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Abstract
The ability to control thin-film growth has led to advances in our understanding of fundamental
physics as well as to the emergence of novel technologies. However, common thin-film growth
techniques introduce a number of limitations related to the concentration of defects on film
interfaces and surfaces that limit the scope of systems that can be produced and studied
experimentally. Here, we developed an ion-beam based subtractive fabrication process that
enables creation and modification of thin films with pre-defined thicknesses. To accomplish this
we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass
spectrometry with atomic force microscopy to a unique fabrication tool that allows for precise
sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with
in situ feedback and control on film thickness and functionality we systematically studied
thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single
epitaxial film. Our results demonstrate that through a subtractive film fabrication process we can
control the piezoelectric response as a function of film thickness as well as improve on the
overall piezoelectric response versus an untreated film.

Keywords: ferroelectrics, thin films, ion beam fabrication, time-of-flight secondary ion mass
spectrometry, atomic force microscopy

(Some figures may appear in colour only in the online journal)

Introduction

The ability to control thin-film growth has led to advances in
our understanding of fundamental physics as well as to the
emergence of novel technologies including giant magnetore-
sistance materials and devices [1–5], ferroelectric tunneling
barriers and capacitors [6–9], superconductor oxides of
Josephson junctions [10, 11], quantum computing [12–14],

and more exotic systems. The rapid improvement of modern
electronics hinges on the development of novel methodolo-
gies to process materials at ever shrinking dimensions. Pro-
cessing techniques that allow for monolayer precision control
during the growth process like pulsed-laser deposition [15]
and atomic-layer deposition [16] grow materials in accor-
dance with fundamental physics and often provide only cer-
tain terminations at the film interface and surface.
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Additionally, when using these approaches dislocations and
vacancies will migrate to the interface of the films when high
enough temperatures are reached causing problems for con-
trolling the chemistry of the interface as well as leading to
surface instabilities and contamination [17]. Altogether, these
factors may hamper fundamental investigations and practical
applications of thin film systems we can produce.

Here we open a new direction for research in complex
oxides by demonstrating a subtractive fabrication process that
enables creation and modification of thin films with pre-defined
thicknesses. It allows us to elucidate the properties of oxides
while simultaneously minimizing the effects of contaminants.
We apply a combination of time-of-flight secondary ion mass
spectrometry (ToF-SIMS) [18–21] with atomic force micro-
scopy (AFM) for precise sputtering of the nanometer-thin
layers of material. The sputtering process is realized by the ion
beam under control of mass spectrometry. AFM is further
utilized for sputtering depth calibration. To verify this techni-
que, we systematically investigated thickness dependence of
ferroelectric switching of lead-zirconate-titanate, with just one
epitaxial film as a source of materials. Surprisingly, we observe
not only robust switching in pre-sputtered films, but also strong
improvement of piezoelectric response once the aged surface
layer is removed.

Experiment and results

As a model system, we used a 100 nm thick ferroelectric film
of lead zirconate titanate PbZr0.2Ti0.8O3 (PZT) grown on a
SrTiO3 (STO) (001) substrate with a 50 nm thick SrRuO3

(SRO) buffer layer. ToF-SIMS was used to clean the PZT
surface and adjust its thickness. Measurements have been
performed using a TOF.SIMS.5 NSC (ION-TOF GmbH)
instrument, combining ToF-SIMS and AFM in the same
vacuum chamber. Mass spectrometry measurements have
been done by a focused O2

- sputtering source (500 eV
energy, 100 nA current, and ∼20 μm spot size) and a Bi+

primary gun (30 keV energy, 30 nA current, and ∼5 μm spot
size). Sputtered regions were further analyzed in a built-in
AFM chamber to measure the absolute values of the sput-
tering depth. External AFM (Icon Bruker) and STEM (Titan,
FEI) were also used to compare crystallography and ferro-
electric properties of pristine and treated regions.

As a first step, we performed depth profiling of the PZT
locally, which revealed the total film thickness, and the local
chemical composition of surface layer and the film. We used
O2

- sputtering over 300×300 μm regions with cycle of 10 s.
Each cycle was accompanied by ToF-SIMS surface chemistry
analysis using the focused Bi+ primary ion source and the
time-of-flight analyzer in positive ion-detection mode. The
mass spectra are therefore collected from each layer, enabling
depth profiling of the chemical composition.

The averaged mass spectrum of the PZT film and part of
SRO buffer (figure 1) clearly shows peaks of the PZT base
elements (Pb+, Zr+ and Ti+), their oxides (PbO+, ZrO+ and
TiO+), Sr+ and Ru+ from the SRO buffer layer as well as
elements from an adsorption surface layer (Na+, K+, etc). The

area of those peaks has been used to plot depth profiles of
their bulk distribution (figure 2(a)). One should note that the
x-axis in figure 1 is not the physical depth, but the sputter
time, which is directly proportional to the sputter depth (the
longer sputtering time the deeper the crater). These profiles
show sharp transition from PZT to SRO (decrease of Pb+,
Zr+, Ti+ and increase of Sr+ signals) at around 840 s of
sputtering. This can be used to roughly estimate the sputtering
rate of PZT: vPZT ∼0.12±0.01 nm s−1.

We further performed precise calibration of the sput-
tering depth using the AFM built-in to the ToF-SIMS
vacuum chamber. The AFM measurements were performed
in contact mode inside the regions sputtered for different
times from 210 to 930 s. The crater topography profiles were
used for sputtering depth calibration (figure 2(b)). These
measurements were carried out in automated profiling mode.
In this mode resulted crater profile (300 μm long) is mea-
sured by sections of 80 μm. Sections are measured with
overlap of 15% and further automatically stitched. Experi-
ments demonstrated that the sputtering is linear with time
within the film, and the value of the sputtering rate based on
the AFM data is identical to that estimated from the ToF-
SIMS depth profiles. In addition, we used macroscopic data
of the film thickness and measured profile for the longest
sputter to estimate the sputtering rate of the SRO buffer
layer. The obtained value vSRO∼0.028 nm s−1 was found
to be significantly lower than the sputtering rate of PZT.
Hereinafter we will reference sputtering depth in percentage
from initial film thickness, based on the sputtering time and
the macroscopic data of the film thickness (figure 2(a)).
Analysis of the depth profiles also showed slight increase in
the roughness of sputtered region (figure 2(d)). Root mean
squared Rq value of the roughness is used. However, total
roughness change does not exceed 1.5 nm, which cannot
significantly affect properties of the modified sample.

The results of this work reveal that the sputtering process
by ToF-SIMS under the control of mass spectrometry can act
as a subtractive fabrication approach for the creation of thin
films of pre-defined thickness and surface conditioning. We
should note, that works on the ion beam thinning of ferro-
electric thin films and single crystals were performed in the
past, however those approaches led to damage of the crys-
tallographic structure and degradation of ferroelectric prop-
erties [22–24]. To ascertain structural damages during this
process and establish potential ionic damage we performed
STEM and AFM measurements.

STEM was used to investigate the atomic structure of
cross-sections of pristine and sputtered PZT samples
(figure 3). In all cases these measurements clearly differ-
entiate the surface layer, the PZT film, and the SRO/STO
substrate. The pristine, as-grown sample, as expected, showed
the presence of a thick (∼10 nm) inhomogeneous aged sur-
face layer (figure 3(a)). This layer is known to hamper local
probing of ferroelectric properties by AFM and can lead to a
number of non-trivial phenomena during polarization reversal
[25–29]. Presence of this layer is confirmed by ToF-SIMS,
which showed high concentration Na+, K+ on the sample
surface (figure 2(a)). The sputtering process removed this
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contamination layer (figures 3(b), (c)) and demonstrated
consistency with designated sputtering times—the film
thickness was ∼52 nm after sputtering for 50% (figure 3(b)),
and ∼15 nm for 80% (figure 3(c)). Detailed STEM imaging
showed that sputtering process does not change crystal-
lography in the bulk of PZT and on the PZT/SRO interface
(figure 3(d)), however it showed formation of the thin
(∼3 nm) amorphous layer (figure 3(e). At this point, we
cannot speculate about the origin of this amorphous layer, it
could be formed during the sputtering process or just be an
artifact of the cross-section preparation for STEM imaging.

We should note here, that thickness of this artificial layer is
much smaller, than in the case of pristine PZT sample, so one
would expect enhancement in the properties of mod-
ified films.

We further used the AFM to study ferroelectric and
conductive properties of the treated regions and piezo-
response force microscopy was used to study switching. The
measurements were carried out over a grid of 10×10 points
with an area of 5×5 μm.

We used local hysteresis loops to characterize the ferro-
electric properties of the sputtered PZT regions (figure 4).

Figure 1. Averaged mass spectrum of studied films, averaged over whole thickness of PZT and part of SRO buffer layer. (inset) 3D overlay
of Ti+ (red) and Sr+ (green) spatial distribution.

Figure 2. Depth profiling of PZT thin film. (a) ToF-SIMS depth profiles; (b) AFM topographical profiles of sputtered craters; (c) depth
calibration; (d) roughness of the sputtered regions.
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These loops are measured during application of the DC
voltage to the tip and are able to characterize ferroelectric
switching in the nanometer region underneath the tip under
the action of external DC field produced by the tip. Details
about measurements of the local hysteresis loops and their
interpretation can be found in [30–35].

Careful analysis of the averaged loops measured at the
sputtered regions clearly showed hysteresis, which confirms
that the film remains ferroelectric, as polarization can be
switched by application of an external electric filed. Fur-
thermore, the coercive voltage (loop width on the half max)
was not significantly altered, ranging from 4 to 5 V for all

regions. Coercive voltage corresponds to the electric field
required to reverse polarization underneath the tip and is one
of the most important ferroelectric parameters.

At the same time, we found, that the total piezoresponse
(full height of the loop), has been significantly affected. It
increased more than twice from 31 mV for the pristine, as-
grown sample to 71±8 mV after a short sputtering process
(1% of the film thickness) and to 90±10 mV after sputtering
of half the film thickness. We should note here that in this
manuscript we measure piezoresponse in volts (mV), which is
a deflection voltage reading from the AFM detector, which is
directly proportional to deflection of the tip and piezoelectric
deformation of the surface.

Increase in the total piezoresponse is in a good agreement
with the STEM results, showing the presence of a significant
adsorption layer on the surface of the pristine, as-grown
sample (figure 3(a)). In this case, piezoresponse of the pristine
sample is reduced due to the presence of the adsorption layer.
This leads to decrease in the sensitivity of PFM measurements
and correspondingly decreases piezoresponse. At the same
time, ferroelectric properties of the film stay unchanged,
which is confirmed by the loop shape and values of coer-
cive field.

To characterize the conductive properties of the modified
regions we performed current measurements through the
AFM tip (figure 5). These measurements did not show any
significant changes in the film electro-conductivity up to 90%
of the sputtering (figure 5(a)). The corresponding resistivity
was around 1–10 GΩ. However, further decreasing the resi-
dual film thickness down to 10% of the initial thickness led to

Figure 3. STEM imaging of the cross-sections of the pristine (a) and sputtered (b)–(e) PZT thin film. Sputtering depth corresponds to 50%
(b) and 80% (c)–(e) of the film thickness.

Figure 4. Local hysteresis loops measured in pristine sample and
regions sputtered for 1% and 50% of the film thickness.
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abrupt increase of the current (to 100 nA) with corresponding
resistivity ∼1MΩ (figure 5(b).This phenomenon is related
with the proximity of the conductive SRO buffer layer and
demonstrates the challenge of obtaining extremely thin (few
unit-cell) films with the sputtering approach.

Methods

Time-of-flight secondary ion mass spectrometry

ToF-SIMS measurements have been done using TOF.
SIMS.5-NSC instrument, using bismuth ion gun as a primary
ion source and O2

- ion gun as a sputter source.
Sputter was realized byO2

- ion beam with energy of ions
1 keV, current 120 nA and spot size ∼20 μm. To control
sputtering process we analyzed mass spectra of the freshly
sputtered surface in positive SIMS mode. In this case Bi
liquid metal ion gun with energy of ions 30 keV, current
∼30 nA and spot size ∼5 μm. This allowed us to acquire
mass spectra with spectral resolution bellow 0.01 Da.

Atomic force microscopy

Characterization of the depth and profiles of sputtered craters
has been done using atomic force microscope Nanoscan
introduced into the vacuum chamber of ToF-SIMS. Mea-
surements were performed in contact AFM mode using
Nanosensor PPP-EFM tips with force constant of 2.8 Nm−1

and radius of curvature better than 25 nm.
Piezoresponse Force Microscopy and conductive AFM

measurements were carried out in environmental conditions
using Bruker Icon AFM and Budget Sensors 75E-G tips with
force constant of 3 N m−1 and radius of curvature below
25 nm. In PFM measurements AC voltage with amplitude of
0.5 V and frequency about 300 kHz was applied to the tip in
addition to switching DC voltage −5 to +5 V. For local
current measurements DC voltage was applied to the tip,
while current has been measured using external current
amplifier connected to the bottom electrode of the sample.

Scanning transmission electron microscopy

A Hitachi NB5000 FIB/SEM was used to prepare electron
transparent foils of the PZT/SrTiO3 thin film sample for
STEM imaging. To protect the PZT surface from ion beam
damage during preparation, the sample was coated with
∼200 nm of carbon. Thinning to electron transparency begun
with deposition of a 25 μm long, 4 μm wide, ∼500 nm thick
tungsten capping layer to reduce ‘curtaining’ during the final
FIB thinning of the specimen. A 40 kV focused beam of Ga
ions, with a current of 19.5 nA, was used to mill material
away down into the substrate to a depth of 4–5 μm. The
sample was lifted from the bulk and transferred to a Cu
Omniprobe half grid. A series of milling steps was then used
to reduce the thickness of the lamella until it was electron
transparent (<100 nm). The thinning was started with a
40 kV, 3.36 nA beam and thinned the sample to 1 μm thick.
For the final milling step the beam parameters were changed
to 20 kV, 0.11 nA and the sample was thinned to <100 nm
thick. To minimize Ga implantation effects and amorphous
material on the surface of the FIB thinned sample, a Fischione
Nanomill was operated at 900 eV with a 130 pA Ar+ beam
for ion milling of the sample at ±10° for 15 min each side.

High angle annular dark field (HAADF) imaging of the
PZT films was performed at 100 kV with an aberration cor-
rected scanning transmission electron microscope, the Nion
UltraSTEM 100. For HAADF imaging an illumination half
angle of ∼85 mrad was used.

Conclusion

In conclusion, in this paper we developed a universal tech-
nique for subtractive fabrication of thin films with precisely
controlled thickness. In this approach, a focused oxygen-ion
beam is used for sputtering under the control of ToF-SIMS,
which allows tuning of functional material response through
for in situ surface cleaning and feedback on precise film
thickness. This approach can be useful for fundamental
investigations as well as practical application of various thin

Figure 5. Local current measurements by biased AFM tip in sputtered regions of PZT thin film. (a) Sputtering of 1%–80% and (b) 90% of the
film thickness.
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films. In particular, it enables size-effects on collective phe-
nomena and correlated atomic and electron states to be
investigated within a single film, modified in certain regions
by the ion beam. Our benchmark study of ferroelectric size
effect in lead zirconate-titanate revealed the presence of a
significant adsorption layer on the surface of pristine, as-
grown samples leading to a decrease of the piezoelectric
response, measured with an AFM tip. Oxygen sputtering
completely removed this layer, enhancing piezoresponse
2–3 times compared to the as-grown state, while ferroelectric
properties and crystallography of the film remained unchan-
ged down to about 10% of the original thickness. These
results point toward applicability of the developed approach
for wider range of thin-films and practical applications.
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