STRATIFYING TRIANGULATED CATEGORIES
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ABSTRACT. A notion of stratification is introduced for any compactly gener-
ated triangulated category T endowed with an action of a graded commutative
noetherian ring R. The utility of this notion is demonstrated by establishing
diverse consequences which follow when T is stratified by R. Among them
are a classification of the localizing subcategories of T in terms of subsets of
the set of prime ideals in R; a classification of the thick subcategories of the
subcategory of compact objects in T; and results concerning the support of the
graded R-module of morphisms Hom7 (C, D) leading to analogues of the tensor
product theorem for support varieties of modular representation of groups.
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1. INTRODUCTION

Over the last few decades, the theory of support varieties has played an in-
creasingly important role in various aspects of representation theory. The original
context was Carlson’s support varieties for modular representations of finite groups
[12], but the method soon spread to restricted Lie algebras [14], complete intersec-
tions in commutative algebra [1, 2], Hochschild cohomological support for certain
finite dimensional algebras [13], and finite group schemes [15, 16].

One of the themes in this development has been the classification of thick or
localizing subcategories of various triangulated categories of representations. This
story started with Hopkins’ classification [18] of thick subcategories of the perfect
complexes over a commutative Noetherian ring R, followed by Neeman’s classifica-
tion [25] of localizing subcategories of the full derived category of R; both involved
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a notion of support for complexes living in the prime ideal spectrum of R. Some-
what later came the classification by Benson, Carlson and Rickard [6] of the thick
subcategories of the stable module category of finite dimensional representation of
a finite group G in terms of the spectrum of its cohomology ring.

In [8] we established an analogous classification theorem for the localizing sub-
categories of the stable module category of all representations of G. The strategy
of proof is a series of reductions and involves a passage through various other
triangulated categories admitting a tensor structure. To execute this strategy, it
was important to isolate a property which would permit one to classify localizing
subcategories in tensor triangulated categories, and could be tracked easily under
changes of categories. This is the notion of stratification introduced in [8] for tensor
triangulated categories, inspired by work of Hovey, Palmieri, and Strickland [19].
For the stable module category of G, this condition yields a parameterization of
localizing subcategories reminiscent of, and enhancing, Quillen stratification [30] of
the cohomology algebra of G, whence the name.

In this work we present a notion of stratification for any compactly generated
triangulated category T, and establish a number of consequences which follow when
this property holds for T. The context is that we are given an action of a graded
commutative ring R on T, namely a map from R to the graded center of T. We
write Spec R for the set of homogeneous prime ideals of R. In [7] we developed
a theory of support for objects in T, based on a construction of exact functors
It: T =T for each p € Spec R, which are analogous to local cohomology functors
from commutative algebra. The support of any object X of T is the set

suppr X = {p € Spec R | I, X # 0}.

In this paper, we investigate in detail what is needed in order to classify localizing
subcategories in this general context, in terms of the set Spec R.

We separate out two essential ingredients of the process of classifying localizing
subcategories. The first is the local-global principle: it states that for each object
X of T, the localizing subcategory generated by X is the same as the localizing
subcategory generated by the set of objects {I}, X | p € Spec R}. We prove that T
has this property when, for example, the dimension of Spec R is finite.

When the local-global principle holds for T the problem of classifying localizing
subcategories of T can be tackled one prime at a time. This is the content of the
following result, which is part of Proposition 3.6.

Theorem 1.1. When the local-global principle holds for T there is a one-to-one
correspondence between localizing subcategories of T and functions assigning to each
p € Spec R a localizing subcategory of I, T. The function corresponding to a local-
izing subcategory S sends p to SNI,T.

The second ingredient is that in good situations the subcategory I, T, which
consists of objects supported at p, is either zero or contains no proper localizing
subcategories. If this property holds for each p and the local-global principle holds,
then we say T is stratified by R. In this case, the map in Theorem 1.1 gives a one-to-
one correspondence between localizing subcategories of T and subsets of suppp T,
which is the set of primes p such that I, T # 0; see Theorem 4.2.

We draw a number of further consequences of stratification. The best statements
are available when T, in addition to be being stratified by R, is noetherian, meaning
that the R-module End}(C) is finitely generated for each compact object C in T.
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Theorem 1.2. If T is noetherian and stratified by R, then the map described in
Theorem 1.1 gives a one-to-one correspondence between the thick subcategories of
the compact objects in T and the specialization closed subsets of suppp T.

This result is a rewording of Theorem 6.1 and can be deduced from the classifi-
cation of localizing subcategories of T, using an argument due to Neeman [25]. We
give a different proof based on the following result, which is Theorem 5.1.

Theorem 1.3. If T is noetherian and stratified by R, then for each pair of compact
objects C, D in T there is an equality

suppr Hom7(C, D) = suppy C Nsuppy D .

When in addition R = 0 holds for i < 0, one has Hom}(C, D) = 0 for n > 0 if
and only if Hom% (D, C) =0 for n > 0.

The statement of this theorem is inspired by an analogous statement for mod-
ules over complete intersection local rings, due to Avramov and Buchweitz [2]. A
stratification theorem is not yet available in this context; see however [21].

The stratification condition also implies that Ravenel’s ‘telescope conjecture’ [31],
sometimes called the ‘smashing conjecture’, holds for T.

Theorem 1.4. If T is noetherian and stratified by R and L: T — T is a localization
functor that preserves arbitrary coproducts, then the localizing subcategory Ker L is
generated by objects that are compact in T.

This result is contained in Theorem 6.3, which establishes also a classification of
localizing subcategories of T that are also closed under products. Another applica-
tion, Corollary 5.7, addresses a question of Rickard. If S is a localizing subcategory
of T, write +S for the full subcategory of objects X such that there are no nonzero
morphisms from X to any object in S.

Theorem 1.5. Suppose that T is noetherian and stratified by R, and that S is a
localizing subcategory of T. Then S is the localizing subcategory corresponding to
the set of primes {p € Spec R | V(p) Nsuppy S = 0}.

In Section 7 we consider the case when T has a structure of a tensor triangulated
category compatible with the R-action, and discuss a notion of stratification suit-
able for this context. A noteworthy feature is that the analogue of the local-global
principle always holds, so stratification concerns only whether each I', T is minimal
as tensor ideal localizing subcategory. When this property holds one has the fol-
lowing analogue of the tensor product theorem of modular representation theory as
described in [5, Theorem 10.8]; cf. also Theorem 1.3.

Theorem 1.6. Let T be a tensor triangulated category with a canonical R-action.
If R stratifies T, then for any objects X,Y in T there is an equality

suppr(X ® Y) = suppr X Nsupprp Y .

This result reappears as Theorem 7.3. One can establish analogues of other re-
sults discussed above for tensor triangulated categories, but we do not do so; the
arguments required are the same, and in any case, many of these results appear
already in [8], at least for triangulated categories associated to modular represen-
tations of finite groups.

Most examples of stratified triangulated categories that appear in this work are
imported from elsewhere in the literature. The one exception is the derived category
of differential graded modules over any graded-commutative noetherian ring A. In
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Section 8 we verify that this triangulated category is stratified by the canonical A-
action, building on arguments from [8, §5] which dealt with the case A is a graded
polynomial algebra over a field.

There are interesting classes of triangulated categories which cannot be stratified
via a ring action, in the sense explained above; see Example 4.6. On the other
hand, there are important contexts where it is reasonable to expect stratification,
notably, modules over cocommutative Hopf algebras and modules over the Steenrod
algebra, where analogues of Quillen stratification have been proved by Friedlander
and Pevtsova [15] and Palmieri [29] respectively. One goal of [7] and the present
work is to pave the way to such results.

Acknowledgments. It is our pleasure to thank Zhi-Wei Li for a critical reading
of an earlier version of this manuscript.

2. LOCAL COHOMOLOGY AND SUPPORT

The foundation for this article is the work in [7] where we constructed analogues
of local cohomology functors and support from commutative algebra for triangu-
lated categories. In this section we further develop these ideas, as required, and
along the way recall basic notions and constructions from op. cit.

Henceforth R denotes a graded-commutative noetherian ring and T a compactly
generated R-linear triangulated category with arbitrary coproducts.

We begin by explaining what this means.

Compact generation. Let T be a triangulated category admitting arbitrary co-
products. A localizing subcategory of T is a full triangulated subcategory that
is closed under taking coproducts. We write Loct(C) for the smallest localizing
subcategory containing a given class of objects C in T, and call it the localizing
subcategory generated by C.

An object C' in T is compact if the functor Homt(C,—) commutes with all
coproducts; we write T¢ for the full subcategory of compact objects in T. The
category T is compactly generated if it is generated by a set of compact objects.

We recall some facts concerning localization functors; see, for example, [7, §3].

Localization. A localization functor L: T — T is an exact functor that admits
a natural transformation n: Idy — L, called adjunction, such that L(nX) is an
isomorphism and L(nX) = n(LX) for all objects X € T. A localization functor
L: T — T is essentially uniquely determined by the corresponding full subcategory

Ker L={X eT|LX =0}.

This means that if L’ is a localization functor with Ker L C Ker L’ and 7’ is its
adjunction, then there is a unique morphism ¢: L — L’ such that tp = ’. Given
such a localization functor L, the natural transformation Idt — L induces for each
object X in T a natural exact localization triangle

Ir'X —X—LX —
This exact triangle gives rise to an exact functor I': T — T with
KerL=ImI'" and Kerl'=ImL.

Here Im F', for any functor F': T — T, denotes the essential image: the full sub-
category of T formed by objects {X € T | X = FY for some Y in T}.
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The next lemma provides the existence of localization functors with respect to
a fixed localizing subcategory; see [26, Theorem 2.1] for the special case that the
localizing subcategory is generated by compact objects.

Lemma 2.1. Let T be a compactly generated triangulated category. If a localizing
subcategory S of T is generated by a set of objects, then there exists a localization
functor L: T — T with Ker L =S.

Proof. In [28, Corollary 4.4.3] it is shown that the collection of morphisms between
each pair of objects in the Verdier quotient T/S form a set. The quotient functor
Q: T — T/S preserves coproducts, and a standard argument based on Brown’s
representability theorem [23, 27] yields an exact right adjoint @,. Note that Q,, is
fully faithful; see [17, Proposition I.1.3]. It follows that the composite L = Q,Q is
a localization functor satisfying Ker L = S; see [7, Lemma 3.1]. O

Central ring actions. Let R be a graded-commutative ring; thus R is Z-graded
and satisfies 7 - s = (—1)/"lIsls . r for each pair of homogeneous elements r, s in R.
We say that the triangulated category T is R-linear, or that R acts on T, if there
is a homomorphism R — Z*(T) of graded rings, where Z*(T) is the graded center
of T. In this case, for all objects X,Y € T the graded abelian group

Hom}(X,Y) = @5 Homr (X, V)
=
carries the structure of a graded R-module.

Support. From now on, R denotes a graded-commutative noetherian ring and T
a compactly generated R-linear triangulated category with arbitrary coproducts.

We write Spec R for the set of homogeneous prime ideals of R. Given a homo-
geneous ideal a in R, we set

V(a) ={p € SpecR | p D a}.

Let p be a point in Spec R and M a graded R-module. We write M, for the
homogeneous localization of M at p. When the natural map of R-modules M — M,,
is bijective M is said to be p-local. This condition is equivalent to: suppp M C {q €
Spec R | q C p}, where suppy M is the support of M. The module M is p-torsion if
each element of M is annihilated by a power of p; equivalently, if suppr M C V(p);
see [7, §2] for proofs of these assertions.

The specialization closure of a subset U of Spec R is the set

clU = {p € Spec R | there exists q € U with q C p}.

The subset U is specialization closed if cld = U; equivalently, if U/ is a union of
Zariski closed subsets of Spec R. For each specialization closed subset V of Spec R,
we define the full subcategory of T of V-torsion objects as follows:

Ty ={X € T |Hom7(C,X), =0 for all C € T, p € Spec R\ V}.

This is a localizing subcategory and there exists a localization functor Ly: T — T
such that Ker Ly, = Ty; see [7, Lemma 4.3, Proposition 4.5]. For each object X in
T the adjunction morphism X — Ly X induces the exact localization triangle

(2.2) N — X —LyX — .

This exact triangle gives rise to an exact local cohomology functor I'y: T — T. In
[7] we established a number of properties of these functors, to facilitate working
with them. We single out one that is used frequently in this work: They commute
with all coproducts in T; see [7, Corollary 6.5].
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For each p in Spec R set Z(p) = {q € Spec R | q £ p}, so V(p)\ Z(p) = {p}, and
Xy =Lz X foreach X €T.
The notation is justified by the next result which enhances [7, Theorem 4.7].

Proposition 2.3. Let p be a point in Spec R and X, Y objects in T. The R-modules
Hom7T(X,Y}) and HomT(X,,Y) are p-local, so the adjunction morphism Y — Y,
induces a unique homomorphism of R-modules

Hom7T(X,Y), — HomT(X,Y}).
This map is an isomorphism if X is compact.

Proof. The last assertion in the statement is [7, Theorem 4.7]. It implies that the R-
module Hom7(C,Y,) is p-local for each compact object C'in T. It then follows that
Hom7(X,Y,) is p-local for each object X, since X is in the localizing subcategory
generated by the compact objects, and the subcategory of p-local modules is closed
under taking products, kernels, cokernels and extensions; see [7, Lemma 2.5].

At this point we know that Endy(X,) is p-local, and hence so is Hom7(X,,Y),
since the R-action on it factors through the homomorphism R — End}(X,). O

Consider the exact functor I},: T — T obtained by setting
I X = Ty (Xp).

for each object X in T. The essential image of the functor I, is denoted by I, T,
and an object X in T belongs to I,T if and only if HomT(C, X) is p-local and
p-torsion for every compact object C; see [7, Corollary 4.10]. From this it follows
that I, T is a localizing subcategory.

The support of an object X in T is a subset of Spec R defined as follows:

suppp X = {p € SpecR | I, X # 0}.

In addition to properties of the functors I}y and Ly, and support, given in [7],
we require also the following ones.

Lemma 2.4. Let V C Spec R be a specialization closed subset and p € Spec R.
Then for each object X in T one has

I'X whenpeV,

0 otherwise,

X whenp gV,

I,(IyX) =
p( vX) { 0 otherwise.

and I(LyX) = {
Proof. Apply the exact functor I, to the exact triangle Iy X — X — Ly X —. The
assertion then follows from the fact that either I',(LyX) = 0 (and this happens
precisely when p € V) or I,(IvX) = 0; see [7, Theorem 5.6]. O

Further results involve a useful construction from [7, 5.10].

Koszul objects. Let r € R be a homogeneous element of degree d and X an
object in T. We denote X /r any object that appears in an exact triangle

(2.5) X 532X — X)r—

and call it a Koszul object of r on X; it is well defined up to (nonunique) iso-
morphism. Given a homogeneous ideal a in R we write X //a for any Koszul object
obtained by iterating the construction above with respect to some finite sequence of
generators for a. This object may depend on the choice of the generating sequence
for a, but one has the following uniqueness statement; see also Proposition 2.11(2).
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Lemma 2.6. Let a be a homogenous ideal in R. Each object X in T satisfies

suppg(X/a) =V(a) Nsuppyp X .
Proof. We verify the claim for a = (r); an obvious iteration gives the general result.
Fix a point p in Spec R and a compact object C'in T. Applying the exact functor
I, to the exact triangle (2.5), and then the functor Hom7(C, —) results in an exact
sequence of R-modules

Hom’(C, I, X) =% Hom}(C, I, X)[d] —
— Hom?(C, Iy(X/r)) — Hom’(C, I, X)[1] =5 Hom’(C, T, X)[d + 1]

Set H = Hom$(C, I,X). The R-module H is p-local and p-torsion, see 7, Corollary
4.10], and this is used as follows. If Hom?(C, I',(X//r)) # 0 holds, then H # 0 and
r € p since H is p-local. On the other hand, H # 0 and r € p implies that
Hom7T(C, I,(X//r)) # 0 since H is p-torsion. This implies the desired equality. [J

The result below is [8, Proposition 3.5], except that there G is assumed to consist
of a single object. The argument is however the same, so we omit the proof.
Proposition 2.7. Let G be a set of compact objects which generate T, and let V
be a specialization closed subset of Spec R. For any decomposition V = J,; V(a;)
where each a; is an ideal in R, there are equalities

Ty :LOCT({C//ai ‘ CeG,ie I}) :LOCT({FV(M)C | CeG,ie I}) O

An element r € R? is invertible on an R-module M if the map M = M[d] is an
isomorphism. In the same vein, we say r is invertible on an object X in T if the
natural morphism X = 24X is an isomorphism; equivalently, if X J/r is zero.
Lemma 2.8. Let X be an object in T and V C Spec R a specialization closed
subset. Each element r € R with V(r) CV is invertible on Ly X, and hence on the
R-modules HomT(Ly X,Y) and Hom3 (Y, Ly X), for any object Y in T.

Proof. From [7, Theorem 5.6] and Lemma 2.6 one gets equalities
suppp Ly (X/Jr) = V(r) Nsuppr X N (Spec R\ V(1)) = 0.
Therefore Ly (X//r) = 0, by [7, Theorem 5.2]. Applying Ly to the exact trian-

gle (2.5) yields an isomorphism LyX = XI"ILy, X, which is the first part of the
statement. Applying Hom}(—,Y") and Hom3 (Y, —) to it gives the second part. O

Homotopy colimits. Let X; Iy ox, 2 X3 3 bea sequence of morphisms
in T. Its homotopy colimit, denoted hocolim X, is defined by an exact triangle

P x. % @ X — hocolim X,, —
n>1 n>1
where 6 is the map (id —f,,); see [11].

Now fix a homogeneous element r € R of degree d. For each X in T and each
integer n set X,, = X" X and consider the commuting diagram

X X X
Ll b
X —— X, T Xy —

L]

X)r—— X)Jr? — X )13 —— - -
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where each vertical sequence is given by the exact triangle defining X /7", and the
morphisms in the last row are the (non-canonical) ones induced by the commutativ-
ity of the upper squares. The gist of the next result is that the homotopy colimits
of the horizontal sequences in the diagram compute Ly, X and Iy X.

Proposition 2.9. Letr € R be a homogeneous element of degree d. For each X in
T the adjunction morphisms X — Ly X and Iy X — X induce isomorphisms

hocolim X,, = Ly X and hocolim X~ (X Jr™) = Iy X .

Proof. Applying the functor Iy, to the middle row of the diagram above yields a
sequence of morphisms I,y X1 — [y X2 — ---. For each compact object C' in
T, this induces a sequence of morphisms of R-modules

HOmfl'(C, Fv(r)Xl) L }IOIII-T-(C'7 FV(T)XQ) ﬁ} .

BEach R-module Hom7(C, I,y X},) is (r)-torsion and, identifying this module with
Hom7(C, I'v(y X)[nd], the map g, is given by multiplication with r. Thus the
colimit of the sequence above, in the category of R-modules, satisfies:

(2.10) colim HomZ(C, Ty X,,) = 0

Applying the functor Ly, to the canonical morphism ¢: X — hocolim X, yields
the following commutative square.

X ¢ hocolim X,

nXJ/ Jn hocolim X,
Ly

Ly X —————— Ly hocolim X,

The morphism 7 hocolim X, is an isomorphism since I,y hocolim X,, = 0. The
equality holds because, for each compact object C, there is a chain of isomorphisms

Hom7(C, I'y(y hocolim X,,) = Hom7 (C, hocolim Iy, X5,)
= colim Hom7 (C, I'y(,) Xn)
=0
where the second one holds because C' is compact and the last one is by (2.10).
On the other hand, Ly,,)¢ is an isomorphism, since
Ly () hocolim X, = hocolim Ly () Xy,

and r is invertible on Ly )X, by Lemma 2.8. Thus hocolim X,, & Ly, X.
Now consider the canonical morphism ¢: hocolim ¥~ (X /r") — X. Applying
the functor Iy, to it yields a commutative square:

Iy

Iy hocolim X7 (X /r™) Iy X
0 hocolimEl(X//r")J/ lex
hocolim =1 (X //r™) v X

By [7, Lemma 5.11], each X /7™ is in Ty, and hence so is hocolim LX) ).
Thus the morphism 6 hocolim X~ (X /r™) is an isomorphism. It remains to show
that I'y(,)9 is an isomorphism; equivalently, that the map Hom7(C, I" V() is an
isomorphism for each compact object C.
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The exact triangle X — X,, — X/r™ — induces an exact sequence of R-modules:

Hom}(C, 2™ ' Iy X)) — Hom$(C, S~ Iy X /1)) —
— Hom:kl'(cv FV(T)X) — Homif-(C, FV(T)Xn)

In view of (2.10), passing to their colimits yields that HomT(C, I'y(;)¥) is an iso-
morphism, as desired. O

Proposition 2.11. Let a be an ideal in R. For each object X in T the following
statements hold:

(1) X/a is in Thickt(I'yq)X) and I'yq)X is in Loct (X /a);

(2) Loct(X/a) = Loct(I'y()X);

(3) Iy X and Ly X are in Loct(X).

Proof. (1) By construction X /a is in Thicks(X). As I')(q) is an exact functor, one
obtains that I'y(q)(X//a) is in Thickt (1 q)X). This justifies the first claim in (1),
since X//a is in Ty q) by [7, Lemma 5.11].
Now we verify that I')(q)X is in the localizing subcategory generated by X /a.
Consider the case where a is generated by a single element, say a.

Claim: X //a™ is in Thickt(X/a), for each n > 1.

Indeed, this is clear for n = 1. For any n > 1, the composition of maps
X 25 ynlal x 2y s(ntDlal
yields, by the octahedral axiom, an exact triangle
Xfa" — XJa"tt — 2l X g — .

Thus, when X //a™ is in Thickt(X/a), so is X /a™!. This justifies the claim.

It follows from Proposition 2.9 that I,,)X is the homotopy colimit of objects
Y1 X /a", and hence in Loct(X/a), by the claim above.

Now suppose a = (aq,...,a,), and set @’ = (ay,...,a,—1). Then the equality
V(a) = V(ar) N V(') yields I'vyqy = Iy(a,) Iy by [7, Proposition 6.1]. By
induction on n one may assume that I'y(oy X is in Loct(X/a’). Therefore I')(q) X
is in Loct (I (a,)(X/a’)). The basis of the induction implies that I, )(X/a’)
is in the localizing subcategory generated by (X/a’)/an, that is to say, by X/a.
Therefore, Iy(q)X is in Loct(X/a), as claimed.

(2) is an immediate consequence of (1).

(3) Since X//a is in Thicky(X), it follows from (1) that I',(q)X is in Loct(X).
The localization triangle (2.2) then yields that Ly )X is also in Loct(X). d

3. A LOCAL-GLOBAL PRINCIPLE

We introduce a local-global principle for T and explain how, when it holds,
the problem of classifying the localizing subcategories can be reduced to one of
classifying localizing subcategories supported at a single point in Spec R.

Recall that T is a compactly generated R-linear triangulated category. If for
each object X in T there is an equality

Loct(X) = Loct ({13 X | p € Spec R})
we say that the local-global principle holds for T.

Theorem 3.1. Let T be a compactly generated R-linear triangulated category. The
local-global principle is equivalent to each of the following statements.
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(1) For any X € T and any localizing subcategory S of T, one has
X €S <= I, X €S for each p € SpecR.

(2) For any X € T, one has X € Loct({I,X | p € Spec R}).
(3) For any X € T and any specialization closed subset V of Spec R, one has
IvX € LOCT({FPX ‘ p e V})
) For any X € T, one has Loct(X) = Locr({X, | p € Spec R}).
(5) For any X € T and any localizing subcategory S of T, one has
X €S < X, €S for each p € SpecR.

(6) For any X € T, one has X € Loctr({X, | p € Spec R}).
The proof uses some results which may also be useful elsewhere.

Lemma 3.2. Let X be an object in T. Suppose that for any specialization closed
subset V of Spec R, one has

I'vX € Loct({I, X |peV}).
Then I'vX and LyX belong to Loct(X) for every specialization closed V C Spec R.

Proof. Tt suffices to prove that I, X is in Loct(X) for each p, that is to say, that
the set U = {p € Spec R | I, X ¢ Loct(X)} is empty. Assume U is not empty and
choose a maximal element, say p, with respect to inclusion. This is possible since
R is noetherian. Set W = V(p) \ {p}, and consider the localization triangle

hyX —>Fv(p)X —)FpX —
of I'y(,) X with respect to W. The hypothesis implies the first inclusion below
I'wX € Loct({I4X | g € W}) C Loer(X),

and the second one follows from the choice of p. The object Iy ()X is in Loct (X)),
by Proposition 2.11, so the exact triangle above yields that I, X is in Loct(X).
This contradicts the choice of p, and hence U = ), as desired. O

Finite dimension. The dimension of a subset U of Spec R, denoted dim{, is the
supremum of all integers n such that there exists a chain po CTp1 C -+ C p, in U.
The set U is called discrete if dimU = 0.

Proposition 3.3. Let X be an object of T and set U = supprp X. IfU is discrete,
then there are natural isomorphisms

X[ vx = [ Lx.
peuU peU

Proof. Arguing as in the proof of [7, Theorem 7.1] one gets that the morphisms
I'y(p;yX — X induce the isomorphism on the left, in the statement above. The
isomorphism on the right holds since for each p € U the morphism Iy, X — I, X
is an isomorphism by Lemma 2.4.

Theorem 3.4. Let T be a compactly generated R-linear triangulated category and
X an object of T. If dimsuppp X < oo, then X is in Loct({IpX | p € suppr X}).

Proof. Set U = suppp X and S = Loct ({1, X | p € U}). The proof is an induction
on n = dimU. The case n = 0 is covered by Proposition 3.3. For n > 0 set U’ =
U\ min, where min/ is the set of minimal elements with respect to inclusion in i,
and set V = clY’. Tt follows from Lemma 2.4 that suppr I'vX = U'. Since diml’ =
dimU — 1, the induction hypothesis yields that I, X is in S. On the other hand,
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suppp Ly X = min!f is discrete and therefore Ly X belongs to S by Proposition 3.3
and Lemma 2.4. Thus X is in S, in view of the localization triangle (2.2). g

Proof of Theorem 3.1. It is easy to check that the local-global principle is equiv-
alent to (1). Also, the implications (1) = (2) and (4) <= (5) = (6) are obvious.
(2) = (3): Fix X € T and a specialization closed subset V of Spec R. Then

I'VX € Loct({I,IvX | p € Spec R}) = Loct ({1, X | p € V})

hold, where the last equality follows from Lemma 2.4.

(3) = (1): Since I'y = I'y(p)Lz(p), it follows from condition (3) and Lemma 3.2
that I, X is in Loct(X). This implies Loct(X) D Loct ({1, X | p € Spec R}) and
the reverse inclusion holds by condition (3) for ¥V = Spec R. Thus the local-global
principle, which is equivalent to condition (1), holds.

(3) = (4): We have I, X = Iy, X, € Loct(X,) for each prime ideal p by
Proposition 2.11 and hence the hypothesis implies X € Locr({X, | p € Spec R}).
On the other hand, X, € Loct(X) for each prime ideal p by Lemma 3.2.

(6) = (2): Fix X € T. For every prime ideal p, one has, for example from
Lemma 2.4, that suppp X, is a subset of {q € SpecR | q C p}. In particular, it
is finite dimensional, since R is noetherian, so X, € Loct({I4X, | ¢ € Spec R})
holds, by Theorem 3.4. Thus

X € Loct({X, | p € Spec R}) C Loct({14X, | p,q € Spec R})
= Loct({I4X | q € Spec R}),
where the last equality follows from Lemma 2.4. O

The result below is an immediate consequence of Theorems 3.4 and 3.1.
Corollary 3.5. When dim Spec R is finite the local-global principle holds for T. O

Classifying localizing subcategories. Localizing subcategories of T are related
to subsets of V = suppy T via the following maps

Localizing o Families (S(p))pey with S(p) a
subcategories of T | < localizing subcategory of I, T

T

which are defined by o(S) = (SN I}T)pev and 7(S(p))pev = Loct (S(p) [ p € V).
The next result expresses the local-global principle in terms of these maps.

Proposition 3.6. The following conditions are equivalent.

(1) The local-global principle holds for T.
(2) The map o is bijective, with inverse T.
(3) The map o is one-to-one.

Proof. We repeatedly use the fact that I, is an exact functor preserving coproducts.
For each localizing subcategory S of T and each p in Spec R there is an inclusion

(3.7) SNIL,TCT,S.

We claim that o7 is the identity, that is to say, that for any family (S(p))pev of
localizing subcategories with S(p) € I, T the localizing subcategory generated by
all the S(p), call it S, satisfies

SNI,T=S(p), foreachpeV.

To see this, note that I,S = S(p) holds, since I,y = 0 when p # g. Hence (3.7)
yields an inclusion SN I, T € S(p). The reverse inclusion is obvious.
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(1) = (2): It suffices to show that 7o equals the identity, since o7 = id holds.
Fix a localizing subcategory S of T. It is clear that 70(S) C S. As to the reverse
inclusion: Fixing X in S, it follows from Theorem 3.1(1) that I, X is in SNTI, T and
hence in 70(S), for each p € Spec R. Thus, X is in 70(S), again by Theorem 3.1(1).

(2) = (3): Clear.

(3) = (1): Since o7 = id and ¢ is one-to-one, one gets 7o = id. For each object
X in T there is thus an equality:

Loct(X) = Loct({Loct(X) NI, T | p € Spec R})
C Locr({IpX | p € Spec R})
The inclusion follows from (3.7). Now apply Theorem 3.1. O

The local-global principle focuses attention on the subcategory I, T. Next we
describe some of its properties, even though these are not needed in the sequel.

Local structure. Let p be a point in Spec R. In analogy with the case of R-
modules, we say that an object X in T is p-local if

suppr X C {q € SpecR | q C p}
and that X is p-torsion if
suppr X C {q € SpecR | q D p}.

The objects of I, T are precisely those that are both p-local and p-torsion; see [7,
Corollary 5.9] for alternative descriptions. Set

X(p) = (X/p)p-
The subcategory Loct(X(p)) is independent of the choice of a generating set for
the ideal p used to construct X//p; this follows from the result below.

Lemma 3.8. The following statements hold for each X € T and p € Spec R.
(1) X(p) is p-local and p-torsion.
(2) Loct(X(p)) = Loct(IpX).
(3) Homt (W, X (p)) = 0 for any object W that is q-local and q-torsion with q # p.

Proof. The argument is based on the fact that the localization functor that takes
an object X to X, is exact and preserves coproducts.

(1) Exactness of localization implies (X/p), can be realized as X, /p. Hence
X (p) belongs to Thicky(X}), so that it is p-local; it is p-torsion by [7, Lemma 5.11].

(2) Applying the localization functor to the equality Loct (X /p) = Loct (Iy ) X)
in Proposition 2.11 yields (2).

(3) If g Z p holds, then I'y(q)(X (p)) = 0 and hence the desired claim follows from
the adjunction isomorphism Homt (W, X (p)) = Homt(W, Iy X (p)). If g C p,
then the R-module Hom3 (W, X (p)) is g-local, by Proposition 2.3, and p-torsion, by
[7, Lemma 5.11], and hence zero since q # p. O

Proposition 3.9. For each p in Spec R and each compact object C in T, the object
C(p) is compact in I, T, and both {C(p) | C € T} and {I,C | C € T} generate
the triangulated category I, T. Furthermore, the R-linear structure on T induces a
natural structure of an Ry-linear triangulated category on I, T.

Proof. Recall that I,T is a localizing subcategory of T, so the coproduct in it is the
same as the one in T. Each object X in I',T is p-local, so there is an isomorphism

Homt(C(p), X) = Homt(C/p, X).
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When C'is compact in T, so is C/p. Thus the isomorphism above implies that C(p)
is compact in I, T. Furthermore, the collection of objects C'/p with C' compact in
T generates Ty () by Proposition 2.7, and hence the C(p) generate I, T.
The class of compact objects C' generates T hence the objects I,C generate I, T.
Proposition 2.3 implies that for each pair of objects X,Y in I}, T the R-module
Hom7(X,Y) is p-local, so that they admit a natural Ry-module structure. This
translates to an action of R, on I, T. (|

4. STRATIFICATION

In this section we introduce a notion of stratification for triangulated categories
with ring actions. It is based on the concept of a minimal subcategory introduced
by Hovey, Palmieri, and Strickland [19, §6].

As before T is a compactly generated R-linear triangulated category.

Minimal subcategories. A localizing subcategory of T is said to be minimal if
it is nonzero and has no proper nonzero localizing subcategories.

Lemma 4.1. A nonzero localizing subcategory S of T is minimal if and only if for

all nonzero objects X,Y in S one has Hom$(X,Y) # 0.

Proof. When S is minimal and X a nonzero object in it Loct(X) = S, by minimality,
so if Hom7(X,Y) = 0 for some Y in S, then Hom$(Y,Y") = 0, that is to say, Y = 0.

Suppose S contains a nonzero proper localizing subcategory S’; we may assume
S’ = Loct(X) for some nonzero object X. For each object W in T there is then
an exact triangle W’ LW L W with W e S, Hom7(X,W") = 0, and 0
invertible if and only if and W is in §’; see Lemma 2.1. It remains to pick an object
Win S\ S, set Y = W’ and note that Y is in S and nonzero. O

Stratification. We say that T is stratified by R if the following conditions hold:

(S1) The local-global principle, discussed in Section 3, holds for T.

(S2) For each p € Spec R the localizing subcategory I, T is either zero or minimal.
The crucial condition here is (52); for example, (S1) holds when the dimension of
Spec R is finite, by Corollary 3.5. Since the objects in I}, T are precisely the p-local
and p-torsion ones in T, condition (S2) is that each nonzero p-local p-torsion object
builds every other such object.

Given a localizing subcategory S of T and a subset U of Spec R set

SuUppr S = U suppr X and suppglu ={X €T |suppp X CU}.
Xes

Observe that suppp and SuppI}1 both preserve inclusions.

Theorem 4.2. Let T be a compactly generated R-linear triangulated category. If
T is stratified by R, then there are inclusion preserving inverse bijections:

Localizing SUPPR
* ! Subsets of su T }
{ subcategories of T } m { / suppr

= R

Conversely, if the map suppp is injective, then T must be stratified by R.

Proof. For each p € Spec R the subcategory Ker I'y is localizing. This implies that
for any subset U of Spec R the subcategory Suppf%1 U is localizing, for

suppglu = ﬂ Ker I}, .
peU
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Moreover, it is clear that supp R(suppl_%1 U) = U for each subset U of suppy T, and

that S C supp;zl(supp r S) holds for any localizing subcategory S. The moot point

is whether S contains suppgl(supp r S); equivalently, whether suppy, is one-to-one.
The map suppy, factors as o’c with o as in Proposition 3.6 and ¢’ the map

{Famﬂies (S(p))pesupp, T With S(p)

Subsets of su T }
a localizing subcategory of I, T } - { PPr

where ¢/(S(p)) = {p € Spec R | S(p) # {0}}. Evidently o’ is one-to-one if and only
if it is bijective, if and only if the minimality condition (S2) holds. The map o is
also one-to-one if and only if it is bijective; moreover this holds precisely when the
local-global principle holds for T, by Proposition 3.6. The desired result follows. [

Corollary 4.3. If R stratifies T and G is a set of generators for T, then each
localizing subcategory S of T is generated by the set SN{I, X | X € G, p € Spec R}.
In particular, there exists a localization functor L: T — T such that S = Ker L.

Proof. The first assertion is an immediate consequence of Theorem 4.2, since S
and the localizing subcategory generated by the given set of objects have the same
support. Given this, the second one follows from Lemma 2.1. O

Other consequences of stratification are given in Sections 5 and 6. Now we
provide examples of triangulated categories that are stratified; see also Example 7.4.

Example 4.4. Let A be a commutative noetherian ring and D(A) the derived
category of the category of A-modules. The category D(A) is compactly generated,
A-linear, and triangulated. This example is discussed in [7, §8], where it is proved
that the notion of support introduced in [7] coincides with the usual one, due to
Foxby and Neeman; see [7, Theorem 9.1]. In view of Theorem 4.2, one can refor-
mulate [25, Theorem 2.8] as: The A-linear triangulated category D(A) is stratified
by A. This example will be subsumed in Theorem 8.1.

Example 4.5. Let k be a field and A an exterior algebra over k in finitely many
indeterminates of negative odd degree; the grading is upper. We view A as a dg
algebra, with differential zero. In [8, §6] we introduced the homotopy category of
graded-injective dg A-modules and proved that it is stratified by a natural action
of its cohomology algebra, Ext} (k, k).

The next example shows that there are triangulated categories which cannot be
stratified by any ring action.

Example 4.6. Let k£ be a field and @ a quiver of Dynkin type; see, for example,
[4, Chapter 4]. The path algebra kQ is a finite dimensional hereditary algebra of
finite representation type. It is easily checked that the graded center of the derived
category D(kQ) is isomorphic to k. In fact, each object in D(kQ) is a direct sum
of indecomposable objects, and EndB(kQ)(X ) 2 k for each indecomposable object
X. The localizing subcategories of D(kQ) are parameterized by the noncrossing
partitions associated to @; this can be deduced from work of Ingalls and Thomas
[20]. Thus the triangulated category D(kQ) is stratified by some ring acting on it
if and only if the quiver consists of one vertex and has no arrows.

5. ORTHOGONALITY

Let X and Y be objects in T. The discussion below is motivated by the question:
when is Hom}(X,Y) = 0? The orthogonality property [7, Corollary 5.8] says that
if cl(suppgr X) and suppr Y are disjoint, then one has the vanishing. What we
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seek are converses to this statement, ideally in terms of the supports of X and
Y. Lemma 4.1 suggests that one can expect satisfactory answers only when T is
stratified. In this section we establish some results addressing this question and
give examples which indicate that these may be the best possible.

For any graded R-module M set Suppp M = {p € SpecR | M, # 0}. This
subset is sometimes referred to as the ‘big support’ of M to distinguish it from its
‘homological’ support, suppp M. Analogously, for any object X in T, we set

Suppp X = U Suppp Hom7(C, X) .
CeTe
It follows from [7, Theorem 5.15(1) and Lemma 2.2(1)] that there is an equality:
Suppr X = cl(suppy X).
We use this equality without further comment.

Theorem 5.1. Let T be a compactly generated R-linear triangulated category. If R
stratifies T, then for each compact object C' and each object Y, there is an equality

Suppy HomT(C,Y) = Supprp C N Suppr Y .
The proof requires only stratification condition (S2), never (S1).

Proof. Fix a prime ideal p € Spec R. Suppose HomT(C,Y), # 0; by definition, one
then has p € Suppy Y. Moreover End7(C'), # 0 since the R-action on Homt(C,Y),
factors through it, hence p is also in Suppy C. Thus there is an inclusion

Suppr HomT(C,Y) C Supprp C N Suppr Y .

Now suppose HomT(C,Y’), = 0. One has to verify that that for any prime ideal
q C p either I;C =0 or I,Y = 0. By [7, Theorem 4.7], see also Proposition 2.3,
since C' is compact the adjunction morphism ¥ — Y; induces an isomorphism

0 =Hom7(C,Y)q = Hom7(C,Yy) .

As I'y(q)Y is in Loct(Y'), by Proposition 2.11, one obtains that I'yY" is in Loct(Yy),
hence the calculation above yields Hom7(C,I,Y) = 0. As I,Y is g-local the
adjunction morphism C' — C; induces the isomorphism below

Hom7T(Cy, I,Y) = Hom$(C,I,Y) =0.

Using now the fact that I'yC' is in Loct(Cyq) one gets HomT(I'4C, I,Y) = 0. Our
hypothesis was that R stratifies T. Thus one of I';C or I}Y is zero. O

The example below shows that the conclusion of the preceding theorem need not
hold when C is not compact. See also Example 5.9

Example 5.2. Let A be a commutative noetherian ring with Krull dimension at
least one and m a maximal ideal of A that is not also a minimal prime. For example,
take A =7 and m = (p), where p is a prime number.

Let T be the derived category of A-modules, viewed as an A-linear category; see
Example 4.4. Let E be the injective hull of A/m. The A-module Hom}(E, E) is
then the m-adic completion of A, so it follows that

Supp 4 Hom3(E,E) = {p Cm|p € Spec R} 2 {m} = Supp, E.
Observe that supp 4 HomT(E, E) = Supp 4 HomT(E, E) and supp4 E = Suppy E.

One drawback of Theorem 5.1 is that it involves the big support Suppp, while
one is mainly interested in suppp. Next we identify a rather natural condition on
T under which one can obtain results in the desired form.
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Noetherian categories. We call a compactly generated R-linear triangulated cat-
egory noetherian if for any compact object C'in T the R-module End}(C) is finitely
generated. This is equivalent to the condition that for all compact objects C, D the
R-module Hom3(C, D) is finitely generated: consider End3(C @ D). If C generates
T, then T is noetherian if and only if the R-module Endy(C) is noetherian.

As a consequence of Theorem 5.1 one gets:

Corollary 5.3. If T is noetherian and stratified by R, then for each pair of compact
objects C, D in T there is an equality

suppp Hom7 (C, D) = suppg C Nsuppg D .
When in addition R® = 0 holds for i < 0, one has Hom%(C,D) = 0 for n > 0 if
and only if HomT(D,C) =0 for n>> 0.

Proof. In view of the noetherian hypothesis and [7, Lemma 2.2(1), Theorem 5.5(2)],
the desired equality follows from Theorem 5.1. It implies in particular that
suppp Hom7(C, D) = suppy Hom7 (D, C).

When R? = 0 holds for i < 0 and M is a noetherian R-module one has M™ = 0 for
n > 0 if and only if suppp M C {p € Spec R | p D R>'}; see [10, Proposition 2.4].
The last part of the corollary now follows from the equality above. O

There is a version of the preceding result where the objects C' and D need
not be compact. This is the topic of the next theorem. As preparation for its
proof, and for later applications, we further develop the material in [7, Definition
4.8]. Let C be a compact object in T. For each injective R-module I, the Brown
representability theorem [23, 27] yields an object T (1) in T such that there is a
natural isomorphism:

Homrt(—,T¢(I)) =& Hompg(Hom3(C, —), I).
Moreover, the assignment I — T (I) defines a functor To: InjR — T from the
category of injective R-modules to T.

Proposition 5.4. Let C be a compact object in T. The functor Tc: InfjR — T
preserves products. If the R-linear category T is noetherian, each I € Inj R satisfies:

suppr Te(I) = suppgr C Nsuppg I = suppy End1(C) Nsuppg I .
In particular, for each p € Spec R the object Tc(E(R/p)) is in I, T.

Proof. Tt follows by construction that T¢ preserves products. For each compact
object D in T, there is an isomorphism of R-modules

Hom7(D,T¢(I)) = Homp (HomT(C, D), I).
When T is noetherian, so that the R-module Hom7(C, D) is finitely generated, the
isomorphism above gives the first equality below:
suppp HomT (D, T¢ (1)) = suppp HomT(C, D) Nsuppy [
= suppp C Nsuppr D Nsuppp I .
The second equality holds by Corollary 5.3. Lemma 5.5 below then yields the first
of the desired equalities; the second one holds by [7, Theorem 5.5(2)]. g

The following lemma provides an alternative description of the support of an
object in T. Note that T need not be noetherian.
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Lemma 5.5. Let X be an object in T and U a subset of suppp T. If
suppp Hom7}(C, X) =U Nsuppy C
holds for each compact object C, then suppp X =U.

Proof. Tt follows from [7, Theorem 5.2] that suppp X C U.

Fix p in & and choose a compact object D with p in suppr D. Then p is in
suppg(D /p), so the hypothesis yields that p is in suppz Hom3 (D /p, X). Hence p
belongs to suppg X, by [7, Proposition 5.12]. O

For a compact object C, the functor Hom3(C, —) vanishes on Loct(Y) if and
only if Hom™(C,Y) = 0. Using this observation, it is easy to verify that the theorem
below is an extension of Corollary 5.3. Compare it also with [7, Corollary 5.8].

Theorem 5.6. Let T be an R-linear triangulated category that is noetherian and
stratified by R. For any X and Y in T the conditions below are equivalent:

(1) Hom1(X,Y’) =0 for any Y’ in Loct(Y);

(2) cl(suppr X) Nsuppgp Y = 0.

Proof. (1) = (2): Let p be a point in suppp Y and C' a compact object in T.
Proposition 5.4 yields that To(E(R/p)) is in I, T, and hence also in Loct(Y'); the
last assertion holds by Theorem 4.2. This explains the equality below:

Hom’ (Homz(C, X), E(R/p)) = Homt (X, To(E(R/p))) =0,

while the isomorphism follows from the definition of T;. Thus Hom7(C, X), = 0.
Since C' was arbitrary, this means that p is not in cl(suppp X).

(2) = (1): One has suppr Y’ C suppp Y for Y’ in Locr(Y), since the functor
Iy is exact and preserves coproducts. The orthogonality property of supports, [7,
Corollary 5.8] thus implies that if condition (2) holds, then Hom7(X,Y’) =0. O

Recall that the left orthogonal subcategory of S, denoted 1S, is the localiz-
ing subcategory {X € T | Hom7(X,Y) = 0 for all Y € S}. As a straightforward
consequence of Theorem 5.6 one obtains a description of the support of the left
orthogonal of a localizing category, answering a question raised by Rickard.!

Corollary 5.7. For each localizing subcategory S of T the following equality holds:

suppp(*S) = {p € suppr T | V(p) Nsuppy S = 0} 0

Remark 5.8. In the context of Theorem 5.6, for any compact object C one has
Hom3(C,Y) = 0 if and only if suppp C NsupprY =10.

The next example shows that one cannot do away entirely with the hypothesis
that C' is compact; the point being that Hom(X,Y) = 0 does not imply that
Hom™(X, —) is zero on Loct(Y), unless X is compact.

Example 5.9. Let A be a complete local domain and @ its field of fractions. For
example, take A to be the completion of Z at a prime p. It follows from a result of
Jensen [22, Theorem 1] that Ext’ (Q, A) = 0. Thus, with T the derived category of
A, one gets supp 4 Hom7(Q, A) = () while supp,4 @ N supp4 A consists of the zero
ideal. Note that @ is in Loct(A), so there is no contradiction with Theorem 5.6.

LAfter a talk by Iyengar at the workshop ‘Homological methods in group theory’, MSRI 2008.
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6. CLASSIFYING THICK SUBCATEGORIES

In this section we prove that when T is noetherian and stratified by R its thick
subcategories of compact objects are parameterized by specialization closed subsets
of suppr T. As before, R is a graded-commutative noetherian ring and T is a
compactly generated R-linear triangulated category.

Thick subcategories. One can deduce the next result from the classification of
localizing subcategories, Theorem 4.2, as in [25, §3]. We give a different proof.

Theorem 6.1. Let T be a compactly generated R-linear triangulated category that
is noetherian and stratified by R. The map
Thick subcategories Suppp Specialization closed
—_—

of T¢
is bijective. The inverse map sends a specialization closed subset V of Spec R to
the subcategory {C € T¢ | suppp C C V}.

subsets of suppp T

Observe that in the proof the injectivity of the map suppp requires only that
T satisfies the stratification condition (S2), while the surjectivity uses only the
hypothesis that T is noetherian.

Proof. First we verify that suppp C is specialization closed for any thick subcategory
C of T¢. For any compact object C' the R-module End}(C) is finitely generated,
and this implies suppp C = suppy End3(C), by [7, Theorem 5.5]. Thus suppp C' is
a closed subset of Spec R, and therefore suppp C is specialization closed.

To verify that the map suppp, is surjective, let V be a specialization closed subset
of supp, T and set C = {C//p | C € T% p € V}. One then has that Loct(C) = Ty
by [7, Theorem 6.4], and therefore the following equalities hold

suppr C =suppr Ty =V Nsuppp T = V.

It remains to prove that suppy, is injective. Let C be a thick subcategory of T and
set D ={D € T¢ | suppgr D C suppg C}. We need to show that C = D. Evidently,
an inclusion C C D holds. To establish the other inclusion, let L: T — T be the
localization functor with Ker L = LocT(C); see Lemma 2.1 for its existence. Let D
be an object in D. Each object C' in C satisfies Hom3(C, LD) = 0, so Theorem 5.1

implies Suppy C N Suppr LD = §. Hence LD = 0, that is to say, D belongs to
Loct(C). It then follows from [25, Lemma 2.2] that D is in C. O

Smashing subcategories. Next we prove that when T is stratified and noether-
ian, the telescope conjecture [31] holds for T. In preparation for its proof, we record
an elementary observation.

Lemma 6.2. Let p C q be prime ideals in Spec R. The injective hull E(R/p) of
R/p is a direct summand of a product of shifted copies of E(R/q).

Proof. The shifted copies of E(R/q) form a set of injective cogenerators for the
category of g-local modules. This implies the desired result. O

A subset U of Spec R is said to be closed under generalization if Spec R\ U is
specialization closed. More explicitly: q € & and p C q imply p € U.

Theorem 6.3. Let T be an R-linear triangulated category that is noetherian and
stratified by R. There is then a bijection

{ Localizing subcategories of T } suppp { Subsets of suppr T }

closed under all products closed under generalization
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Moreover, if L: T — T is a localization functor that preserves arbitrary coproducts,
then the localizing subcategory Ker L is generated by objects that are compact in T.

Remark 6.4. The inverse map of suppy takes a generalization closed subset U of
Spec R to the category of objects X of T with supprp X C U; in other words, the
category of Ly-local objects, where V = Spec R\ U.

Proof. Let S be a localizing subcategory of T that is closed under arbitrary prod-
ucts. We know from Theorem 4.2 that S is determined by its support supppS.
Thus we need to show that it is closed under generalization.

Fix prime ideals p C q in suppp T and suppose that q is in supppS. It fol-
lows from Theorem 4.2 that I';T C S holds. Pick a compact object C such that
suppp C contains p; this is possible since suppp T¢ = suppg T. Since T is noether-
ian, suppp C is a closed subset of Spec R, by [7, Theorem 5.5], and hence contains
also q. Let E(R/q) be the injective hull of the R-module R/q. Since T is noe-
therian, Proposition 5.4 yields that Tc(E(R/q)) is in I'4yT and hence in S. The
functor T preserves products, so Lemma 6.2 implies that Te(E(R/p)) is a direct
summand of T¢(E(R/q)) and hence it is also in S, because the latter is a localizing
subcategory closed under products. Another application of Proposition 5.4 shows
that suppr To(E(R/p)) = {p}, so that p € suppy S holds, as desired

Next let U be a generalization closed subset of Spec R and set V = Spec R \ U.
Let S be the category of Ly-local objects, so that supprS = U holds, by [7,
Corollary 5.7]. By construction, the category S is triangulated and closed under
arbitrary products; it is localizing because the localization functor L, preserves
arbitrary coproducts, by [7, Corollary 6.5].

This completes the proof that suppp induces the stated bijection.

Finally, let L: T — T be a localization functor that preserves arbitrary coprod-
ucts. The category of L-local objects, which always is closed under products, is then
also a localizing subcategory of T. The first part of this proof shows that L = Ly,
for some specialization closed subset V of Spec R, because the localization functor
L is determined by the category of L-local objects. It remains to note that Ker L,
which is the category Ty, is generated by compact objects, by [7, Theorem 6.4]. O

7. TENSOR TRIANGULATED CATEGORIES

In this section we discuss special properties of triangulated categories which hold
when they have a tensor structure. The main result here is Theorem 7.2, which
says that the local-global principle holds for such categories, when the action of the
tensor product is also taken into account.

Let T = (T,®,1) be a tensor triangulated category as defined in [7, §8]. In
particular, T is a compactly generated triangulated category endowed with a sym-
metric monoidal structure; ® is its tensor product and 1 the unit of the tensor
product. It is assumed that ® is exact in each variable, preserves coproducts, and
that 1 is compact.

The symmetric monoidal structure ensures that the endomorphism ring Endy (1)
is graded commutative. This ring acts on T via homomorphisms

End} (1) =2= End%(X),

In particular, any homomorphism R — Endj(1) of rings with R graded commu-
tative induces an action of R on T. We say that an R action on T is canonical if
it arises from such a homomorphism. In that case there are for each specialization
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closed subset V and point p of Spec R natural isomorphisms
(7.1) HWX=2XeIyl, IWwWX=2X®Lyl, and I, X=2X®I,1.

These isomorphisms are from [7, Theorem 8.2, Corollary 8.3].2

Tensor ideal localizing subcategories. A localizing subcategory S of T said to
be tensor ideal if for each X € T and Y € S, the object X ® Y, hence also Y ® X,
is in S. The smallest tensor ideal localizing subcategory containing a subcategory
S is denoted Loc$ (S). Evidently there is always an inclusion Loct(S) € Loc¥ (S);
equality holds when the unit 1 generates T.

The following result is proved in [8, Theorem 3.6] under the additional assump-
tion that T has a single compact generator. The same argument carries over; except
that, instead of [8, Proposition 3.5] use Proposition 2.7 above. We omit details.

Theorem 7.2. Let T be a tensor triangulated category with a canonical R-action.
For each object X in T there is an equality

Loc? (X) = Loc§ (I;X | p € SpecR) .
In particular, when 1 generates T, the local global principle holds for T. O

Stratification. For each p in Spec R, the localizing subcategory I, T, consisting of
p-local and p-torsion objects, is tensor ideal; this is immediate from (7.1). We say
that T is stratified by R when for each p, the category I, T is either zero or has no
proper tensor ideal localizing subcategories. Note the analogy with condition (S2)
in Section 4; the analogue of (S1) need not be imposed thanks to Theorem 7.2.

There are analogues, for tensor triangulated categories, of results in Sections 5
and 6; the proofs are similar, see also [7, §11]. One has in addition also the following
‘tensor product theorem’.

Theorem 7.3. Let T be a tensor triangulated category with a canonical R-action.
If R stratifies T, then for any objects X,Y in T there is an equality

suppp(X ® Y) = suppp X Nsupprp Y .

Proof. Fix a point p in Spec R. From 7.1 it is easy to verify that there are isomor-
phisms IW( X ®Y) =TI, X ®I,Y =I,X ®Y. These will be used without further
ado. They yield an inclusion:

suppp(X ®Y) C suppp X Nsuppp V.

When I, X # 0 the stratification condition yields I},1 € L0c®(FpX), and hence
also I,Y € Loc®(I, X ®Y). Thus when I,Y # 0 also holds, I},(X ®Y) # 0 holds,
which justifies the reverse inclusion. O

Example 7.4. Let G be a finite group, k a field of characteristic p, where p divides
the order of G, and kG the group algebra. The homotopy category of complexes
of injective kG-modules, K(InjkG), is a compactly generated tensor triangulated
category with a canonical action of the cohomology ring H*(G, k). One of the
main results of [8], Theorem 9.7, is that K(Inj kG) is stratified by this action. The
same is true also of the stable module category StMod kG| see [8, Theorem 10.3].

2For these results to hold, the R action should be canonical, for the R-linearity of the adjunction
isomorphism Homt(X ® Y, Z) = Hom(X, Hom(Y, Z)) is used in the arguments.
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8. FORMAL DIFFERENTIAL GRADED ALGEBRAS

The goal of this section is to prove that the derived category of differential graded
(henceforth abbreviated to ‘dg’) modules over a formal commutative dg algebra is
stratified by its cohomology algebra, when that algebra is noetherian. This result
specializes to one of Neeman’s [25] concerning rings, which may be viewed as dg
algebras concentrated in degree 0.

For basic notions concerning dg algebras and dg modules over them we refer the
reader to Mac Lane [24, §6.7]. A quasi-isomorphism between dg algebras A and
B is a morphism ¢: A — B of dg algebras such that H*(¢) is bijective; A and B
are quasi-isomorphic if there is a chain of quasi-isomorphisms linking them. The
multiplication on A induces one on its cohomology, H*(A). We say that A is formal
if it is quasi-isomorphic to H*(A), viewed as a dg algebra with zero differential.

We write D(A) for the derived category of dg modules over a dg algebra A; it is
a triangulated category, generated by the compact object A; see, for instance, [23].

A dg algebra A is said to be commutative if its underlying ring is graded commu-
tative. In this case the derived tensor product of dg modules, denoted @, endows
D(A) with a structure of a tensor triangulated category, with unit A. One is thus
in the framework of Section 7.

The next theorem generalizes [8, Theorem 5.2], which deals with the case of
graded algebras of the form k[z1,...,z,], where k is a field and z1,...,z, are
indeterminates, of even degree if the characteristic of k is not 2.

Theorem 8.1. Let A be a commutative dg algebra such that the ring H*(A) is
noetherian. If A is formal, then D(A) is stratified by the canonical H*(A)-action.

In the proof we use a totalization functor from complexes over a graded ring
to dg modules over the ring viewed as a dg algebra with differential zero; see [24,
§10.9], where this functor is called condensation, and [23, §3.3].

Totalization. Let A be a graded algebra. For each graded A-module N and integer
d we write N[d] for the graded A-module with N[d]* = N9 and multiplication
the same as the one on N.

Let F be a complex of graded A-modules with differential §; so each F? is a graded
A-module, §*: F* — F**! are morphisms of graded A-modules, and 6°T16* = 0. We
write F*J for the component of degree j in the graded module F*. The totalization
of F', denoted tot F, is the dg abelian group with

(tot F)" = EB F“ for eachn € Z
1+j=n

A(f) =6(f) foreach f € F™J
We consider tot F' as a graded A-module with multiplication defined by

a-f=(-1)%af foreachac A and f € F™.

A routine calculation shows that tot F' is then a dg A-module, where A is viewed as
dg algebra with zero differential, and that each morphism a: F' — G of complexes
of graded A-modules induces a morphism tot a: tot F© — tot G of dg A-modules.
Moreover, there are equalities of dg A-modules:

e tot A = A;
e tot N[d] = X%tot N for each graded A-module N and integer d;
o tot X"F = X" tot F.
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One thus gets an additive functor from the category of complexes of graded A-
modules to the category of dg A-modules. It is easy to check that if the complex
F' is acyclic so is tot F'.

Indeed, fix a cycle z in (tot F)", and write z = Y, z; where z; € F*"~*. Since
§(z) = >, 6%(2i) and 8%(z;) € F'T1"~% each z; is a cycle in F*. Since F is acyclic
there exist elements w; € F'~1J with §71(w;) = 2;; moreover, one may take w; = 0
when z; = 0. Note that the element w = >, w; is in (tot F)"~* and 6(w) = z.

In conclusion, tot induces an exact functor

tot: D(GrMod A) — D(A).

of triangulated categories; here D(GrMod A) is the derived category of graded A-
modules, while D(A) is the derived category of dg A-modules.

Lemma 8.2. Let E be the Koszul complex on a sequence a = az, ... ,a. of homoge-
nous central elements in A. Then tot E 2 X%A/la in D(A), where d =", |ay|.

Proof. Indeed, since tot preserves exact triangles, and both E and Aja can be
obtained as iterated mapping cones, it suffices to verify the statement for the Koszul
complex on a single element, say a. The desired result is then immediate from the
properties of tot listed above. O

We require also some elementary results concerning transfer of stratification
along exact functors; a detailed study is taken up in [9, Section 7].

Change of categories. As before R is a graded commutative noetherian ring and
T is a compactly generated R-linear triangulated category. Let F': U — T be an
equivalence of triangulated categories. Observe that U is then compactly generated;
it is also R-linear with action given by the isomorphism of graded abelian groups

Hom((X,Y) = Hom7(FX, FY)
induced by F, for all XY in U.
Proposition 8.3. The ring R stratifies U if and only if it stratifies T.

Proof. Using [7, Corollary 5.9], it is easy to verify that for each p in Spec R and X
in U, there is an isomorphism F(I,X) = I',(FX), and that the induced functor
I''U — I',T is an equivalence of triangulated categories. Given this, it is immediate
from definitions that R stratifies U if and only if it stratifies T. O

When A — B is a quasi-isomorphism of dg algebras, B ®% —: D(4) — D(B)
is an equivalence of categories, with quasi-inverse the restriction of scalars; see, for
example, [3, 3.6], or [23, 6.1]. The preceding result thus yields:

Corollary 8.4. Let A and B be quasi-isomorphic dg algebras. If D(A) is stratified
by an action of R, then D(B) is stratified by the induced R-action. O

Proof of Theorem 8.1. Let R = H*(A). The category D(A) is tensor triangu-
lated so it admits an R-action induced by the isomorphism R = HomE( 4 (4, A).
The dg algebras A and H*(A) are quasi-isomorphic, as A is formal, so it suffices to
prove that D(H*(A)) is stratified by the induced R-action; see Corollary 8.4. It is
easy to verify that the homomorphism R — Homp g (ay)(H*(A), H*(A)) = H*(A)
induced by this R-action is bijective, and hence that D(H*(A)) is stratified by R if
and only if it is stratified by the canonical H*(A)-action.

In summary, replacing A by H*(A) we may thus assume the differential of A is
zero. Set D = D(A). Since A is a unit and a generator of this tensor triangulated



STRATIFYING TRIANGULATED CATEGORIES 23

category, its localizing subcategories are tensor closed. The local-global principle
then holds for D, by Theorem 7.2. It remains to verify stratification condition (S2).

Fix a p in Spec A. Since A is a compact generator for D, a dg A-module M is in
I',D if and only if the A-module H*(M) = Homp (A, M) is p-local and p-torsion.
Hence for such an M the localization map M — M, is an isomorphism; here M,
denotes the usual (homogenous) localization of M at p. Localizing A at p we may
thus assume that it is local with maximal ideal p; set &k = A/p, which is a graded
field. Setting V = V(p), one has an isomorphism of functors I, = I'},.

Evidently, & is in I'yD, so to verify condition (S2) it suffices to verify that

(8.5) Locp(M) = Locp(k)

holds for each M in I'yD with H*(M) # 0.
It is enough to prove that (8.5) holds for M = I'}, A. Indeed, applying the functor
— ®ﬁ M would then yield the second equality below:

Locp (M) = Locp(I'vA ®% M) = Locp (k @5 M),
while the first one holds, by (7.1), since M = I, M; in particular, H* (k@Y M) # 0.
Since k is a graded field and the action of A on k ®% M factors through k, this
implies Locp (k ®% M) = Locp (k). Combining with the equality above gives (8.5).
Now we verify (8.5) for M = I, A. The dg module k is isomorphic to I'y A @k k
and hence in Locp(IyA). It remains to prove that I} A is in Locp (k). Let a =

ai,...,a. be a homogeneous set of generators for the ideal p, and let a? denote the
sequence a?, ..., a2. It suffices to prove that
(8.6) Afla® € Thickp (k) ,

for then one has
Locp(A//p) = Locp(IyA) = Locp(I)y(q2)A) = Locp(A/a®) C Locp (k)

where the first and third equalities are by Proposition 2.11, and the second holds
because the radical of the ideal (a?) equals p, so that V(a?) = V.

Let tot: D(GrMod A) — D be the totalization functor described above and E in
D(GrMod A) the Koszul complex on the sequence a?; note that the elements a; are
central in A, since they are of even degree. The complex E is bounded, consists of
finitely generated graded A-modules, and satisfies (a?) - H*(E) = 0. Since k is a
graded field, the subquotients of the filtration {0} C (a)H*(E) C H*(E) are thus
finite direct sums of shifts of k. Hence there are inclusions

E € Thick(H*(E)) C Thick(k)

in D(GrMod A); see, for example, [3, Theorem 6.2(3)]. Since tot is an exact functor,
it follows that tot E is in Thick(tot k) in D. It remains to note that totk = k and
that tot E is isomorphic to a suspension of 4/a?, by Lemma 8.2.

This justifies (8.6) and hence completes the proof of the theorem. O
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