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Abstract—Wide-band spectral sensing is a challenging task
that will be required in future cognitive radio and radar applica-
tions. Recent research has shown that sampling using only one-bit
of amplitude precision can be realized at an extremely high rate
[1] in an affordable manner. In this work, one-bit sampling using
time-varying thresholds is considered for line spectral estimation.
The time-varying thresholds allow for amplitude estimation. A
novel one-bit RELAX algorithm is developed for multi-tone
parameter estimation. This algorithm is shown to have excellent
performance via a numerical example.

I. INTRODUCTION

Quantization of signals of interest is a necessary first step
in digital signal processing applications. Typically signal quan-
tization is implemented as high-resolution amplitude quantiza-
tion at a sampling frequency above the Nyquist rate [2] after
suitable low-pass filtering to avoid aliasing. In this sampling
regime the amplitude quantization is fine enough such that the
sampling error can be modeled as additive noise, and has little
impact on the performance of algorithms which are typically
developed under the assumption of infinite precision sampling.
However, in applications such as spectral sensing for cognitive
radio and radar [3], [4] which require extremely high sampling
rates, it may be impractical or impossible to achieve Nyquist
sampling at even moderate amplitude precision.

The most extreme form of quantization is reduction of the
signal to one-bit per sample, which may be accomplished via
repeatedly comparing the signal to some reference level, and
recording whether the signal is above or below the reference.
One-bit sampling allows for an extremely high sampling rate
at a low cost. Problems involving data quantized to one-bit
have been studied from a classical statistical viewpoint in [5]—
[9], from a sampling and reconstruction viewpoint in [10],
[11], and from a compressive sensing viewpoint in [12]—[21].
It is important to note that many of the cited works use only
comparisons to zero, which obliterates information about the
amplitude of the signals of interest.

The authors of this work have recently published two
papers [22], [23] that investigate the problem of sinusoidal
signal parameter estimation using one-bit samples with time-
varying thresholds. The use of one-bit sampling with time-
varying thresholds allows for amplitude estimation, and has
been demonstrated in hardware systems [1]. In [22] a sparse
semi-parametric approach was introduced for sinusoidal pa-
rameter estimation in a one-bit sampling with time-varying
thresholds system. It was shown that a logarithm penalty of-
fered more parsimonious models and more accurate amplitude
estimates than the common /¢; penalty. In [23] a parametric
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approach to the spectral sensing is developed, and a maximum
likelihood (ML) estimator for sinusoidal parameter estimation
was proposed.

Here, the problem of multiple sinusoid parameter estima-
tion using one-bit samples subjected to time-varying thresholds
is investigated. It is shown that the true ML estimator is com-
putationally inefficient for signals with numerous frequency
components. Two computationally simpler algorithms are in-
troduced for this case. One is analogous to the periodogram
approach from infinite precision spectral estimation [24]. The
second approach is analogous to the RELAX algorithm from
the spectral estimation literature [25]. Finally, the previously
developed semi-parametric sparse approaches [22] are applied
to this problem, and slightly modified to improve their ampli-
tude estimates.

II. SIGNAL MODEL

Consider a signal, s(t,3), where ¢ denotes time and
B € RY is a vector of unknown parameters. Let s(¢,3) be
compared to a known reference function h(t) via a comparator,
whose output y(t) takes the form

y(t) = sign (s(t,8) +e(t) —

where the term e(t) denotes unknown additive noise. The sign
function is characterized by

. 1 >0
sign (@) =_1 5 <o

h(t)), (1)

2

In this model, 7' samples of y(t) are captured, not nec-
essarily uniformly in time, and are stored in the vector
y = [y(to),y(t1), ..., y(tr—1)]", where ()7 denotes matrix
transpose. The problem of interest is to estimate the parameter
vector (3 using the one-bit samples y and the knowledge of
the thresholds h = [h(to), h(t1), . .., h(tr—1)]"

Let s(t,3) be a sum of sinusoids, or
N-—
s(t,B) = Z ap, sin(wpt) + by, cos(wpt)], 3)

T
where 3 = san—1,bn—1,wNn_1] €

lag, bo,wo, a1, by, wi, ...
RB’N



III. LIKELIHOOD FUNCTION

Suppose that the additive noise e(t) is an i.i.d. Gaussian
noise, or e(t) ~ N (0,0?). Define the sets I, and I_ such
that I, = {k:y(tx) =1}, and I_ = {k : y(tx) = —1}.

Then, the likelihood function can be expressed as

L(ﬁ) _ H o (S(tka/@)o_ h(tk)>
kely
o (e
kel_

where ®(-) is the standard Normal cumulative distribution
function (CDF). After some simple manipulations, the final
expression for the likelihood function of the measurements is
given by

T-1
1) = T @ (s 2=200) )
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IV. PARAMETER ESTIMATION
A. Maximum Likelihood Estimation

The maximum likelihood (ML) approach to parameter
estimation has been applied to this problem [23], and been
shown to offer good performance. ML estimators are attractive
as they have many desirable properties, including consistency,
asymptotic efficiency (attainment of the Cramér-Rao Bound
(CRB)), and asymptotic normality (see e.g., [26]). In this ap-
proach, the parameters of interest are estimated by finding the
values which minimize the negative log-likelihood function.
Therefore, the problem under consideration is given in (6).

Let w = [wo, w1, - .. ,wN,l]T be a vector containing the

angular frequencies of the input signal. Note that for §iven
I . . . . N—

w the optimization problem in (6) is convex in {a,}, _, and

{bn}fj_ol (see e.g., [27]). This holds true regardless if o is

known or unknown.

Given the convexity of the problem in the amplitude
parameters for fixed w, ML estimation of 3 can be carried
out by performing an N dimensional search over the space
of angular frequencies for each of the sinusoidal signal com-
ponents. The search may be carried out as follows. Begin
by establishing a discrete set of L points in [0,7), e.g.,
o = %l, l=0,1,...,L — 1. Fix an w such that each w,,
n = 0,1,...,N — 1, is equal to some ¢;. For this fixed
w, solve (6) using, e.g., Newton’s met]l\lfoc} (see e.g., [28]).
N1 and {l;n

n=0

Store the optimal {a,} , as well as the

value of the log likelihood function at {ﬁso optimal solution.
Finally, repeat the previous steps after fixing a new w. After

all the w have been searched, the optimal w and {dn}sz_ol and
. yN-1
bn, correspond to the minimum negative log-likelihood

n=0 .
value obtained.

The previously described algorithm requires an /N dimen-
sional search, with L points to search along each dimension.
This means that (6), which is a 2N dimensional convex
problem, must be solved O (LN ) times. As the number of
sinusoids in the model increase, the ML approach rapidly be-
comes computationally inefficient if a global optimal solution
is desired. In this case, more efficient algorithms must be used.

B. One-Bit Periodogram

The well-known periodogram approach to spectral estima-
tion involves computing the squared magnitude of the discrete
Fourier transform (DFT) of a sampled data sequence. As de-
scribed in [24], the periodogram may serve as an “approximate
ML” approach, provided that the frequencies of the sinusoids
are spaced sufficiently far apart. Furthermore, note that, in the
case of a single sinusoid (/N = 1), the location and complex
amplitude corresponding to the maximum of the periodogram
is the ML estimator when the noise is Gaussian.

In a similar spirit, the one-bit periodogram is defined as
follows. First, solve (6) assuming only a single sinusoid exists
for w = ¢, I = 0,1,...,L — 1. This process yields the
optimum a and b for each frequency ¢;, as well as the value
of the optimized log-likelihood function. Then, find the N
largest peaks in the computed log-likelihood function. Finally,
the frequencies corresponding to the /N largest peaks are used
to estimate the amplitude and phase of the strongest signals
via solving (6).

Clearly, this approach is far less computationally expensive
than the ML technique, as the one-bit periodogram only
requires solving L 2-dimensional convex problems. However,
similar to the infinite precision periodogram, the algorithm
may not offer good estimates when multiple signals are too
closely spaced, or if there is a strong signal very near to a
weaker one. In the following subsection, an approach which
offers better performance than the one-bit periodogram with
less computational complexity than the true ML algorithm will
be presented.

C. One-Bit RELAX

As described in [24], ML parameter estimation for sinu-
soidal signals with infinite precision samples can be expressed
as a non-linear least squares (NLS) optimization problem. The
infinite precision case is thus similar to the one-bit sample
case under consideration, in that each case requires high
dimensional searches. The paper [25] developed a relaxation
approach for this problem that can offer good parameter esti-
mation performance and acceptable computational complexity.
The algorithm, named RELAX, is extended to the one-bit
precision sampling case in this work. Let 3,, = [ay,, by, wn]T €
R3 be a subvector of 3 containing the parameters of the
nMsinusoidal component. The operation of the one-bit RELAX
algorithm is described below.

The algorithm begins by assuming that N = 1, and
performs parameter estimation under this assumption. It has
been shown above that the ML estimate of the amplitude,
frequency, and phase of a single sinusoid requires only a one-
dimensional search over w. That is, (6) is solved for N = 1.
This process will yield an estimate of 3; of the strongest
sinusoidal signal component.

With an estimate of the dominant sinusoidal component,
the algorithm moves to estimate the next strongest signal
component. To this end, the algorithms assumes that N = 2,
and now solves a slightly modified version of (6) given in
(7). That is, the estimates of the dominant signal from the
first stage of the algorithm are used to suppress the impact of
this strong signal, improving the estimates of the parameters
of the second strongest signal. The problem in (7) requires a
search over one dimension, and solving a 2 dimensional convex
problem at each search location.
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i.e., until the change in cost or the estimates is small enough.

Once good estimates of the two strongest signals have been
obtained, the algorithm may proceed to N = 3. Similar to
the case of N = 2, the algorithm begins by estimating the
third strongest signal component’s parameters via assuming
the estimates from the previous stages of the algorithms
are known. Then, the algorithm iterates between the various
signal components and refines the estimates until practical
convergence is achieved. The model order is increased again,
and the algorithm proceeds until the known model order is
reached.

The benefit of this approach in comparison to the true ML
method is in its computational efficiency. The proposed one-
bit RELAX approach requires solving O (C’LN 24+ CLN )
2-dimensional convex problems, where C' is the number of
iterations required to achieve practical convergence at each
model order. Note that L, the size of the frequency grid used
for the search, is proportional to the number of available
samples for parameter estimation, and much larger than V.
Thus, the one-bit RELAX algorithm’s computation burden
grows much less rapidly than that of the true ML estimator.

D. Sparse Estimation and ML

The final parameter estimation technique considered in this
work is a combination between the sparse parameter estimation
approaches from [22] with a final step of ML parameter
estimation. The particulars of the sparse parameter estimation
approaches are not provided here due to space constraints. The
interested reader can consult [22] for the details on the /1-norm
and logarithm approaches used in this work.

This approach begins by estimating the spectrum using
either the /;-norm or log-penalty approach from [22]. After the
spectrum has been estimated using either of these algorithms,
the IV strongest (in terms of amplitude) peaks are extracted,
and the frequencies of these peaks are stored. Then, (6) is
solved using the frequencies of the NV strongest peaks, which
yields the final estimates of the amplitude and phase of the
sinusoidal signal components.

This method is attractive from a computation standpoint
because the algorithm’s complexity increases very little with
model order, which is different than the true ML and RELAX
approaches. Furthermore, the final step of ML estimation offers
more accurate estimates of the amplitude of the signal compo-
nents, as the sparse estimation techniques have the well-known
effect of “shrinkage” [29], [30]. That is, the estimates offered
by these sparse estimation approaches are biased downwards.
The final step of ML estimation improves these amplitude

estimates at a relatively small computational penalty (only one
2N dimensional convex problem must be solved).

V. NUMERICAL RESULTS

Results obtained by applying the previously described
approaches are now presented and discussed. The case con-
sidered is a signal composed of six sinusoids with different
frequencies and phases, each with an amplitude of 1. Table
I displays the parameters of the six sinusoids. One hundred
independent Monte Carlo trials were run, using each of the
aforementioned algorithms to estimate the parameters of the
signal. The number of one-bit samples and thresholds used
was varied with T' = 128, 256, and 512. Each trial had an
independent noise realization, with the signal-to-noise ratio
(SNR) taking values of 10 dB and 15 dB. The SNR was

computed as
N 2 2
vaz + b2
n=1

Note that the amplitude of the n"sinusoidal component is
defined as A,, = \/a2 + b2.

Both the one-bit samples and the threshold levels are used
for parameter estimation. The same set of thresholds are used
for each of the trials run. The thresholds are drawn from
a discrete set of 8 values evenly distributed in [-1, 1]. The
threshold value for a particular sample is drawn randomly
and uniformly from this set of 8 possible threshold levels.
It should be noted that the model order (i.e., the number of
sinusoidal signal components) is known. Model order selection
and estimation will be considered in future works.

Figures 1(a) and (b) display the average frequency estima-
tion mean square error (MSE) over the six sinusoidal signal
components as a function of 7' for SNR values of 10 dB and
15 dB, respectively. In these figures, the blue curve labeled
“I-b Per.-ML” corresponds to the one-bit periodogram with
a final step of ML estimation, the green curve labeled “1-b
RELAX” corresponds to the one-bit RELAX algorithm, the red
curve labeled “/; —ML” corresponds to the ¢1-norm approach,
and the cyan curve labeled “log-ML” corresponds to the log-
penalty approach. Finally, the black curve labeled “Avg.-CRB”
corresponds to the Cramér-Rao Bound for the set of signals
and thresholds averaged over the six signals considered.

Inspecting these results, it can be seen that the one-bit
RELAX algorithm provides the best frequency estimation
performance, with the log-penalty and one-bit periodogram
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Fig. 1. Average (over signal components) frequency estimation MSE as a
function of T" for an SNR of (a) 10 dB and (b) 15 dB.

approaches offering good performance when the sample sup-
port is large. Note that the increase in SNR by 5 dB has
little effect on the frequency estimation performance in the
example considered, as the one-bit RELAX and log-penalty
approaches perform similarly in both cases. Note that the one-
bit periodogram performance actually worsens slightly with
improving SNR. After inspecting the raw outputs of the one-
bit periodogram, it was seen that for the particular signal and
threshold case considered, a large sidelobe was present. As the
SNR increased, the average strength of this sidelobe increased,
leading it to compete with the true signals for detection.

Figures 2(a) and (b) display the average amplitude estima-
tion mean square error (MSE) over the six sinusoidal signal
components as a function of 7' for SNR values of 10 dB
and 15 dB, respectively. Inspecting these results, it can be
seen that the one-bit periodogram appears to offer the lowest
amplitude estimation error for the 10 dB SNR case. However,
note that the one-bit periodogram frequency estimates are poor
at low sample support, and the algorithm fails to detect some
of the signals in the 7' = 128 and 1" = 256 cases considered.
The missed detection problem is not taken into account in
the computation of the average amplitude estimation MSE,
making the one-bit periodogram amplitude estimation seem
to perform better than it does. Inspecting the one-bit RELAX
curves, it can be seen that this approach offers good amplitude
estimation performance, along with good frequency estimation
performance when 7' > 256 for the signal and threshold case
considered.

Table II displays the computed average run time for each
of the algorithms. Clearly, the one-bit periodogram is the most
computationally efficient method, with the ¢;-ML algorithms
requiring approximately quadruple the run time. The log
penalty approach requires iteratively solving re-weighted ¢;
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Fig. 2. Average (over signal components) amplitude estimation MSE as a
function of T" for an SNR of (a) 10 dB and (b) 15 dB.

TABLE II. AVERAGE RUNNING TIME FOR ALGORITHMS AS A
FUNCTION OF T'.
Algorithm  1-b Per.  1-b RELAX /¢;-ML  log.-ML
T =128 0.49 70.15 1.96 10.26
T = 256 1.34 174.22 13.20 60.01
T =512 3.87 418.74 154.86 568.04

problems, hence the longer run times. Furthermore, while the
one-bit RELAX algorithm generally requires more computa-
tion than the other methods considered, it provides the best
estimation performance of all the approaches considered with
manageable computational complexity.

VI. CONCLUSION

A one-bit sampling scheme which uses time-varying
thresholds has been proposed for wide-band spectral sensing.
This architecture allows for very high-rate sampling enabled by
the use of only one-bit of amplitude precision, while preserving
critical information about the amplitude of the signal. The
problem of line spectra parameter estimation was considered,
and several techniques from infinite precisions spectral esti-
mation have been extended to this problem. It was shown that
the one-bit RELAX algorithm can offer excellent estimation
performance at a reasonable computational cost. The simple
one-bit periodogram also provided reasonable performance for
the well-spaced sinusoidal tones with very little computational
expense.
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