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ABSTRACT. Local cohomology functors are constructed for the category of co-
homological functors on an essentially small triangulated category T equipped
with an action of a commutative noetherian ring. This is used to establish
a local-global principle and to develop a notion of stratification, for T and
the cohomological functors on it, analogous to such concepts for compactly
generated triangulated categories.
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1. INTRODUCTION

In this paper we establish an analogue of the local-global principle from com-
mutative algebra [8, Chap. II, §3] for an essentially small triangulated category,
using the central action of a graded commutative ring. This has applications to the
theory of support varieties in representation theory and in commutative algebra,
that started with the work of Quillen [23] and Carlson [9].

Our paradigms for the local-global principle are the ones from [5] and from
Stevenson’s work [24] for compactly generated (so “big”) triangulated categories.
These play a crucial role in the classification of localising subcategories of the stable
module category of the group algebra of a finite group [5] and of the singularity
category of a locally complete intersection ring [25]. The local-global principle from
[5] does yield an analogue (see Proposition 8.3) for the “small” category of compact
objects, which is useful in studying its thick subcategories, for example. The work
presented here arose from a search for a more direct proof of this result. Our reason
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for doing so, besides the obvious aesthetic one, is that there are small categories for
which there is no canonical choice of a big category. And even if there were one, it
is not clear that an action of a ring of operators on the small category extends to
an action on the big one.

Following an idea of Grothendieck—Verdier [13], in this work we propose a differ-
ent model for such constructions. Namely, given an essentially small triangulated
category T, we consider the category Coh T of cohomological functors T°? — Ab
into the category of abelian groups. Up to an equivalence, this is the category of
ind-objects of T in the sense of [13]. The functor category contains a copy of T,
because Yoneda’s lemma allows to identify an object X € T with the representable
functor Homt(—, X). While Coh T is no longer triangulated, it does carry an exact
structure that is sufficient for our purposes; moreover, it admits filtered colimits.
These are the basic ingredients we use for setting up our machinery.

Let us explain the main results in this work. Fix a noetherian graded commuta-
tive ring R acting centrally on T; the principal examples are listed in Example 3.1.
This gives for each pair of objects X,Y in T an R-action on the graded abelian
group

Hom}(X,Y) = @5 Homr (X, £"Y).
neZ
Let Spec R denote the set of homogeneous prime ideals. For each p € Spec R there
is a localisation functor T — T, taking an object X to X,. The category T, has
the same objects as T and there is a natural isomorphism

Hom%(X,Y), — Homt (X,,Yp).

The formulation of the following local-global principle involves Koszul objects.
Given an object X € T and a homogeneous ideal a of R, an iterated cone construc-
tion yields an object X/a. While this object depends on a choice of a sequence
of generators of a, the thick subcategory generated by it does not; see Lemma 3.9.
For p € Spec R set X (p) = X, /p.

Theorem 5.10 (Local-global principle). Let S be a thick subcategory of T. Then
the following conditions are equivalent for an object X in T:

(1) X belongs to S.
(2) X, belongs to Thick(S,) for each p € Spec R.
(3) X(p) belongs to Thick(Sy) for each p € Spec R.

Motivated by this result, we define the support of an object X € T to be the set

suppr X = {p € Spec R | X(p) # 0}.

When the R-module Endy(X) is finitely generated, this coincides with the sup-
port, in the usual sense in commutative algebra, of the R-module Endy(X); see
Proposition 4.2. For each p in Spec R, set

L,T={X€eT,|Endy (X)q=0forallqg2p}

This is a thick subcategory of T,. We say that T is stratified by the action of R if
for each p in Spec R, the category I}, T admits no proper thick subcategory.

Theorem 7.4. Suppose that T is stratified by the action of R. For any pair of
objects X, Y in T one has

X € Thick(Y) <= suppp X Csuppp?,
Hom7(X,Y)=0 <=  (supppX)N(supprY)=2.
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There is a partial converse when the endomorphism rings of objects in T are
finitely generated R-modules: If T is not stratified, then there are objects in T
having the same support but generating different thick subcategories; see Proposi-
tion 7.5.

The proofs of Theorems 5.10 and 7.4 involve the category of cohomological func-
tors. Indeed, the R-action on T has an obvious extension to Coh T, and based on
this we develop a theory of local cohomology and support for objects in Coh T,
analogous to the one in [4] for compactly generated triangulated categories. This
forms the foundation for much of this work.

In order to illustrate these results and techniques, it is shown that the category of
perfect complexes over a commutative noetherian ring is stratified; this amounts to
a classical theorem of Hopkins [14] and Neeman [20]. Applications of the local-global
principle, Theorem 5.10, to the study of modules over locally complete intersections
and over integral group rings, will appear elsewhere.

Most ideas in this paper are taken from our previous work [4, 5, 6]; see also the
references given there for inspiration by other authors. However, the categorical
setting in this work is fundamentally different and the systematic use of the category
of cohomological functors in this context seems to be new. We do not work with a
compactly generated triangulated category having arbitrary coproducts, but instead
with an essentially small triangulated category. A brief comparison between these
two approaches can be found in the final section. Otherwise, references to previous
work are kept to a minimum.

2. COHOMOLOGICAL FUNCTORS

In this section we introduce the category of cohomological functors on a triangu-
lated category and study its basic properties. For instance, we discuss base change
and a long exact sequence corresponding to a Verdier quotient.

Cohomological functors. Let T be an essentially small triangulated category
with suspension ¥: T =5 T. Recall that a functor T°? — Ab into the category of
abelian groups is cohomological if it takes exact triangles to exact sequences. We
denote by Coh T the category of cohomological functors. Morphisms in Coh T are
natural transformation and the Yoneda functor T — Coh T sending X € T to

HX = HomT(—,X)

is fully faithful. The suspension ¥ extends to a functor Coh T =+ Coh T by taking
Fin Coh T to F oX~!; we denote this again by X.

It is convenient to view Coh T as a full subcategory of the category Mod T of all
additive functors T°? — Ab. Note that (co)limits in Mod T are computed pointwise.
For E and F in Mod T we write Hom(F, F') for the set of morphisms from E to F.
Thus Hom(Hx, F) & F(X) for X in T, by Yoneda’s lemma.

Any additive functor F': T°? — Ab can be written canonically as a colimit of
representable functors

(21) (COHII’IHXHF Hx) l) F

where the colimit is taken over the slice category T/F; see [13, Proposition 3.4].
Objects in T/F are morphisms Hx — F where X runs through the objects of T.
A morphism in T/F from Hx 2 F to Hx/ 2 Fisa morphism a: X — X' in T
such that ¢'H, = ¢.

A theorem of Lazard says that a module is flat if and only if it is a filtered colimit
of finitely generated free modules; this has been generalised to functor categories
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by Oberst and Rohrl [22]. The following lemma shows that cohomological and flat
functors agree; this is well-known, for instance from [19, Lemma 2.1].

Lemma 2.2. The cohomological functors T°P — Ab are precisely the filtered col-
imits of representable functors (in the category of additive functors TP — Ab). In
particular, the category Coh T has filtered colimits.

Sketch of proof. A filtered colimit of exact sequences is again exact. Thus a filtered
colimit of representable functors is cohomological. Conversely, given a cohomolog-
ical functor F', one easily checks that the slice category T/F is filtered. Thus (2.1)
gives a presentation of F' as a filtered colimit of representable functors. O

We say that a sequence of morphisms in Coh T is ezact provided that evaluation
at each object in T yields an exact sequence in Ab.

Lemma 2.3. The category Coh T is an exact category in the sense of Quillen; it
admits enough projective and enough injective objects.

Proof. The cohomological functors form an extension closed subcategory of Mod T
containing all projective objects and all injective objects. This is clear for the
projective objects and follows easily from Yoneda’s lemma for the injectives. O

Exact functors. Let T and U be essentially small triangulated categories. A
functor P: Coh T — Coh U is said to be exact if it takes exact sequences to exact
sequences and if there is a natural isomorphism PoX = Yo P.

An exact functor f: T — U induces a pair of functors

f*: CohT — Coh U and fe: CohU — Coh T

where f*(F) = colimp, r Hyx) and f.(G) = Go f. The next lemma collects
some of their basic properties. Recall that a triangulated subcategory is a full
additive subcategory closed under forming cones and suspensions. The functor f
is a quotient functor when it is equivalent to the canonical functor T — T/S given
by a triangulated subcategory S C T.

Lemma 2.4. Let f: T — U be an exact functor between essentially small triangu-
lated categories.
(1) The functor f* is a left adjoint of f..
(2) The functors f* and f. are exact and preserve filtered colimits.
(3) If f is fully faithful, then f* is fully faithful and Id = f, o f*.
(4) If f is a quotient functor, then f. is fully faithful and f*o f. = 1d.

Proof. (1) Given F € Coh T and G € Coh U, we claim that
Hom(f*F,G) = Hom(F, f.G).

When F is representable this is immediate from Yoneda’s lemma. The general case
then follows since F' can be written as a colimit of representable functors.

(2) Clearly, f. is exact and preserves filtered colimits. A left adjoint, in particu-
lar, f*, automatically preserves colimits. The exactness of f* follows from the fact
that f is exact; see [16, Lemma 2.2].

(3) We use the fact that for any pair (S,T) of adjoint functors, the left adjoint
S is fully faithful iff the unit Id — T oS is invertible; see [12, Proposition 1.3]. If
f is fully faithful, then F' = (f, o f*)(F) for any representable functor F', and the
general case follows by taking filtered colimits.

(4) If f is a quotient functor, then f, is fully faithful; see [12, Lemma 1.2]. Thus
the counit f* o f, — Id is invertible, by the argument dual to the one in (3). O
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Remark 2.5. Observe that when f* is fully faithful so is f, since the Yoneda em-
bedding of T into Coh T is fully faithful. However, there are examples where f, is
fully faithful but f is not a quotient functor; see [17, Example 7.4].

Triangulated subcategories. Let S C T be a triangulated subcategory. We write
i: S — T for the inclusion and ¢: T — T/S for the corresponding quotient functor.
Henceforth we view Coh S and Coh T/S as full subcategories of Coh T, via ¢* and g.
respectively. More specifically, there are identifications

CohS = {F € CohT | F = colim, Hy, with all X, €S},
CohT/S={F € CohT | F|s = 0}.

The second identification follows from the universal property of the quotient T/S
[26, Chap. II, Cor. 2.2.11]. Here is a useful recognition criterion for objects in CohS.

Lemma 2.6. Let S C T be a triangulated subcategory. Then F € Coh T belongs to
Coh S iff each morphism Hx — F with X € T factors through Hy for someY € S.

Proof. As in (2.1), we write F as a filtered colimit
F= COlimHXHF Hx.

Then the assertion is an immediate consequence of the following lemma, applied
with C’ and C the slice categories S/F and T/F, respectively. O

Lemma 2.7. Let i: C' — C be a fully faithful functor with C a small filtered
category. Suppose that for any X € C there is an object Y € C' and a morphism
X — Y. Then C' is a small filtered category, and for any functor F: C — D into
a category which admits filtered colimits, the natural morphism

colimy e F(iY) — colimxec F(X)
is an isomorphism.

Proof. See [13, Proposition 8.1.3]. O

Localisation. Let S C T be a triangulated subcategory. With i: S — T and
¢: T — T/S the canonical functors, set

(2.8) I'=1i%o1, and L=gq.0q".
These are exact functors on Coh T. By definition, for any F' € Coh T one has
(2.9) I'F = colimpy,_,r Homt(—, 5)

where the colimit is taken over the slice category S/F, which is filtered because S
is a triangulated subcategory.

Proposition 2.10. In Coh T each object F' fits into a functorial exact sequence
(2.11) i — Y Y LF) —TI'F —F —LF —%(I'F) — %F — ---
Moreover, any exact sequence

(2.12) i NP B F— F 5 SF 5 YF — .-

in Coh T with F’ € CohS and F"" € CohT/S is isomorphic to (2.11).
For F = Homt(—, X), the sequence (2.11) specialises to

(2.13) -+ — Homys(—, ¥ 'X) — colimg_, x Homr(—, S) —
— Homt(—, X) — Homry/s(—, X) — - --
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Proof. Fix an object X in T. Specialising (2.9) one gets that
I'Homt(—, X) = colimg_, x Homt(—, 5)

This functor fits into an exact sequence of cohomological functors of the form (2.13)
since one has by definition

Hom-.-/s(f, X) = colimx_,y Homt(—,Y)

where X — Y runs through all morphisms with cone in S. The sequence is functorial
and hence yields an exact sequence for each filtered colimit of representable functors.
This justifies (2.11).

Given another sequence (2.12), we apply the exact functor L and obtain the
following commuting diagram.

F F P SF
LF' LF LF" L(SF') — -

The morphism F — F” is isomorphic to F — LF, since LF' = 0 = X(LF’) and

F"” — LF"”. Analogously, an application of I" shows that F’ — F is isomorphic to
I'F — F. This yields an isomorphism between (2.11) and (2.12). O

The functor L from (2.8) is a localisation functor!, while I" is a colocalisation
functor?, and the functorial exact sequence (2.11) is called the localisation sequence
for S C T. In the following we consider the case that one of the natural morphisms
I'F — F and F — LF is an isomorphism.

Corollary 2.14. Let S C T be a triangulated subcategory and F € Coh T. Then
FeCohS <« IF~¥F <+ LF=0,
FeCohT/S <+ FLF <+ TIF=0. O
A pair (U, V) of full subcategories of an additive category forms a torsion pair
provided that the inclusion of U admits a right adjoint, the inclusion of V admits a
left adjoint, U = {X | Hom(X,Y) =0 for all Y € V}, and V = {Y | Hom(X,Y) =
0 for all X € U}.
Corollary 2.15. LetS C T be a triangulated subcategory. Then CohS and CohT/S
form a torsion pair in Coh T. Thus
CohT/S={F € CohT | Hom(E, F) =0 for all E € CohS},
CohS ={F € CohT | Hom(F,G) =0 for all G € Coh T/S}.
Proof. We have already seen in Lemma 2.4 that the inclusion of CohS admits a
right adjoint while the inclusion of Coh T/S admits a left adjoint. For the first
equality, observe that Hom(E, F)) = 0 for all E € CohS means that F(X) = 0 for
all X € S. This is equivalent to I'F' = 0, and therefore to F' € CohT/S. For the
second equality, it remains to show that Hom(F,G) = 0 for all G € Coh T/S implies
F € CohS. The assumption on F' implies LF = 0 since L = ¢, o¢* and
Hom(¢"F,q"F) = Hom(F, (¢ 0¢")F) = 0.
Thus F' belongs to CohS. O

LThe natural morphism 7: Id — L has the property that Ln is invertible and Ln = nL.
2The natural morphism 6: I' — Id has the property that I'6 is invertible and I'0 = 6I".
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In general, (co)localisation functors do note commute; see [4, Example 3.5]. The
following lemma identifies some conditions under which they do.

Lemma 2.16. Let S; C Sy C T be triangulated subcategories and let (I'1, L)
and (Is, L) be the corresponding pairs of (co)localisation functors on CohT. The
morphisms in (2.11) induce isomorphisms

o=y =I5, LiLy=Ly=LaLy, I1Ly=0=Laly, I3L;=Li15.
Proof. Apply the localisation sequence (2.11). O

This has the following useful consequence.
Corollary 2.17. Given thick subcategories S1 and S of T, one has

Sl - 52 < Coh Sl C Coh SQ. O

3. COHOMOLOGICAL LOCALISATION

In this section we introduce cohomological localisation functors for categories
of cohomological functors and explain how to compute these functors in terms of
Koszul objects. These are analogues of results in [4, §§4-6].

Let T be an essentially small triangulated category. For objects X,Y in T set

Hom$(X,Y) = @) Homr(E7"X,Y).
neEZ
More generally, each I in Mod T induces a functor F'*: T°? — Ab* into the category
of graded abelian groups, with

F'"(X)=F(X™"X) foreachn € Z.

Central ring actions. Let R be a graded commutative ring; thus R is Z-graded
and satisfies 7s = (—1)!"lIslsr for each pair of homogeneous elements 7, s in R. We
say that T is R-linear, or that R acts on T, if there is a homomorphism ¢: R —
Z*(T) of graded rings, where

Z4(T) = @{n: ldr = =" [nS = (=1)"n}
ne”Z
is the graded centre of T. For each object X in T this yields a homomorphism
¢x: R — End7(X) of graded rings such that for all objects X, Y € T the R-module
structures on Hom3(X,Y") induced by ¢x and ¢y agree up to a sign. Namely, for
any homogeneous elements r € R and o € Hom7(X,Y), one has

oy (r)a = (=DM agx (r).
Here are some examples.

Example 3.1. (1) Any triangulated category admits a canonical action of Z.

(2) The derived category of a ring A has a canonical action of the centre of A.

(3) If A is an algebra over a field k, the derived category of A has a canonical
action of the Hochschild cohomology of A over k.

(4) Given a finite dimensional Hopf algebra H over a field k (for example, the
group algebra of a finite group), the derived category of H (and hence also the
stable module category) has a canonical action of the k-algebra Exty; (k, k).

We fix an action of R on T. The following observations will be used repeatedly.

Remark 3.2. The R-action on T induces an action on any triangulated subcategory
S C T and on the quotient T/S, compatible with the inclusion and quotient functors,
respectively. It also extends to an action on Mod T.
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Torsion objects. The set of homogeneous prime ideals of R is denoted Spec R.
For a homogeneous ideal a of R we set
V(a) = {p € SpecR | a C p}.

Let V be a specialisation closed subset of Spec R; this condition means that if V
contains a prime p, then it contains everything in V(p). An R-module M is V-
torsion if M, = 0 for each p € Spec R\ V. Note that M is V(a)-torsion if and only
if each r € a and x € M satisfy "z = 0 for n > 0.

A functor F' € CohT is V-torsion if F*(X) is V-torsion for all X € T. The full
subcategory of all V-torsion functors is denoted by (Coh T)y,. Analogously, an object
Y € T is V-torsion if End7(Y) is V-torsion. This means the functor Homy(—,Y)
is V-torsion, since for each X € T the R-action on Hom7(X,Y') factors through
End3(Y). Set

Ty ={X € T |End}(X), =0 for all p € Spec R\ V}.
Note that Ty is a thick subcategory of T. Recall that we view Coh(Ty) as a full
subcategory of Coh T. It follows from the definitions that there is an inclusion

Equality holds when R is noetherian; see Corollary 4.4, and also Propositions 3.6
and 3.10. Following the definition in (2.8), the inclusion Ty C T induces functors

Iy, Ly: CohT — CohT,
where I3, is a colocalisation functor and Ly is a localisation functor. Note that

these functors are exact and preserve filtered colimits.

Inverting central elements. Given a homogeneous element r € R of degree d
and X € T, we write X//r for the cone of the morphisms X 5 »4X . This definition
yields the following exact sequence.

(34) "'HHXi)HEdX—>HX//T—>HEXi>HZd+1X—>"'

In particular, inverting r in T is equivalent to annihilating X /r for all X € T.

Let ® be a multiplicatively closed set of homogeneous elements in R. The fol-
lowing lemma describes the quotient functor for T that inverts the elements of ®.
We consider the specialisation closed set

Z(®)={peSpecR|pNd+# o}

Given an R-module M, we write M[®~!] for the localisation of M with respect to
®. Note that M is Z(®)-torsion iff M[®~1] = 0.

The following lemma is a variation of known results; see for instance [2, Theo-
rem 3.6] or [15, Theorem 3.3.7].

Lemma 3.5. Let ® be a multiplicatively closed set of homogeneous elements in R
and T' C T a subcategory satisfying Thick(T’) = T. Then there is an equality

Tz@) = Thick{X/r | X e T, r € ®}),

and the quotient functor T — T/T z(¢) induces a natural isomorphism
Hom$(X,Y)[® '] = Homy /1, (X,Y)

for all objects X,Y in T.

Proof. Set S = Thick({X/r | X € T/, r € ®}) and U =T/S. We claim:
(1) If X or Y is in S, then Hom3(X,Y)[® '] = 0.
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(2) For any X,Y in T, the natural morphism Hom3(X,Y) — Hom}j(X,Y)
induces an isomorphism

Hom’(X,Y)[® '] = Homy(X,Y).

Indeed, (1) follows from (3.4). Given this, it follows from the exact sequence (2.13)
that the morphism in (2) induces an isomorphism

Hom}(X,Y)[® '] = Homy (X, Y)[@1].
On the other hand, ® acts invertibly on Hom{(X,Y), that is to say,
Homyj(X,Y) = Hom{)(X,Y)[®].

It suffices to check this claim for all Y € T', and then it is clear from (3.4). Com-
bining both isomorphisms yields (2), and completes the proof of the claims.

It remains to observe that X € T is Z(®)-torsion iff Endy(X)[®~!] = 0; given
(2) above, the latter condition translates to X =0 in U. Thus Tz = S. O

Let ® be a multiplicatively closed set. We define a functor
Lg: CohT — Coh T

by taking F in Coh T to F[®~!] given by F[®~!]*(X) = F*(X)[®!] for X € T.
It is easy to verify that this is an exact localisation functor; the corresponding
colocalisation functor is denoted .

Proposition 3.6. There is a natural isomorphism Lo — Lz @) and hence
COh(Tz(@)) = (COh T)Z(‘P)
Proof. Lemma 3.5 yields the isomorphism for representable functors, and the gen-

eral case follows since Lg and Lz(g) preserve filtered colimits. O

Localisation at a prime ideal. Let p be a homogeneous prime ideal of R. Thus
R\ p is a multiplicatively closed subset and

Z(R\p) ={q€SpecR |q¥Zp}.
Set,
Tp =T/Tzr\p)

and let X, denote the image of an object X in T under the natural functor T — T,,.
This quotient category is described in Lemma 3.5. Thus for all X, Y € T there is a
natural isomorphism

Hom} (X, Y), = Hom?, (X;, Y, ).
It follows from Proposition 3.6 that the localisation functor
CohT — Coh T, F — Fp,

defined by (F})*(X) = F*(X), is isomorphic to Lzr\p). A functor F' € Coh T is
called p-local if F' = Fy,, and (Coh T), denotes the full subcategory formed by all
p-local functors. Proposition 3.6 yields an identification

(3.7) Coh(T,) = (Coh T),.
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Koszul objects. Fix a homogeneous element r € R of degree d. For each X in T
and each integer n set X,, = ¥"?X and consider the commuting diagram

X X X
Lok )
X —— X — " 5 X,

Lo

X)r—— X)r? —— X3 —— -

where each vertical sequence is given by the exact triangle defining X //r™, and the
morphisms in the last row are the (non-canonical) ones induced by the commuta-
tivity of the upper squares.

Lemma 3.8. Let r € R be a homogeneous element of degree d.
(1) For F € CohT, the colimit of the sequence

F-Lyip Dyyn2dp Tyyddp Ty

is naturally isomorphic to Ly F.
(2) For X €T, the colimit of the sequence

HEle//rl — HE—IX//TQ — HE*1X//T3 —
is naturally isomorphic to I'y()Hx .

Proof. The colimit construction in (1) yields a functor Coh T — Coh T; we claim
that it is isomorphic to Ly,. It suffices to prove this for representable functors as
both functors preserve filtered colimits. When F' = Hx one has an exact sequence

<+ — colimHy-1xypm —> Hx —> colim Hx, — colim Hx jpn —> -+

where 7 acts invertibly on colim Hx,, while colim Hx y,» is V(r)-torsion. Thus the
sequence is isomorphic to the localisation sequence for Ty,) C T, by Proposi-
tions 2.10 and 3.6. O

Let a be a finitely generated homogeneous ideal of R and X € T. Pick a sequence
of elements r1,...,7, in R that generate the ideal a and define inductively

X():X and Xi:Xifl//’f’i forlgzgn

We call X,, a Koszul object of X with respect to a, and denote it X/a. This
depends on a choice of a sequence of generators for a, so our notation is ambiguous.
However, there is the following uniqueness result.

Lemma 3.9. There is an equality
Thick(X/a) = {Y € Thick(X) | End7(Y), =0 for all p 2 a}.

Proof. When a is generated by a single element the desired statement follows from
Lemma 3.5, applied to T = Thick(X). An iteration settles the general case. O

Proposition 3.10. Let a be a finitely generated homogeneous ideal of R. Then
TV(u) = ThICk({X//Cl | X e T}) and COh(TV(u)) = (COh T)V(u)~

Moreover, the objects of Ty(q) are precisely the direct summands of Koszul objects
X/Jb with X € T and b an ideal of R satisfying Vb = /a.
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Proof. Set S = Thick({X/a | X € T}). It suffices to show that
COh(Ty(a)) - (Coh T)V(a) C CohS C COh(Ty(a)).

From this the first part of the assertion follows. The fact that all objects in Ty g
are direct summands of Koszul objects follows from the proof.

The first inclusion is by definition and the last follows from Lemma 3.9. To verify
the inclusion in the middle, it suffices to show that for any F' € (Coh T)yq) each
morphism ¢: Hx — F with X in T factors through a morphism Hx — Hy with
Y in S; see Lemma 2.6. To this end, let r1,...,7, be a sequence of elements that
generate the ideal a. Starting with Xg = X and ¢g = ¢, we construct factorisations

bir: Hx, | — Hx, 25 F

for i = 1,2,...,n. The assumption on F implies that each ¢;_;1 is annihilated by
ri't, for some a; > 1. Thus we set

Xi = E_ai‘rilXifl//’f’?i’ .
The object Y = X, is the desired object; it belongs to S by Lemma 3.9. O

Composition laws. We show that cohomological localisation and colocalisation
functors commute; see Lemma 2.16 for related commutation rules.

Lemma 3.11. Let ® and ¥ be multiplicatively closed sets of homogeneous elements
in R. Then

L@OL\I;%L\I;OL@, L(POF\IIgF\IjOLq), F<I>OF\1,%F\1,OF<I>.

Proof. The first isomorphism is clear since localising R-modules with respect to ®
and ¥ commutes. We consider the exact localisation sequence

and the pair of morphisms
(L@]Eq;) — (L@EQ)L{) = L@(EQL@) — (E\I}L@)

This yields the following commutative diagram with exact rows.

4)[/@[‘\1; Lq> ‘L@L\p

L]

-~'%L@F@L@*)L¢L¢*)L¢L@L¢*)"'

7

o ——— Iy Lg Lo LyLg

In two of three columns the vertical morphisms are isomorphisms. Thus the five
lemma implies that Lely = I'yLe. A similar argument based on the pair of
morphisms Egly ¢+ [oEgls — I3Ey is used to deduce the third isomorphism
Iy = I'yI's from the second. O

Next observe for a multiplicatively closed set ® = {r’ | i € N} that Z(®) = V(r)
and so I'p = I'y(,) by Proposition 3.6.

Lemma 3.12. Let a and b be finitely generated homogeneous ideals of R. Then
Iy o Ive) = Iya)nv(e)-
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Proof. Tt suffices to show for a generated by homogeneous elements r1,...,r, that

Fv(u) = FV(rn) o... Ofv(ﬁ).

We prove this assertion by induction on n. Let a/ = (r1,...,7,—1). We know
from Lemma 3.11 that the I',(,,) commute. Thus I'ya)y[v(r,) = Iy by
the induction hypothesis. Using Proposition 3.10, it follows that the image of
Iy, I'v(ary belongs to

COh(TV(rn)) N COh(Tv(a/)) = (COh T)V('Pn) N (COh T)V(a’)
= (Coh T)V(a)
= COh(Tv(a)).

Therefore LV(a) (FV(’I"")FV(G/)) = 0. On the other hand, FV(a) (FV(TH)FV(G/)) = FV(a)~
The exact localisation sequence (2.11) yields the following exact sequence

w2 Dy (v o)) = Doe) Iy = Ly e Ive)) = -
and therefore I'y(qy = Iy, ) [V(ar)- O

Corollary 3.13. Let a be a finitely generated homogeneous ideal, and p a homoge-
neous prime ideal, of R. For each F' € Coh T, there is a natural isomorphism

(v F)p = Ty(a) (Fp)-
Proof. Apply Lemmas 3.11 and 3.12. O

4. SUPPORT

In this section, we define the support of a cohomological functor and establish
some useful rules for computing it; the development parallels the one in [4, §5].

Let R be a graded commutative ring and T be an essentially small R-linear
triangulated category. From now on we assume R to be noetherian.

Support. For each F in Coh T and p in Spec R set
I F = Iy (Fp).
Then I, is an exact functor on Coh T that preserves filtered colimits. The subset
suppgr F' = {p € Spec R | I, F # 0}
is called the support of F.
Proposition 4.1. Let F' € CohT. Then suppy F' = @ if and only if F = 0.

Proof. Clearly, suppyp F' = @ when F' = 0. Suppose F' is non-zero. Recall that if an
R-module M is non-zero, then there exists a p € Spec R such that M, # 0. Choose
a prime p that is minimal subject to the condition that F}, # 0. Then for all primes
q properly contained in p and all X € T, one has

Fy(X)q = F(X)q = 0.

Hence Fy,(X) is V(p)-torsion, by [18, Theorem 6.5]; that is to say, F}, is V(p)-torsion.
It then follows from Proposition 3.10 that F, is in Coh(Ty (), so the natural map
I'vF — F, is an isomorphism. As F}, # 0, one gets that p is in suppp F. O

We can compute the support of the representable functors as follows.

Proposition 4.2. Let X be an object in T. Then
suppr Hx C {p € Spec R | End7(X), # 0},
and equality holds when End}(X) is finitely generated over R.
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Proof. The inclusion holds because (Hx), = 0 iff End7(X), = 0. Now suppose
that End7(X), # 0 and that End7(X) is finitely generated. Then X, # 0, and
an application of Nakayama’s lemma gives X, /p # 0; see [4, Lemma 5.11]. The
functor Hx, yp is V(p)-torsion by Lemma 3.9. It is also p-local, so one gets

LoHxpp = vy Hx, pp = Hx, pp 7 0-
Hence p is in suppp Hx. O

Composition laws. Computing support is compatible with cohomological locali-
sation and colocalisation.

Proposition 4.3. Let V C Spec R be a specialisation closed subset. For each
F € CohT the following equalities hold

suppr IVE =V Nsuppy F,
suppp Ly F = (Spec R\ V) Nsuppy, F.

Proof. If p € V then (I'VF), = 0, since I'L,F is V-torsion. Thus suppgp IvF C V.
If p € V then Ty(,) € Ty, hence Iy Iy = I'y(p); see Lemma 2.16. This gives the
second equality below:

Fp(FVF) = (Fv(p)FVF)p = (Fv(p)F)p = FpF7
while the other two are by Corollary 3.13. Thus
suppgp [VEF =V Nsuppp IVF =V Nsuppy F.

This proves the first equality; the proof of the second is similar. O

The following result says that a V-torsion functor is a colimit of representable
functors defined by V-torsion objects.

Corollary 4.4. LetV C Spec R be specialisation closed. Then Coh(Ty) = Coh(T)y.

Proof. It suffices to prove that Coh(T)y C Coh(Ty); confer (3.3). Fix F' € (Coh T)y.
For any p ¢ V, one has F, = 0, and hence I, F' = 0, that is to say, suppr £ C V.
Proposition 4.3 then implies that LyF = 0 and it follows from (2.11) that the
natural map I'yF' — F'is an isomorphism. This is the desired result. O

Corollary 4.5. Let V and W be specialisation closed subsets of Spec R. Then
IvIw = ITyvaw = Iwly, LyLyw = Lyow = Lw Ly, IvLyw = Lyly.
Proof. Given Proposition 4.3, one can argue as for [4, Proposition 6.1]. O

Corollary 4.6. Let p € Spec R, and let V and W be specialisation closed subsets
of Spec R such that V\W = {p}. Then

LIy =T, = Iy Ly.
Proof. Given Proposition 4.3, one can argue as in the proof of [4, Theorem 6.2]. O
Corollary 4.7. Letp € Spec R and F' € CohT. Then suppy [, F C {p}.

Proof. Combine Proposition 4.3 and Corollary 4.6. (]
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Colimits. The following result can be used to reduce computations involving spe-
cialisation closed subsets to those involving closed sets; it is an analogue of [24,
Lemma 6.6] in the compactly generated context.

Lemma 4.8. Let V =, Vo be a directed union of specialisation closed subsets of
Spec R. Then

colim Iy, = Iy and colim Ly, = Ly.

Proof. We make repeated use of Proposition 4.1. Since Iy, Iy = Iy, it follows
from the localisation sequence (2.11) that the natural morphism colim I, — Iy,
fits into an exact sequence

«o»—>colimly, — I'y — colim Ly Iy — ---

We claim that colim Ly, Iy, = 0. Indeed, I}, commutes with filtered colimits so the
claim is that colim(I, Ly, Iy) = 0 for each p in Spec R. Proposition 4.3 and its
corollaries yield

suppp(Ip Ly, IVF) C {p} N (Spec R\ Vo) NV

for each F' in Coh T. Thus, if p ¢ V, then evidently I',Ly, Iy = 0. Assume p € V.
When p € V, as well, it again follows from the equality above that I',Ly Iy = 0.
Since V is directed union of the V,, the desired vanishing follows.

This proves the claim. The exact sequence above then yields the isomorphism
involving I'y,. The assertion for Ly, follows, using again (2.11). d

5. THE LOCAL-GLOBAL PRINCIPLE

Let R be a noetherian graded commutative ring and T be an essentially small
R-linear triangulated category. In this section we establish a local-global principle
for Coh T, analogous to the one in [5, §3]. A local-global principle for T then follows.

Localising subcategories. We call a full subcategory of CohT localising if it
is closed under forming coproducts, extensions, and suspensions. Here, F' is an
extension of F' and F” if there is an exact sequence F/ — F — F” in CohT.
Any localising subcategory is closed under subobjects and quotient objects; this
follows by specialising F” = 0 or F” = 0. In particular, a localising subcategory
is closed under filtered colimits. The smallest localising subcategory containing a
subcategory C of T is denoted Loc(C).

The following lemma provides some basic properties of localising subcategories;
they will be used without further mention. The argument is straightforward.

Lemma 5.1. Let P: Coh T — CohU be an exact functor that preserves coproducts.
(1) If C C CohU is localising, then {F € CohT | P(F') € C} is a localising
subcategory of Coh T. In particular, the kernel
Ker(P) = {F € CohT | P(F) =0}
is a localising subcategory of Coh T.
(2) Any subcategory C C Coh T satisfies P(Loc(C)) C Loc(P(C)). O
We provide important examples of localising subcategories.

Lemma 5.2. Let S C T be a triangulated subcategory. Then CohS and CohT/S
are localising when viewed as subcategories of Coh T.

Proof. From Corollary 2.14 it follows that Coh S equals the kernel of the functor L,
while Coh T/S equals the kernel of the functor I'. It remains to observe that both
functors are exact and preserve coproducts, by Lemma 2.4. O
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Proposition 5.3. Let V be a specialisation closed subset of Spec R and F' € CohT.
Then I'VF and Ly F belong to Loc(F).

Proof. From the localisation sequence (2.11) it follows that it suffices to prove this
for I'y. The assertion follows from Lemmas 3.8 and 3.12 when V = V(a) for some
ideal a. The general case then follows from Lemma 4.8. (]

Lemma 5.4. Let X € T and a be a homogeneous ideal of R. Then
Loc(Hx) = Coh Thick(X) and Loc(I'v(a)yHx) = Loc(Hx yq)-
Proof. Both assertions use the following observation:
Y € Thick(X) ==  Hy € Loc(Hx).

From this it follows that Coh Thick(X) C Loc(Hx), while the reverse inclusion is
by Lemma 5.2. This settles the first of the desired equalities.

For the second one, note that I',,yHx € Loc(Hx/,) for any homogeneous ele-
ment r € R, by Lemma 3.8. Thus an induction on the number of generators of a
shows that I Hx € Loc(Hxq). Conversely, Hx q belongs to Loc(Hx), by the
observation above, so I'yq)Hxja = Hxjq belongs to Loc(Iyq)Hx). O

The local-global principle. The following result is the analogue of a local-global
principle for compactly generated triangulated categories [5, Theorem 3.1].

Theorem 5.5 (Local-global principle). Let F' € Coh T. Then
Loc(F) = Loc({IL,F' | p € Spec R}) = Loc({F} | p € Spec R}).

Proof. The idea for this proof is taken from [20, Lemma 2.10].

It follows from Proposition 5.3 that I, F' and F}, belong to Loc(F).

Now we set C = Loc({I,F | p € Spec R}) and prove that F' € C. Consider the
set of specialisation closed subsets W of Spec R such that Iy € C. This set is
non-empty, for it contains the empty set, and it is closed under directed unions by
Lemma 4.8. Thus it has a maximal element, say V, by Zorn’s lemma. We claim
that V = Spec R. To this end assume V # Spec R and choose a prime ideal p
maximal in the subset Spec R\ V. The subset VU {p} is then specialisation closed.
Consider the localisation sequence with respect to V:

e FVFVU{p}F — FVU{p}F — LVFVU{p}F —_—

Corollaries 4.5 and 4.6 yield that I, = I'vIyygpy and Iy, = Lylyyqpy. Hence the
terms on the left and on the right of the localisation sequence are in C, and hence
so is the one in the middle, I,y F'. This contradicts the maximality of V and
yields the first equality.

The second equality follows from the first since I',F' = I'y () (F},) € Loc(Fy,) for
each prime p, by Proposition 5.3. O

Recall that the R-action on T induces an action on any triangulated subcategory
S C T andon T/S. It is not hard to see that the induced functor S, — T, is exact,
full, and faithful. For this reason, we view S, as a triangulated subcategory of T,.

Lemma 5.6. Let S C T be a triangulated subcategory and p € Spec R. Then the
canonical functor Ty — (T/S), induces an equivalence of triangulated categories

Tp/Sp = (T/9)s.
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Proof. Consider the commutative diagrams below. The one on the left is clear from
the constructions and induces the one on the right.

T T8 Coh T+ 1" CohT/S
Jp lq TP* TQ*
So (fo)=

T, —— (T/S), Coh(T,) ¢—— Coh(T/S),

Since f and ¢ are quotient functors, so is their composition ¢f. Then f,p and p are
quotient functors, and from this it is not hard to verify that so is f,. We claim that
its kernel consists precisely of direct summands of objects of S, and the statement
would then follow.

As to the claim: In the display above, the functors in the square on the right
are all fully faithful, since they are induced by quotient functors. Hence we view all
the categories in the diagram as subcategories of Coh T. Recall from Corollary 2.14
that Ker(f*) = CohS. Using (3.7) it follows that Ker(f;) = Coh(Sy). In particular,
for an object X € Ty, one has f,(X) = 0iff fy(Hx) = 0iff X is a direct summand
of an object in Sp; the second equivalence is by Lemma 2.6. This justifies the
claim. (]

For p € Spec R we set I, T = (T)y(p). This yields the following diagram
T—Tp«——=I,T
and henceforth we make the identification
Coh I, T = (Coh T), N (Coh T)y(y).
Corollary 5.7. Taking a localising subcategory C C Coh T to the family
(CNCoh I T)pespec B

induces a bijection between

— the localising subcategories of Coh T, and
— the families (C(p))pespec R with C(p) a localising subcategory of Coh I, T.

Proof. The inverse map takes a family (C(p))pespecr to the smallest localising
subcategory of Coh T containing all C(p). O

Remark 5.8. There is an analogue of Corollary 5.7 for thick subcategories of T
since each thick subcategory S C T is determined by the localising subcategory
CohS C Coh T; see Lemma, 5.2.

Consequences of the local-global principle. For X € T and p € Spec R, we
set X (p) = (X//p)p and identify this with (X,)/p. Note that Lemma 5.4 implies

(5.9) Loc(I'y Hx ) = Loc(Hx (p))-
The following is the local-global principle for T announced in the introduction.

Theorem 5.10 (Local-global principle). Let S be a thick subcategory of T. Then
the following conditions are equivalent for an object X in T:

(1) X belongs to S.
(2) X, belongs to Thick(S,) for each p € Spec R.
(3) X (p) belongs to Thick(S,) for each p € Spec R.
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Proof. Evidently (1) = (2) and (2) = (3).
Assume (3) holds. We work in CohT. For each p € SpecR, the hypothesis
implies the first inclusion below:

Hx(py € Coh(S,) = (CohS), C CohS.
The equality is by Proposition 3.6. Thus I,Hx € CohS for all p, by (5.9). It
follows from Theorem 5.5 that Hx belongs to Coh S, and hence that X € S. (]
Theorem 5.11. For any pair of objects X,Y in T the following holds:
Hom7(X,Y)=0 <=  Hom (X;,Y}) =0 for allp € Spec R
<= Homf (X(p),Y(p)) =0 for all p € Spec R.

Proof. Let S = Thick(X). Then Theorem 5.5 yields the following equivalences:
Hom}(X,Y)=0 <= Hy €CohT/S
<= Hy, € (CohT/S), for all p € Spec R
<= I,Hy € (CohT/S), for all p € Spec R.
Using the identification Coh(T,/S,) = Coh(T/S), = (CohT/S), from Lemma 5.6
and the identity (5.9), we obtain
Homp(X,Y)=0 <=  Homy (X,,Y,) =0 forall p € Spec R
< Homy (X,,Y(p)) =0 for all p € Spec R.

In the last condition, X, can be replaced by X (p). This follows from the general
fact that for any homogenous ideal a of R and any pair of objects U,V in T

Hom(U,V) =0 <= Homi(U/a,V)=0
when Hom7T (U, V) is V(a)-torsion; for a proof use (3.4) or see [4, Lemma 5.11]. O

6. TENSOR TRIANGULATED CATEGORIES

Let (T,®,1) be a tensor triangulated category that is essentially small. The
tensor product ®: T x T — T is then symmetric monoidal, exact in each vari-
able, and admits a unit 1. The tensor product on T extends to a tensor product
Coh T x Coh T — Coh T that we denote again by ®. We list the basic (and defining)
properties. For objects X, Y € T and F,G € Coh T we have:

(1) HX ®Hy = HX®y.
(2) F® — and — ® G are exact and preserve filtered colimits.
3) FRGEGQRF.

Lemma 6.1. (CohT,®, Hy) is a symmetric monoidal category. O

Strongly monoidal functors. A functor f between symmetric monoidal cate-
gories is called strongly monoidal if there are isomorphisms

1= f(1) and fX)@ f(Y) = f(X®Y)

that are natural and compatible with the monoidal structures. We have the follow-
ing projection formula.

Lemma 6.2. Let f: T — U be a strongly monoidal exact functor between tensor
triangulated categories. For ' € Coh T and G € Coh U, there is a natural morphism

apg: F @ f(G) — f(fF(F)®G).

This is an isomorphism when T is generated as a triangulated category by 1.
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Proof. Observe that f*: CohT — CohU is strongly monoidal. This is clear for
representable functors; the general case follows by taking filtered colimits in one
argument and then in the other. The morphism af ¢ is the adjoint of the compo-
sition
F{(F @ fu(G) = [1(F) @ f fu(G) = f*(F)®G.

Observe that the objects F' such that ap ¢ is an isomorphism for all G form a
localising subcategory of Coh T containing Hy. If 1 generates T, then Loc(H;) =
Coh T, by Lemma 5.4. Thus af ¢ is an isomorphism for all F' and G. O

Cohomological localisation. Let R be a noetherian graded commutative ring
acting on T. The cohomological (co)localisation functors arising from this action
can be expressed as tensor functors.

Proposition 6.3. Let V be a specialisation closed subset of Spec R. Then
Iy =2IvyH ® — and Ly=2LyH ® —.

Proof. A simple calculation shows that one isomorphism implies the other. For
instance, when Ly = Ly Hy ® — then Ly(I'yHy ® —) = 0. This yields a morphism
I''H; ® — — I'y making the following diagram commutative.

iV @ — ——Td—— Ly Hy @ — —— -

| |

Iy Id Ly

The five lemma then shows that this is an isomorphism.

It follows from the description of Ly, in Lemma 3.8 that the assertion holds for
a closed set V(r) given by some r € R. Lemma 3.12 then implies the assertion for
a closed set V(a) given by a finitely generated ideal a of R, and Lemma 4.8 implies
the assertion for an arbitrary specialisation closed subset. U

7. STRATIFICATION

Let R be a noetherian graded commutative ring and T be an essentially small
R-linear triangulated category. In this section we study the stratification of T and
Coh T; this is the analogue of stratification for compactly generated triangulated
categories introduced in [5, §4] and inspired by [15, §6].

Stratification. The triangulated category T is called minimal if T admits no
proper thick subcategory. This means if S C T is a thick subcategory then S = 0
or S = T. Analogously, CohT is said to be minimal if Coh T admits no proper
localising subcategory. Clearly, T is minimal when Coh T is minimal.

Definition 7.1. We say that T is stratified by the action of R if I, T is minimal for
each p € Spec R. In the same vein, Coh T is stratified by the action of R if Coh I}, T
is minimal for each p € Spec R.

In each case stratification yields a classification of thick or localising subcate-
gories in terms of subsets of Spec R; see Corollary 5.7.

Remark 7.2. Suppose that T is minimal. Then T is stratified by any R-action,
and in particular, by the canonical action of Z. Moreover, there is a unique prime
p € Spec R such that I, T # 0. Clearly, this implies I';T = 0 for all g # p in Spec R.
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Consequences of stratification. It is convenient to set suppp X = suppp Hx
for each object X € T. Observe that (5.9) implies

suppr X = {p € Spec R | X(p) # 0},

and this can be reformulated in terms of the following identity which is an immediate
consequence of Lemma 3.9

(7.3) Thick(X (p)) = Thick(X,) NI, T = I, Thick(X).
Theorem 7.4. Suppose that T is stratified by the action of R. Given objects X,Y
n T, we have
X € Thick(Y) <= suppr X Csuppr?,

Hom7(X,Y)=0 <= (supppX)N(supprY)=2.
Proof. For the first assertion set S = Thick(Y). The local-global principle from
Theorem 5.10 gives the first equivalence:

X € Thick(Y) <= X(p) €IS for all p € Spec R
<= suppp X Csuppp?Y.

The second equivalence uses the minimality of I, T and the identity (7.3).
For the second assertion recall from Theorem 5.11 that

Hom7(X,Y)=0 <= Homy (X(p),Y(p)) =0 for all p € Spec R.
The minimality of I, T implies for objects U,V in I, T that Hom-*rp (U, V) # 0 iff
U #0# V. Thus Homy (X(p),Y(p)) =0iff p & (suppg X) N (suppg V). O
Theorem 7.4 has a converse when endomorphism rings are finitely generated.

Proposition 7.5. Suppose that for each object X in T the endomorphism ring
End}(X) is finitely generated over R. If T is not stratified by R, then there are
objects X, Y € T such that suppp X = suppp Y but Thick(X) # Thick(Y").

Proof. Assume I,T is not minimal. Thus there are non-zero objects X, Y, in
I, T such that Thick(X,) # Thick(Y},). In T consider the objects X' = X /p and
Y’ =Y/p. Then suppp X' = V(p) = suppyr Y’ by Proposition 4.2. On the other
hand, Lemma 3.9 gives the equalities below:

Thick(X}) = Thick(X;) # Thick(Y;) = Thick(Y;),
so that Thick(X’) # Thick(Y"). O

The Hom vanishing statement in Theorem 7.4 can be strengthened when mor-
phism spaces are finitely generated over R. For an R-module M, we write

Suppr M = {p € Spec R | M, # 0}.

The following theorem can be used to explain results on the symmetry of Hom
vanishing, as studied in [1, 7].

Theorem 7.6. Let X and Y be objects in T.
(1) If Hom1(X,Y) is finitely generated over R, then
Suppr Hom7(X,Y) C (suppg X) N (suppp Y).
(2) If T is stratified by the action of R, then
Suppp HomT(X,Y) D (suppr X) N (suppr Y).
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Proof. (1) Let p € Suppp Homy(X,Y). Thus HomT (X,,Y}) # 0. The assumption
implies that this is finitely generated, and an application of Nakayama’s lemma gives

Hom?, (X (p), Y (p)) # 0;

use (3.4) or see [4, Lemma 5.11] for a proof. Thus p € (suppyp X) N (suppyp V).
(2) Let p € (suppg X) N (suppg Y). Then stratification implies

Homt (X(p),Y(p)) # 0,
and therefore
Hom7(X,Y), = Homy (X,,Y}) # 0.
Thus p € Suppy Hom7(X,Y). O
Perfect complexes. Let A be a noetherian commutative ring. We denote by D(A)
the derived category of the category of A-modules. An object in D(A) is called

perfect if it is isomorphic to a bounded complex of finitely generated projective
A-modules; these form a thick subcategory denoted by DP*(A4). For X € D(A) set

HX = HomA(—7X)‘Dper(A).

The ring R = A acts canonically on T = DP®'(A) and we show that Coh T is
stratified by this action. The residue fields play a special role. For p € Spec R let
k(p) = Ay /py, viewed as a complex concentrated in degree zero.

Lemma 7.7. Let p € Spec R. Then Coh I, T = Loc(Hy(p))-

Proof. Since Hyy) is p-local and V(p)-torsion when evaluated at any object from T,
it belongs to Coh I, T; this justfies one inclusion. For the other one, it is convenient
to identify T, and DP°"(A,). Thus an object X in I, T is a perfect complex over
A, such that its cohomology is of finite length over A,. It follows that

X € Thick(k(p)) € D(Ay).

This is easily shown by an induction on the number of integers n such H™(X) # 0;
see for example [11, Example 3.5]. Thus Hx € Loc(Hy ). O

Theorem 7.8. Let A be a commutative noetherian ring. Then Coh DP*(A) is
stratified by the canonical action of A.

Proof. Fix p € Spec A. We need to show that Coh I, T is minimal, which is equiv-
alent to Loc(F') = Loc(Hyy) for each non-zero F' € Coh I, T, by Lemma 7.7. This
is clear for F' = I';H 4. This gives the second of the following equalities:

Loc(F) = Loc(F ® I'yHa) = Loc(F @ Hyyp)-
The first one is by Proposition 6.3. Let f denote the functor
— ®a k(p): DP(A) — D*"(k(p)).

Then F ® Hypy = fof*(F) by Lemma 6.2. Thus F' ® Hy,) is a direct sum of
suspensions of Hy,,), since every object in DP*"(k(p)) is a direct sum of suspensions
of k(p). It follows that Loc(F') = Loc(Hpy))- O

The following result is due to Hopkins [14] and Neeman [20].
Corollary 7.9. Let S C DP*(A) be a thick subcategory. Then
S={X e€DP(A) | suppy X C V}

for some specialisation closed subset V C Spec A.
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Proof. The assertion follows from Theorems 7.4 and 7.8, using the fact that supp 4 X
is specialisation closed for each X € DP*'(A) by Proposition 4.2. O

Remark 7.10. Theorem 7.8 generalises with same proof in two directions as follows.
(1) Let A be a commutative differential graded algebra such that the ring H*(A)
is noetherian. If A is formal, then Coh DP"(A) is stratified by the canonical H*(A)-
action. This is an analogue of Theorem 8.1 in [5] that asserts that D(A) is stratified
by H*(A).
(2) Let A be a graded commutative noetherian ring. More precisely, we fix an
abelian grading group G endowed with a symmetric bilinear form

(=, —=):GxG—1Z)2,
and A admits a decomposition
A=PA4,

geG

such that the multiplication satisfies AjA4, C Agyp for all g,h € G and zy =
(=1)@Myz for all homogeneous elements z € Ag, y € Ap. We consider G-graded
A-modules with degree zero morphisms and let D(A) denote its derived category.
Localising subcategories of Coh DP*"(A) and D(A) are supposed to be closed under
twists, where the twist of a module or complex X by g € G is given by X(g)n =
Xg+n. Suitably adapting definitions and constructions to take into account twists,
one can establish that Coh DP®*(A) is stratified by the canonical A-action. This is
an analogue of Corollary 5.7 in [10] that asserts that D(A) is stratified by A.

8. COMPACTLY GENERATED TRIANGULATED CATEGORIES

Let R be a noetherian graded commutative ring and T be a compactly generated
R-linear triangulated category. The subcategory of compacts, T¢, is an essentially
small triangulated category and has an induced R-action. In [4] we developed a
theory of local cohomology and support for T. In this section, we use the restricted
Yoneda functor

T— CohT¢, X — Hx =Homt(—, X)|r,
to compare it with the one for Coh T€ introduced in this article.

Remark 8.1. The morphisms annihilated by the functor T — Coh T are called
phantom maps. In the context of the stable module category T = StMod kG of
a finite group G, these were studied by Benson and Gnacadja. In particular, in
[3, 84] it is shown that there are filtered systems in T¢ = stmod kG that do not
lift to mod kG. As a consequence, there are objects in Coh T¢ that are not in the
image of T — Coh T¢, namely the filtered colimit of the corresponding representable
functors. In the context of the derived category of a commutative noetherian ring,
examples of filtered systems that do not lift can be found in Neeman [21].

Cohomological localisation. Given a specialisation closed subset V of Spec R,
there is an exact localisation functor Ly: T — T such that Ly X = 0 iff Hyx is
V-torsion; see [4, §4]. The corresponding colocalisation functor is denoted by I3,.
Thus each X € T fits into an exact localisation triangle

X — X — LyX — .

The following proposition says that notions developed in [4] for compactly gener-
ated triangulated categories are determined by analogous concepts for the category
of cohomological functors which are discussed in this work. This applies, for in-
stance, to the notion of support.
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Proposition 8.2. Let V C Spec R be specialisation closed and X € T. Then
Hp,x = IvyHx and Hyp,x = LyHx.
Proof. 1t follows from Proposition 2.10 that the long exact sequence
o —Hyp,x)y — Hp,x — Hx — Hp ,x — Hyp,x) — -
is isomorphic to the localisation sequence (2.11) for TS, C T¢, applied to Hx. O

Localising subcategories. A full triangulated subcategory of T is localising if it
is closed under forming coproducts. Following [5, §3], we say that the local-global
principle holds for T, if for each object X € T we have

Loc(X) = Loc({I}, X | p € Spec R}).

This local-global principle has been established in a number of relevant cases. For
instance, it holds when R has finite Krull dimension [5, Corollary 3.5], or when T
admits a model [24, Theorem 6.9].

We obtain an alternative proof of Theorem 5.10, provided the local-global prin-
ciple holds for T.

Proposition 8.3. The local-global principle for T implies the principle for T€.

Proof. We verify that conditions (1)—(3) of Theorem 5.10 are equivalent. Evidently
(1) = (2) and (2) = (3).

Assume (3) holds. Given p € Spec R, it follows from [5, Theorem 3.1] that S, is
contained in Loc(S). Thus

Loct (1, X) = Loc(X (p)) C Loc(Sy) C Loc(S),

where the equality holds by [5, Lemma 3.8]. Now the local-global principle for T
yields that X belongs to Loc(S). It remains to observe that this implies X € S,
because X is compact and S is a subcategory of compact objects. O

Cohomological localising subcategories. Any localising subcategory of Coh T¢
induces one of T via the restricted Yoneda functor. However, we do not know if
this is a bijection between the corresponding localising subcategories. This changes
when one restricts to localising subcategories that are defined cohomologically.

We call a localising subcategory S C T cohomological if there is a cohomological
functor F': T — A such that

(1) Ais an abelian category with exact filtered colimits,
(2) F preserves coproducts, and
(3) S equals the full subcategory of objects in T annihilated by F'.

Analogously, a localising subcategory C C Coh T€ is called cohomological if there is
an exact functor F': Coh T — A such that

(1) Ais an abelian category with exact filtered colimits,
(2) F preserves coproducts, and
(3) C equals the full subcategory of objects in Coh T¢ annihilated by F'.

Example 8.4. An intersection of cohomological localising subcategories is coho-
mological. Given a subset & C Spec R, the localising subcategories

{X €T |suppp X CU} and {X € CohT¢ | suppp X C U}
are cohomological.

Proposition 8.5. Taking a localising subcategory C C Coh T to {X € T | Hx € C}
induces a bijection between
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— the cohomological localising subcategories of Coh T¢, and
— the cohomological localising subcategories of T.

Proof. To describe the inverse map, let £': T — A be a cohomological functor which
preserves coproducts. This extends essentially uniquely to an exact and coproduct

preserving functor F': CohT¢ — A by sending a filtered colimit of representable
functors colim, Hx, to colim, F(X,). It remains to observe that for each X € T
we have F(X) = 0 iff F(Hx) = 0. Thus the localising subcategories determined by
F and F correspond to each other under the above assignment. O
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