any specialization closed subset V of
Spec R the localization triangle (4.1).

Now let σ : T→ Spec R be a map satisfying properties (1)–(4).
Fix a specialization closed subset V ⊆ SpecR and an object X ∈ T. It suffices

to verify that the following equalities hold:

(∗) σ(ΛVX) = σ(X) ∩ V and σ(V VX) = σ(X) ∩ (SpecR r V).

Indeed, for any point p in SpecR one then obtains that

σ(ΛpX) = σ(V Z(p)ΛV(p)X)

= σ(ΛV(p)X) ∩ (SpecR r Z(p))

= σ(X) ∩ V(p) ∩ (SpecR r Z(p))

= σ(X) ∩ {p}.

Therefore, p ∈ σ(X) if and only if σ(ΛpX) 6= ∅; this last condition is equivalent to
ΛpX 6= 0, by the cohomology property. The upshot is that p ∈ σ(X) if and only if
p ∈ suppR X, which is the desired conclusion.

It thus remains to prove (∗).
Let X ′ → X → X ′′ → be the triangle associated to V, provided by property (4).

It suffices to verify the following statements:

(i) σ(X ′′) = σ(X) ∩ V and σ(X ′) = σ(X) ∩ (SpecR r V);
(ii) ΛVX ∼= X ′ and LVX ∼= X ′′.

The equalities in (i) are immediate from properties (3) and (4). In verifying (ii),
the crucial observation is that, by the cohomology property, for any Y in T one has

V ∩ σ(Y ) = ∅ ⇐⇒ Y ∈ Im V V .
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Thus X ′ is in Im V V . On the other hand, property (2) and Lemma 2.1 imply that
X ′′ is in ImΛV . One thus obtains the following morphism of triangles

X ′ //

α

��

X // X ′′

β

��

//

V VX // X // ΛVX //

where the object Cone(α) ∼= Cone(Σ−1β) belongs to Im V V∩Im ΛV , hence is trivial.
Therefore, α and β are isomorphisms, which yields (ii). �

The following axiomatic description of support is a slight modification of [4,
Theorem 5.15]. Note that conditions (1) and (3) coincide for support and cosupport.
The crucial difference appears in conditions (2) and (4).

Theorem 6.4. There exists a unique assignment sending each object X in T to a
subset suppR X of Spec R such that the following properties hold:

(1) Cohomology: For each object X in T and each p in Spec R, one has

V(p) ∩ suppR X 6= ∅

if and only if Hom∗
T(C, X) is non-zero and p-torsion for some C in Tc.

(2) Orthogonality: For objects X and Y in T, one has that

cl(suppR X) ∩ suppR Y = ∅ implies HomT(X, Y ) = 0.

(3) Exactness: For every exact triangle X → Y → Z → in T, one has

suppR Y ⊆ suppR X ∪ suppR Z.

(4) Separation: For any specialization closed subset V of Spec R and object X
in T, there exists an exact triangle X ′ → X → X ′′ → in T such that

suppR X ′ ⊆ V and suppR X ′′ ⊆ Spec R r V.

Proof. Adapt the proof of [4, Theorem 5.15], using Lemma 6.1. �

7. Change of rings and categories

In this section we discuss how support and cosupport is affected by the change
of rings and categories. Throughout R is a graded-commutative noetherian ring.

Linear functors. Let T and U be R-linear triangulated categories. We say that
a functor F : T→ U is R-linear if it is an exact functor such that for each X in T

the following diagram is commutative:

R
φF X

""
DD

DD
DD

DD

φX

~~||
||

||
||

End∗
T(X)

F // End∗
U(FX)

Let F : T → U be an R-linear functor, and let X and Y be objects in T and U,
respectively. The structure homomorphisms φX and φFX provide two R-module
structures on Hom∗

U(FX, Y ), and the R-linearity of F is equivalent to the claim
that these coincide.

We are grateful to the referee for suggesting the following lemma.

Lemma 7.1. Let F : T → U be an R-linear functor and G a right adjoint. Then
the following statements hold.

(1) The adjunction isomorphism Hom∗
T(X, GY )

∼
−→ Hom∗

U(FX,GY ) is R-linear.
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(2) The functor G is R-linear.

Proof. For (1), observe that the adjunction isomorphism can be factored as

Hom∗
T(X, GY )

F
−→ Hom∗

U(FX,FGY )
(FX,θY )
−−−−−−→ Hom∗

U(FX, Y )

where the second map is induced by the counit θ : FG → IdU. For (2), note that

the map HomU(Y, Y )
G
−→ HomT(GY, GY ) can be factored as

Hom∗
U(Y, Y )

(θY,Y )
−−−−→ Hom∗

U(FGY, Y )
∼
−→ Hom∗

T(GY, GY )

where the second map is the adjunction isomorphism. �

Proposition 7.2. Let F : T→ U be a functor between compactly generated R-linear
triangulated categories which preserves set-indexed coproducts and products. Let E
be a left adjoint of F , and suppose that F or E is R-linear. For any specialization
closed subset V of SpecR there are then natural isomorphisms

FΓV
∼= ΓVF, FLV

∼= LVF, ΓVE ∼= EΓV , and LVE ∼= ELV .

Note that the functor F admits a left adjoint by Brown representability, because
F preserves set-indexed products.

Proof. For each object X in T, one has an exact triangle

FΓVX −→ FX −→ FLVX −→

induced by the localization triangle for V. It thus suffices to verify that FΓVX is in
Im ΓV and that FLVX is in Im LV ; see [4, §4]. We use the adjunction isomorphisms

Hom∗
U(C, FΓVX) ∼= Hom∗

T(EC,ΓVX)

Hom∗
U(C, FLVX) ∼= Hom∗

T(EC,LVX)
(7.3)

which are R-linear because F or E is R-linear; see Lemma ??. Note that EC is
compact if C is compact, since F preserves set-indexed coproducts.

An object Y in U belongs to Im ΓV if and only if Hom∗
U(C, Y )p = 0 for all

compact C ∈ U and all p ∈ SpecR r V. Applying this characterization to FΓVX
and ΓVX, the adjunction (7.3) implies that FΓVX is in ImΓV .

An object Y in U belongs to Im LV if and only if Hom∗
U(C//p, Y ) = 0 for all

compact C ∈ U and all p ∈ V, by Corollary 4.9 and Lemma 6.1. Applying this
characterization to FLVX and LVX, the adjunction (7.3) implies that FLVX is
in Im LV . Here, one uses that E(C//p) ∼= (EC)//p, and this completes the proof of
the first pair of isomorphisms.

The isomorphism FLZ(p)
∼= LZ(p)F implies F (X(p)) ∼= (FX)(p) for each X in

T and each p in SpecR. Given this, the proof of the isomorphisms involving E is
similar: For each object Y in U, it follows from Proposition 4.14 and adjunction
that there are inclusions

suppR EΓVY ⊆ V and suppR ELVY ⊆ Spec R r V .

Thus EΓVY is in ImΓV and ELVY in Im LV . �

Remark 7.4. In the preceding proof, the assumption on F or E to be R-linear is
only used for the R-linearity of the adjunction isomorphisms (7.3).
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Change of rings. Let S be a graded-commutative noetherian ring, and U an S-
linear triangulated category. Given a homomorphism of rings α : R→ S, there is a
natural R-linear structure on U induced by homomorphisms

R
α
−→ S

φX
−−→ End∗

U(X) for X ∈ U.

As usual, α induces a map α∗ : SpecS → SpecR, with α∗(q) = α−1(q) for each
q in SpecS. Observe that if V ⊆ SpecR is specialization closed, then so is the
subset (α∗)−1V of SpecS.

Proposition 7.5. Let α : R→ S be a homomorphism of rings, and U an S-linear
triangulated category, with induced R-linear structure via α. Let V ⊆ Spec R be a
specialization closed set and W = (α∗)−1V. Then there are isomorphisms

ΓV
∼= ΓW and LV

∼= LW .

Proof. It suffices to prove that any object X ∈ U is in UV if and only if it is in UW .
Thus one needs to show for any compact object C ∈ U that Hom∗

U(C, X)p = 0 for
all p ∈ SpecR r V if and only if Hom∗

U(C, X)q = 0 for all q ∈ SpecS rW. This
one finds in Lemma 7.6 below. �

Lemma 7.6. Let α : R→ S be a homomorphism of graded-commutative noetherian
rings and V ⊆ SpecR a specialization closed subset. Given an S-module M , one has
Mp = 0 for all p ∈ Spec R r V if and only if Mq = 0 for all q ∈ SpecS r (α∗)−1V.

Proof. Suppose first that Mp = 0 for all p 6∈ V, and choose q 6∈ (α∗)−1V. Then
Mq
∼= (Mα∗(q))q = 0.

Assume now that Mp 6= 0 for some p 6∈ V. We view Mp as an Sp-module and find
therefore a prime ideal q in SpecSp ⊆ SpecS such that (Mp)q

∼= Mq is non-zero.
It remains to observe that α∗(q) ⊆ p and hence that α∗(q) is not in V. �

Change of rings and categories. Henceforth, we say (F ;α) : (T;R) −→ (U;S)
is an exact functor to mean that T and U are compactly generated R-linear and
S-linear triangulated categories, respectively; α : R → S is a homomorphism of
graded rings; and F is an exact functor that is R-linear with respect to the induced
R-linear structure on U; in other words, that the diagram

R
α //

φX

��

S

φF X

��

End∗
T(X)

F // End∗
U(FX)

is commutative for each X ∈ T.

Theorem 7.7. Let (F ;α) : (T;R) → (U;S) be an exact functor which preserves
set-indexed coproducts and products. Let E be a left adjoint and G a right adjoint
of F . Let V ⊆ Spec R be a specialization closed subset and set W = (α∗)−1V. Then
there are natural isomorphisms:

FΓV
∼= ΓWF, FLV

∼= LWF, ΓVE ∼= EΓW , and LVE ∼= ELW(1)

FΛV ∼= ΛWF, FV V ∼= V WF, ΛVG ∼= GΛW , and V VG ∼= GV W .(2)

This result contains Propositions 7.2 and 7.5: to recover the first, set α = idR;
for the second set F = IdT. On the other hand, it is proved using the latter results.
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Proof. Since F is linear with respect to the induced R-linear structure on U, Propo-
sitions 7.2 and 7.5 yield the following isomorphism:

FΓV
∼= ΓVF ∼= ΓWF.

The other isomorphisms in (1) can be obtained in the same way.
The isomorphisms in (2) are obtained by taking right adjoints of those in (1). �

As applications, we establish results which track the change in support along
linear functors; this is one reason we have had to introduce these notions.

Corollary 7.8. Let (F ;α) : (T;R) → (U;S) be an exact functor which preserves
set-indexed coproducts and products. Let E be a left adjoint and G a right adjoint
of F . Then for X ∈ T and Y ∈ U there are inclusions:

α∗(suppS FX) ⊆ suppR X and suppR EY ⊆ α∗(suppS Y )(1)

α∗(cosuppS FX) ⊆ cosuppR X and cosuppR GY ⊆ α∗(cosuppS Y ) .(2)

Each inclusion is an equality when the corresponding functor is faithful on objects.

Proof. Let p be a point in SpecR, and pick specialization closed subsets V and W
of SpecR such that {p} = V rW. For example, set V = V(p) and W = V r {p}.

Setting Ṽ = (α∗)−1V and W̃ = (α∗)−1W, one gets isomorphisms

F (ΓpX) = FLWΓVX = LfW
ΓeVFX .

Observing that Ṽ r W̃ = (α∗)−1{p}, this yields equalities

suppS F (ΓpX) = suppS FX ∩ (Ṽ r W̃) = suppS FX ∩ (α∗)−1{p} .

Thus, α∗(suppS FX) ⊆ suppR X, and equality holds if F is faithful on objects.
The other inclusions are obtained in the same way. �

In the preceding result, the stronger conclusion suppS FX = (α∗)−1 suppR X
need not hold, even when F is an equivalence of categories.

Example 7.9. Let R be a field, set S = R[a]/(a2 − a), and let U = D(S) denote
the derived category of S-modules, with canonical S-linear structure. Let T = U

and view this as an R-linear triangulated category via the inclusion α : R→ S.
Let F : T → U be the identity functor; it is evidently compatible with α and

faithful. Observe however that for the module X = S/(a) in T one has

suppR X = SpecR and SpecS FX = {(a)}.

On the other hand, (α∗)−1 suppR X = Spec S.

Corollary 7.10. Let (F ;α) : (T;R) → (U;S) be an exact functor which preserves
set-indexed coproducts and products. Let E be a left adjoint and G a right adjoint of
F . Let p ∈ SpecR and suppose that U = (α∗)−1{p} is a discrete subset of SpecS.
Then there are isomorphisms:

FΓp
∼=
∐

q∈U

ΓqF and ΓpE ∼=
∐

q∈U

EΓq(1)

FΛp ∼=
∏

q∈U

ΛqF and ΛpG ∼=
∏

q∈U

GΛq .(2)

Proof. Choose specialization closed subsets V and W of SpecR with V rW = {p}.

Setting Ṽ = (α∗)−1V and W̃ = (α∗)−1W, one gets isomorphisms

FΓp = FLWΓV
∼= LfW

ΓeVF ∼=
∐

q∈U

ΓqLWΓVF ∼=
∐

q∈U

ΓqF ,
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where the first one follows Theorem 7.7. The second is by Proposition 4.15, which

applies since Ṽ r W̃ = U and U is discrete. The last isomorphism holds because
one has ΓqLfW

ΓeV
∼= Γq for all q ∈ U ; see [4, Proposition 6.1].

The other isomorphisms can be obtained in the same way. �

The next result involves a notion of costratification of R-linear triangulated
categories. This has been introduced in Remark 5.7, and the analogous notion
of stratification is from [6, §4].

Theorem 7.11. Let (F ;α) : (T;R) → (U;S) be an exact functor which preserves
set-indexed coproducts and products, and fix an object X in T.

(1) If T is costratified by R and the right adjoint of F is faithful on objects, then

suppS FX = (α∗)−1(suppR X) ∩ suppS U.

(2) If T is stratified by R and the left adjoint of F is faithful on objects, then

cosuppS FX = (α∗)−1(cosuppR X) ∩ suppS U.

Proof. We prove the statement concerning cosupports; the argument for the one
for supports is exactly analogous.

To begin with, from Corollary 7.8 one gets an inclusion

cosuppS FX ⊆ (α∗)−1(cosuppR X) ∩ cosuppS U

Now fix a q ∈ suppS U with q 6∈ cosuppS FX. We need to show that p = α∗(q) is
not in cosuppR X. Let E be a left adjoint of F . Using adjunction, one has

HomT(EΓq−, X) ∼= HomU(−, ΛqFX) = 0.

There exists some object U in U such that EΓqU 6= 0, since q ∈ suppS U and E
is faithful on objects. Moreover, EΓqU belongs to ΓpT, by Corollary 7.8. Since R
stratifies T, the subcategory ΓpT contains no non-trivial localizing subcategories,
and hence coincides with LocT(EΓqU). Thus

0 = HomT(Γp−, X) ∼= HomT(−, ΛpX),

and therefore p 6∈ cosuppR X. �

Perfect generators and cogenerators. For any subset U of SpecR we consider
the full subcategories

TU = {X ∈ T | suppR X ⊆ U} and TU = {X ∈ T | cosuppR X ⊆ U} .

The notion of a set of perfect cogenerators was recalled in Section 5. The notion of
a set of perfect generators is analogous; see [17].

Lemma 7.12. Let (F ;α) : (T;R)→ (U;S) be an exact functor which preserves set-

indexed coproducts and products. Let U be a subset of SpecR and set Ũ = (α∗)−1U .
Then the following statements hold:

(1) When F is faithful on objects from TU , its left adjoint maps any set of
perfect generators of UeU to a set of perfect generators of TU .

(2) When F is faithful on objects from TU , its right adjoint maps any set of

perfect cogenerators of U
eU to a set of perfect cogenerators of TU ,

Proof. Let E denote a left adjoint of F . It follows from Corollary 7.8 that F and
E restrict to functors between TU and UeU . Now use adjunction to prove (1). The
proof of (2) is analogous. �
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8. Tensor triangulated categories

In this section we discuss special properties of triangulated categories which hold
when they have a tensor structure.

Let (T,⊗,1) be a tensor triangulated category as defined in [4, §8]. In particu-
lar, T is a compactly generated triangulated category with a symmetric monoidal
structure; ⊗ is its tensor product and 1 the unit of the tensor product. The tensor
product is exact in each variable and preserves coproducts.

By Brown representability there are function objects Hom(X, Y ) satisfying

(8.1) HomT(X ⊗ Z, Y ) ∼= HomT(Z,Hom(X, Y )),

and we write X∨ for the Spanier–Whitehead dual Hom(X,1). Note that the adjunc-
tion extends to function objects, in the sense that there are natural isomorphisms

Hom(X ⊗ Z, Y ) ∼= Hom(Z,Hom(X,Y )) .

This is an easy consequence of Yoneda’s lemma.
We shall assume that the tensor unit 1 is compact and that all compact objects

C are strongly dualizable in the sense that the canonical morphism

C∨ ⊗X → Hom(C, X)

is an isomorphism for all X in T. We also assume that Hom(−, Y ) is exact for each
object Y in T.2

Canonical actions. The symmetric monoidal structure of T ensures that the en-
domorphism ring End∗

T(1) is graded commutative. It acts on T via homomorphisms

End∗
T(1)

X⊗−
−−−−−→ End∗

T(X).

In particular, any homomorphism R → End∗
T(1) of rings with R graded commu-

tative induces an action of R on T. We say that an R action on T is canonical if
it arises from such a homomorphism. In that case there are for each specialization
closed subset V and point p of SpecR natural isomorphisms

(8.2) ΓVX ∼= X ⊗ ΓV1, LVX ∼= X ⊗ LV1, and ΓpX ∼= X ⊗ Γp1.

These isomorphisms are from [4, Theorem 8.2, Corollary 8.3].3

Proposition 8.3. Let V ⊆ SpecR be a specialization closed subset and p ∈ Spec R.
Given objects X and Y in T, there are natural isomorphisms

Hom(ΓVX,Y ) ∼= Hom(X, ΛVY ) ∼= ΛV Hom(X.Y ),

Hom(LVX,Y ) ∼= Hom(X, V VY ) ∼= V V Hom(X, Y ),

Hom(ΓpX,Y ) ∼= Hom(X, ΛpY ) ∼= ΛpHom(X,Y ).

In particular, there are natural isomorphisms

ΛVX ∼= Hom(ΓV1, X), V VX ∼= Hom(LV1, X), ΛpX ∼= Hom(Γp1, X) .

Proof. Combine the isomorphisms in (8.2) with the adjunction defining Hom. �

2The exactness of Hom(−, Y ) was omitted from [4, §8], since it was not used there, but it is
important in Lemma 8.4 below.

3For these results to hold, the R action should be canonical, for the R-linearity of the adjunction
isomorphism (8.1) is used in the arguments.
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Colocalizing subcategories. Function objects turn localizing subcategories into
colocalizing subcategories in the following sense.

Lemma 8.4. Let C be a class of objects in T and X, Y ∈ T. If X belongs to Loc(C),
then Hom(X,Y ) belongs to Coloc({Hom(C, Y ) | C ∈ C}).

Proof. This holds as Hom(−, Y ) is exact and turns coproducts into products. �

We focus attention on colocalizing subcategories satisfying the equivalent condi-
tions of the following lemma.

Lemma 8.5. Let S be a colocalizing subcategory of T. Then the following conditions
on S are equivalent:

(1) For all compact objects X in T and all Y in S, X ⊗ Y is also in S.
(2) For all compact objects X in T and all Y in S, Hom(X, Y ) is in S.
(3) For all objects X in T and all Y in S, Hom(X, Y ) is in S.

Proof. The equivalence of (1) and (2) follows from the isomorphisms X∨ ⊗ Y ∼=
Hom(X, Y ) and X∨∨ ∼= X. The equivalence of (2) and (3) follows from Lemma 8.4
and the fact that T is compactly generated. �

We say that a colocalizing subcategory is Hom closed if the equivalent conditions
of the lemma hold, and write ColocHom(C) for the smallest Hom closed colocalizing
subcategory containing a class C of objects in T.

A localizing subcategory S of T is tensor ideal or tensor closed if X ∈ T and
Y ∈ S imply that X ⊗ Y is in S. Given a class C of objects in T, we denote by
Loc⊗(C) the smallest tensor ideal localizing subcategory containing C.

The gist of the next result is that (an appropriate version of) the local-global
principle holds for tensor triangulated categories. The first part, about localizing
subcategories, is from [5, Theorem 3.6].

Theorem 8.6. For each X ∈ T, there are equalities

Loc⊗T (X) = Loc⊗T ({ΓpX | p ∈ SpecR})

ColocHom

T (X) = ColocHom

T ({ΛpX | p ∈ Spec R}) .

Proof. The first equality is [5, Theorem 3.6].
In particular, Loc⊗T (1) = Loc⊗T ({Γp1 | p ∈ SpecR}), which in conjunction with

Lemma 8.4 gives the second equality below:

ColocHom

T (X) = ColocHom

T (Hom(1, X))

= ColocHom

T ({Hom(Γp1, X) | p ∈ Spec R})

= ColocHom

T ({ΛpX | p ∈ Spec R})

The first one holds because X = Hom(1, X) and last one is by Proposition 8.3. �

Lemma 8.7. If S is a colocalizing subcategory of T then Hom(X, Y ) is in S for all
X in LocT(1) and Y in S. In particular, if 1 generates T then all its colocalizing
subcategories are Hom closed.

Proof. This follows from Lemma 8.4. �

Remark 8.8. Let T be a tensor triangulated category with a canonical R-action.
If T is generated by its unit 1, then the local global principle for (co)localizing
subcategories holds. This follows from Theorem 8.6 and Lemma 8.7.



24 DAVE BENSON, SRIKANTH B. IYENGAR, AND HENNING KRAUSE

9. Costratification

Let T = (T,⊗,1) be a tensor triangulated category as in Section 8, endowed
with a canonical R-action. In this section, we introduce a variant of the notion of
costratification, see Remark 5.7, suitable for this context and explain some conse-
quences, including a classification of the Hom closed colocalizing subcategories.

Recall from Proposition 5.6 that there are maps σ and τ which yield a classifi-
cation of colocalizing subcategories. Proposition 8.3 implies that each ΛpT is Hom
closed, so these maps restrict to the following maps on Hom closed subcategories:

{
Hom closed colocalizing

subcategories of T

}
σ //

τ
oo





families (S(p))p∈Spec R with

S(p) ⊆ ΛpT a Hom closed

colocalizing subcategory





where σ(S) = (S∩ΛpT) and τ(S(p)) is the colocalizing subcategory of T cogenerated
by all the S(p). The following result is the analogue of [6, Proposition 3.6].

Proposition 9.1. The maps σ and τ are mutually inverse bijections.

Proof. The proof is exactly analogous to that of Proposition 5.6, using the local-
global principle from Theorem 8.6. �

We say that the tensor triangulated category T is costratified by R if for each p ∈
Spec R, the colocalizing subcategory ΛpT contains no proper non-zero Hom closed
colocalizing subcategories. Compare this definition with the one in Remark 5.7 for
general triangulated categories. One does not have to impose the analogue of the
local-global principle (C1), for it always holds; see Theorem 8.6.

If T is costratified by R then for each p ∈ SpecR there are only two possibilities
for S(p), namely S(p) = ΛpT or S(p) = 0. So the maps σ and τ reduce to

{
Hom closed colocalizing

subcategories of T

} cosuppR //

cosupp−1

R

oo { subsets of suppR T } .

The next result is now immediate from the definition of costratification.

Corollary 9.2. If the tensor triangulated category T is costratified by R then the
above maps cosuppR and cosupp−1

R are mutually inverse bijections. �

Stratification. In analogy with the notion of costratification, the tensor triangu-
lated category T is stratified by R if for each p ∈ SpecR the localizing subcategory
ΓpT is zero or minimal among tensor ideal localizing subcategories; see [6, §7].

Next we establish a formula relating support and cosupport when T is stratified.

Lemma 9.3. An inclusion cosuppRHom(X, Y ) ⊆ suppR X ∩ cosuppR Y holds for
all objects X and Y in T.

Proof. Fix p ∈ Spec R; recall that p is in cosuppR X if and only ifHom(Γp1, X) 6= 0.
Using (8.1) and (8.2), and Proposition 8.3, one gets isomorphisms

(9.4) Hom(Γp1,Hom(X, Y )) ∼= Hom(ΓpX, Y ) ∼= Hom(X,ΛpY ) .

It follows that ΓpX 6= 0 and ΛpY 6= 0 when ΛpHom(X, Y ) 6= 0. �

In [6, Theorem 7.3] we proved that suppR(X ⊗ Y ) = suppR X ∩ suppR Y holds
if T is stratified. An analogue for function objects is contained in the next result.

Theorem 9.5. The following conditions on T are equivalent:

(1) The tensor triangulated category T is stratified by R.
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(2) cosuppRHom(X,Y ) = suppR X ∩ cosuppR Y for all X, Y ∈ T.
(3) Hom(X, Y ) = 0 implies suppR X ∩ cosuppR Y = ∅ for all X,Y ∈ T.

Proof. (1) ⇒ (2): One inclusion follows from Lemma 9.3. For the other inclusion
one uses that T is stratified by R. Fix p ∈ suppR X ∩ cosuppR Y . The minimality
of the tensor ideal localizing subcategory ΓpT implies Γp1 ∈ Loc⊗(ΓpX), since
ΓpX 6= 0. Applying Lemma 8.4, one obtains

0 6= Hom(Γp1, Y ) ∈ ColocHom(Hom(ΓpX,Y ))

and therefore Hom(ΓpX, Y ) 6= 0. Using the first isomorphism in (9.4), it follows
that p is in the cosupport of Hom(X, Y ).

(2) ⇒ (3): Clearly, Hom(X,Y ) = 0 implies cosuppRHom(X, Y ) = ∅.
(3)⇒ (1): To prove that the tensor triangulated category T is stratified by R, it

suffices to show that given non-zero objects X and Y in ΓpT for some p in SpecR,
there exists a Z such that Hom∗

T(X ⊗ Z, Y ) 6= 0; see [4, Lemma 3.9].
Since suppR Y = {p}, it follows from Theorem 4.13 that p ∈ cosuppR Y holds,

and hence from our assumption that Hom(X,Y ) 6= 0. In particular, there exists
a Z ∈ T such that Hom∗

T(Z,Hom(X, Y )) 6= 0. The adjunction isomorphism (8.1)
then yields Hom∗

T(X ⊗ Z, Y ) 6= 0. �

The preceding result has the following immediate consequence.

Corollary 9.6. Suppose the tensor triangulated category T is generated by its unit.
Then T is stratified by R if and only if for all objects X and Y in T one has

Hom∗
T(X, Y ) = 0 ⇐⇒ suppR X ∩ cosuppR Y = ∅. �

There is the following connection between stratification and costratification.

Theorem 9.7. When the tensor triangulated category T is costratified by R, it is
also stratified by R, and then there is an equality

cosuppRHom(X, Y ) = suppR X ∩ cosuppR Y for all X, Y ∈ T.

Proof. It suffices to prove that given non-zero objects X and Y in ΓpT for some p

in SpecR, there exists a Z such that Hom∗
T(X ⊗ Z, Y ) 6= 0; see [4, Lemma 3.9].

Assume T is costratified by R. As ΓpX 6= 0 there exist an object C ∈ T such that
Hom∗

T(X, C(p)) 6= 0, by Proposition 4.14. It is easy to verify using the adjunction
isomorphism (8.1) that the subcategory

S = {W ∈ T | Hom∗
T(X ⊗ Z, W ) = 0 for all Z ∈ T}

of T is colocalizing and Hom closed.
Now observe that p ∈ cosuppR Y holds by Theorem 4.13, since suppR Y = {p}.

Thus ΛpT = ColocHom(ΛpY ), by the costratification hypothesis. This implies
ΛpY 6∈ S, since C(p) ∈ ΛpT by Theorem 4.13, and C(p) 6∈ S. Thus one obtains that

Hom∗
T(X ⊗ Z, Y ) ∼= Hom∗

T(Γp(X ⊗ Z), Y ) ∼= Hom∗
T(X ⊗ Z, ΛpY ) 6= 0

for some Z in T, and hence that T is stratified.
The formula for cosuppRHom(X, Y ) follows from Theorem 9.5. �

Remark 9.8. It is an open question whether stratification implies costratification.
The proof of Theorem 9.7 uses the fact that every localizing subcategory generated
by a set of objects arises as the kernel of a localization functor; see the proof of
[4, Lemma 3.9]. It is not known whether the analogous statement for colocalizing
subcategories is true or not. This reflects the fact that products are usually more
complicated than coproducts.



26 DAVE BENSON, SRIKANTH B. IYENGAR, AND HENNING KRAUSE

The following corollary combines the classification of colocalizing subcategories,
Corollary 9.2, with the classification of localizing subcategories in [5, Theorem 3.8].

Corollary 9.9. If the tensor triangulated category T is costratified by R then the
map sending a subcategory S to S⊥ induces a bijection

{
tensor closed localizing

subcategories of T

}
∼ //

{
Hom closed colocalizing

subcategories of T

}
.

The inverse map sends a Hom closed colocalizing subcategory U to ⊥U.

Proof. Assume T is costratified by R; it is then stratified by R, by Theorem 9.7. In
particular, both the tensor closed localizing subcategories and the Hom closed colo-
calizing subcategories of T are in bijection with the subsets of suppR T, via the maps
suppR(−) and cosuppR(−), respectively; see [4, Theorem 3.8] and Corollary 9.2.
Now, for any tensor closed localizing subcategory S of T one has equalities

S⊥ = {Y ∈ T | Hom(X, Y ) = 0 for all X ∈ S}

= {Y ∈ T | cosuppR Y ∩ suppR S = ∅}

= cosupp−1
R (suppR T r suppR S)

where the first one is a routine verification, and the second one is by Theorem 9.7.
In the same vein, for any Hom closed localizing subcategory U one has

⊥U = supp−1
R (suppR T r cosuppR U).

It thus follows that, under the identification above, both maps S 7→ S⊥ and U 7→ ⊥U

correspond to the map on suppR T sending a subset to its complement, and are thus
inverse to each other. �

Brown–Comenetz duality. Let k be a commutative ring and suppose that the
category T is k-linear. We denote by D = Homk(−, E) the duality for the category
of k-modules with respect to a fixed injective cogenerator E.

The Brown–Comenetz dual X∗ of an object X is defined by the isomorphism

D HomT(1,−⊗X) ∼= HomT(−, X∗).

Note that there is a natural isomorphism X∗ ∼= Hom(X,1∗).

Proposition 9.10. One has cosuppR 1
∗ = suppR T and cosuppR X∗ ⊆ suppR X

for any X ∈ T; equality holds if T is stratified by R as a tensor triangulated category.

Proof. The first equality holds because X∗ ∼= Hom(X,1∗) and X∗ = 0 if and only
if X = 0. The inclusion follows from Lemma 9.3, since

cosuppR X∗ = cosuppRHom(X,1∗) ⊆ suppR X ∩ cosuppR 1
∗ = suppR X.

When T is stratified, Theorem 9.5 gives equality. �

Remark 9.11. Let T be a tensor triangulated category generated by its unit 1,
and equipped with a canonical R action. Given Remark 8.8, it is clear that T is
(co)stratified by R as a triangulated category if, and only if, it is (co)stratified by
R as a tensor triangulated category. And to verify that T is stratified (respectively,
costratified) it suffices to check that each ΓpT is a minimal localizing subcategory
(respectively, each ΛpT is a minimal colocalizing subcategory).

The results in this section thus yield interesting information about all localizing
and colocalizing subcategories of T. For instance, Corollary 9.2 coincides with the
bijection in Remark 5.7, while Theorem 9.7 says that if T is costratified then it is
also stratified.
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10. Formal dg algebras

In this section we prove that the derived category of dg (short for “differential
graded”) modules over a formal dg algebra is costratified by its cohomology algebra,
when that algebra is graded commutative and noetherian.

Let A be a dg algebra and D(A) its derived category of (left) dg modules. It is
a triangulated category, generated by the compact object A; see [16]. A morphism
A → B of dg algebras is a quasi-isomorphism if the induced map H∗A → H∗B is
an isomorphism. Then restriction induces an equivalence of triangulated categories
D(B)

∼
−→ D(A), with quasi-inverse the functor B ⊗L

A −. Dg algebras A and B are
called quasi-isomorphic if there is a finite chain of quasi-isomorphisms linking them.

The multiplication on A induces one on its cohomology H∗A. We say A is formal
if it is quasi-isomorphic to H∗A, viewed as a dg algebra with zero differential.

Remark 10.1. Suppose that A is formal and that H∗A is graded commutative. Fix
a chain of quasi-isomorphisms linking A and H∗A; it induces an equivalence of
categories D(A) ' D(H∗A).

The derived tensor product of dg modules endows D(H∗A) with a structure of
a tensor triangulated category, with unit H∗A. Thus, D(A) also acquires such a
structure, via the equivalence D(A) ' D(H∗A); denote ⊗ this tensor product on
D(A). The object A is a tensor unit, and one gets an action of H∗A on D(A),
defined by taking for each object X the composite map

H∗A
∼
−→ End∗

D(A)(A)
X⊗−
−−−−−→ End∗

D(A)(X) .

We refer to this as the action induced by the given chain of quasi-isomorphisms
linking A and H∗A.

The action of H∗A on D(A) depends on the choice of quasi-isomorphisms linking
A and H∗A. One has however the following independence statement.

Lemma 10.2. Let A be a formal dg algebra with H∗A graded commutative and
noetherian. For any specialization closed set V ⊆ SpecH∗A the functors ΓV , LV ,
ΛV and V V are independent of a chain of quasi-isomorphisms linking A to H∗A.

Proof. For any chain of quasi-isomorphisms, it is clear from the construction that
the homomorphism H∗A→ End∗

D(A)(A) is the canonical one, and hence it is inde-
pendent of the action. It thus remains to note that the local cohomology functors
on a compactly generated R-linear triangulated category are determined by the
action of R on a compact generator, by [5, Corollary 3.3]. �

In the case when A is a ring, which may be viewed as a dg algebra concentrated
in degree zero, the result below is contained in recent work of Neeman [21]. We
note that the cosupport, and hence the costratification, are independent of a choice
of a canonical action, by Lemma 10.2.

Theorem 10.3. Let A be a formal dg algebra such that H∗A is graded commutative
and noetherian. The category D(A) is costratified by any H∗A-action induced by a
chain of quasi-isomorphisms linking A and H∗A.

Proof. We may replace A by H∗A and assume dA = 0 and A is graded commutative.
Set D = D(A). Since A is a unit and a generator of this tensor triangulated category,
its colocalizing subcategories are RHom closed; see Lemma 8.7. It remains to verify
that ΛpD is a minimal colocalizing subcategory for each homogeneous prime ideal
p in A; see Remark 9.11.
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Let k(p) be the graded residue field at p. The object k(p) is in ΛpD, so to verify
the minimality of ΛpD it suffices to note that for each non-zero M in ΛpD, the
following equalities hold:

ColocD(M) = ColocD(RHomA(ΓpA, M))

= ColocD(RHomA(k(p), M))

= ColocD(k(p))

The first equality holds by Proposition 8.3 since M ∼= ΛpM . As to the second one,
since A is stratified by H∗A, by [6, Theorem 8.1], one has

LocD(ΓpA) = ΓpD = LocD(k(p)) .

Now apply Lemma 8.4. The last equality follows from the fact that k(p) is a graded
field and the action of A on RHomA(k(p), M) factors through k(p). �

Exterior algebras. Let Λ be a graded exterior algebra over a field k on inde-
terminates ξ1, . . . , ξc in negative odd degree, regarded as a dg algebra with zero
differential. We give Λ a structure of Hopf algebra via ∆(ξi) = ξi ⊗ 1 + 1 ⊗ ξi. In
[5, §4], we introduced the homotopy category of graded-injective dg modules over
Λ, denoted K(InjΛ), and proved the following statements: K(InjΛ) is a compactly
generated tensor triangulated category, in the sense of Section 8; its unit is an in-
jective resolution of the trivial module k, and this generates K(InjΛ); the graded
endomorphism algebra of the unit is Ext∗Λ(k, k), which is isomorphic to the graded
polynomial k-algebra S = k[x1, . . . , xc] with |xi| = −|ξi|+ 1.

Theorem 10.4. The category K(InjΛ) is costratified by the action of Ext∗Λ(k, k).

Proof. It is proved in [5, Theorem 6.2] that a suitable dg module J over Λ ⊗k S

yields an equivalence HomΛ(J,−) : K(InjΛ)
∼
−→ D(S). The theorem now follows

from Theorem 10.3. �

11. Finite groups

Throughout this section, G will be a finite group and k a field whose characteristic
divides the order of G. The associated group algebra is denoted kG, and H∗(G, k)
denotes its cohomology k-algebra, Ext∗kG(k, k). This algebra is graded commutative,
because kG is a Hopf algebra, and finitely generated and hence noetherian, by a
result of Evens and Venkov [10, 24]; see also Golod [13].

Let K(Inj kG) be the homotopy category of complexes of injective kG-modules.
This is a compactly generated tensor triangulated category, in the sense of Section 8,
where the tensor product X⊗k Y and the function object Homk(X, Y ) are induced
by those on kG-modules via the diagonal action of G. The injective resolution ik of
the trivial module k is the identity for the tensor product, and it yields a canonical
action of H∗(G, k) on K(Inj kG); see [7] for details. To simplify notation, we write
VG for SpecH∗(G, k), and set for each object X in K(Inj kG)

suppG X = suppH∗(G,k) X and cosuppG X = cosuppH∗(G,k) X.

Example 11.1. We write m for the maximal ideal H>1(G, k).

(1) One has cosuppG X = {m} for any non-zero compact object X ∈ K(Inj kG).
(2) For each p ∈ VG the object Tik(I(p)), from (5.3), satisfies

suppG Tik(I(p)) = {p} and cosuppG Tik(I(p)) = {q ∈ VG | q ⊆ p} .
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Indeed, for (1) observe that the natural morphism X → X∗∗ is an isomor-
phism for each compact object X by [5, Lemma 11.5], where (−)∗ denotes Brown–
Comenetz duality. Proposition 9.10 therefore gives the first inclusion below

cosuppG X ⊆ suppG X∗ ⊆ {m} .

For the second inclusion one uses that the H∗(G, k)-module Hom∗
K(kG)(C, X∗) is

m-torsion for each compact C ∈ K(Inj kG), since it is of the form Homk(M,k)
for some finitely generated H∗(G, k)-module M by the defining isomorphism of the
Brown–Comenetz dual X∗. It remains to observe that cosuppG X 6= ∅ since X 6= 0.

To prove (2), note that Hom∗
K(kG)(C, Tik(I(p))) is p-torsion and p-local for each

compact object C ∈ K(Inj kG), by the isomorphism (5.3) defining Tik(I(p)). Thus
suppG Tik(I(p)) = {p}, while the cosupport is given by Proposition 5.4.

Restriction and induction. For each subgroup H of G restriction and induction
yield exact functors

(−)↓H = HomkG(kG,−) : K(Inj kG)→ K(Inj kH) and

(−)↑G = −⊗kH kG : K(Inj kH)→ K(Inj kH) .

Restriction yields also a homomorphism resG,H : H∗(G, k) → H∗(H, k) of graded
rings, and hence a map:

res∗G,H : VH → VG .

It is easy to verify that these functors fit in the framework of Section 7:

Lemma 11.2. The functor (−)↓H is resG,H-linear and induces an exact functor

((−)↓H , resG,H) : (K(Inj kG), H∗(G, k))→ (K(Inj kH), H∗(H, k))

which preserves coproducts and products. Its right adjoint and left adjoint is (−)↑G,
and the latter is faithful on objects. �

The following result is an analogue of [5, Lemma 9.3].

Lemma 11.3. Let H be a subgroup of G. Fix p ∈ VG and set U = (res∗G,H)−1{p}.

The set U is finite and discrete, and for any X ∈ K(Inj kG) and any Y ∈ K(Inj kH)
there are natural isomorphisms:

(ΓpX)↓H
∼=
∐

q∈U

Γq(X↓H) Γp(Y ↑
G) ∼=

∐

q∈U

(ΓqY )↑G

(ΛpX)↓H
∼=
∏

q∈U

Λq(X↓H) Λp(Y ↑G) ∼=
∏

q∈U

(ΛqY )↑G

Proof. The set U is finite and discrete as H∗(H, k) is finitely generated as a module
over H∗(G, k). The result now follows from Corollary 7.10, given Lemma 11.2. �

The next result is an analogue of [5, Proposition 9.4].

Proposition 11.4. Let H be a subgroup of G. The following statements hold:

(1) For any object Y in K(Inj kH), there is an equality

cosuppG(Y ↑G) = res∗G,H(cosuppH Y ) .

(2) Any object X in K(Inj kG) satisfies X↓H↑
G ∈ ColocHom(X), and hence

cosuppG(X↓H↑
G) ⊆ cosuppG X .
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Proof. Part (1) is a special case of Corollary 7.8, which applies by Lemma 11.2.

(2) One has X↓H↑
G ∼= X⊗k k(G/H), where k(G/H) is the permutation module

on the cosets of H in G. Let W be an injective resolution over kG of k(G/H).
Arguing as in the proof of [7, Proposition 5.3], one can prove that the natural map
X ⊗k k(G/H) → X ⊗k W is an isomorphism in K(Inj kG). As W is compact in
K(Inj kG), see [18, Lemma 2.1], it remains to apply Lemma 8.5. �

Elementary abelian groups. Let E be an elementary abelian p-group

E = 〈g1, . . . , gr〉

and k a field of characteristic p. We set zi = gi − 1, so that the group algebra may
be described as

kE = k[z1, . . . , zr]/(zp
1 , . . . , zp

r ) .

Let A be the Koszul complex on z1, . . . , zr, viewed as a dg algebra: The graded
algebra underlying it is generated by kE in degree zero together with exterior
generators y1, . . . , yr, each of degree −1. The differential on A is given by d(yi) = zi

and d(zi) = 0. We write K(InjA) for the homotopy category of graded-injective
dg A-modules. It is a compactly generated tensor triangulated category, with a
canonical action of Ext∗A(k, k); see [5, §8].

Proposition 11.5. The category K(InjA) is costratified by the action of Ext∗A(k, k).

Proof. Let Λ be an exterior algebra over k on indeterminates ξ1, . . . , ξr of degree
−1, viewed as a dg algebra with dΛ = 0. Let K(InjΛ) be the homotopy category of
graded-injective dg Λ-modules, with tensor triangulated structure described in the
paragraph preceding Theorem 10.4.

By [5, Lemma 7.1] there is a quasi-isomorphism of dg k-algebras φ : Λ → A

defined by φ(ξi) = zp−1
i yi, and by [5, Proposition 4.6] this induces an equivalence

of triangulated categories

HomΛ(A,−) : K(InjΛ)
∼
−→ K(InjA) .

The desired result is now a consequence of Theorem 10.4. �

The next result complements [5, Theorem 8.1], concerning stratification.

Theorem 11.6. Let E be an elementary abelian p-group and k a field of character-
istic p. The category K(Inj kE) is costratified by the canonical action of H∗(E, k).

Proof. Write kE ∼= k[z1, . . . , zr]/(zp
1 , . . . , zp

r ), and let A be the Koszul dg algebra
described above. Note that kE = A0 so the inclusion kE → A is a morphism of
dg algebras; restriction along it gives an exact functor K(InjA)→ K(Inj kE) which
preserves coproducts and products, and is compatible with the induced homomor-
phism α : Ext∗A(k, k) → Ext∗kE(k, k) = H∗(E, k). The functor HomkE(A,−) is a
right adjoint of restriction. We claim that each X ∈ K(Inj kE) satisfies an equality:

(∗) Thick(HomkE(A, X)) = Thick(X) in K(Inj kE),

and, in particular, that HomkE(A,−) is faithful on objects.
Indeed, recall that A is the Koszul complex over kE on z = z1, . . . , zr, and in

particular, a finite free complex of kE-modules. This yields the first isomorphism
below of complexes of kE-modules:

HomkE(A, X) ∼= HomkE(A, kE)⊗kE X ∼= ΣrA⊗kE X

The second one is by self-duality of the Koszul complex; see [8, Proposition 1.6.10].
The radical of the ideal (z) coincides with that of (0), so the complexes A and
kE generate the same thick subcategory in K(Inj kE); see [15, Lemma 6.0.9]. Since
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− ⊗kE X is an exact functor on K(Inj kE), it follows from the isomorphism above
that HomkE(A, X) and X generate the same thick subcategory, as desired.

We are thus in a position to apply Corollary 7.8. Fix a prime p ∈ VE and let
q = α−1(p). The functor HomkE(A,−) then takes ΛpK(Inj kE) to ΛqK(InjA) and
is faithful. Hence, for any non-zero objects X and Y in ΛpK(Inj kE), one has

HomkE(A, Y ) ∈ Coloc(HomkE(A, X)) in K(InjA),

since K(InjA) is costratified by the action of Ext∗A(k, k); see Proposition 11.5. It
implies, in view of the equality (∗) above, that in K(Inj kE) one has

Y ∈ Thick(HomkE(A, Y )) ⊆ Coloc(HomkE(A, X)) = Coloc(X).

Thus, ΛpK(Inj kE) is a minimal colocalizing subcategory. Thus, K(Inj kE) is cos-
tratified by the action of H∗(E, k); see Remark 9.11. �

Next we prepare for a version of the preceding theorem for arbitrary finite groups.

Quillen’s stratification. We consider pairs (H, q) of subgroups H of G and primes
q ∈ VH , and say that (H, q) and (H ′, q′) are G-conjugate if conjugation with some
element in G takes H to H ′ and q to q′.

Lemma 11.7. Let (H, q) and (H ′, q′) be G-conjugate pairs and X in K(Inj kG).

Then Λq(X↓H) 6= 0 if and only if Λq
′

(X↓H′) 6= 0.

Proof. Conjugation with any element g ∈ G induces an automorphism of K(Inj kG)
that takes an object X to Xg. Note that multiplication with g induces an isomor-
phism X

∼
−→ Xg. The assertion follows, since conjugation commutes with restriction

and local homology. �

Quillen has proved that for each p in VG there exists a pair (E, q) such that E
is an elementary abelian subgroup of G and res∗G,E(q) = p; see the discussion after

[22, Proposition 11.2]. We say p originates in such a pair (E, q) if there does not
exist another such pair (E′, q′) with E′ a proper subgroup of E. In this language,
[22, Theorem 10.2] reads:

Theorem 11.8. For any p ∈ VG all pairs (E, q) where p originates are G-conjugate.
This sets up a one to one correspondence between primes p in VG and G-conjugacy
classes of such pairs (E, q). �

The proof of the next result can be shortened considerably by invoking the sub-
group theorem for supports, [4, Theorem 11.2], which is deduced from the stratifica-
tion theorem for K(Inj kG), [4, Theorem 9.7]. We give a direct proof, by extracting
an argument from the proof of the latter result.

Proposition 11.9. Fix p ∈ VG and suppose p originates in E. Given a non-zero
object X in ΛpK(Inj kG), one has

X↓E =
∏

res∗
G,E

(q)=p

Λq(X↓E)

and Λq(X↓E) 6= 0 for each such q.

Proof. The decomposition of X↓E is by Lemma 11.3. For the remaining statements,

it suffices to find one pair (E′, q′) where p originates and such that Λq
′

(X↓E′) 6= 0.
Then Theorem 11.8 yields that each pair (E, q) as in the statement is G-conjugate
to (E′, q′), and hence Λq(X↓E) 6= 0, by Lemma 11.7.
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Since X 6= 0 holds, Chouinard’s theorem for K(Inj kG), see [4, Proposition 9.6(3)],
provides an elementary abelian subgroup E′′ of G such that X↓E′′ 6= 0. Fix a q′′

in cosuppE′′(X↓E′′). Proposition 11.4 then yields

res∗G,E′′(q′′) ∈ cosuppG(X↓E′′↑G) ⊆ cosuppG X = {p} .

Applying Theorem 11.8 to E′′ one gets a pair (E′, q′), with E′ a subgroup of E′′,
where q′′ originates. Observe that p then originates in (E′, q′), by functoriality of
restrictions and the computation above. It remains to note that

q
′ ∈ (res∗E′′,E′)−1(cosuppE′′(X↓E′′)) = cosuppE′(X↓E′) ,

where the inclusion holds by the choice of q′ and the equality is by Theorem 7.11,
applied to the functor

((−)↓E′ , resE′′,E′) : (K(Inj kE′′), H∗(E′′, k))→ (K(Inj kE′), H∗(E′, k)) ;

noting that the hypotheses are satisfied by Lemma 11.2 and Theorem 11.6. �

Finite groups. The following theorem is an analogue of [5, Theorem 9.7], which
establishes the stratification of K(Inj kG); it contains Theorem 11.6, but the latter
statement is used in the proof, both directly and by way of Proposition 11.9.

Theorem 11.10. The tensor triangulated category K(Inj kG) is costratified by the
canonical action of the cohomology algebra H∗(G, k).

Proof. Fix p ∈ VG and suppose it originates in E. For each compact object C in
K(Inj kE) and each q ∈ VE with res∗G,E(q) = p, Proposition 5.4 and (3.1) imply

cosuppE(TC//q(I(q))) ⊆ {q} .

It follows from Theorem 11.6 and Proposition 11.9 that each non-zero object X in
ΛpK(Inj kG) satisfies

TC//q(I(q)) ∈ Coloc(Λq(X↓E)) ⊆ Coloc(X↓E) .

Together with Proposition 11.4, one thus obtains:

TC//q(I(q))↑G ∈ Coloc(X↓E↑
G) ⊆ ColocHom(X) .

It remains to observe that the collection of objects TC//q(I(q))↑G cogenerates the
triangulated category ΛpK(Inj kG). This is a consequence of Proposition 5.4 and
Lemma 7.12, which can be applied, thanks to Lemma 11.2 and Proposition 11.9. �

Applications. The consequences of costratification described in Section 9 apply
to K(Inj kG). In particular, Theorem 9.7 implies that K(Inj kG) is stratified as a
tensor triangulated category by H∗(G, k), which is [5, Theorem 9.7]. A modification
of Theorem 7.11 yields the following subgroup theorem for cosupport, which is
analogous to the one for support; see [5, Theorem 11.2].

Theorem 11.11. Let H be a subgroup of G. Each object X in K(Inj kG) satisfies

cosuppH(X↓H) = (res∗G,H)−1(cosuppG X).

Proof. Restriction and induction form an adjoint pair of functors satisfying the
assumptions of Theorem 7.11. Thus one gets

cosuppH(X↓H) ⊆ (res∗G,H)−1(cosuppG X).

For the other inclusion, one uses stratification of K(Inj kG) as follows.
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Fix a q ∈ VH with q 6∈ cosuppH(X↓H). We need to show that p = res∗G,H(q) is
not in cosuppG X. Using the adjunction formula for function objects from Propo-
sition 8.3, one has

Homk(Γq−, X↓H) ∼= Homk(−, ΛqX↓H) = 0.

This implies Homk((Γq−)↑G, X) = 0, since

Homk(U, V ↓H)↑G ∼= Homk(U↑G, V )

for all U in K(Inj kH) and V in K(Inj kG), by [1, Proposition 3.3]. There exists some

U in K(InjH) such that (ΓqU)↑G 6= 0 since induction is faithful on objects. More-

over, (ΓqU)↑G belongs to ΓpK(Inj kG), by Corollary 7.8. Since K(Inj kG) is stratified
as a tensor triangulated category by H∗(G, k), the subcategory ΓpK(Inj kG) con-
tains no non-trivial tensor ideal localizing subcategories, and hence coincides with
Loc⊗((ΓqU)↑G). Thus

0 = Homk(Γp−, X) ∼= Homk(−, ΛpX),

again by Proposition 8.3, and therefore p 6∈ cosuppR X. �

Stable module category. Let Mod(kG) denote the (abelian) category of all kG-
modules. The stable module category, StMod(kG), has the same objects as the
module category Mod(kG), but the morphisms in StMod(kG) are given by quoti-
enting out those morphisms in Mod(kG) that factor through a projective module.
The category StMod(kG) is tensor triangulated, with triangles induced from short
exact sequences of kG-modules, and product the tensor product over k with diago-
nal action. The trivial module k is the unit of the product, and its graded endomor-

phism ring in StMod(kG) is the Tate cohomology algebra Ĥ∗(G, k). There is thus

an action of H∗(G, k) on StMod(kG), via the natural map H∗(G, k)→ Ĥ∗(G, k).
We regard StMod(kG) as a triangulated subcategory of K(Inj kG), as in [7, §6].

Proposition 11.12. The functor StMod(kG)→ K(Inj kG) that takes a kG-module
to its Tate resolution identifies the tensor triangulated category StMod(kG) with the
(co)localizing subcategory consisting of all acyclic complexes. �

The action of H∗(G, k) on StMod(kG) is compatible with this identification.
Moreover the acyclic complexes form a localizing and colocalizing subcategory of
K(Inj kG) that is Hom and tensor closed. Note that a complex is acyclic if and only
if its (co)support does not contain the maximal ideal of H∗(G, k). This follows from
[5, Proposition 9.6] for the support, and then from Corollary 4.9 for the cosupport.

Theorem 11.13. The tensor triangulated category StMod(kG) is costratified by
the canonical action of H∗(G, k).

Proof. Given Proposition 11.12, the desired result follows from Theorem 11.10,
since Λp StMod(kG) = ΛpK(Inj kG) for each non-maximal p in SpecH∗(G, k). �

We can now justify the results stated in the introduction.

Proof of Theorem 1.1. From Theorems 11.13 and 9.7 it follows that the tensor tri-
angulated category StMod(kG) is stratified and costratified by the canonical action
of H∗(G, k). Thus the map sending a subset U of VG to the subcategory of kG-
modules X satisfying suppG X ⊆ U yields a bijection between subsets of VG and
tensor ideal localizing subcategories of StMod(kG); see [5, Theorem 3.8]. Compos-
ing this bijection with the one between localizing and colocalizing subcategories
from Corollary 9.9 gives the desired result. �



34 DAVE BENSON, SRIKANTH B. IYENGAR, AND HENNING KRAUSE

Proof of Corollary 1.2. Given Theorem 11.13, this follows from Corollary 9.9. �

We close this discussion on the stable module category with the following exam-
ple. There is no analogue for arbitrary tensor triangulated categories; see Exam-
ple 11.1 and Proposition 4.19.

Example 11.14. There is an equality cosuppG M = suppG M for any finite di-
mensional module M in StMod(kG).

Indeed, denote by (−)∗ the Brown–Comenetz duality on StMod(kG) which equals
Ω Homk(−, k) by [5, Proposition 11.6], where ΩN denotes the kernel of a projective
cover of a kG-module N . Then one gets the first equality below because M is finite
dimensional:

cosuppG M = cosuppG M∗∗ = suppG M∗ = suppG M.

The second equality is Proposition 9.10, and the last one is well-known; see [2,
Theorem 5.1.1].

Modules. Although Mod(kG) is not a triangulated category, we define colocal-
izing subcategories in an analogous way. A full subcategory of Mod(kG) is said
to be thick if whenever two modules in a short exact sequence are in, then so is
the third. A colocalizing subcategory S of Mod(kG) is a thick subcategory closed
under all products, that is, for any family of modules Mi (i ∈ I) in S the product∏

i Mi is in S. The next lemma describes an extra tensor condition for colocalizing
subcategories; it parallels Lemma 8.5.

Lemma 11.15. Let S be a colocalizing subcategory of Mod(kG). Then the following
conditions are equivalent:

(1) If N is a simple kG-module and M is in S then N ⊗k M is in S.
(2) If N is a finitely generated kG-module and M is in S then N ⊗k M is in S.
(3) If N is a kG-module and M is in S then Homk(N, M) is in S. �

A colocalizing subcategory of Mod(kG) is said to be Hom closed if the equivalent
conditions of the lemma hold. The next result is analogous to [5, Proposition 2.1].

Proposition 11.16. The canonical functor from Mod(kG) to StMod(kG) induces
a one to one correspondence between non-zero Hom closed colocalizing subcategories
of Mod(kG) and Hom closed colocalizing subcategories of StMod(kG). �

Thus the classification of Hom closed colocalizing subcategories of Mod(kG) is a
consequence of the costratification of StMod(kG) formulated in Theorem 11.13.

Appendix A. Localization functors and their adjoints

Localization functors. A functor L : C→ C is called localization functor if there
exists a morphism η : IdC → L such that the morphism Lη : L→ L2 is invertible and
Lη = ηL. The morphism η is called adjunction. Recall that a morphism η : F → F ′

between functors is invertible if ηX : FX → F ′X is invertible for each object X.
A functor Γ : C→ C is by definition a colocalization functor if its opposite functor
Γ op : Cop → Cop is a localization functor. The corresponding morphism Γ → IdC is
called coadjunction.

Any localization functor L : C → C can be written as the composite of two
functors that form an adjoint pair. In order to define these functors let us denote
by Im L the essential image of L, that is, the full subcategory of C that is formed
by all objects isomorphic to one of the form LX for some X in C.
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Lemma A.1. Let L : C→ C be a localization functor and write L as a composite

C
F
−→ Im L

G
−→ C

where G denotes the inclusion functor. Then G is a right adjoint of F .

Proof. See [4, Lemma 3.1] �

Next we characterize the adjoint pairs of functors (F,G) such that its composite
L = GF is a localization functor. Given any category C and a class Σ of morphisms
in C, we denote by Q : C→ C[Σ−1] the universal functor that inverts all morphisms
in Σ; see [12, §I.1]. Thus Qφ is invertible for all φ in Σ, and any functor F : C→ D

such that Fφ is invertible for all φ in Σ factors uniquely through Q.

Lemma A.2. Let F : C → D and G : D → C be a pair of functors such that G is
a right adjoint of F . Let L = GF and η : IdC → L be the adjunction morphism.
Then the following are equivalent:

(1) The morphism Lη : L → L2 is invertible and Lη = ηL (that is, L is a
localization functor).

(2) The functor F induces an equivalence C[Σ−1]
∼
−→ D, where Σ denotes the

class of morphisms φ in C such that Fφ is invertible.
(3) The functor G is fully faithful.

Proof. For (1)⇔ (3) see [4, Lemma 3.1]; for (2)⇔ (3) see [12, Proposition I.1.3]. �

Let F : C → D be an exact functor between triangulated categories. Then the
full subcategory KerF consisting of all objects that are annihilated by F is a thick
subcategory of C. Denote by Σ the class of morphisms φ in C such that Fφ is
invertible. Then a morphism in C belongs to Σ if and only if its cone belongs to
Ker F . Thus C[Σ−1] = C/ Ker F ; see [25].

The right adjoint of a localization functor. We discuss the existence of a right
adjoint of a localization functor.

Lemma A.3. Let L : C→ C be a localization functor with a right adjoint Γ . Then
Γ is a colocalization functor satisfying Im Γ = Im L. If η : IdC → L denotes the
adjunction of L, then the coadjunction θ : Γ → IdC of Γ is given by the composite

HomC(X, ΓY )
∼
−→ HomC(LX, Y )

(ηX,Y )
−−−−−→ HomC(X, Y ), X, Y ∈ C .

Proof. Fix an object Y in C. We need to show that Γ (θY ) is an isomorphism and
that Γ (θY ) = θ(ΓY ). Denote by

φX,Y : HomC(X, ΓY )
∼
−→ HomC(LX, Y )

the natural bijection given by the adjunction between L and Γ . We use that L(ηX)
is an isomorphism and that L(ηX) = η(LX). The following commutative diagram
shows that Γ (θY ) is an isomorphism since all horizontal maps are bijections.

HomC(X, Γ 2Y )
φX,Γ Y

//

(X,ΓθY )

��

HomC(LX,ΓY )
φLX,Y

//

(LX,θY )

��

HomC(L2X, Y )

(ηLX,Y )

��

HomC(X,ΓY )
φX,Y

// HomC(LX, Y )
id // HomC(LX, Y )
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Combining the previous diagram with the next one shows that Γ (θY ) = θ(ΓY ).

HomC(X, Γ 2Y )
φX,Γ Y

//

(X,θΓY )

��

HomC(LX,ΓY )
φLX,Y

//

(ηX,ΓY )

��

HomC(L2X, Y )

(LηX,Y )

��

HomC(X,ΓY )
id // HomC(X, ΓY )

φX,Y
// HomC(LX, Y )

It remains to show that Im L = Im Γ . Suppose that X belongs to Im L. Then ηX
is invertible, and therefore the map HomC(X, θY ) is bijective for all Y . Using this
fact for Y = X and Y = ΓX shows that θX is invertible. Thus ImL ⊆ Im Γ . The
proof of the other inclusion is similar. �

Proposition A.4. For a localization functor L : C→ C are equivalent:

(1) The functor L admits a right adjoint.
(2) The inclusion functor G : Im L→ C admits a right adjoint Gρ.
(3) There exists a colocalization functor Γ : C→ C such that Im Γ = Im L.

In that case Γ ∼= GGρ and Γ is a right adjoint of L.

Proof. (1) ⇒ (3): See Lemma A.3.
(3) ⇒ (2): See Lemma A.1.
(2)⇒ (1): Write L as composite L = GF as in Lemma A.1. Then the composite

GGρ is a right adjoint of L, since G is a right adjoint of F . �

The left adjoint of a localization functor. We discuss the existence of a left
adjoint of a localization functor.

Proposition A.5. For a localization functor L : C→ C are equivalent:

(1) The functor L admits a left adjoint.
(2) The functor F : C→ Im L sending X in C to LX admits a left adjoint Fλ.
(3) There exists a colocalization functor Γ : C→ C such that Γφ is invertible if

and only Lφ is invertible for each morphism φ in C.

In that case Γ ∼= FλF and Γ is a left adjoint of L.

Proof. Denote by Σ be the class of morphisms in C that are inverted by L.
(1) ⇒ (2): Let Lλ be a left adjoint of L and write L = GF as in Lemma A.1.

Then we have for X, Y in C

HomC(X,FY ) ∼= HomC(GX, GFY ) ∼= HomC(LλGX,Y ) .

Thus LλG is a left adjoint of F .
(2) ⇒ (3): It follows from Lemma A.2 that F induces an equivalence C[Σ−1]

∼
−→

Im L. Applying the dual assertion of this lemma shows that Fλ is fully faithful and
that Γ = FλF is a colocalization functor. Moreover, the class of morphisms that
are inverted by Γ coincides with the corresponding class for F , which equals Σ.

(3) ⇒ (1): Denote by Q : C → C[Σ−1] the universal functor inverting Σ and let
L̄, Γ̄ : C[Σ−1] → C be the induced functors satisfying L = L̄Q and Γ = Γ̄Q. It
follows from Lemma A.2 that L̄ is a right adjoint of Q and that Γ̄ is a left adjoint
of Q. Thus for X, Y in C we have

HomC(Γ̄QX, Y ) ∼= HomC(QX, QY ) ∼= HomC(X, L̄QY ) .

It follows that Γ is a left adjoint of L. �

Remark A.6. Let C be a triangulated category and L : C→ C an exact localization
functor. Then statements (2) and (3) in Proposition A.5 admits the following
equivalent reformulations:
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(2′) The quotient functor C→ C/ Ker L admits a left adjoint.
(3′) There exists an exact colocalization functor Γ : C → C such that KerΓ =

Ker L.

The equivalence C/ Ker L
∼
−→ Im L has already been mentioned. The reformulation

of (3) relies on the same argument: an exact functor inverts a morphism φ in C if
and only if it annihilates the cone of φ.
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