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Abstract. We propose a new method for defining a notion of support for
objects in any compactly generated triangulated category admitting small co-

products. This approach is based on a construction of local cohomology func-
tors on triangulated categories, with respect to a central ring of operators.

Suitably specialized one recovers, for example, the theory for commutative

noetherian rings due to Foxby and Neeman, the theory of Avramov and Buch-
weitz for complete intersection local rings, and varieties for representations
of finite groups according to Benson, Carlson, and Rickard. We give explicit
examples of objects whose triangulated support and cohomological support
differ. In the case of group representations, this leads to a counterexample to
a conjecture of Benson.

Résumé. Nous proposons une façon nouvelle de définir une notion de support
pour les objets d’une catégorie avec petits coproduit, engendrée par des objets
compacts. Cette approche est basée sur une construction des foncteurs de co-
homologie locale sur les catégories triangulées relativement à un anneau central
d’opérateurs. Comme cas particuliers, on retrouve la théorie pour les anneaux
noethériens de Foxby et Neeman, la théorie d’Avramov et Buchweitz pour les
anneaux locaux d’intersection complète, ou les variétés pour les représentations
des groupes finis selon Benson, Carlson et Rickard. Nous donnons des exem-
ples explicites d’objets dont le support triangulé et le support cohomologique

sont différents. Dans le cas des représentations des groupes, ceci nous permet

de corriger et d’établir une conjecture de Benson.

1. Introduction

Herr K. sagte einmal: “Der Denkende benützt

kein Licht zuviel, kein Stück Brot zuviel,

keinen Gedanken zuviel.”

Bertolt Brecht, Geschichten von Herrn Keuner

The notion of support is a fundamental concept which provides a geometric
approach for studying various algebraic structures. The prototype for this has been
Quillen’s [49] description of the algebraic variety corresponding to the cohomology
ring of a finite group, based on which Carlson [22] introduced support varieties for
modular representations. This has made it possible to apply methods of algebraic
geometry to obtain representation theoretic information. Their work has inspired
the development of analogous theories in various contexts, notably modules over
commutative complete intersection rings, and over cocommutative Hopf algebras.
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In this article we propose a new method for defining a notion of support for
objects in any compactly generated triangulated category admitting small coprod-
ucts. The foundation of our approach is a construction of local cohomology functors
on triangulated categories, with respect to a central ring of operators; this is in-
spired by work of Grothendieck [32]. Suitably specialized our approach recovers,
for example, the support theory of Foxby [27] and Neeman [48] for commutative
noetherian rings, the theory of Avramov and Buchweitz for complete intersection
local rings [3, 6], and varieties for representations of finite groups, according to
Benson,Carlson, and Rickard [16]. It is surprising how little is needed to develop
a satisfactory theory of support. To explain this, let us sketch the main results of
this paper.

Let T be a triangulated category that admits small coproducts and is compactly
generated. In the introduction, for ease of exposition, we assume T is generated by
a single compact object C0. Let Z(T) denote the graded center of T. The notion of
support presented here depends on the choice of a graded-commutative noetherian
ring R and a homomorphism of rings

R −→ Z(T) .

We may view R as a ring of cohomology operators on T. For each object X in T

its cohomology

H∗(X) = Hom∗
T(C0, X) =

∐

n∈Z

HomT(C0,Σ
nX)

has a structure of a graded module over Z(T) and hence over R. We let Spec R
denote the set of graded prime ideals of R. The specialization closure of a subset
U ⊆ SpecR is the subset

clU = {p ∈ SpecR | there exists q ∈ U with q ⊆ p} .

This is the smallest specialization closed subset containing U .
One of the main results of this work is an axiomatic characterization of support:

Theorem 1. There exists a unique assignment sending each object X in T to a
subset suppR X of Spec R such that the following properties hold:

(1) Cohomology: For each object X in T one has

cl(suppR X) = cl(suppR H∗(X)) .

(2) Orthogonality: For objects X and Y in T, one has that

cl(suppR X) ∩ suppR Y = ∅ implies HomT(X, Y ) = 0 .

(3) Exactness: For every exact triangle W → X → Y → in T, one has

suppR X ⊆ suppR W ∪ suppR Y .

(4) Separation: For any specialization closed subset V of SpecR and any object
X in T, there exists an exact triangle X ′ → X → X ′′ → in T such that

suppR X ′ ⊆ V and suppR X ′′ ⊆ Spec R \ V .

Implicit in (1) is a comparison of the triangulated support suppR X and the
cohomological support suppR H∗(X). This was part of the initial motivation for
this work. We prove also that if the cohomology H∗(X) is finitely generated as a
module over R, then suppR X = suppR H∗(X). Without such finiteness assumption
however, triangulated and cohomological support can differ; see Sections 9 and 10
for explicit examples.
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It is thus interesting that the triangulated support of an object X can be yet
detected by cohomology. Only, one has to compute cohomology with respect to
each compact object. This is made precise in the next result, where, for a graded
R-module M , we write minR M for the set of minimal primes in its support.

Theorem 2. For each object X in T, one has an equality:

suppR X =
⋃

C compact

minR Hom∗
T(C, X) .

In particular, suppR X = ∅ if and only if X = 0.

Beyond proving Theorems 1 and 2, we develop systematically a theory of sup-
ports in order to make it a viable tool. For example, in Section 7, we establish the
following result of Krull-Remak-Schmidt type.

Theorem 3. Each object X in T admits a unique decomposition X =
∐

i∈I Xi

with Xi 6= 0 such that the subsets cl(suppR Xi) are connected and pairwise disjoint.

Here is a direct corollary: If X is an indecomposable object in T, then suppR X
is a connected subset of Spec R. This generalizes and unifies various connectedness
results in the literature, starting with a celebrated theorem of Carlson, which states
that the variety of an indecomposable group representation is connected [23].

As stated before, the basis for this work is a construction of local cohomology
functors on T. Given a specialization closed subset V of SpecR, we establish the
existence of (co)localization functors ΓV and LV on T, such that for each X in T

there is a natural exact triangle

ΓVX −→ X −→ LVX −→

in T. We view ΓV as the local cohomology functor with respect to V. One justifi-
cation for this is the following result:

suppR ΓVX = V ∩ suppR X and suppR LVX =
(
Spec R \ V

)
∩ suppR X .

A major focus of this work are properties of the functors ΓV and LV for a general
triangulated category T; the results on support are derived from them. These oc-
cupy Sections 4–7 in this article; the first three prepare the ground for them, and for
later sections. The remaining sections are devoted to various specific contexts, and
are intended to demonstrate the range and applicability of the methods introduced
here. We stress that hitherto many of the results established were known only in
special cases; Theorem 3 is such an example. Others, for instance, Theorems 1 and
2, are new in all contexts relevant to this work.

In Section 8 we consider the case where the triangulated category T admits a
symmetric tensor product. The notion of support then obtained is shown to coincide
with the one introduced by Hovey, Palmieri, and Strickland [36].

Section 9 is devoted to the case where T is the derived category of a commutative
noetherian ring A, and R = A → Z(T) is the canonical morphism. We prove that
for each specialization closed subset V of SpecA and complex X of A-modules the
cohomology of ΓVX is classical local cohomology, introduced by Grothendieck [32].

The case of modules for finite groups is studied in Section 10, where we prove
that support as defined here coincides with one of Benson, Carlson and Rickard [16].
Even though this case has been studied extensively in the literature, our work does
provide interesting new information. For instance, using Theorem 2, we describe
an explicit way of computing the support of a module in terms of its cohomological
supports. This, in spirit, settles Conjecture 10.7.1 of [14] that the support of a
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module equals the cohomological support; we provide an example that shows that
the conjecture itself is false.

The final Section 11 is devoted to complete intersection local rings. We recover
the theory of Avramov and Buchweitz for support varieties of finitely generated
modules [3, 6]. A salient feature of our approach is that it gives a theory of local
cohomology with respect to rings of cohomology operators.

This article has influenced some of our subsequent work on this topic: in [10],
Avramov and Iyengar address the problem of realizing modules over arbitrary as-
sociative rings with prescribed cohomological support; in [41], Krause studies the
classification of thick subcategories of modules over commutative noetherian rings.
Lastly, the techniques introduced here play a pivotal role in our recent work on a
classification theorem for the localizing subcategories of the stable module category
of a finite group; see [17].

2. Support for modules

In this section R denotes a Z-graded-commutative noetherian ring. Thus we
have x · y = (−1)|x||y|y · x for each pair of homogeneous elements x, y in R.

Let M and N be graded R-modules. For each integer n, we write M [n] for
the graded module with M [n]i = M i+n. We write Hom∗

R(M,N) for the graded
homomorphisms between M and N :

Homn
R(M,N) = HomR(M, N [n]) .

The degree zero component is usually abbreviated to HomR(M,N). Since R
is graded-commutative, Hom∗

R(M,N) is a graded R-module in an obvious way.
Henceforth, unless otherwise specified, when we talk about modules, homomor-
phisms, and tensor products, it is usually implicit that they are graded. We write
ModR for the category of graded R-modules.

Spectrum. Let Spec R denote the set of graded prime ideals of R. Given a homo-
geneous ideal a in R, we set:

V(a) = {p ∈ Spec R | p ⊇ a} .

Such subsets of SpecR are the closed sets in the Zariski topology on Spec R. Let
U be a subset of Spec R. The specialization closure of U is the set

clU = {p ∈ Spec R | there exists q ∈ U with q ⊆ p} .

The subset U is specialization closed if clU = U . Evidently, specialization closed
subsets are precisely the unions of Zariski closed subsets of Spec R.

Let p be a prime ideal. We write Rp for the homogeneous localization of R with
respect to p; it is a graded local ring in the sense of Bruns and Herzog [21, (1.5.13)],
with maximal ideal pRp. The graded field Rp/pRp is denoted k(p). As usual, we
write E(R/p) for the injective envelope of the R module R/p. Given an R-module
M we let Mp denote the localization of M at p.

Injective modules. The classification of injective modules over commutative noe-
therian rings carries over to the graded case with little change: Over a graded-
commutative noetherian ring R an arbitrary direct sum of injective modules is
injective; every injective module decomposes essentially uniquely as a direct sum
of injective indecomposables. Moreover, for each prime ideal p in R, the injective
hull E(R/p) of the quotient R/p is indecomposable, and each injective indecom-
posable is isomorphic to a shifted copy E(R/p)[n] for a unique prime p and some
not necessarily unique n ∈ Z. For details, see [21, (3.6.3)].
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Torsion modules and local modules. Let R be a graded-commutative noether-
ian ring, p a prime ideal in R, and let M be an R-module. The module M is said
to be p-torsion if each element of M is annihilated by a power of p; equivalently:

M = {m ∈M | there exists an integer n ≥ 0 such that p
n ·m = 0.}

The module M is p-local if the natural map M →Mp is bijective.
For example, R/p is p-torsion, but it is p-local only if p is a maximal ideal, while

Rp is p-local, but it is p-torsion only if p is a minimal prime ideal. The R-module
E(R/p), the injective hull of R/p, is both p-torsion and p-local. The following
lemma is easy to prove.

Lemma 2.1. Let p be a prime ideal in R. For each prime ideal q in R one has

E(R/p)q =

{
E(R/p) if q ∈ V(p),

0 otherwise.
�

Injective resolutions. Each R-module M admits a minimal injective resolution,
and such a resolution is unique, up to isomorphism of complexes of R-modules.
We say that p occurs in a minimal injective resolution I of M , if for some pair of
integers i, n ∈ Z, the module Ii has a direct summand isomorphic to E(R/p)[n].
The support of M is the set

suppR M =

{
p ∈ SpecR

∣∣∣∣
p occurs in a minimal

injective resolution of M

}

In the literature, suppR M is sometimes referred to as the cohomological support,
or the small support, of M , in order to distinguish it from the usual support, which
is the subset {p ∈ Spec R | Mp 6= 0}, sometimes denoted SuppRM ; see [27] and
also Lemma 2.2. The cohomological support has other descriptions; see Section 9.

We now recollect some properties of supports. In what follows, the annihilator
of an R-module M is denoted annR M .

Lemma 2.2. The following statements hold for each R-module M .

(1) One has inclusions

suppR M ⊆ cl(suppR M) = {p ∈ SpecR |Mp 6= 0} ⊆ V(annR M) ,

and equalities hold when M is finitely generated.
(2) For each p ∈ SpecR, one has an equality

suppR(Mp) = suppR M ∩ {q ∈ SpecR | q ⊆ p} .

Proof. If I is a minimal injective resolution of M over R, then Ip is a minimal
injective resolution of Mp, see [46, §18]. In view of Lemma 2.1, this implies (2) and
the equality in (1). The inclusions in (1) are obvious.

It remains to verify that when M is finitely generated V(annR M) ⊆ suppR M
holds. For this, it suffices to prove that for any prime ideal p ⊇ annR M , one
has Ext∗Rp

(k(p), Mp) 6= 0. Observe Mp 6= 0 since p contains annR M . Therefore,
localizing at p one may assume R is a graded local ring and M is a non-zero finitely
generated R-module, and then the desired result is that Ext∗R(k, M) 6= 0, where k
is the graded residue field of R. We note that the standard results on associated
primes carry over, with identical proofs, to this graded context; one has also an
analogue of Nakayama’s Lemma. Thus, arguing as in the proof of [21, (1.2.5)], one
can deduce the desired non-vanishing. �
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Specialization closed sets. Given a subset U ⊆ SpecR, we consider the full
subcategory of ModR with objects

MU = {M ∈ ModR | suppR M ⊆ U} .

The next result do not hold for arbitrary subsets of SpecR. In fact, each of
statements (1) and (2) characterize the property that V is specialization closed.

Lemma 2.3. Let V be a specialization closed subset of Spec R.

(1) For each R-module M , one has

suppR M ⊆ V ⇐⇒ Mq = 0 for each q in SpecR \ V .

(2) The subcategory MV of ModR is closed under direct sums, and in any exact
sequence 0→M ′ →M →M ′′ → 0 of R-modules, M is in MV if and only if
M ′ and M ′′ are in MV .

Proof. Since V is specialization closed, it contains suppR M if and only if it contains
cl(suppR M). Thus, (1) is a corollary of Lemma 2.2(1). Given this (2) follows, since
for each q in Spec R, the functor taking an R-module M to Mq is exact and preserves
direct sums. �

Torsion modules and local modules can be recognized from their supports:

Lemma 2.4. Let p be a prime ideal in R and let M be an R-module. The following
statements hold:

(1) M is p-local if and only if suppR M ⊆ {q ∈ SpecR | q ⊆ p}.
(2) M is p-torsion if and only if suppR M ⊆ V(p).

Proof. Let I be a minimal injective resolution of M .
(1) Since Ip is a minimal injective resolution of Mp, and minimal injective reso-

lutions are unique up to isomorphism, M ∼= Mp if and only if I ∼= Ip. This implies
the desired equivalence, by Lemma 2.1.

(2) When suppR M ⊆ V(p), then, by definition of support, one has that I0 is
isomorphic to a direct sum of copies of E(R/q) with q ∈ V(p). Since each E(R/q)
is p-torsion, so is I0, and hence the same is true of M , for it is a submodule of I0.

Conversely, when M is p-torsion, Mq = 0 for each q in SpecR with q 6⊇ p. This
implies suppR M ⊆ V(p), by Lemma 2.3(1). �

Lemma 2.5. Let p be a prime ideal in R and set U = {q ∈ SpecR | q ⊆ p}.

(1) The subcategory MU of ModR is closed under taking kernels, cokernels, ex-
tensions, direct sums, and products.

(2) Let M and N be R-modules. If N is in MU , then Hom∗
R(M,N) is in MU .

Proof. (1) The objects in the subcategory MU are precisely the p-local R-modules,
by Lemma 2.4(1). Thus the inclusion functor has a left and a right adjoint. It
follows that MU is an abelian full subcategory of ModR, closed under direct sums
and products.

(2) Pick a presentation F1 → F0 →M → 0, where F0 and F1 are free R-modules.
This induces an exact sequence

0 −→ Hom∗
R(M,N) −→ Hom∗

R(F0, N) −→ Hom∗
R(F1, N)

Since the R-modules Hom∗
R(Fi, N) are products of shifts of copies of N , it follows

from (1) that Hom∗
R(M,N) is in MU , as claimed. �
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3. Localization for triangulated categories

Our notion of local cohomology and support for objects in triangulated categories
is based on certain localization functors on the category. In this section we collect
their properties, referring the reader to Neeman [47] for details. We should like to
emphasize that there is little in this section which would be unfamiliar to experts,
for the results and arguments have precursors in various contexts; confer [36], and
the work of Alonso Tarro, Jeremı́as López, and Souto Salorio [1]. However they
have not been written down in the generality required for our work, so detailed
proofs are provided, if only for our own benefit.

Let T be a triangulated category, and let Σ denote its suspension functor.

Localization functors. An exact functor L : T→ T is called localization functor
if there exists a morphism η : IdT → L such that the morphism Lη : L → L2 is
invertible and Lη = ηL. Recall that a morphism µ : F → G between functors is
invertible if and only if for each object X the morphism µX : FX → GX is an
isomorphism. Note that we only require the existence of η; the actual morphism
is not part of the definition of L because it is determined by L up to a unique
isomorphism L→ L.

The following lemma provides an alternative description of a localization functor;
it seems to be well known in the context of monads [44, Chapter 3] but we have no
explicit reference.

Lemma 3.1. Let L : T → T be a functor and η : IdT → L a morphism. The
following conditions are equivalent.

(1) The morphism Lη : L→ L2 is invertible and Lη = ηL.
(2) There exists an adjoint pair of functors F : T→ S and G : S→ T, with F the

left adjoint and G the right adjoint, such that G is fully faithful, L = GF ,
and η : IdT → GF is the adjunction morphism.

Proof. (1) ⇒ (2): Let S denote the full subcategory of T formed by objects X
such that ηX is invertible. For each X ∈ S, let θX : LX → X be the inverse of
ηX. Define F : T → S by FX = LX and let G : S → T be the inclusion. It is
straightforward to check that the maps

HomS(FX, Y ) −→ HomT(X,GY ), α 7→ Gα ◦ ηX

HomT(X, GY ) −→ HomS(FX, Y ), β 7→ θY ◦Fβ

are mutually inverse bijections. Thus, the functors F and G form an adjoint pair.
(2) ⇒ (1): Let θ : FG→ IdS denote the adjunction morphism. It is then easily

checked that the compositions

F
Fη
−−→ FGF

θF
−−→ F and G

ηG
−−→ GFG

Gθ
−−→ G

are identity morphisms. Now observe that θ is invertible because G is fully faithful.
Therefore Lη = GFη is invertible. Moreover, we have

Lη = GFη = (GθF )−1 = ηGF = ηL .

This completes the proof. �

Acyclic and local objects. Let L : T → T be a localization functor. An object
X in T is said to be L-local if ηX is an isomorphism; it is L-acyclic if LX = 0. We
write Im L for the full subcategory of T formed by all L-local objects, and KerL
for the full subcategory formed by all L-acyclic objects. Note that Im L equals
the essential image of L, that is, the full subcategory of T formed by all objects
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isomorphic to one of the form LX for some X in T. It is easily checked that Im L
and KerL are triangulated subcategories of T.

Let us mention that L induces an equivalence of categories T/Ker L
∼
−→ Im L

where T/Ker L denotes the Verdier quotient of T with respect to Ker L. This can
be deduced from [30, I.1.3], but we do not need this fact.

Definition 3.2. For each X in T, complete the map ηX to an exact triangle

ΓX
θX
−−→ X

ηX
−−→ LX −→ .

It follows from the next lemma that one obtains a well defined functor Γ : T→ T.

Lemma 3.3. The functor Γ is exact, and the following properties hold.

(1) X ∈ T is L-acyclic if and only if HomT(X,−) = 0 on L-local objects;
(2) Y ∈ T is L-local if and only if HomT(−, Y ) = 0 on L-acyclic objects;
(3) Γ is a right adjoint for the inclusion Ker L→ T;
(4) L is a left adjoint for the inclusion Im L→ T.

Proof. (1) By Lemma 3.1, one has a factorization L = GF , where G is a fully
faithful right adjoint of F . In particular, when X is L-acyclic, FX = 0 and then
for any L-local object Y one has

HomT(X,Y ) ∼= HomT(X, GFY ) ∼= HomT(FX,FY ) = 0 .

Conversely, if X in T is such that HomT(X, Y ) = 0 for all L-local Y , then

HomT(FX,FX) ∼= HomT(X, GFX) = 0 ,

and hence FX = 0; that is to say, X is L-acyclic.
(2) We have seen in (1) that HomT(X,Y ) = 0 if X is L-acyclic and Y is L-local.
Suppose that Y is an object with HomT(−, Y ) = 0 on L-acyclic objects. Observe

that ΓY is L-acyclic since L(ηY ) is an isomorphism and L is exact. Thus θY = 0, so
that LY ∼= Y ⊕Σ ΓY . Since Σ ΓY is L-acyclic and LY is L-local, the isomorphism
implies that ΣΓY = 0. This is the desired result.

(3) We noted in (2) that ΓX is L-acyclic. For each L-acyclic object W the map
HomT(W, ΓX)→ HomT(W, X) induced by θX is a bijection since HomT(W,−) = 0
on L-local objects. It follows that the exact triangle in Definition 3.2 is unique up
to unique isomorphism. Moreover, the assignment X 7→ ΓX defines a functor, right
adjoint to the inclusion functor KerL→ T.

The functor Γ : T→ Ker L is exact because it is an adjoint of an exact functor;
see [47, Lemma 5.3.6].

(4) This follows from Lemma 3.1. �

The functor Γ : T → T is a localization functor for the opposite category Top.
So we think of Γ as L turned upside down. Our interpretation of Γ as a local coho-
mology functor provides another explanation for using the letter Γ ; see Section 9.
We will need to use some rules of composition for localization functors.

Lemma 3.4. Let L1 and L2 be localization functors for T. If each L1-acyclic object
is L2-acyclic, then the following statements hold:

(1) Γ1Γ2
∼= Γ1

∼= Γ2Γ1 and L1L2
∼= L2

∼= L2L1.
(2) Γ1L2 = 0 = L2Γ1.
(3) Γ2L1

∼= L1Γ2.
(4) For each X in T, there are exact triangles
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Γ1X −→ Γ2X −→ Γ2L1X −→

Γ2L1X −→ L1X −→ L2X −→ .

Proof. The crucial point is that Γi is a right adjoint to the inclusion of Li-acyclic
objects, and Li is a left adjoint to the inclusion of Li-local objects, see Lemma 3.3.

(1) is an immediate consequence of our hypothesis.
(2) follows from (1), since

Γ1L2
∼= Γ1Γ2L2 = 0 = L2L1Γ1

∼= L2Γ1 .

(3) and (4): For X in T the hypothesis yields morphisms α : Γ1X → Γ2X and
β : L1X → L2X. They induce the following commutative diagram

Γ1X //

α

��

X // L1X

β

��

//

Γ2X // X // L2X //

Applying Γ2 to the top row and L1 to the bottom row, and bearing in mind the
isomorphisms in (1), one obtains exact triangles

Γ1X −→ Γ2X −→ Γ2L1X −→

L1Γ2X −→ L1X −→ L2X −→ .

These exact triangles yield the first and the last isomorphism below:

Γ2L1X ∼= cone(α) ∼= cone(Σ−1β) ∼= L1Γ2X ,

The one in the middle is given by the octahedral axiom.
This completes the proof. �

The example below shows that localization functors usually do not commute.
We are grateful to Bernhard Keller for suggesting it.

Example 3.5. Let A =
[

k k
0 k

]
be the algebra of 2×2 upper triangular matrices over

a field k and let T denote the derived category of all A-modules. Up to isomorphism,
there are precisely two indecomposable projective A-modules:

P1 =

[
k 0
0 0

]
and P2 =

[
0 k
0 k

]

satisfying HomA(P1, P2) 6= 0 and HomA(P2, P1) = 0. For i = 1, 2 we let Li denote
the localization functor such that the Li-acyclic objects form the smallest localizing
subcategory containing Pi, viewed as a complex concentrated in degree zero. One
then has L1L2 6= L2L1, since

Γ1Γ2(P2) = Γ1(P2) = P1 and Γ2Γ1(P2) = Γ2(P1) = 0.

Existence. The following criterion for the existence of a localization functor will
be used; it is contained in [45, Section 7].

Proposition 3.6. Let T be a triangulated category which admits small coproducts
and is compactly generated, and let A be an abelian Grothendieck category. Let
H : T→ A be a cohomological functor which preserves all coproducts.

There then exists a localization functor L : T → T with the following property:
For each X ∈ T, one has LX = 0 if and only if H(Σ nX) = 0 for all n ∈ Z. �
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4. Local cohomology

Let T be a compactly generated triangulated category. By this we mean that T

is a triangulated category that admits small coproducts, the isomorphism classes
of compact objects in T form a set, and for each X ∈ T, there exists a compact
object C such that HomT (C, X) 6= 0. Let Tc denote the full subcategory which is
formed by all compact objects. We shall identify Tc with a set of representatives
for the isomorphism classes of compact objects in T whenever this is convenient.

Let X, Y be objects in T. We write HomT(X, Y ) for the abelian group of mor-
phisms in T from X to Y . We consider also the graded abelian group:

Hom∗
T(X, Y ) =

∐

i∈Z

HomT(X, Σ iY ) .

Set End∗
T(X) = Hom∗

T(X, X); it has a natural structure of a graded ring. The
graded abelian group Hom∗

T(X, Y ) is a right-End∗
T(X) and left-End∗

T(Y ) bimodule.

Center. Let Z(T) denote the graded center of T. This is a graded-commutative
ring, where, for each n ∈ Z, the component in degree n is

Z(T)n = {η : IdT → Σ n | ηΣ = (−1)nΣ η} .

While Z(T) may not be a set, this is not an issue for our focus will be on a graded-
commutative ring R equipped with a homomorphism φ : R → Z(T). What this
amounts to is that for each object X in T one has a homomorphism of graded rings

φX : R −→ End∗
T(X) ,

such that the induced actions of R on Hom∗
T(X,Y ), from the right via φX and from

the left via φY , are compatible, in the sense that, for any homogeneous elements
r ∈ R and α ∈ Hom∗

T(X, Y ), one has

φY (r)α = (−1)|r||α|αφX(r) .

In this way, each graded abelian group Hom∗
T(X, Y ) is endowed with a structure of

a graded R-module. For each n ∈ Z one has a natural isomorphism of R-modules:

Hom∗
T(Σ nX, Y ) = Hom∗

T(X, Y )[n] .

For example, one has a homomorphism Z→ Z(T) sending n to n · id : IdT → Σ 0.

Notation 4.1. For the rest of this paper, we fix a graded-commutative noetherian
ring R and a homomorphism of graded rings R −→ Z(T), and say that T is an
R-linear triangulated category.

Let C be an object in T. For each object X in T, we set

H∗
C(X) = Hom∗

T(C, X) ,

and think of this R-module as the cohomology of X with respect to C.

The following lemma explains to what extent the cohomology H∗
C(X) of X de-

pends on the choice of the object C. A full subcategory of T is thick if it is a
triangulated subcategory, closed under taking direct summands. Given a set C of
objects in T, the intersection of all thick subcategories of T containing C is again a
thick subcategory, which is said to be generated by C.

Lemma 4.2. Let C be a set of objects in T and C0 an object contained in the thick
subcategory generated by C. Then for each X ∈ T one has

suppR H∗
C0

(X) ⊆
⋃

C∈C

cl(suppR H∗
C(X)) .
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Proof. It suffices to prove that the subcategory of T with objects D such that
suppR H∗

D(X) is a subset of the right hand side of the desired inclusion is thick. It is
clear that it is closed under suspensions and direct summands. Each exact triangle
C ′ → C → C ′′ → induces an exact sequence H∗

C′′(X) → H∗
C(X) → H∗

C′(X) of
R-modules, so Lemma 2.3 implies

suppR H∗
C(X) ⊆ cl(suppR H∗

C′(X)) ∪ cl(suppR H∗
C′′(X)) ,

which implies that the subcategory is also closed under exact triangles. �

Local cohomology. In this paragraph we introduce local cohomology with sup-
port in specialization closed subsets of SpecR. Given a subset U ⊆ Spec R, set

TU = {X ∈ T | suppR H∗
C(X) ⊆ U for each C ∈ Tc} .

A subcategory of T is localizing if it is thick and closed under taking small coprod-
ucts. Using Lemma 2.3(2), a routine argument yields the following statement.

Lemma 4.3. If V ⊆ Spec R is specialization closed, then the subcategory TV of T

is localizing. �

A colocalizing subcategory is one which is thick and closed under taking small
products. The next result is a direct consequence of Lemma 2.5(1).

Lemma 4.4. Let p be a prime ideal in R and set U(p) = {q ∈ SpecR | q ⊆ p}.
The subcategory TU(p) of T is localizing and colocalizing. �

Proposition 4.5. Let V ⊆ Spec R be specialization closed. There exists a localiza-
tion functor LV : T→ T with the property that LVX = 0 if and only if X ∈ TV .

Proof. The following functor is cohomological and preserves small coproducts:

H : T −→
∏

C∈Tc

ModR, where X 7→
( ∐

p6∈V

H∗
C(X)

p

)
C∈Tc .

Proposition 3.6 applies and gives a localization functor LV on T with the property
that an object X is LV acyclic if and only if H(X) = 0. It remains to note that this
last condition is equivalent to the condition that X is in TV , by Lemma 2.3(1). �

Definition 4.6. Let V be a specialization closed subset of Spec R, and LV the
associated localization functor given by the proposition above. By 3.2, one then
gets an exact functor ΓV on T and for each object X a natural exact triangle

ΓVX −→ X −→ LVX −→ .

We call ΓVX the local cohomology of X supported on V, and the triangle above
the localization triangle with respect to V. The terminology may seem unfounded
in the first encounter, but look ahead to Theorems 5.6 and 9.1

Localization at a prime. The next result realizes localization on cohomology as
a localization on T, and explains the nomenclature ‘localization’. We fix a point p

in SpecR and set

Z(p) = {q ∈ SpecR | q 6⊆ p} and U(p) = {q ∈ SpecR | q ⊆ p}.

Theorem 4.7. Let p ∈ SpecR. For each compact object C in T, the natural map
X → LZ(p)X induces an isomorphism of graded R-modules

H∗
C(X)

p

∼
−→ H∗

C(LZ(p)X) .

The proof of this theorem uses an auxiliary construction.



12 DAVE BENSON, SRIKANTH B. IYENGAR, AND HENNING KRAUSE

Definition 4.8. Let I be an injective R-module and C a compact object in T.
Brown representability yields an object IC in T such that

HomR(H∗
C(−), I) ∼= HomT(−, IC) .

This isomorphism extends to an isomorphism of functors of graded R-modules

(4.8.1) Hom∗
R(H∗

C(−), I) ∼= Hom∗
T(−, IC) .

Lemma 4.9. Let p ∈ Spec R. If I is an injective R-module with suppR I ⊆ U(p),
then IC ∈ TU(p) for each compact object C.

Proof. The R-modules Hom∗
T(X, IC) and Hom∗

R(H∗
C(X), I) are isomorphic for each

X in T. If suppR I ⊆ U(p), then suppR Hom∗
T(X, IC) ⊆ U(p), by Lemma 2.5(2), so

specializing X to compact objects in T yields the desired result. �

Proof of Theorem 4.7. We note that a compactly generated triangulated category
admits small products; see [47, (8.4.6)].

Let I be the injective hull of R/p and IC the object in T corresponding to C,
see Definition 4.8. Set Z = Z(p) and U = U(p).

We claim that TU is perfectly cogenerated in the sense of [39, Definition 1] by
the set of objects IC where C is compact in T. Indeed, each IC belongs to TU , by
Lemma 4.9. If X is a nonzero object in TU , then there exists a compact object C
such that H∗

C(X) is nonzero; it is p-local, by Lemma 2.4, so Hom∗
T(X, IC) 6= 0, by

(4.8.1). Now let φi : Xi → Yi be a family of maps in TU such that HomT(Yi, IC)→
HomT(Xi, IC) is surjective for all IC . Then H∗

C(φi) is a monomorphism for all C
and i, since the injectives E(R/p)[n] cogenerate the category of p-local R-modules.
Thus the product

∏
i φi :

∏
i Xi →

∏
i Yi induces a monomorphism

H∗
C(

∏

i

φi ) =
∏

i

H∗
C(φi)

and therefore HomT(
∏

i φi, IC) is surjective for each C.
The subcategory TU of T is colocalizing, by Lemma 4.4, and therefore Brown’s

representability theorem [39, Theorem A] yields a left adjoint F : T→ TU to the in-
clusion functor G : TU → T. Then L = GF is a localization functor, by Lemma 3.1.
An object X is L-acyclic iff Hom∗

T(X, IC) = 0 for all compact C, since the IC

cogenerate TU . By (4.8.1), this is the case iff H∗
C(X)

p
= 0 for all compact C;

equivalently, iff X is in TZ , by Lemma 2.3. Thus the subcategory of L-acyclic
objects equals TZ , so L and LZ coincide.

The adjunction morphism ηX : X → LZX induces a commutative diagram of
natural maps

H∗
C(X)

H∗

C(ηX)
//

��

H∗
C(LZX)

∼=

��

H∗
C(X)

p

H∗

C(ηX)
p

∼=
// H∗

C(LZX)
p

The vertical isomorphism is due to Lemma 2.4, because LZX is in TU ; the hori-
zontal one holds because the cone of ηX is in TZ . This completes the proof. �

The import of the following corollary will be clarified in the next section.

Corollary 4.10. Let p ∈ Spec R and X an object in T. For each C ∈ Tc, the
R-module H∗

C(LZ(p)ΓV(p)X) is p-local and p-torsion; thus LZ(p)ΓV(p)X is in T{p}.
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Proof. Set ΓpX = LZ(p)ΓV(p)X. The R-module H∗
C(ΓpX) is p-local, since Theo-

rem 4.7 yields an isomorphism

H∗
C(ΓpX) ∼= H∗

C(ΓV(p)X)
p
.

As ΓV(p)X is in TV(p), by Lemma 3.3, the R-module H∗
C(ΓV(p)X) is p-torsion, by

Lemma 2.4, so the same holds of its localization H∗
C(ΓpX). �

5. Support

Let T be a compactly generated R-linear triangulated category. Recall that R
is a graded-commutative noetherian ring; see 4.1.

Support. Fix a prime ideal p in R. Set Z(p) = {q ∈ Spec R | q 6⊆ p}; note that
V(p) \ Z(p) = {p}. We define an exact functor Γp : T→ T by

ΓpX = LZ(p)ΓV(p)X for each X ∈ T .

The diagram below displays the natural maps involving the localization functors.

ΓV(p)X

��

// ΓpX

��

X // LZ(p)X

We define the support of an object X in T to be the set

suppR X = {p ∈ SpecR | ΓpX 6= 0} ⊆ SpecR .

A basic property of supports is immediate from the exactness of the functor Γp:

Proposition 5.1. For each exact triangle X → Y → Z → Σ X in T, one has

suppR Y ⊆ suppR X ∪ suppR Z and suppR Σ X = suppR X . �

The next result relates the support of an object to the support of its cohomology;
it is one of the principal results in this work. For a module M over a ring R, we
write minR M for the set of minimal primes in suppR M .

Theorem 5.2. For each object X in T, one has an equality:

suppR X =
⋃

C∈Tc

minR H∗
C(X) .

In particular, suppR X = ∅ if and only if X = 0.

The upshot is that the support of an object can be detected by its cohomology.
Observe however that this requires one to compute cohomology with respect to all
compact objects. It is thus natural to seek efficient ways to compute support. The
corollary below is one result in this direction. Recall that a set of compact objects
G is said to generate T if it is the smallest localizing subcategory containing G.

Corollary 5.3. If G is a set of compact objects which generate T, then
⋃

C∈G

minR H∗
C(X) ⊆ suppR X ⊆

⋃

C∈G

cl(suppR H∗
C(X)) .

Proof. Both inclusion follow from Theorem 5.2; this is clear for the one on the left.
For the inclusion on the right one uses in addition Lemma 4.2. �
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Remark 5.4. The inclusions in the preceding corollary can be strict; see Exam-
ple 9.4. When T can be generated by a single compact object, say C, one has that
suppR X ⊆ cl(suppR H∗

C(X)). In certain contexts, for example, in that of Section 8,
we are able to improve this to suppR X ⊆ suppR H∗

C(X), and expect that this holds
in general. We will address this problem elsewhere.

For objects with finite cohomology, support has a transparent expression:

Theorem 5.5. Let X be an object in T.

(1) If C ∈ T is compact and the R-module H∗
C(X) is finitely generated, then

suppR X ⊇ suppR H∗
C(X) ,

and equality holds when C generates T.
(2) If X is compact and the R-module End∗

T(X) is finitely generated, then

suppR X = suppR End∗
T(X) = V(annR End∗

T(X)) .

Theorems 5.2 and 5.5 are proved later in this section. First, we present some
applications. The next result is a precise expression of the idea that for each
specialization closed subset V of SpecR the localization triangle

ΓVX −→ X −→ LVX −→

separates X into a part supported on V and a part supported on its complement.
For this reason, we henceforth refer to ΓVX as the support of X on V, and to LVX
as the support of X away from V.

Theorem 5.6. Let V be a specialization closed subset of SpecR. For each X in T

the following equalities hold:

suppR ΓVX = V ∩ suppR X

suppR LVX =
(
Spec R \ V

)
∩ suppR X .

Proof. For each p in V, with Z(p) = {q ∈ SpecR | q 6⊆ p}, one has that

ΓpLVX = LZ(p)ΓV(p)LVX = 0 .

The second equality holds by Lemma 3.4, because V(p) ⊆ V. Therefore

suppR LVX ⊆ (SpecR) \ V .

On the other hand, since ΓVX is in TV , Theorem 5.2 yields an inclusion:

suppR ΓVX ⊆ V .

The desired result readily follows by combining the inclusions above and Proposi-
tion 5.1, applied to the exact triangle ΓVX → X → LVX →. �

This theorem has a direct corollary, in view of the localization triangle of V.

Corollary 5.7. Let V be a specialization closed subset and X an object in T. The
following statements hold.

(1) suppR X ⊆ V if and only if X ∈ TV , if and only if the natural map ΓVX → X
is an isomorphism, if and only if LVX = 0;

(2) V ∩ suppR X = ∅ if and only if the natural map X → LVX is an isomor-
phism, if and only if ΓVX = 0. �

Corollary 5.8. If X and Y are objects in T such that cl(suppR X)∩suppR Y = ∅,
then HomT(X, Y ) = 0.
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Proof. Set V = cl(suppR X). Then X is LV -acyclic, while Y is LV -local, by Corol-
lary 5.7. It follows from Lemma 3.3 that HomT(X, Y ) = 0. �

The next result builds also on Corollary 4.10.

Corollary 5.9. Let p be a point in SpecR and X a nonzero object in T. The
following conditions are equivalent.

(1) ΓpX ∼= X;
(2) suppR X = {p};
(3) X ∈ T{p}.

Proof. Corollary 4.10 yields that (1) implies (3), while Theorem 5.2 yields that (3)
implies (2).

(2) =⇒ (1): As suppR X = {p} Theorem 5.6 implies suppR ΓV(p)X = {p} as
well. Therefore, Corollary 5.7 yields that the natural maps

ΓV(p)X → X and ΓV(p)X → LZ(p)ΓV(p)X = ΓpX

are both isomorphisms. Thus, (1) holds. �

The proofs of Theorems 5.2 and 5.5 involve ‘Koszul objects’ discussed in the
following paragraphs, which include auxiliary results of independent interest.

Definition 5.10. Let r be an element in R; it is assumed to be homogeneous, since
we are in the category of graded R-modules. Set d = |r|, the degree of r. Let C be
an object in T. We denote by C//r any object that appears in an exact triangle

C
r
−→ Σ dC −→ C//r −→ ,

and call it a Koszul object of r on C; it is well defined up to (nonunique) isomor-
phism. For any object X in T, applying Hom∗

T(−, X) to the triangle above yields
an exact sequence of R-modules:

(5.10.1) Hom∗
T(C, X)[d + 1]

∓r
−→ Hom∗

T(C, X)[1] −→

−→ Hom∗
T(C//r, X) −→ Hom∗

T(C, X)[d]
±r
−→ Hom∗

T(C, X)

Applying the functor Hom∗
T(X,−) results in a similar exact sequence. Given a

sequence of elements r = r1, . . . , rn in R, consider objects Ci defined by

(5.10.2) Ci =

{
C for i = 0,

Ci−1//ri for i ≥ 1.

Set C//r = Cn; this is a Koszul object of r on C. Finally, given an ideal a in R,
we write C//a for any Koszul object on C, with respect to some finite sequence of
generators for a. This object may depend on the choice of the minimal generating
sequence for a. Note that when C is compact, so is C//a.

Lemma 5.11. Let p be a point in SpecR, let C be an object in T, and C//p a
Koszul object of p on C. For each object X in T, the following statements hold.

(1) There exists an integer s ≥ 0 such that

p
s Hom∗

T(X, C//p) = 0 = p
s Hom∗

T(C//p, X) .

Therefore, the R-modules Hom∗
T(X, C//p) and Hom∗

T(C//p, X) are p-torsion.
(2) The Koszul object C//p is in TV(p).
(3) If Hom∗

T(C, X) = 0, then Hom∗
T(C//p, X) = 0. The converse holds when the

R-module Hom∗
T(C, X) is p-torsion, or p-local and finitely generated over Rp.
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(4) When C is compact, one has

Hom∗
T(C//p, ΓpX) ∼= Hom∗

T(C//p, X)p .

Proof. By definition, C//p is obtained as an iterated cone on a sequence r1, . . . , rn,
generating the ideal p. Let Ci be the objects defined in (5.10.2); thus, Cn = C//p.

(1) We construct such an integer s by an iteration. Set s0 = 1 and assume that
for some i ≥ 0 there exists an si with

(r1, . . . , ri)
si Hom∗

T(Ci, X) = 0 .

Since Ci+1 is the cone of the morphism Ci
ri+1

−−−→ Ci, it follows from (5.10.1) that
(r2

i+1) and (r1, . . . , ri)
2si both annihilate Hom∗

T(Ci+1, X). Thus, set si+1 = 2si +1,
and repeat the process.

A similar argument proves the claim about Hom∗
T(X, C//p).

(2) follows from (1), by Lemma 2.4.
(3) If Hom∗

T(C, X) = 0, repeated application of (5.10.1) yields Hom∗
T(Cn, X) = 0.

Suppose Hom∗
T(C, X) 6= 0. When the R-module Hom∗

T(C, X) is p-torsion, it follows
from from the exact sequence (5.10.1) that Hom∗

T(C1, X) is again p-torsion; that
it is also nonzero is immediate from the same sequence for r1 is in p. An iteration
yields Hom∗

T(Cn, X) 6= 0.
When Hom∗

T(C, X) is p-local and finitely generated over Rp, the exact sequence
(5.10.1) implies the same is true of Hom∗

T(C1, X). Nakayama’s lemma implies it is
nonzero since r1 is in p. Again, an iteration yields the desired nonvanishing.

(4) Since C//p is in TV(p), by (2), the map ΓV(p)X → X induces an isomorphism

Hom∗
T(C//p, ΓV(p)X) ∼= Hom∗

T(C//p, X) .

With Z(p) = {q ∈ Spec R | q 6⊆ q}, the morphism

ΓV(p)X −→ LZ(p)ΓV(p)X = ΓpX

and Theorem 4.7 induce an isomorphism

Hom∗
T(C//p, ΓV(p)X)p

∼= Hom∗
T(C//p, ΓpX) .

The desired isomorphism follows by combining both isomorphisms. �

Koszul objects and support. Next we express the support of an object in T via
Koszul objects; this leads to a proof of Theorem 5.2.

Proposition 5.12. Let X be an object in T. For each point p in SpecR and
compact object C in T, the following conditions are equivalent:

(1) Hom∗
T(C, ΓpX) 6= 0;

(2) Hom∗
T(C//p, ΓpX) 6= 0;

(3) Hom∗
T(C//p, X)p 6= 0;

(4) p ∈ suppR Hom∗
T(C//p, X).

Proof. (1) ⇐⇒ (2): This is a consequence of Lemma 5.11(3), for Hom∗
T(C, ΓpX)

is p-torsion, by Corollary 4.10.
(2) ⇐⇒ (3) follows from Lemma 5.11(4).
(3) ⇐⇒ (4): Set M = Hom∗

T(C//p, X). By Lemma 5.11(1), the R-module M
is p-torsion, so suppR M ⊆ V(p). Therefore, Lemma 2.2(2) yields:

suppR(Mp) = suppR M ∩ {p} .

This implies the desired equivalence. �

We are now in a position to state a prove a more refined version of Theorem 5.2.
Compare it with Corollary 5.3.
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Theorem 5.13. Let G be a set of compact generators for T. For each object X in
T, one has the following equalities:

⋃

C∈G
p∈Spec R

minR H∗
C//p

(X) = suppR X =
⋃

C∈Tc

minR H∗
C(X) .

In particular, suppR X = ∅ if and only if X = 0.

We prove this result concurrently with Theorem 5.5.

Proofs of Theorems 5.13 and 5.5. First we verify that each object X in T satisfies:

suppR X ⊆
⋃

C∈G
p∈Spec R

minR H∗
C//p

(X) ⊆
⋃

C∈Tc

minR H∗
C(X) .

When C is compact, so is C//p, hence the inclusion on the right is obvious.
Let p be a point SpecR such that ΓpX 6= 0. Since G generate T, there exists

an object C in G with Hom∗
T(C, ΓpX) 6= 0. Proposition 5.12 yields that p is in

the support of the R-module Hom∗
T(C//p, X). By Lemma 5.11(1) the latter module

is also p-torsion, so Lemma 2.4(2) implies that its support is contained in V(p).
Therefore, one obtains that p is the minimal prime in the support of the R-module
Hom∗

T(C//p, X). This justifies the inclusion on the right.
Let now C be a compact object in T and p a point in suppR Hom∗

T(C, X). Recall
Theorem 4.7: for any compact object D in T one has an isomorphism of R-modules

Hom∗
T(D,LZ(p)X) ∼= Hom∗

T(D,X)p .

When p is minimal in the support of Hom∗
T(C, X), the R-module Hom∗

T(C, X)
p

is

nonzero and p-torsion; when the R-module Hom∗
T(C, X) is finitely generated, so is

the Rp-module Hom∗
T(C, X)p. Thus, in either case the isomorphism above, applied

with D = C, and Lemma 5.11(3) imply that Hom∗
T(C//p, LZ(p)X) is nonzero. Hence

the isomorphism above, now applied with D = C//p, and Lemma 5.11(4) yields that
ΓpX is nonzero, that is to say, p is in suppR X.

At this point, we have proved Theorem 5.13, and the first claim in Theorem 5.5.
In case that C generates T, the inclusion suppR X ⊆ suppR H∗

C(X) follows from
Corollary 5.3 because suppR H∗

C(X) is specialization closed, by Lemma 2.2(1).
In the remainder of the proof, X is assumed to be compact and the R-module

End∗
T(X) is finitely generated. Set a = annR End∗

T(X). For each C in Tc, the R-
action on H∗

C(X) factors through the homomorphism of rings R→ R/a. Therefore
Lemma 2.2(1) yields

suppR H∗
C(X) ⊆ V(a) .

In view of Theorem 5.2, which has been proved, this yields the first inclusion below:

suppR X ⊆ V(a) = suppR End∗
T(X) ⊆ suppR X .

The equality holds by Lemma 2.2(1) and the last inclusion holds by the already
established part of Theorem 5.5; to invoke either result, one requires the hypothesis
that the R-module End∗

T(X) is finitely generated. This completes the proof of
Theorem 5.5 as well. �

Remark 5.14. The proof of Theorem 5.5 can be adapted to establish an inclusion

suppR H∗
C(X) ⊆ suppR X

where C is compact and the R-module suppR H∗
C(X) is finitely generated, under

other conditions as well; for instance, when the ring R is concentrated in degree 0.

Supports can be characterized by four, entirely reasonable, properties.
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Axiomatic characterization of support. Let G be a set of compact generators
for T. For simplicity, for each X in T set

suppR H∗(X) =
⋃

C∈G

suppR H∗
C(X) .

It follows from Lemma 4.2 that cl(suppR H∗(X)) is independent of the choice of a
generating set G. The result below contains the first theorem in the introduction.

Theorem 5.15. There exists a unique assignment sending each object X in T to
a subset suppR X of SpecR such that the following properties hold:

(1) Cohomology: For each object X in T one has

cl(suppR X) = cl(suppR H∗(X)) .

(2) Orthogonality: For objects X and Y in T, one has that

cl(suppR X) ∩ suppR Y = ∅ implies HomT(X,Y ) = 0 .

(3) Exactness: For every exact triangle W → X → Y → in T, one has

suppR X ⊆ suppR W ∪ suppR Y .

(4) Separation: For any specialization closed subset V of Spec R and object X in
T, there exists an exact triangle X ′ → X → X ′′ → in T such that

suppR X ′ ⊆ V and suppR X ′′ ⊆ SpecR \ V .

Proof. Corollary 5.3 implies (1), Corollary 5.8 is (2), Proposition 5.1 is (3), and,
given the localization triangle 4.6, Theorem 5.6 entails (4).

Now let σ : T→ Spec R be a map satisfying properties (1)–(4).
Fix a specialization closed subset V ⊆ SpecR and an object X ∈ T. It suffices

to verify that the following equalities hold:

(∗) σ(ΓVX) = σ(X) ∩ V and σ(LVX) = σ(X) ∩ (SpecR \ V) .

Indeed, for any point p in SpecR one then obtains that

σ(ΓpX) = σ(LZ(p)ΓV(p)X)

= σ(ΓV(p)X) ∩ (SpecR \ Z(p))

= σ(X) ∩ V(p) ∩ (SpecR \ Z(p))

= σ(X) ∩ {p} .

Therefore, p ∈ σ(X) if and only if σ(ΓpX) 6= ∅; this last condition is equivalent to
ΓpX 6= 0, by the cohomology property. The upshot is that p ∈ σ(X) if and only if
p ∈ suppR X, which is the desired conclusion.

It thus remains to prove (∗).
Let X ′ → X → X ′′ → be the triangle associated to V, provided by property (4).

It suffices to verify the following statements:

(i) σ(X ′) = σ(X) ∩ V and σ(X ′′) = σ(X) ∩ (SpecR \ V);
(ii) ΓVX ∼= X ′ and LVX ∼= X ′′.

The equalities in (i) are immediate from properties (3) and (4). In verifying (ii),
the crucial observation is that, by the cohomology property, for any Y in T one has

σ(Y ) ⊆ V ⇐⇒ Y ∈ TV .
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Thus X ′ is LV -acyclic. On the other hand, property (2) and Lemma 3.3 imply that
X ′′ is LV -local. One thus obtains the following morphism of triangles

X ′ //

α

��

X // X ′′

β

��

//

ΓVX // X // LVX //

where the object cone(α) ∼= cone(Σ−1β) is LV -acyclic and LV -local, hence trivial.
Therefore, α and β are isomorphisms, which yields (ii).

This completes the proof of the theorem. �

Remark 5.16. In Theorem 5.15, when proving that any function σ with properties
(1)–(4) coincides with support, properties (3) and (4) were used only to obtain an
exact triangle X ′ → X → X ′′ → satisfying conditions (i) and (ii), in the proof of
the theorem. One may thus replace those properties by the following one:

(3′) Exact separation: For any specialization closed subset V of SpecR and object
X in T, there exists an exact triangle X ′ → X → X ′′ → in T such that

suppR X ′ = suppR X ∩ V and suppR X ′′ = suppR X ∩ (SpecR \ V) .

6. Properties of local cohomology

Let T be a compactly generated R-linear triangulated category; see 4.1.

Composition laws. We provide commutation rules for local cohomology and lo-
calization functors and give alternative descriptions of the functor Γp. Compare
the result below with Example 3.5.

Proposition 6.1. Let V and W be specialization closed subsets of Spec R. There
are natural isomorphisms of functors

(1) ΓVΓW
∼= ΓV∩W

∼= ΓWΓV ;
(2) LVLW

∼= LV∪W
∼= LWLV ;

(3) ΓVLW
∼= LWΓV .

Proof. (1) It suffices to verify the isomorphism on the left. Let X be an object in
T, and consider the localization triangle

ΓV∩WΓVΓWX −→ ΓVΓWX −→ LV∩WΓVΓWX −→

of ΓVΓWX with respect to V ∩W. Lemma 3.4 provides isomorphisms

ΓV∩WΓVΓWX ∼= ΓV∩WΓWX ∼= ΓV∩WX .

It follows by Theorem 5.6 that suppR ΓVΓWX ⊆ V∩W, and hence by Corollary 5.7
that ΓVΓWX is in TV∩W . The exact triangle above now yields the desired result.

(2) The proof is similar to that of (1).
(3) The inclusion V ⊆ V ∪ W induces a morphism θ : ΓV → ΓV∪W . We claim

that the induced morphisms

LWθ : LWΓV −→ LWΓV∪W and θLW : ΓVLW −→ ΓV∪WLW

are isomorphisms. This implies the desired isomorphism, since Lemma 3.4 yields

LWΓV∪W
∼= ΓV∪WLW .

To prove the claim, consider for each Y in T the exact triangle

ΓVY
θY
−−→ ΓV∪WY −→ LVΓV∪WY −→ .
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It remains to note that one has isomorphisms

LWLVΓV∪WX ∼= LW∪VΓV∪WX = 0

LVΓV∪WLWX ∼= LVLWΓV∪WX ∼= LW∪VΓV∪WX = 0 ,

where the first isomorphism in the first row and the second one in the second row
hold by part (2). The first isomorphism in the second row holds by Lemma 3.4. �

Theorem 6.2. Let p be a point in Spec R, and let V and W be specialization closed
subsets of SpecR such that V \W = {p}. There are natural isomorphisms

LWΓV
∼= Γp

∼= ΓVLW .

Note that the hypothesis is equivalent to: V 6⊆ W and V ⊆ W ∪{p}. Our choice
of notation is illustrated by the following diagram.

.
p

Proof. Set Z(p) = {q ∈ Spec R | q 6⊆ p} and Y(p) = Z(p) ∪ {p}. The hypothesis
implies the following inclusions

V(p) ⊆ V ⊆ W ∪ {p} , W ⊆ Z(p) , and Z(p) ∩ V(p) ⊆ W .

The isomorphisms of localization functors associated to these subsets are used with-
out further comment, see Lemma 3.4 and Proposition 6.1.

Given that localization functors commute, it is enough to prove that there are
natural isomorphisms

Γp = LZ(p)ΓV(p)
∼= LWΓV(p)

∼= LWΓV .

Let X be an object in T. We consider the following exact triangles.

ΓZ(p)LWΓV(p)X −→ LWΓV(p)X −→ LZ(p)ΓV(p)X −→

LWΓV(p)X −→ LWΓVX −→ LWLV(p)ΓVX −→ .

The first triangle is the localization triangle of the object LWΓV(p)X with respect
to Z(p). The second triangle is obtained by applying the functor LWΓV to the
localization triangle of X with respect to V(p). It remains to note the isomorphisms:

ΓZ(p)LWΓV(p)
∼= LWΓZ(p)ΓV(p)

∼= LWΓZ(p)∩V(p) = 0

LWLV(p)ΓV
∼= LW∪V(p)ΓV = 0 .

This completes the proof of the theorem. �

Corollary 6.3. Let p be a point in SpecR, and set Z(p) = {q ∈ SpecR | q 6⊆ p}
and Y(p) = Z(p) ∪ {p}. There are natural isomorphisms

Γp
∼= ΓV(p)LZ(p)

∼= ΓY(p)LZ(p)
∼= LZ(p)ΓY(p) .

Moreover, for each X in T, there are exact triangles

ΓZ(p)X −→ ΓY(p)X −→ ΓpX −→

ΓpX −→ LZ(p)X −→ LY(p)X −→ .

Proof. The isomorphisms are all special cases of Theorem 6.2. Given these, the
exact triangles follow from Lemma 3.4, since Z(p) ⊂ Y(p). �
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Smashing localization. Let C be a class of objects in T; we write Loc(C) for the
smallest localizing subcategory of T containing it. By definition, C generates T if
and only if Loc(C) = T.

Theorem 6.4. Let V ⊆ SpecR be a specialization closed subset of SpecR, and let
G be a set of compact generators for T. One then has

TV = Loc(Tc ∩ TV) = Loc
(
{C//p | C ∈ G and p ∈ V}

)
.

In particular, the subcategory TV is generated by a subset of Tc.

Proof. Let S = Loc
(
{C//p | C ∈ G and p ∈ V}

)
. We then have inclusions

S ⊆ Loc(Tc ∩ TV) ⊆ TV ,

because C//p belongs to TV for each p in V, by Lemma 5.11(2), and TV is a localizing
subcategory, by Lemma 4.3. It remains to prove that S = TV . Since the category
S is compactly generated, the inclusion S ⊆ TV admits a right adjoint F : TV → S.
Fix X ∈ TV and complete the adjunction morphism FX → X to an exact triangle

FX −→ X −→ Y −→ .

Given Corollary 5.7, the desired result follows once we verify that suppR Y = ∅.
Fix p ∈ V and an object C in G. Since C//p is in S, the map FX → X induces an
isomorphism

Hom∗
T(C//p, FX) ∼= Hom∗

T(C//p, X) .

This implies Hom∗
T(C//p, Y ) = 0, and therefore Hom∗

T(C, ΓpY ) = 0, by Proposi-
tion 5.12. Since this holds for each C in G, and G generates T, one obtains that
Hom∗

T(−, ΓpY ) = 0 on T and hence that ΓpY = 0. Thus

suppR Y ⊆ (SpecR) \ V .

Corollary 5.7 yields suppR Y ⊆ V, as FX and X are in TV , so suppR Y = ∅. �

The theorem above implies that local cohomology functors and localization func-
tors are smashing, that is to say, they preserves small coproducts:

Corollary 6.5. Let V ⊆ SpecR be specialization closed. The exact functors ΓV

and LV on T preserve small coproducts.

Proof. By the preceding theorem, Tc ∩TV generates TV , hence an object Y in T is
LV -local if and only if HomT(−, Y ) = 0 on Tc ∩ TV . Therefore, the subcategory of
LV -local objects is closed under taking small coproducts, and hence LV preserves
small coproducts, see Lemma 3.3. Using the localization triangle connecting ΓV

and LV , it follows that ΓV preserves small coproducts as well. �

Corollary 6.6. Given a set of objects Xi in T, one has an equality

suppR

∐

i

Xi =
⋃

i

suppR Xi . �

A recollement. The functors ΓV and LV corresponding to a specialization closed
subset V ⊆ SpecR form part of a recollement. Recall, see [12, Sect. 1.4], that a
recollement is a diagram of exact functors

T′ I // T Q //

Iλ

oo

Iρ
oo

T′′

Qλ

oo

Qρ
oo

satisfying the following conditions.

(1) Iλ is a left adjoint and Iρ a right adjoint of I;
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(2) Qλ is a left adjoint and Qρ a right adjoint of Q;
(3) IλI ∼= IdT′

∼= IρI and QQρ
∼= IdT′′

∼= QQλ;
(4) Im I = KerQ, that is, QX = 0 holds iff X ∼= IX ′ for some X ′ in T′.

Given any subset U ⊆ Spec R, we denote by T(U) the full subcategory of T which
is formed by all objects X with suppR X ⊆ U . Observe that this subcategory is not
necessarily the same as TU , introduced in Section 4; however, they coincide when
U is specialization closed, see Corollary 5.7.

Theorem 6.7. Let V ⊆ Spec R be specialization closed and set U = Spec R \ V.
The inclusion functor u : T(U)→ T then induces the following recollement

T(U) u=inc // T v=ΓV
//

uλ=LV

oo

uρ
oo

T(V) = TV

vλ=inc
oo

vρ
oo

with uλ a left adjoint of u, uρ a right adjoint of u, vλ a left adjoint of v, and vρ a
right adjoint of v.

Proof. Since T(U) equals the subcategory of LV -local objects and T(V) equals the
subcategory of LV -acyclic objects, by Lemma 3.3, the functors LV and ΓV gives
rise to the following diagram:

T(U)
u=inc

//
T

v=ΓV
//

uλ=LV

oo T(V) = TV .
vλ=inc

oo

We have seen in Corollary 6.5 that the functors LV and ΓV preserves small coprod-
ucts. Thus u and v preserve small coproducts. Then Brown representability implies
that u and v admit right adjoints uρ and vρ, respectively. It is straightforward to
check that these functors satisfy the defining conditions of a recollement. �

Remark 6.8. In the notation of the preceding theorem, the functor vρ ◦ΓV on T,
which is right adjoint to ΓV , may be viewed as a completion along V, see Remark 9.6.

7. Connectedness

As before, let T be a compactly generated R-linear triangulated category. In this
section we establish Krull-Remak-Schmidt type results for objects in T, and deduce
as a corollary the connectedness of supports of indecomposable objects. We give a
second proof of this latter result, by deriving it from an analogue of the classical
Mayer-Vietoris sequence in topology.

Theorem 7.1. If X ∈ T is such that suppR X ⊆
⊔

i∈I Vi where the subsets Vi are
pairwise disjoint and specialization closed, then there is a natural isomorphism:

X ∼=
∐

i∈I

ΓVi
X .

Proof. The canonical morphisms ΓVi
X → X induce a morphism ε as below

∐

i∈I

ΓVi
X

ε
−−→ X −→ Y −→

We then complete it to an exact triangle as above. One has suppR Y ⊆ suppR X;
this follows from Theorem 5.6, Proposition 5.1, and Corollary 6.6.

We claim that suppR Y ∩ suppR X = ∅, which then implies Y = 0, by Theo-
rem 5.2, and hence that ε is an isomorphism, as desired.
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Indeed, pick a point p in suppR X. There is a unique index k in I for which p is
in Vk. Applying Γp(−), and keeping in mind Corollary 6.5, one obtains a diagram

ΓpΓVk
X

∼=
−−→

∐

i∈I

ΓpΓVi
X

Γpε
−−−→ ΓpX ,

The isomorphism holds because ΓpΓVi
X = 0 for i 6= k, by Proposition 6.1. The

same result yields also that the composed map ΓpΓVk
X → ΓpX is an isomorphism,

so one deduces that Γpε is also an isomorphism. Therefore, the exact triangle above
implies ΓpY = 0, that is to say, p /∈ suppR Y . �

Recall that a specialization subset V of SpecR is said to be connected if for any
pair V1 and V2 of specialization closed subsets of Spec R, one has

V ⊆ V1 ∪ V2 and V1 ∩ V2 = ∅ =⇒ V ⊆ V1 or V ⊆ V2 .

The following lemma is easy to prove.

Lemma 7.2. Each specialization closed subset V of SpecR admits a unique decom-
position V =

⊔
i∈I Vi into nonempty, specialization closed, connected, and pairwise

disjoint subsets. �

Theorem 7.1 yields Theorem 3 stated in the introduction.

Theorem 7.3. Each object X in T admits a unique decomposition X =
∐

i∈I Xi

with Xi 6= 0 such that the subsets cl(suppR Xi) are connected and pairwise disjoint.

Proof. Use Lemma 7.2 to get a decomposition cl(suppR X) =
⊔

i∈I Vi into con-
nected, pairwise disjoint specialization closed subsets, and then apply Theorem 7.1
to obtain a decomposition X =

∐
i∈I Xi, where Xi = ΓVi

X. Observe that Xi 6= 0
by Corollary 5.7, since Vi ∩ suppR X 6= ∅. It is easy to verify the other properties
of the decomposition.

Let X =
∐

j∈J Yj be another such decomposition. Lemma 7.2 then implies that
there is a bijection σ : I → J with suppR Yσ(i) = suppR Xi for all i. Corollary 5.8
yields HomT(Xi, Yj) = 0 for j 6= σ(i). Therefore, Xi = Yσ(i) for each i. �

The connectedness theorem is a direct consequence of the preceding result.

Corollary 7.4. If X is indecomposable, then cl(suppR X) is connected. �

Following Rickard [50], one could deduce this result also from a simple special
case of a Mayer-Vietors triangle, described below.

Mayer-Vietoris triangles. When V ⊆ W are specialization closed subsets of
Spec R, one has natural morphisms:

ΓV
θV,W
−−−−→ ΓW and LV

ηV,W
−−−−→ LW .

We refer to the exact triangles in the next result as the Mayer-Vietoris triangles
associated to V and W.

Theorem 7.5. If V and W are specialization closed subsets of Spec R, then for
each X in T, there are natural exact triangles:

ΓV∩WX
(θV∩W,V , θV∩W,W)t

// ΓVX q ΓWX
(θV,V∪W ,−θW,V∪W)

// ΓV∪WX //

LV∩WX
(ηV∩W,V , ηV∩W,W)t

// LVX q LWX
(ηV,V∪W ,−ηW,V∪W)

// LV∪WX //
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Proof. Complete the morphism

ΓV(X)q ΓW(X)
(θV,V∪W ,−θW,V∪W)
−−−−−−−−−−−−−→ ΓV∪WX

to an exact triangle

X ′ −→ ΓV(X)q ΓW(X)
(θV,V∪W ,−θW,V∪W)
−−−−−−−−−−−−−→ ΓV∪WX −→ .

It is easy to check that the morphism

ΓV∩WX
(θV∩W,V ,θV∩W,W)t

−−−−−−−−−−−−−→ ΓV(X)q ΓW(X)

factors through X ′ → ΓV(X)q ΓW(X), and gives a new exact triangle

ΓV∩WX −→ X ′ −→ X ′′ −→ .

The goal is to prove that X ′′ = 0, so ΓV∩WX → X ′ is an isomorphism.
First observe that suppR X ′ and suppR X ′′ are contained in V ∪W, by Proposi-

tion 5.1. Consider now the triangle below. We do not specify the third map and it
is not asserted that the triangle is exact.

ΓV∩WX
(θV∩W,V ,θV∩W,W)t

−−−−−−−−−−−−−→ ΓV(X)q ΓW(X)
(θV,V∪W ,−θW,V∪W)
−−−−−−−−−−−−−→ ΓV∪WX −→ .

It is readily verified that applying ΓV to it yields a split exact triangle, and hence
that ΓV∩WX → ΓVX ′ is an isomorphism. In particular, ΓVX ′′ = 0; in the same
vein one deduces that ΓWX ′′ = 0. Thus Corollary 5.7 yields

(V ∪W) ∩ suppR X ′′ = ∅ .

We conclude that suppR X ′′ = ∅, and therefore X ′′ = 0 by Theorem 5.2. This
establishes the first Mayer-Vietoris triangle. The proof for the second is similar. �

Second proof of Corollary 7.4. Suppose V and W are specialization closed subsets
of SpecR such that suppR X ⊆ V ∪W and V ∩W = ∅. Then, since Γ∅X = 0, the
first Mayer-Vietoris triangle in Theorem 7.5 yields an isomorphism

X ∼= ΓV∪WX ∼= ΓVX q ΓWX .

In view of Theorem 5.2, this implies that when X is indecomposable, one of the
subsets V ∩ suppR X or W ∩ suppR X is empty. �

8. Tensor triangulated categories

Let T be a compactly generated triangulated category. In this section, T is also
tensor triangulated. Thus, T = (T,⊗,1) is a symmetric monoidal category with
a tensor product ⊗ : T × T → T and a unit 1. In addition, we assume that the
tensor product is exact in each variable and that it preserves small coproducts; for
details see [42, III.1]. The Brown representability theorem yields function objects
Hom(X, Y ) satisfying

HomT(X ⊗ Y, Z) ∼= HomT(X,Hom(Y,Z)) for all X,Y, Z in T .

For each X in T we write
X∨ = Hom(X, 1) .

It is assumed that the unit 1 is compact and that all compact objects C are strongly
dualizable, that is, the canonical morphism

C∨ ⊗X → Hom(C, X)

is an isomorphism for all X in T.
Let C, D be compact objects in T. The following properties are easily verified.

(1) 1
∨ ∼= 1 and C∨∨ ∼= C;



LOCAL COHOMOLOGY AND SUPPORT 25

(2) HomT(X ⊗ C∨, Y ) ∼= HomT(X, C ⊗ Y ), for all X, Y in T;
(3) C∨ and C ⊗D are compact.

These properties are used in the sequel without further comment.

Tensor ideals and smashing localization. A full subcategory S of T is called
a tensor ideal in T if for each X in S and Y in T, the object X ⊗ Y belongs to
S. This condition is equivalent to: Y ⊗ X belongs to S, as the tensor product is
symmetric.

Proposition 8.1. Let L : T → T be a localization functor such that the category
TL of L-acyclic objects is generated by TL ∩ Tc and the latter is a tensor ideal in
Tc. Then the following statements hold.

(1) The L-acyclic objects and the L-local objects are both tensor ideals in T.
(2) For each X in T, one has natural isomorphisms

ΓX ∼= X ⊗ Γ1 and LX ∼= X ⊗ L1 .

Proof. (1) Let X be an object in T. One has the following equivalences:

X is L-local ⇐⇒ HomT(C, X) = 0 for all C ∈ TL ∩ Tc

⇐⇒ HomT(C ⊗D∨, X) = 0 for all C ∈ TL ∩ Tc and D ∈ Tc

⇐⇒ HomT(C, X ⊗D) = 0 for all C ∈ TL ∩ Tc and D ∈ Tc

⇐⇒ HomT(C, X ⊗ Y ) = 0 for all C ∈ TL ∩ Tc and Y ∈ T

⇐⇒ X ⊗ Y is L-local for all Y ∈ T .

The first and the last equivalences hold because TL ∩Tc generates TL. The second
holds because 1 ∼= 1

∨ is compact, and C ⊗D∨ is compact and L-acyclic; the third
one holds because D is strongly dualizable; the fourth holds because the functor
HomT(C, X⊗−) preserves exact triangles and small coproducts, and T is compactly
generated. Thus, the L-local objects form a tensor ideal in T.

Consider now the L-acyclic objects. As the L-local objects form a tensor ideal
in T, one obtains the second step in the following chain of equivalences:

X is L-acyclic ⇐⇒ HomT(X, Z) = 0 for all L-local Z ∈ T

⇐⇒ HomT(X, Z ⊗ C∨) = 0 for all C ∈ Tc and L-local Z ∈ T

⇐⇒ HomT(X ⊗ C, Z) = 0 for all C ∈ Tc and L-local Z ∈ T

⇐⇒ HomT(X ⊗ Y,Z) = 0 for all Y ∈ T and L-local Z ∈ T

⇐⇒ X ⊗ Y is L-acyclic for all Y ∈ T .

The justifications of the other equivalences is similar to those in the previous para-
graph. Therefore, the L-acyclic objects form a tensor ideal.

(2) Let η : IdT → L be the morphism associated to the localization functor L.
Let X be an object in T, and consider the commutative square

X
X⊗η1

//

ηX

��

X ⊗ L1

η(X⊗L1)

��

LX
L(X⊗η1)

// L(X ⊗ L1)

One has L(X⊗Γ1) = 0 and Γ (X⊗L1) = 0, because the L-acyclic and the L-local
objects form tensor ideals, by part (1). Therefore L(X ⊗ η1) and η(X ⊗ L1) are
isomorphisms, and hence LX ∼= X ⊗ L1.

A similar argument shows that ΓX ∼= X ⊗ Γ1. �
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Support. In the remainder of this section we fix, as before, a homomorphism of
graded rings R → Z(T) into the graded center of T. Note that the endomorphism
ring End∗

T(1) is graded-commutative, and that the homomorphism

End∗
T(1) −→ Z(T), where α 7→ α⊗− ,

is a canonical choice for the homomorphism R→ Z(T).

Theorem 8.2. Let V be a specialization closed subset of SpecR. Then the LV -
acyclic objects and the LV -local objects both form tensor ideals in T. Moreover, we
have for each X in T natural isomorphisms

ΓVX ∼= X ⊗ ΓV1 and LVX ∼= X ⊗ LV1 .

Proof. We know from Theorem 6.4 that the subcategory TV of LV -acyclic objects
is generated by compact objects. Thus the assertion follows from Proposition 8.1,
once we check that TV ∩ Tc is a tensor ideal in Tc. This last step is contained in
the following chain of equivalences:

X ∈ TV ⇐⇒ suppR Hom∗
T(B, X) ⊆ V for all B ∈ Tc

⇐⇒ suppR Hom∗
T(B ⊗ C∨, X) ⊆ V for all B, C ∈ Tc

⇐⇒ suppR Hom∗
T(B, X ⊗ C) ⊆ V for all B, C ∈ Tc

⇐⇒ X ⊗ C ∈ TV for all C ∈ Tc . �

The following corollary is immediate from the definition of Γp:

Corollary 8.3. Let p be a point in Spec R. For each object X in T one has a
natural isomorphism

ΓpX ∼= X ⊗ Γp1 . �

Remark 8.4. Setting R = End∗
T(1), one recovers the notion of support for noether-

ian stable homotopy categories discussed in [36, Sect. 6]. Theorem 7.3 specialized
to this context extends the main result in [11]; see also [23, 38].

For commutative noetherian rings, Hopkins [35] and Neeman [48] have classi-
fied thick subcategories of perfect complexes, and localizing subcategories of the
derived category, in terms of subsets of the spectrum. These have been extended
to the realm of algebraic geometry by Thomason [54], and Alonso Tarro, Jeremı́as
López, and Souto Salorio [2]. In [36], some of these results have been extended
to tensor triangulated categories. However, this context do not cover important
examples; notably, the bounded derived category of a complete intersection ring;
see Section 11. One of the motivations for this article was to develop a broader
framework, and attendant techniques, where we could state and prove such results.

9. Commutative noetherian rings

In this section we apply the theory developed in the preceding sections to the
derived category of a commutative noetherian ring. The main result interprets lo-
calization functors with respect to specialization closed subsets to the corresponding
local cohomology functors, and establishes that, in this context, the notion of sup-
port introduced here coincides with the classical one.

Throughout this section, A is a commutative noetherian ring and M = ModA
the category of A-modules. Let T = D(M) be the derived category of complexes of
A-modules. The category T is triangulated, and admits coproducts. The module
A, viewed as a complex concentrated in degree 0, is a compact generator for T. In
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what follows, for each complex X of A-modules H∗(X) denotes the cohomology of
X. Note that

H∗(X) = Hom∗
T(A, X) ,

so the notation H∗(−) is compatible with its usage in Theorem 5.15. Next we recall
the notion of local cohomology and refer to [34, 43] for details.

Local cohomology. Let V be a specialization closed subset of Spec A, and M an
A-module. Consider the submodule FVM of M defined by the exact sequence:

0 −→ FVM −→M −→
∏

q/∈V

Mq .

The traditional notation for FVM is ΓVM , but we reserve that for the derived
version, see Theorem 9.1. The assignment M 7→ FVM is an additive, left-exact
functor on the category of A-modules, and inclusion gives a morphism of functors
FV → IdM. Observe that FV provides a right adjoint to the inclusion MV ⊆ M; this
follows from Lemma 2.3.

The following properties of FV are readily verified using the exact sequence above.

(1) For any ideal a in R, the closed subset Z = V(a) satisfies

FZM = {m ∈M | anm = 0 for some integer n ≥ 0} .

(2) For each arbitrary specialization closed subset V, one has that

FVM =
⋃

Z⊆V
closed

FZM .

(3) For each prime ideal p in A one has that

FV(E(A/p)) =

{
E(A/p) if p ∈ V

0 othewise.

We denote by RFV : T→ T the right derived functor of FV . For each complex X
of A-modules the local cohomology of X with respect to V is the graded A-module

H∗
V(X) = H∗(RFVX) .

Thus, if I is an injective resolution of X, then H∗
V(X) = H∗(FVI), where FVI is

the complex of A-modules with (FVI)n = FV(In), and differential induced by the
one on I. When a is an ideal in R, it is customary to write H∗

a (X) for the local
cohomology of X with respect to the closed set V(a). We consider support with
respect to the canonical morphism

A −→ Z(T)

given by homothety: a 7→ a · id; here A is viewed as a graded ring concentrated in
degree zero. The next theorem explains the title of this paper. In the sequel, Xp

denotes the complex of Ap-modules Ap ⊗A X.

Theorem 9.1. For each specialization closed subset V of SpecA, one has an iso-
morphism ΓV

∼= RFV . Moreover, each complex X of A-modules satisfies

suppA X = {p ∈ SpecA | H∗
pAp

(Xp) 6= 0} .

Remark 9.2. Foxby [27] has proved that for each complex X of A-modules with
H∗(X) bounded, and each p ∈ SpecA, the following conditions are equivalent:

(1) E(A/p) occurs in the minimal injective resolution of X;
(2) Ext∗Ap

(k(p), Xp) 6= 0;

(3) TorA
∗ (k(p), X) 6= 0;
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(4) H∗
pAp

(Xp) 6= 0.

Therefore, the theorem above implies that for modules, the notion of support as
defined in this section, coincides with the one from Section 2. Moreover, it is
implicit in the results in [48], and is immediate from [28, (2.1) and (4.1)], that the
conditions (1)–(4) coincide for every complex X of modules, which means that the
set suppA X is a familiar one.

Proof of Theorem 9.1. We let MV denote the full subcategory of M consisting of
modules with support, in the sense of Section 2, contained in V. In particular,
TV = DMV

(M), the full subcategory of T formed by complexes X with Hn(X) in
MV , for each n. The inclusion functor MV → M induces an equivalence of categories
D(MV) → DMV

(M), because every module in MV admits a monomorphism into a
module in MV which is injective in M; see [34, Proposition I.4.8].

Next observe that the functor D(MV) → D(M) equals the left derived functor
of the inclusion MV → M. Thus the right derived functor RFV provides a right
adjoint to the functor D(MV)→ D(M), since FV is a right adjoint to the inclusion
MV → M. On the other hand, by construction ΓV is a right adjoint to the inclusion
DMV

(M) → D(M). A right adjoint functor is unique up to isomorphism, so the
equivalence D(MV) ∼= DMV

(M) implies RFV
∼= ΓV .

Let p be a point in SpecA, and set Z(p) = {q ∈ SpecA | q 6⊆ p}. Let X be a
complex of A-modules. The functor T→ T sending X to Xp is a localization functor
and has the same acyclic objects as LZ(p), since H∗(LZ(p)X) ∼= H∗(X)p

∼= H∗(Xp).
For the first isomorphism, see Theorem 4.7. Therefore LZ(p)X ∼= Xp, so one has
isomorphisms

ΓpX = ΓV(p)LZ(p)X ∼= ΓV(p)Xp
∼= RFV(p)Xp .

This yields the stated expression for suppR X, as H∗(RFV(p)Xp) = H∗
pAp

(Xp). �

Remark 9.3. One can give other proofs for the first part of the preceding theorem.
For instance, it is easy to check the functor FV coincides with Γ ′

V in [43, (3.5)],
so Proposition 3.5.4 in loc. cit. yields that RFV is right adjoint to the inclusion
TV ⊆ T. It must thus coincide with ΓV . One can also approach this result via the
machinery in Section 8, for the derived category is tensor triangulated.

Here is a different perspective: As before, one argues that LZ(p)X ∼= Xp for each
complex X. We claim that for any A-module M , if the support of M , as computed
from the minimal injective resolution, equals {p}, then suppA M = {p}.

Indeed, M ∈ TV(p), by definition, so suppR M ⊆ V(p). Fix a prime ideal q ⊃ p.
The hypothesis on M implies M ∼= Mp, so one obtains the first isomorphism below.

ΓqM = ΓV(q)LZ(q)LZ(p)M ∼= ΓV(q)LZ(p)M = 0 .

The remaining isomorphisms hold by Lemma 3.4, since Z(p) contains V(q) and
Z(p). Therefore, q /∈ suppA M . This settles the claim.

Let V be a specialization closed subset of Spec A. Observe that both RFV and ΓV

are exact functors on T, and that RFVX ∈ TV , as suppA H∗(RFVX) ⊆ V. Since
ΓV is right adjoint to the inclusion TV ⊆ T, one has thus a morphism RFV → ΓV .
This is an isomorphism on injective modules E(A/p), for each p ∈ SpecA, by the
preceding claim and the properties of FV listed above. It follows that RFV → ΓV

is an isomorphism on all of T, because RFV and ΓV commute with coproducts and
T equals the localizing subcategory generated by the E(A/p), see [48, §2].

The example below is intended to illustrate the difference between suppA X and
suppA H∗(X). In particular, we see that the inclusions in Corollary 5.3 can be
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strict. One can construct such examples over any commutative noetherian ring of
Krull dimension at least two; see [41].

Example 9.4. Let k be a field, let A = k[[x, y]], the power series ring in indeter-
minates x, y, and set m = (x, y), the maximal ideal of A. The minimal injective
resolution of A has the form:

· · · −→ 0 −→ Q −→
⊕

ht p=1

E(A/p) −→ E(A/m) −→ 0 −→ · · ·

where Q denotes the fraction field of A. Let X denote the truncated complex

· · · −→ 0 −→ Q −→
⊕

ht p=1

E(A/p) −→ 0 −→ · · ·

viewed as an object in T, the derived category of A. One then has

suppA X = (Spec A) \ {m} , minA H∗(X) = {(0)} , suppA H∗(X) = Spec A .

Compare this calculation with the conclusion of Corollary 5.3.

In view of Theorems 9.1, results on support established in previous sections
specialize to the case of complexes over commutative noetherian rings. Two of
these are noteworthy and are commented upon.

Remark 9.5. Corollary 7.4 yields that the support of an indecomposable complex of
A-modules is connected. Restricting the decomposition in Theorem 7.3 to compact
objects gives a Krull-Remak-Schmidt type theorem for thick subcategories of the
category of perfect complexes. This recovers results of Chebolu [25, (4.13), (4.14)].

Remark 9.6. Let a be an ideal in A and set V = V(a). Consider Theorem 6.7 in
the context of this section. The functor vρΓV is a right adjoint to vλΓV . Given
Theorem 9.1, it follows from Greenlees-May duality—see [31, ??] and also [43,
§4]—that vρΓV is the left derived of the a-dic completion functor.

We have focussed on the derived category of A-modules. However, similar con-
siderations apply also to the homotopy category of injective modules, and to the
homotopy category of projective modules. This leads to a notion of support for
acyclic and totally acyclic complexes in either category. This has connections to
results in [37]. We intend to pursue this line of investigation elsewhere.

10. Modules over finite groups

Let G be a finite group and k a field of characteristic p dividing |G|. There are
several choices of a tensor triangulated category T, and we comment on each of
them. In each case, we take for the ring R the cohomology ring H∗(G, k); by the
Evens–Venkov theorem [13, (3.10)] this is a finitely generated graded-commutative
k-algebra, and hence noetherian. We use the tensor product⊗k for objects in T with
the usual diagonal G-action: g(x⊗ y) = gx⊗ gy for all g ∈ G and x⊗ y ∈ X ⊗k Y .

The stable module category. The first choice for T is the stable module cate-
gory StMod kG. In this case, the trivial module k is compact, and plays the role
of the unit 1 in Section 8. Note that k does not necessarily generate T. The func-
tion objects are Homk(M,N) with the usual G-action: (g(α))(m) = g(α(g−1m)).
The compact objects are the modules isomorphic in StMod kG to finitely gener-
ated modules, and the full subcategory of compact objects in StMod kG is denoted
stmod kG. Compact objects are strongly dualizable. The graded endomorphism
ring of k is isomorphic to the Tate cohomology ring Ĥ∗(G, k). So this maps to the
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center of StMod kG, but it is usually not noetherian. Furthermore, the full center
of StMod kG appears not to be well understood in general.

Lemma 10.1. Let G be a finite group and k a field of characteristic p. Then the
following are equivalent:

(1) Ĥ∗(G, k) is noetherian.

(2) Ĥ∗(G, k) is periodic.
(3) G has p-rank one.

Proof. If G has p-rank one then Ĥ∗(G, k) is periodic and noetherian, by [24,
(XII.11)]. If G has p-rank greater than one then the negative Tate cohomology
is contained in the nil radical by Benson and Krause [18, (2.4)]1. It follows that

the nil radical is not finitely generated, so Ĥ∗(G, k) is not noetherian. �

When Ĥ∗(G, k) is noetherian, modulo its radical it is a graded field, so the theory
of supports coming from this ring is not interesting. This is why we chose for R
the noetherian subring H∗(G, k) of Ĥ∗(G, k). It is shown in [18] that contraction

of ideals gives a one-one correspondence between prime ideals p in Ĥ∗(G, k) and
prime ideals pc in H∗(G, k) in the nonperiodic case, and that the injective hulls

E(Ĥ∗(G, k)/p) and E(H∗(G, k)/pc) are equal when p is not maximal.
For T = StMod kG and R = H∗(G, k), the theory developed in Section 8 of

this paper coincides with the theory developed by Benson, Carlson and Rickard in
[16]. We should like to note that the maximal ideal m = H+(G, k) of R is not in
the support of any object; this follows, for example, from (10.3.1). However, m is
in the support of the cohomology of some modules, such as the trivial module k.
Moreover, the supports of H∗(G, M) and Ĥ∗(G, M) agree except possibly for m,

because Ĥ−(G, M) is m-torsion.
The correspondence of notation between [16] and this article is as follows. We de-

note by VG the maximal ideal spectrum of H∗(G, k) which is a homogeneous affine
variety. Let V be an irreducible subvariety of VG corresponding to a homogeneous
prime ideal p of H∗(G, k). Let W be a specialization closed set of homogeneous
prime ideals in H∗(G, k) and identify W with the set of closed homogeneous sub-
varieties W ⊆ VG whose irreducible components correspond to ideals in W.

BCR [16] This paper
k 1

H∗(G, k) R
E(W) ΓW1

F (W) LW1

E(V ) ΓV(p)1

F ′(V ) LZ(p)1

κV = E(V )⊗k F ′(V ) Γp1

κV ⊗k M ΓpM
VG(M) suppR M

1Let us set the record straight at this stage about the proof of this proposition. Lemma 2.3
of that paper as stated and its proof are obviously incorrect. The correct statement, which is the
one used in the proof of 2.4, is that if G has p-rank greater than one, and H is a subgroup of

p-rank one, then the restriction to H of any element of negative degree in Ĥ∗(G, k) is nilpotent.

To see this, if x is such an element whose restriction is not nilpotent, and y ∈ Ĥ∗(H, k) satisfies
resG,H(x)y = 1, then y has positive degree, so using the Evens norm map, some power of y is in

the image of restriction from G. But then Ĥ∗(G, k) has an invertible element of nonzero degree,
which implies that G has rank one.
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The kappa module κV of [16] is denoted κp in some other papers. The crucial
isomorphisms E(W) ∼= ΓW1 and F (W) ∼= LW1 follow from Theorem 6.4. We keep
our correspondence of notation, and restate Theorem 6.2 to obtain the following.

Theorem 10.2. Let V and W be specialization closed sets of homogeneous prime
ideals in H∗(G, k) such that V \W = {p}. Then

E(V)⊗k F (W) ∼= κV . �

One feature of the support variety theory for StMod kG that does not hold more
generally is the tensor product theorem: the support of the tensor product of two
modules is the intersection of their supports. This is Theorem 10.8 of [16]. If,
instead of using the whole cohomology ring, we just use a subring, then the tensor
product theorem fails, even if the cohomology ring is a finitely generated module
over the chosen subring. To see this, just choose a subring such that there exist
two distinct prime ideals in H∗(G, k) lying over the same prime in the subring, and
tensor the kappa modules for these primes. The tensor product is projective, but
the intersection is not empty.

Conjecture 10.7.1 of [14] was an attempt to find a way to compute the support
variety VG(M) from the cohomology of M . This conjecture is false; see Example
10.5 below. However, the following theorem does compute the support variety from
the cohomology, and may be thought of as a replacement for this conjecture.

Theorem 10.3. Let p be a nonmaximal homogeneous prime ideal in H∗(G, k) and

let ζi ∈ Hni(G, k) (1 ≤ i ≤ s) be nonzero elements such that p =
√

(ζ1, . . . , ζs).

Let Lζi
be the kernel of a cocycle ζ̂i : Ωnik → k representing ζi.

Then for any kG-module M , the following are equivalent.

(1) p ∈ VG(M).
(2) There exists a simple kG-module S such that

Ext∗kG(S ⊗k Lζ1
⊗k · · · ⊗k Lζs

, M)p 6= 0 .

Proof. This follows from Theorem 5.13. The Koszul object S//(ζ1, . . . , ζs) in this
context is, up to a shift, the tensor product S ⊗k Lζ1

⊗k · · · ⊗k Lζs
. �

Note that, in the preceding result, we could have also used Tate cohomology

modules Êxt
∗

kG(−,−).

The derived category. Another choice for T is D(Mod kG), the derived category.
This is a rather poor choice, for the following reason. If G is a p-group, then the
only localizing subcategories of D(Mod kG) are zero and the whole category. Even
if G is not a p-group, the structure of the set of localizing subcategories in no way
reflects the set of prime ideals in H∗(G, k). The other problem in this case is that
the trivial module k, regarded as an object in D(Mod kG), is not compact. So
although there is a tensor product and there are function objects, the unit for the
tensor product is not compact, and we cannot apply the theory of Section 8.

The homotopy category of complexes of injective modules. The third
choice for T is the homotopy category of complexes of injective kG-modules, de-
noted K(Inj kG). This tensor triangulated category is investigated in Benson and
Krause [19], and in particular there is a recollement

(10.3.1) StMod kG ' Kac(Inj kG)

Homk(tk,−)
←−−−−−−−−
−−−−−−−−→
←−−−−−−−−

−⊗ktk

K(Inj kG)

Homk(pk,−)
←−−−−−−−−
−−−−−−−−→
←−−−−−−−−

−⊗kpk

D(Mod kG).
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Here, ik, pk and tk denote an injective, projective, Tate resolution of k as a
kG-module respectively, and Kac(Inj kG) denotes the full subcategory of K(Inj kG)
consisting of acyclic complexes. The equivalence between this and the stable module
category is given by the theory of Tate resolutions of modules. The recollement
follows from Theorem 6.7 because Kac(Inj kG) consists of all objects X in K(Inj kG)
such that suppR X does not contain the maximal ideal m.

The compact objects in K(Inj kG) are the semi-injective resolutions, see [7], of
finite complexes of finitely generated kG-modules, and the full subcategory of com-
pact objects forms a triangulated category equivalent to Db(mod kG). The object
ik is compact, and is the unit for the tensor product, so this plays the role of 1.
The function objects of Section 8 are provided by Hom complexes

Hom(X, Y )n =
∏

p

Homk(Xp, Yn+p)

with the usual differential (d(f))(x) = d(f(x)) − (−1)|f |f(d(x)) and G-action
(g(f))(x) = g(f(g−1x)). If C → X and D → Y are semi-injective resolutions of
objects C and D in Db(mod kG) then the map Hom(C, D)→ Hom(C, Y ) is a semi-
injective resolution, and the map Hom(X, Y ) → Hom(C, Y ) is an isomorphism
in K(Inj kG). It follows that for compact objects X and Y , the function complex
Hom(X, Y ) is again compact. In particular, X∨ = Hom(X, ik) is a semi-injective
resolution of Hom(C, k). It follows that compact objects are strongly dualizable.
The graded endomorphism ring of ik is H∗(G, k), which is our choice for R. The
theory of varieties for modules in this context agrees with the theory set up in
section 9 of [19]. It restricts to the full subcategory StMod kG of acyclic complexes
to give the theory of [16]. Exactly one more prime ideal comes into play, namely
the maximal ideal m, and this reflects the right hand side of the recollement.

Example 10.4. We imitate the example in Section 9 to give an example in
K(Inj kG) where the triangulated support differs from the cohomological support.
This gives a rather natural looking example. We then modify it in Example 10.5
to provide a counterexample to Conjecture 10.7.1 of Benson [14]. Let G = (Z/2)2

and k a field of characteristic two. We have R = H∗(G, k) = k[x, y], where the
generators x, and y have degree one. Let Q be the (homogeneous) field of fractions
of R. Then the minimal injective resolution of R has the form

(10.4.1) · · · → 0→ Q→
⊕

ht p=1

E(R/p)→ E(R/m)→ 0→ · · ·

where m = H+(G, k) is the unique maximal (homogeneous) ideal in R. Recall from
[19, §10] that there is a functor T from injective R-modules to K(Inj kG) such that
H∗(G, T (I)) ∼= I. Apply this functor to the first nontrivial arrow in the resolution
(10.4.1) and complete to a triangle in K(Inj kG) to obtain

(10.4.2) X → T (Q)→
⊕

ht p=1

T (E(R/p))→ .

Then take cohomology to deduce that there is a short exact sequence

0→ E(R/m)[−1]→ H∗(G, X)→ R→ 0.

This sequence splits—for instance, the right hand side is a free module—to give

(10.4.3) H∗(G, X) ∼= R⊕ E(R/m)[−1].
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In fact, it turns out that X is nothing other than tk, a Tate resolution for k as a
kG-module, and H∗(G, X) ∼= Ĥ∗(G, k). Using (10.4.2) and (10.4.3), we see that m

is in suppR H∗(G, X) but not in suppR X.

Example 10.5. We modify Example 10.4 to give a counterexample, in StMod kG,
to Conjecture 10.7.1 of Benson [14] as follows. Let G = (Z/2)3 and let k be a field
of characteristic two. Then R = H∗(G, k) = k[x, y, z], where the generators x, y
and z have degree one. Let Z = {q ∈ SpecR | q 6⊆ (x, y)}. Working in K(Inj kG),
we write F = LZ(k), so that H∗(G, F ) = R(x,y) is a homogeneous local ring with
maximal ideal (x, y). The minimal injective resolution of R(x,y) over R has the form

· · · → 0→ Q→
⊕

ht p=1
p⊆(x,y)

E(R/p)→ E(R/(x, y))→ 0→ · · ·

where Q is the (homogeneous) field of fractions of R. Apply T to the first nonzero
arrow and complete to a triangle in K(Inj kG) to obtain

(10.5.1) X → T (Q)→
⊕

ht p=1
p⊆(x,y)

T (E(R/p))→ .

Applying cohomology, we deduce that there is an exact sequence of R(x,y)-modules

0→ E(R/(x, y))[−1]→ H∗(G, X)→ R(x,y) → 0, .

This splits to give an isomorphism

(10.5.2) H∗(G, X) ∼= R(x,y) ⊕ E(R/(x, y))[−1].

Using (10.5.1), we see that suppR X = {(0)} ∪ {p | ht p = 1, p ⊆ (x, y)} while using
(10.5.2), we see that suppR H∗(G, X) = {p | p ⊆ (x, y)}. Now the maximal ideal
m of H∗(G, k) is not in suppR X, so we may regard X as an object in StMod(kG)
using the recollement 10.3.1. Namely, X is an acyclic complex, and the kernel of
the middle differential gives an object M in StMod(kG) whose triangulated support
and cohomological support differ.

Theorem 10.6. For G = (Z/2)3 and k a field of characteristic two, there exists a
module M in StMod(kG) such that VG(M) = {(0)} ∪ {p | ht p = 1, p ⊆ (x, y)}, so
that (x, y) 6∈ VG(M), but (x, y) ∈ suppH∗(G,k) H∗(G, M). �

Subsequently, families of such examples have been constructed in [15].

Finite Dimensional Algebras. Generalizing the theory for finite groups, there
is a theory of support varieties for modules over a finite dimensional algebra A, de-
veloped by Snashall and Solberg [52]; see also Solberg [53]. The theory is developed
there for finitely generated A-modules and for the derived category Db(mod A) of
bounded complexes of finitely generated modules. Their idea is to use the natural
homomorphism from the Hochschild cohomology ring HH∗(A) to Ext∗A(M,M). In
the case where M is the quotient of A by its radical, they show that the kernel
of this map consists of nilpotent elements. A problematic feature of the theory is
that it is not known in general whether the quotient of HH∗(A) by its nil radical is
finitely generated as an algebra. This issue is discussed at length in [52, 53].

The way to use our theory to construct support varieties for modules over finite
dimensional algebras is to use the triangulated category T = K(InjA), whose com-
pact objects form a copy of Db(mod A). There is a natural homomorphism of rings
HH∗(A) → Z(T). If R is a finitely generated subalgebra of HH∗(A) then we may
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apply our theory to the composite R→ HH∗(A)→ Z(T). This way, we extend the
Snashall–Solberg theory to objects in K(InjA).

If A is self-injective the theory is further refined in [26] using the stable category
of finitely generated modules stmod A. The comments in the group case about the
relationship between the large stable module category StModA and K(InjA) apply
equally well here: one has homomorphisms R → HH∗(A) → Z(StModA) and a
theory of varieties for infinitely generated modules in this situation. So for example
our Theorem 7.1 generalizes Theorem 7.3 of [26] to infinitely generated modules.

For a finite group scheme G over an arbitrary field k, Friedlander and Pevtsova
developed in [29] the notion of support using so-called π-points. They define for
each kG-module M a support space Π(G)M , which can be identified with a set
of nonmaximal homogeneous prime ideals of the cohomology ring H∗(G, k). This
approach generalizes the work from [16] for finite groups. In particular, we have
Π(G)M = suppR M as before when we take T = StMod kG and R = H∗(G, k).

11. Complete intersections

In this section we discuss support for complexes of modules over commutative
complete intersection rings. The main goal is to show only how the theory presented
here relates to the one of Avramov and Buchweitz [3, 6] for finitely generated
modules. Further elaborations are deferred to another occasion.

Let A be a commutative noetherian ring of the form Q/I, where Q is a commu-
tative noetherian ring and I is an ideal generated by a regular sequence; see [46,
Section 16] for the notion of a regular sequence. The principal examples are the
local complete intersection rings; see Remark 11.5. In what follows K(A) denotes
the homotopy category of complexes of A-modules.

Let R be the ring of cohomology operators defined by the surjection Q → A,
see [5, 9], and the paragraph below. Thus, R = A[χ1, . . . , χc], the polynomial ring
over A in variables χi of degree 2. For each complex X of A-modules, there is
a natural homomorphism of rings R → Ext∗A(X, X), with image in the center of
the target. These define a homomorphism from R to the center of the derived
category of A. It lifts to an action on K(A) and gives a homomorphism of rings
R → Z(K(A)). This map is the starting point of everything that follows in this
section, so we sketch a construction. It is based on a method in [5] for defining
cohomology operators, and uses basic notions and constructions from Differential
Graded homological algebra, for which we refer to [4, §2].

Cohomology operators. Let Q→ A be a homomorphism of commutative rings.
Let B be a semi-free resolution of the Q-algebra A. Thus, B is a DG algebra
over Q whose underlying algebra is the graded-symmetric algebra over a graded
free Q-module, concentrated in cohomological degrees ≤ 0, and there is a quasi-
isomorphism ε : B → A of DG Q-algebras. Set Be = B ⊗Q B; this is also a DG
Q-algebra, and, since B is graded-commutative, the product map µ : Be → B, where
b′⊗ b′′ 7→ b′b′′, is a morphism of DG algebras. Let U be a semi-free resolution of B
viewed as a DG module over Be via µ. Set V = A⊗B U ; this has the structure of a
DG module over A, that is to say, a complex of A-modules. Let X be a complex of
A-modules; it acquires a structure of a DG B-module via ε. Associativity of tensor
products yields isomorphisms of complexes of A-modules

X ⊗B U ∼= X ⊗A (A⊗B U) = X ⊗A V .

The functors X ⊗B − and − ⊗A V , on the categories of DG modules over Be

and over A, respectively, are additive and hence preserve homotopies. One has
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homomorphisms of algebras

Hom∗
K(Be)(U, U)

X⊗B−
−−−−−−→ Hom∗

K(A)(X ⊗A V,X ⊗A V )
−⊗AV
←−−−−− Hom∗

K(A)(X, X) .

The complex of A-modules V is semi-free and the map V = A⊗B U → A⊗B B = A
is a quasi-isomorphism, and hence it is a homotopy equivalence. Therefore, the map
− ⊗A V in the diagram above is an isomorphism. Consequently, one obtains the
homomorphism of algebras

Hom∗
K(Be)(U, U) −→ Hom∗

K(A)(X, X) .

It is clear that this map is natural in X, so it induces a homomorphism of rings

Hom∗
K(Be)(U, U) −→ Z(K(A)) .

We note that Hom∗
K(Be)(U,U) is the Shukla cohomology [51] of A over Q; it is also

called the Hochschild-Quillen cohomology.
When A = Q/(q), where q = q1, . . . , qc is a Q-regular sequence, a standard

calculation, see [5, (2.9)], yields an isomorphism of A-algebras

Hom∗
K(Be)(U, U) ∼= A[χ1, . . . , χc] ,

where the χi are indeterminates in cohomological degree 2. They are the cohomol-
ogy operators defined by the presentation Q→ A. This completes our sketch.

Support. Let A = Q/(q), where q = q1, . . . , qc is a Q-regular sequence and R =
A[χ] the ring of cohomology operators, and R → Z(K(A)) the homomorphism of
rings, introduced above. Set K = K(InjA), the homotopy category of complexes
of injective A-modules; it is a compactly generated triangulated category, see [40,
Prop. 2.3]. Restricting R→ Z(K(A)) gives a homomorphism of rings

A[χ] = R −→ Z(K) .

One has thus all the ingredients required to define local cohomology and support
for objects in K.

Remark 11.1. Via the standard embedding of the derived category D(A) of A into
K, this then applies to all complexes of A-modules. To be precise: Restriction of
the quotient functor q : K(A)→ D(A) admits a fully faithful right adjoint, say i; it
maps X to a semi-injective resolution of X. These functors fit into the following
diagram of functors:

Kc

inc

��

q

∼
// D

f (A)

inc

��

i
oo

K
q

// D(A)
i

oo

The equivalence in the top row holds by [40, Prop. 2.3].
Henceforth, when we talk about the support of a complex X in D(A), we mean

suppR iX. In the diagram, Df (A) denotes the subcategory D(A) consisting of com-
plexes with finitely generated cohomology. In particular, one arrives at a notion
of support for complexes in Df (A). In Remark 11.5, we compare this construction
with the one of Avramov and Buchweitz. First, we record an observation.

For a homomorphism A → R of commutative rings, the fibre at a point p in
Spec A is the ring R ⊗A k(p). The lemma below says that the support of any
finitely generated R-module is detected along its fibers.



36 DAVE BENSON, SRIKANTH B. IYENGAR, AND HENNING KRAUSE

Lemma 11.2. Let A → R be a homomorphism of commutative noetherian rings.
For each finitely generated R-module L, one has an equality

suppR L =
⊔

p∈Spec A

supp(R⊗Ak(p))(L⊗A k(p)) .

Proof. The crucial remark is that for each finitely generated module M over a
commutative noetherian ring B, one has suppB M = {q ∈ SpecB | Mq 6= 0}; see
Lemma 2.2. Now fix a prime ideal p in A. Since L is finitely generated as an
R-module, L ⊗A k(p) is finitely generated as an R ⊗A k(p)-module. This remark,
and the isomorphism L⊗A k(p) ∼= L⊗R (R⊗A k(p)), yield

supp(R⊗Ak(p))(L⊗A k(p)) = suppR L ∩ suppR(R⊗A k(p)) .

The upshot is that it suffices to prove the desired equality for L = R, and in this
case it is evident. �

We now present one of the main results in this section. Recall that a complex
of modules over a ring is said to be perfect if it is quasi-isomorphic (in the derived
category) to a finite complex of finitely generated projective modules.

Theorem 11.3. Let A = Q/(q), where q = q1, . . . , qc is a Q-regular sequence, and
set K = K(InjA). Let R be the induced ring of cohomology operators on K.

For each X in Kc which is perfect over Q, one has suppR X = suppR End∗
K(X).

Furthermore, there is a fibre-wise decomposition

suppR X =
⊔

p∈Spec A

supp(R⊗Ak(p)) Ext∗Ap
(Xp, k(p)) .

Remark 11.4. When a complex X in Kc has finite injective dimension over Q, then
again one has suppR X = suppR End∗

K(X) and

suppR X =
⊔

p∈Spec A

supp(R⊗Ak(p)) Ext∗Ap
(k(p), Xp) .

The proof is similar to the one for Theorem 11.3.

Proof of Theorem 11.3. When Y is a compact object in K, it is semi-injective, so
one has an identification Hom∗

K(−, Y ) = Ext∗A(−, Y ). A crucial result in the proof
is that, for such a Y , the R-module Ext∗A(X, Y ) is finitely generated. This holds
because X is perfect over Q and the A-module H∗(Y ) is finitely generated; see
Gulliksen [33, (2.3)], and also [9, (5.1)], [8, (4.2)]. This fact is used implicitly, and
often, in the argument below. For each prime p in SpecA, we write Kp for K(InjAp).
Theorem 5.5(2) yields the first equality below:

suppR X = suppR End∗
K(X)

=
⊔

p∈Spec A

supp(R⊗Ak(p))(End∗
K(X)⊗A k(p))

=
⊔

p∈Spec A

supp(R⊗Ak(p))(End∗
Kp

(Xp)⊗Ap
k(p)) .

The second one holds by Lemma 11.2, while the third holds because the A-module
H∗(X) is finitely generated. The homomorphism of rings R → Z(K) yields a
homomorphism of rings Rp → Z(Kp). Note that Rp is a ring of cohomology
operators defined by the presentation Ap = Qep/(q)ep, where p̃ is the preimage of p

in Q. Furthermore, Xp is perfect over Qep.
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Therefore we may assume A and Q are local rings, with residue field k. The
desired result is then that for each complex X of A-modules which is perfect over
Q, one has an equality

suppR(Ext∗A(X, X)⊗A k) = suppR Ext∗A(X, k) .

The set on the left contains the one on the right, since the ring R acts on Ext∗A(X, k)
through Ext∗A(X, X). We prove that the equality on the left holds.

In the rest of the proof, it is convenient to set X(−) = Ext∗A(X,−), viewed as
a functor from Df (A), the derived category of cohomologically finite complexes of
A-modules, to the category of finitely generated graded R-modules. We repeatedly
use the characterization of support in Lemma 2.2(1).

Let m be the maximal ideal of A, and consider the full subcategory

C = {M ∈ Df (A) | V(m) ∩ suppR X(M) ⊆ suppR X(k)}

As suppR(X(M)⊗A k) = V(mR) ∩ suppR X(M), the desired result follows from:

Claim. C = Df (A)

Indeed, since suppR X(k) is closed C is a thick subcategory of Df (A); this is easy
to check. It thus suffices to prove that C contains all finitely generated A-modules.
This is now verified by a standard induction argument on Krull dimension. To
begin with, observe that k is in C, and hence so is any module of dimension zero,
for such a module admits a finite filtration with subquotients isomorphic to k. Let
M be a finitely generated A-module with dimM ≥ 1. Let L be the m-torsion
submodule of M , and consider the exact sequence of finitely generated A-modules
0→ L→M →M/L→ 0. Note that L is in C, since dim L = 0, so to prove that M
is in C it suffices to prove that M/L is in C. Thus, replacing M by M/L one may
assume that there is an element a ∈ m which is a nonzero divisor on M . Consider
the exact sequence

0 −→M
a
−−→M −→M/aM −→ 0 .

This gives rise to an exact sequence of R-modules X(M)
a
−→ X(M)→ X(M/aM),

so one deduces that

V(aR) ∩ suppR X(M) = suppR(X(M)/aX(M)) ⊆ suppR X(M/aM) .

Since dim(M/aM) = dimM − 1 the induction hypothesis yields that M/aM is in
C. Given this, the inclusion above implies M is in C.

This completes the proof of the claim, and hence of the theorem. �

Remark 11.5. Let A be a complete intersection local ring, with maximal ideal m

and residue field k. Assume A is m-adically complete. Cohen’s Structure Theorem
provides a presentation A ∼= Q/I with (Q, q, k) a regular local ring and I ⊆ q2.
Since A is a complete intersection, the ideal I is generated by a regular sequence
of length c = dimQ − dimA; see [46, §21]. Let A[χ] = A[χ1, . . . , χc] be the
corresponding ring of operators. Let M be a finitely generated A-module. Observe
that any cohomologically finite complex of A-modules is perfect over Q, since Q
has finite global dimension. Theorem 11.3 and Lemma 2.2(1) show that the fibre
of suppR iM , see Remark 11.1, at the maximal ideal m is precisely the subset

suppk[χ] Ext∗A(M,k) = V(a) ⊆ Spec k[χ] ,

where a = annk[χ] Ext∗A(M,k). Let k̃ be the algebraic closure of k. The Nullstel-
lensatz implies that the sets V(a) and

{(b1, . . . , bc) ∈ k̃c | f(b1, . . . , bc) = 0 for f ∈ a} ∪ {0}
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determine each other. The latter is precisely the support variety of M in the sense
of Avramov [3]; see also Avramov and Buchweitz [6].

Remark 11.6. Let A = Q/I where Q is a commutative noetherian ring of finite
global dimension and I is generated by a regular sequence. Let A[χ] be the as-
sociated cohomology operators. Theorem 11.3 applies to each compact object in
K. It follows from this result and Remark 11.5 that for each cohomologically finite
complex X of A-modules one has a natural projection suppR X → SpecA, and the
fibre over each prime p in SpecA encodes the support of the complex of Ap-modules
Xp, as defined in [6]. Observe that this set is empty outside suppA X, in the sense
of Section 9. Our notion of support is thus a refinement of the one in [3] by means
of the classical support.

The discrepancy between the two is clarified by considering the perfect complexes
over a local ring A, with residue field k. The support in the sense of [6] of any
nonzero perfect complex P is then {0}, which corresponds to the ideal (χ) ⊂ k[χ].
On the other hand, suppR P is a closed subset of Spec A = V(χ) ⊂ SpecA[χ] and
equals the classical support suppA P . This information is important if one wants to
classify the thick subcategories of Df (A). Bear in mind that thick subcategories of
perfect complexes are classified by specialization closed subsets of Spec A, see [48].

There are other noteworthy aspects to the construction in this section, the most
important one being that it gives a local cohomology theory, with supports in the
ring of cohomology operators, for complexes over complete intersections. Here is
one evidence of its utility: Specializing Corollary 7.4 yields a connectedness theorem
for support varieties of complexes over complete intersection rings. Using this, one
can recover a result of Bergh [20, (3.2)]; the details will be provided elsewhere.
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1. L. Alonso Tarro, A. Jereḿıas López, M. J. Souto Salorio: Localization in categories of
complexes and unbounded resolutions, Canad. J. Math. 52 (2000), 225–247.
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51. U. Shukla: Cohomologie des algèbres associatives. Ann. Sci. École Norm. Sup. 78 (1961)

163–209.
52. N. Snashall and Ø. Solberg: Support varieties and Hochschild cohomology rings, Proc.

London Math. Soc. (3) 88 (2004), 705–732.
53. Ø. Solberg: Support varieties for modules and complexes, Trends in representation theory

of algebras and related topics, Contemp. Math. 406, Amer. Math. Soc., Providence, RI, 2006;
239–270.

54. R. Thomason: The classification of triangulated subcategories, Compositio Math. 105 (1997),
1–27.

Dave Benson, Department of Mathematical Sciences, University of Aberdeen, Me-

ston Building, King’s College, Aberdeen AB24 3UE, Scotland U.K.

Srikanth B. Iyengar, Department of Mathematics, University of Nebraska, Lincoln

NE 68588, U.S.A.

E-mail address: iyengar@math.unl.edu

Henning Krause, Institut für Mathematik, Universität Paderborn, 33095 Paderborn,

Germany.

E-mail address: hkrause@math.upb.de


	1. Introduction
	2. Support for modules
	Spectrum
	Injective modules
	Torsion modules and local modules
	Injective resolutions
	Specialization closed sets

	3. Localization for triangulated categories
	Localization functors
	Acyclic and local objects
	Existence

	4. Local cohomology
	Center
	Local cohomology
	Localization at a prime

	5. Support
	Support
	Koszul objects and support
	Axiomatic characterization of support

	6. Properties of local cohomology
	Composition laws
	Smashing localization
	A recollement

	7. Connectedness
	Mayer-Vietoris triangles

	8. Tensor triangulated categories
	Tensor ideals and smashing localization
	Support

	9. Commutative noetherian rings
	Local cohomology

	10. Modules over finite groups
	The stable module category
	The derived category
	The homotopy category of complexes of injective modules
	Finite Dimensional Algebras.

	11. Complete intersections
	Cohomology operators
	Support

	References

